Deep Reinforcement Learning for Flow Control Exploits Different Physics for Increasing Reynolds Number Regimes

The increase in emissions associated with aviation requires deeper research into novel sensing and flow-control strategies to obtain improved aerodynamic performances. In this context, data-driven methods are suitable for exploring new approaches to control the flow and develop more efficient strate...

Full description

Saved in:
Bibliographic Details
Published inActuators Vol. 11; no. 12; p. 359
Main Authors Varela, Pau, Suárez, Pol, Alcántara-Ávila, Francisco, Miró, Arnau, Rabault, Jean, Font, Bernat, García-Cuevas, Luis Miguel, Lehmkuhl, Oriol, Vinuesa, Ricardo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increase in emissions associated with aviation requires deeper research into novel sensing and flow-control strategies to obtain improved aerodynamic performances. In this context, data-driven methods are suitable for exploring new approaches to control the flow and develop more efficient strategies. Deep artificial neural networks (ANNs) used together with reinforcement learning, i.e., deep reinforcement learning (DRL), are receiving more attention due to their capabilities of controlling complex problems in multiple areas. In particular, these techniques have been recently used to solve problems related to flow control. In this work, an ANN trained through a DRL agent, coupled with the numerical solver Alya, is used to perform active flow control. The Tensorforce library was used to apply DRL to the simulated flow. Two-dimensional simulations of the flow around a cylinder were conducted and an active control based on two jets located on the walls of the cylinder was considered. By gathering information from the flow surrounding the cylinder, the ANN agent is able to learn through proximal policy optimization (PPO) effective control strategies for the jets, leading to a significant drag reduction. Furthermore, the agent needs to account for the coupled effects of the friction- and pressure-drag components, as well as the interaction between the two boundary layers on both sides of the cylinder and the wake. In the present work, a Reynolds number range beyond those previously considered was studied and compared with results obtained using classical flow-control methods. Significantly different forms of nature in the control strategies were identified by the DRL as the Reynolds number Re increased. On the one hand, for Re≤1000, the classical control strategy based on an opposition control relative to the wake oscillation was obtained. On the other hand, for Re=2000, the new strategy consisted of energization of the boundary layers and the separation area, which modulated the flow separation and reduced the drag in a fashion similar to that of the drag crisis, through a high-frequency actuation. A cross-application of agents was performed for a flow at Re=2000, obtaining similar results in terms of the drag reduction with the agents trained at Re=1000 and 2000. The fact that two different strategies yielded the same performance made us question whether this Reynolds number regime (Re=2000) belongs to a transition towards a nature-different flow, which would only admits a high-frequency actuation strategy to obtain the drag reduction. At the same time, this finding allows for the application of ANNs trained at lower Reynolds numbers, but are comparable in nature, saving computational resources.
AbstractList The increase in emissions associated with aviation requires deeper research into novel sensing and flow-control strategies to obtain improved aerodynamic performances. In this context, data-driven methods are suitable for exploring new approaches to control the flow and develop more efficient strategies. Deep artificial neural networks (ANNs) used together with reinforcement learning, i.e., deep reinforcement learning (DRL), are receiving more attention due to their capabilities of controlling complex problems in multiple areas. In particular, these techniques have been recently used to solve problems related to flow control. In this work, an ANN trained through a DRL agent, coupled with the numerical solver Alya, is used to perform active flow control. The Tensorforce library was used to apply DRL to the simulated flow. Two-dimensional simulations of the flow around a cylinder were conducted and an active control based on two jets located on the walls of the cylinder was considered. By gathering information from the flow surrounding the cylinder, the ANN agent is able to learn through proximal policy optimization (PPO) effective control strategies for the jets, leading to a significant drag reduction. Furthermore, the agent needs to account for the coupled effects of the friction- and pressure-drag components, as well as the interaction between the two boundary layers on both sides of the cylinder and the wake. In the present work, a Reynolds number range beyond those previously considered was studied and compared with results obtained using classical flow-control methods. Significantly different forms of nature in the control strategies were identified by the DRL as the Reynolds number Re increased. On the one hand, for Re≤1000, the classical control strategy based on an opposition control relative to the wake oscillation was obtained. On the other hand, for Re=2000, the new strategy consisted of energization of the boundary layers and the separation area, which modulated the flow separation and reduced the drag in a fashion similar to that of the drag crisis, through a high-frequency actuation. A cross-application of agents was performed for a flow at Re=2000, obtaining similar results in terms of the drag reduction with the agents trained at Re=1000 and 2000. The fact that two different strategies yielded the same performance made us question whether this Reynolds number regime (Re=2000) belongs to a transition towards a nature-different flow, which would only admits a high-frequency actuation strategy to obtain the drag reduction. At the same time, this finding allows for the application of ANNs trained at lower Reynolds numbers, but are comparable in nature, saving computational resources.
The increase in emissions associated with aviation requires deeper research into novel sensing and flow-control strategies to obtain improved aerodynamic performances. In this context, data-driven methods are suitable for exploring new approaches to control the flow and develop more efficient strategies. Deep artificial neural networks (ANNs) used together with reinforcement learning, i.e., deep reinforcement learning (DRL), are receiving more attention due to their capabilities of controlling complex problems in multiple areas. In particular, these techniques have been recently used to solve problems related to flow control. In this work, an ANN trained through a DRL agent, coupled with the numerical solver Alya, is used to perform active flow control. The Tensorforce library was used to apply DRL to the simulated flow. Two-dimensional simulations of the flow around a cylinder were conducted and an active control based on two jets located on the walls of the cylinder was considered. By gathering information from the flow surrounding the cylinder, the ANN agent is able to learn through proximal policy optimization (PPO) effective control strategies for the jets, leading to a significant drag reduction. Furthermore, the agent needs to account for the coupled effects of the friction- and pressure-drag components, as well as the interaction between the two boundary layers on both sides of the cylinder and the wake. In the present work, a Reynolds number range beyond those previously considered was studied and compared with results obtained using classical flow-control methods. Significantly different forms of nature in the control strategies were identified by the DRL as the Reynolds number Re increased. On the one hand, for Re & LE;1000, the classical control strategy based on an opposition control relative to the wake oscillation was obtained. On the other hand, for Re=2000, the new strategy consisted of energization of the boundary layers and the separation area, which modulated the flow separation and reduced the drag in a fashion similar to that of the drag crisis, through a high-frequency actuation. A cross-application of agents was performed for a flow at Re=2000, obtaining similar results in terms of the drag reduction with the agents trained at Re=1000 and 2000. The fact that two different strategies yielded the same performance made us question whether this Reynolds number regime (Re=2000) belongs to a transition towards a nature-different flow, which would only admits a high-frequency actuation strategy to obtain the drag reduction. At the same time, this finding allows for the application of ANNs trained at lower Reynolds numbers, but are comparable in nature, saving computational resources.
Audience Academic
Author Rabault, Jean
Lehmkuhl, Oriol
Vinuesa, Ricardo
Suárez, Pol
Miró, Arnau
Varela, Pau
Font, Bernat
García-Cuevas, Luis Miguel
Alcántara-Ávila, Francisco
Author_xml – sequence: 1
  givenname: Pau
  orcidid: 0000-0002-7909-4569
  surname: Varela
  fullname: Varela, Pau
– sequence: 2
  givenname: Pol
  orcidid: 0000-0002-6031-5536
  surname: Suárez
  fullname: Suárez, Pol
– sequence: 3
  givenname: Francisco
  orcidid: 0000-0003-0704-6100
  surname: Alcántara-Ávila
  fullname: Alcántara-Ávila, Francisco
– sequence: 4
  givenname: Arnau
  orcidid: 0000-0002-2772-6050
  surname: Miró
  fullname: Miró, Arnau
– sequence: 5
  givenname: Jean
  orcidid: 0000-0002-7244-6592
  surname: Rabault
  fullname: Rabault, Jean
– sequence: 6
  givenname: Bernat
  orcidid: 0000-0002-2136-3068
  surname: Font
  fullname: Font, Bernat
– sequence: 7
  givenname: Luis Miguel
  orcidid: 0000-0001-9340-0617
  surname: García-Cuevas
  fullname: García-Cuevas, Luis Miguel
– sequence: 8
  givenname: Oriol
  orcidid: 0000-0002-2670-1871
  surname: Lehmkuhl
  fullname: Lehmkuhl, Oriol
– sequence: 9
  givenname: Ricardo
  orcidid: 0000-0001-6570-5499
  surname: Vinuesa
  fullname: Vinuesa, Ricardo
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-356269$$DView record from Swedish Publication Index
BookMark eNptUk1vEzEQXaEiUUpP_IGVOKIUf629PkZJC5EiQBVwXXntceqwawfbUcm_x5tFqCA8B9tP7z3PeOZldeGDh6p6jdENpRK9UzpjjAmijXxWXRIk-AK1pLl4cn5RXae0R2VJTFtELyu_BjjU9-C8DVHDCD7XW1DRO7-rC1TfDeGxXgWfYxjq25-HIbic6rWzFuJE_vxwSk6nM3fjdQSVJuk9nHwYTKo_HsceYrnv3AjpVfXcqiHB9e_9qvp6d_tl9WGx_fR-s1puF5oxnBdctJYoZlSDjLSq4dpILZE0LW85wbIXRGEACr01pTbKeiO0Fi3RglLbSHpVbWZfE9S-O0Q3qnjqgnLdGQhx16mYnR6gwwy3xlqCkUKsRUTJEoxwA5Qxw0XxWsxe6REOx_4vt7X7tjy7fc8PHW044dPbb2b-IYYfR0i524dj9KXcjoiGcyZo0xTWzczaqZLE9P05Kl3CwOh06ax1BV8KhgXikvMieDsLdAwpRbB_EsGomwagezIAhY3_YWuXVXZTI5Ub_qv5BaYZtPI
CitedBy_id crossref_primary_10_1007_s10494_024_00609_4
crossref_primary_10_1007_s10494_025_00642_x
crossref_primary_10_1016_j_ijthermalsci_2023_108618
crossref_primary_10_1016_j_euromechflu_2023_12_001
crossref_primary_10_1088_1742_6596_2753_1_012022
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1017_jfm_2025_27
crossref_primary_10_1016_j_ijheatfluidflow_2023_109139
crossref_primary_10_3390_act13120488
crossref_primary_10_1103_PhysRevFluids_9_043902
crossref_primary_10_1063_5_0143913
crossref_primary_10_1016_j_cma_2023_116583
crossref_primary_10_1038_s41467_025_56408_6
crossref_primary_10_1063_5_0153181
crossref_primary_10_1016_j_oceaneng_2025_120989
crossref_primary_10_1017_jfm_2024_333
crossref_primary_10_1016_j_applthermaleng_2023_121919
crossref_primary_10_1063_5_0171188
crossref_primary_10_1063_5_0176223
crossref_primary_10_3389_arc_2023_11130
crossref_primary_10_1017_jfm_2024_69
crossref_primary_10_1103_PhysRevFluids_9_063904
crossref_primary_10_1063_5_0237682
crossref_primary_10_3390_fluids9120299
crossref_primary_10_1016_j_awe_2024_100002
Cites_doi 10.1016/j.ijheatfluidflow.2022.109008
10.1016/j.apnum.2018.11.013
10.3390/drones6020038
10.1533/9780857094575.4.145
10.3390/drones5030056
10.1016/j.compfluid.2012.03.022
10.1134/S0869864319010025
10.1017/jfm.2019.62
10.1016/j.ijheatfluidflow.2022.109036
10.1038/s43588-022-00264-7
10.1016/j.euromechflu.2009.11.002
10.1063/1.5132378
10.1080/10407790.2011.594398
10.1103/PhysRevFluids.6.113904
10.1017/jfm.2021.1015
10.1007/s11012-015-0100-9
10.1017/jfm.2021.1045
10.1103/PhysRevFluids.6.053902
10.1016/j.jcp.2017.02.039
10.1007/s12206-013-0917-x
10.1063/5.0006492
10.1063/1.5116415
10.1017/jfm.2021.812
10.1017/jfm.2011.219
10.1016/j.compfluid.2021.104973
10.1007/BF02127704
10.1007/s42241-020-0028-y
10.22541/au.160912628.89631259/v1
10.1016/j.ast.2021.107227
10.1017/jfm.2023.76
10.3390/aerospace5040126
10.1017/S0022112089002247
10.1016/j.proeng.2015.11.224
10.1016/j.jcp.2019.04.004
10.20944/preprints202201.0050.v1
10.1007/978-3-322-89849-4_39
10.1017/S0022112094000431
10.1063/5.0037371
10.3390/en13225920
10.1088/1742-6596/1697/1/012224
10.1007/s42241-020-0027-z
10.1063/5.0103113
10.2514/1.J060211
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOA
DOI 10.3390/act11120359
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_1418dff210a04802a9a9a426de344d67
oai_DiVA_org_kth_356269
A741706966
10_3390_act11120359
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PMFND
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ADTPV
AFDQA
AOWAS
D8T
D8V
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c441t-678f2a4da50d9fa56cd9c909d8686219b72a1ee3ebfd07634bd7cc782c733f593
IEDL.DBID BENPR
ISSN 2076-0825
IngestDate Wed Aug 27 01:32:46 EDT 2025
Thu Aug 21 06:35:21 EDT 2025
Fri Jul 25 12:07:19 EDT 2025
Tue Jun 10 20:44:23 EDT 2025
Tue Jul 01 02:08:09 EDT 2025
Thu Apr 24 22:51:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-678f2a4da50d9fa56cd9c909d8686219b72a1ee3ebfd07634bd7cc782c733f593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6570-5499
0000-0003-0704-6100
0000-0001-9340-0617
0000-0002-2670-1871
0000-0002-7909-4569
0000-0002-2772-6050
0000-0002-6031-5536
0000-0002-7244-6592
0000-0002-2136-3068
OpenAccessLink https://www.proquest.com/docview/2756647355?pq-origsite=%requestingapplication%
PQID 2756647355
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_1418dff210a04802a9a9a426de344d67
swepub_primary_oai_DiVA_org_kth_356269
proquest_journals_2756647355
gale_infotracacademiconefile_A741706966
crossref_primary_10_3390_act11120359
crossref_citationtrail_10_3390_act11120359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yousefi (ref_14) 2015; 50
Vinuesa (ref_24) 2022; 2
Garnier (ref_22) 2021; 225
Rabault (ref_27) 2019; 31
Lehmkuhl (ref_37) 2019; 390
ref_35
ref_12
Li (ref_31) 2022; 932
ref_34
Choi (ref_17) 1994; 262
Voevodin (ref_13) 2019; 26
Muddada (ref_18) 2010; 29
Tang (ref_28) 2020; 32
Charnyi (ref_39) 2019; 141
Kametani (ref_8) 2011; 681
Wang (ref_33) 2022; 34
Crank (ref_40) 1996; 6
Trias (ref_41) 2011; 60
ref_15
Belus (ref_26) 2019; 9
Bechert (ref_2) 1989; 206
Owen (ref_36) 2013; 80
ref_25
Park (ref_16) 2013; 27
ref_45
Rabault (ref_23) 2020; 32
ref_44
ref_21
ref_43
ref_20
ref_42
ref_1
ref_3
Han (ref_46) 2022; 96
ref_29
Tiseira (ref_5) 2022; 120
Atzori (ref_11) 2021; 6
Ren (ref_32) 2021; 33
Atzori (ref_10) 2022; 97
Stabnikov (ref_47) 2020; 1697
Rabault (ref_19) 2019; 865
Xu (ref_30) 2020; 32
Guastoni (ref_48) 2021; 928
ref_4
Fan (ref_9) 2022; 932
ref_7
ref_6
Charnyi (ref_38) 2017; 337
References_xml – volume: 96
  start-page: 109008
  year: 2022
  ident: ref_46
  article-title: Deep reinforcement learning for active control of flow over a circular cylinder with rotational oscillations
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2022.109008
– volume: 141
  start-page: 220
  year: 2019
  ident: ref_39
  article-title: Efficient discretizations for the EMAC formulation of the incompressible Navier–Stokes equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2018.11.013
– ident: ref_6
  doi: 10.3390/drones6020038
– ident: ref_1
  doi: 10.1533/9780857094575.4.145
– ident: ref_7
  doi: 10.3390/drones5030056
– volume: 80
  start-page: 168
  year: 2013
  ident: ref_36
  article-title: Recent ship hydrodynamics developments in the parallel two-fluid flow solver Alya
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.03.022
– volume: 26
  start-page: 9
  year: 2019
  ident: ref_13
  article-title: Improvement of the take-off and landing characteristics of wing using an ejector pump
  publication-title: Thermophys. Aeromech.
  doi: 10.1134/S0869864319010025
– ident: ref_3
– volume: 865
  start-page: 281
  year: 2019
  ident: ref_19
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.62
– ident: ref_34
– volume: 97
  start-page: 109036
  year: 2022
  ident: ref_10
  article-title: Control effects on coherent structures in a non-uniform adverse-pressure-gradient boundary layer
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2022.109036
– volume: 2
  start-page: 358
  year: 2022
  ident: ref_24
  article-title: Enhancing computational fluid dynamics with machine learning
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00264-7
– volume: 29
  start-page: 93
  year: 2010
  ident: ref_18
  article-title: An active flow control strategy for the suppression of vortex structures behind a circular cylinder
  publication-title: Eur. J. Mech. B/Fluids
  doi: 10.1016/j.euromechflu.2009.11.002
– volume: 9
  start-page: 125014
  year: 2019
  ident: ref_26
  article-title: Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film
  publication-title: AIP Adv.
  doi: 10.1063/1.5132378
– volume: 60
  start-page: 116
  year: 2011
  ident: ref_41
  article-title: A self-adaptive strategy for the time integration of navier-stokes equations
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790.2011.594398
– volume: 6
  start-page: 113904
  year: 2021
  ident: ref_11
  article-title: Uniform blowing and suction applied to nonuniform adverse-pressure-gradient wing boundary layers
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.113904
– volume: 932
  start-page: A31
  year: 2022
  ident: ref_9
  article-title: Decomposition of the mean friction drag on an NACA4412 airfoil under uniform blowing/suction
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.1015
– volume: 50
  start-page: 1481
  year: 2015
  ident: ref_14
  article-title: Three-dimensional suction flow control and suction jet length optimization of NACA 0012 wing
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0100-9
– volume: 932
  start-page: A44
  year: 2022
  ident: ref_31
  article-title: Reinforcement-learning-based control of confined cylinder wakes with stability analyses
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.1045
– ident: ref_20
  doi: 10.1103/PhysRevFluids.6.053902
– ident: ref_42
– ident: ref_35
– volume: 337
  start-page: 289
  year: 2017
  ident: ref_38
  article-title: On conservation laws of Navier–Stokes Galerkin discretizations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.02.039
– volume: 27
  start-page: 3721
  year: 2013
  ident: ref_16
  article-title: Experimental study on synthetic jet array for aerodynaic drag reduction of a simplified car
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-013-0917-x
– volume: 32
  start-page: 053605
  year: 2020
  ident: ref_28
  article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
  publication-title: Phys. Fluids
  doi: 10.1063/5.0006492
– volume: 31
  start-page: 094105
  year: 2019
  ident: ref_27
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.5116415
– volume: 928
  start-page: A27
  year: 2021
  ident: ref_48
  article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.812
– volume: 681
  start-page: 154
  year: 2011
  ident: ref_8
  article-title: Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.219
– volume: 225
  start-page: 104973
  year: 2021
  ident: ref_22
  article-title: A review on deep reinforcement learning for fluid mechanics
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2021.104973
– volume: 6
  start-page: 207
  year: 1996
  ident: ref_40
  article-title: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02127704
– volume: 32
  start-page: 234
  year: 2020
  ident: ref_23
  article-title: Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0028-y
– ident: ref_45
  doi: 10.22541/au.160912628.89631259/v1
– volume: 120
  start-page: 107227
  year: 2022
  ident: ref_5
  article-title: Series-hybridisation, distributed electric propulsion and boundary layer ingestion in long-endurance, small remotely piloted aircraft: Fuel consumption improvements
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.107227
– ident: ref_21
  doi: 10.1017/jfm.2023.76
– ident: ref_4
  doi: 10.3390/aerospace5040126
– volume: 206
  start-page: 105
  year: 1989
  ident: ref_2
  article-title: The viscous flow on surfaces with longitudinal ribs
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089002247
– ident: ref_15
  doi: 10.1016/j.proeng.2015.11.224
– volume: 390
  start-page: 51
  year: 2019
  ident: ref_37
  article-title: A low-dissipation finite element scheme for scale resolving simulations of turbulent flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.04.004
– ident: ref_25
  doi: 10.20944/preprints202201.0050.v1
– ident: ref_44
  doi: 10.1007/978-3-322-89849-4_39
– volume: 262
  start-page: 75
  year: 1994
  ident: ref_17
  article-title: Active turbulence control for drag reduction in wall-bounded flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094000431
– volume: 33
  start-page: 037121
  year: 2021
  ident: ref_32
  article-title: Applying deep reinforcement learning to active flow control in weakly turbulent conditions
  publication-title: Phys. Fluids
  doi: 10.1063/5.0037371
– ident: ref_29
  doi: 10.3390/en13225920
– volume: 1697
  start-page: 012224
  year: 2020
  ident: ref_47
  article-title: Prediction of the drag crisis on a circular cylinder using a new algebraic transition model coupled with SST DDES
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1697/1/012224
– ident: ref_43
– volume: 32
  start-page: 254
  year: 2020
  ident: ref_30
  article-title: Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0027-z
– volume: 34
  start-page: 081801
  year: 2022
  ident: ref_33
  article-title: DRLinFluids: An open-source Python platform of coupling deep reinforcement learning and OpenFOAM
  publication-title: Phys. Fluids
  doi: 10.1063/5.0103113
– ident: ref_12
  doi: 10.2514/1.J060211
SSID ssj0000913803
Score 2.4538138
Snippet The increase in emissions associated with aviation requires deeper research into novel sensing and flow-control strategies to obtain improved aerodynamic...
SourceID doaj
swepub
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 359
SubjectTerms Active control
Actuation
Aeronautics
Aircraft
Artificial neural networks
Boundary layer
Boundary layers
Control algorithms
Control methods
Cylinders
Deep learning
deep reinforcement learning
Drag reduction
Emissions
Flow control
Flow separation
Flow simulation
Fluid flow
Machine learning
Neural networks
numerical simulation
Optimization
Partial differential equations
Reynolds number
Two dimensional flow
Velocity
wake dynamics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejp-0w9smydcWHssEgNI7tvPj42rdHGayHso7ejCPLXdkjr-yllP33k5y0vG6DXUZOMQookmxJRvpJiH2KgGsdWlWCASxN29mS8qxYQgtN1XaNTcj3HZ9PmuMz8-ncnm-N-uKasBEeeBTcgTKqjSlRZhK4_bkOjh5yKxG1MbHJfeTk87aSqXwGO6XbSo8NeZry-oMAA23rmhHr7rmgjNT_53n8G3Jo9jbLJ-LxFCbK-cjeU_EA-2fi0RZ44HPRLxCv5Clm6FPIt3xyQku9kLQkl6v1jTwaS9FlrrW7HDZyMU1EGWQu_oRNpqVjgqvT-dNT_NmvV3EjT_KwEHq_4DaRF-Js-fHL0XE5TU8gsRs1lOSFUh1MDLaKLgXbQHTgKhdbbgpRrpvVQSFq7FKs6JQxXZwBUMAAM62Tdfql2OnXPb4SEpKCCik60jYaazpHak-IlPworCKoQny4FaiHCVqcJ1ysPKUYLH2_Jf1C7N8RX42IGn8nO2TN3JEwDHZeIOPwk3H4fxlHId6zXj1rghiCMPUc0G8x7JWfUzw1qxpK-Qqxe6t6P-3ijWdo_IZnM9tCvBvN4R4_i8uv88zP9-Gb1xRJNu71_2D7jXhYc5dFrprZFTvDj2t8S7HP0O1lM_8FsJcB6g
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Reinforcement Learning for Flow Control Exploits Different Physics for Increasing Reynolds Number Regimes
URI https://www.proquest.com/docview/2756647355
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-356269
https://doaj.org/article/1418dff210a04802a9a9a426de344d67
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4ikCZeVDBRJS1CS2E_uEtt0uFRIrtKKoNyvxY6lYJUsThPj3zDjepQWEcorlRI7HHs83mfmGkCOwgAtWyzw13LiUy0akgLNsaqQpM9mUwjv0d3xYlOcX_P2luIwOtz6GVW51YlDUtjPoIz9GmvIS6-SKt5tvKVaNwr-rsYTGHjkAFSwBfB2cnC0-LndeFmS9lKE8cgGAPUU8NCbpMcD6x7UZYKsXyGJ361gK7P1_6-g_2ETDCTR_QO5H05FOR1k_JHdc-4jcu0Eo-Ji0M-c2dOkCHaoJnj8aGVRXFJrofN39oKdjeDoN8XdXQ09nsUrKQENAqOlDX1AdGLGOjy7dz7Zb254uQgERuF9h6sgTcjE_-3R6nsaKCiAKng8pnEy-qLmtRWaVr0VprDIqU1Ziokiumqqoc-eYa7yF-WK8sZUxYESYijEvFHtK9tuudc8INT43mQOLiQnLBW8ULAXvHACi3GXW5Al5s51QbSLdOFa9WGuAHTj7-sbsJ-Ro13kzsmz8u9sJSmbXBamxQ0N3vdJxpwGWyaX1HqBsjfnyRa3gAjvEOsa5LauEvEa5apQEDMjUMQ8BPgupsPQUbKwqKwEGJuRwK3odd3avf6_DhLwal8Ot8cyuPk_DeL4OXzQD67JUz___nhfkboE5FSFG5pDsD9ff3UuwdIZmQvbk_N0kLupJ8Bf8Amyx_0U
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE8RWsCHAhJS1MR2XgeEli7LlrZ7qFrUm0lsZ6lYJdsmqOqf4jcy4yRLC4hbldNGk8jxjMfzeWe-AdjCCJiLPA19LbX1ZVpEPuIs4-tUx0FaxFFp6bzjYBZPj-Xnk-hkDX4OtTCUVjn4ROeoTa3pjHybaMpj6pMbvV-e-dQ1iv5dHVpodGaxZy8vELI173bHqN9XnE8-Hu1M_b6rAA5Hhq2P3rnkuTR5FJiszKNYm0xnQWZSKpYIsyLheWitsEVpEOQLWZhEa9xIdSJEGRH5Err8W1KIjFZUOvm0OtMhjs3UNWPm-KRP6KsrCUTZYDvXLToWTpx51zZB1yvg7x3hD-5St99N7sO9PlBlo86yHsCarR7C3Sv0hY-gGlu7ZIfWka9qd87Ier7WOcNbbLKoL9hOlwzPXLbfaduwcd-TpWUu_VQ3ThYdFeXH06OH9rKqF6ZhM9euBH_PqVDlMRzfyEw_gfWqruxTYLoMdWAxPhORkZEsMjS80lqEX6ENjA49eDtMqNI9uTn12FgoBDk0--rK7HuwtRJedpwe_xb7QJpZiRARt7tRn89Vv64ROYWpKUsEzjlV5_M8wwujHmOFlCZOPHhDelWkCRyQzvuqB_wsIt5SI4zokiBG0OnB5qB61fuRRv22eg9ed-ZwbTzj0y8jN57v7TclMJaNs2f_f89LuD09OthX-7uzvQ24w6maw2XnbMJ6e_7DPscYqy1eOMNm8PWmV9Iv0yQ5VQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHiKQAEfCkhI0Sax8zogtG26aimsqhVFvZnEj23FKlmaoKp_jV_HjOMsLSBuVU6J7MjxjMfzOTPfELINHnDEyiz0JZfa51kV-4CzlC8zmQRZlcRG43nHp1myf8w_nMQnG-TnkAuDYZWDTbSGWjUSz8jHSFOeYJ3ceGxcWMRRMX2_-u5jBSn80zqU0-hV5FBfXgB8a98dFCDrV1E03fu8u--7CgMwNB52PlhqE5VclXGgclPGiVS5zINcZZg4EeZVGpWh1kxXRgHgZ7xSqZSwqcqUMRMjEROY_80UUFEwIps7e7Oj-fqEBxk3M1uaOYK-PmKxPkGQsTwYl7IDMxMhg961LdFWDvh7f_iDydTuftN75K5zW-mk17P7ZEPXD8idK2SGD0ldaL2ic22pWKU9daSOvXVB4RGdLpsLutuHxlMb-3fWtbRwFVo6aoNRZWvbgtnCaHnsOteXdbNULZ3Z4iVwv8C0lUfk-Ebm-jEZ1U2tnxAqTSgDDd4aixWPeZWDGhqtAYyFOlAy9MjbYUKFdFTnWHFjKQDy4OyLK7Pvke1141XP8PHvZjsomXUTpOW2D5rzhXCrHHBUmCljAEaXmKsflTlc4AMpzThXSeqRNyhXgZKAAcnS5UDAZyENl5iAf5cGCUBQj2wNohfOqrTi9xrwyOteHa6Npzj7MrHj-dadCgaebZI__f97XpJbsIrEx4PZ4TNyO8LUDhuqs0VG3fkP_Rwcrq564TSbkq83vZh-AZKAPuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Flow+Control+Exploits+Different+Physics+for+Increasing+Reynolds+Number+Regimes&rft.jtitle=Actuators&rft.au=Varela%2C+Pau&rft.au=Su%C3%A1rez%2C+Pol&rft.au=Alc%C3%A1ntara-%C3%81vila%2C+Francisco&rft.au=Mir%C3%B3%2C+Arnau&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=11&rft.issue=12&rft.spage=359&rft_id=info:doi/10.3390%2Fact11120359&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon