Antiferromagnetic half-skyrmions and bimerons at room temperature
In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in...
Saved in:
Published in | Nature (London) Vol. 590; no. 7844; pp. 74 - 79 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.02.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions
1
–
8
and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices
1
,
9
–
11
. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures
3
,
6
,
8
,
9
,
12
, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques
9
,
10
,
12
, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus
9
,
13
–
19
, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe
2
O
3
—an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism
20
,
21
, we stabilize exotic merons and antimerons (half-skyrmions)
8
and their pairs (bimerons)
16
,
22
, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature
1
,
9
–
11
,
23
.
A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe
2
O
3
, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated. |
---|---|
AbstractList | In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3-an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23.In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3-an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23. In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe O -an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism , we stabilize exotic merons and antimerons (half-skyrmions) and their pairs (bimerons) , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature . In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated. In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family oftopological antiferromagnetic spin textures in a-Fe2O3-an Earth-abundant oxide insulatorcapped with a platinum overlayer. By exploiting a first-order analogue of the KibbleZurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning ofthe exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23. |
Author | Lin, Jheng-Cyuan Maccherozzi, Francesco Jani, Hariom Harrison, Jack Prakash, Saurav Schad, Jonathon Eom, Chang-Beom Radaelli, Paolo G. Chen, Jiahao Venkatesan, T. Ariando, A. |
Author_xml | – sequence: 1 givenname: Hariom orcidid: 0000-0003-4902-5180 surname: Jani fullname: Jani, Hariom email: hariom.k.jani@u.nus.edu organization: Department of Physics, National University of Singapore – sequence: 2 givenname: Jheng-Cyuan surname: Lin fullname: Lin, Jheng-Cyuan organization: Clarendon Laboratory, Department of Physics, University of Oxford – sequence: 3 givenname: Jiahao surname: Chen fullname: Chen, Jiahao organization: Clarendon Laboratory, Department of Physics, University of Oxford – sequence: 4 givenname: Jack orcidid: 0000-0003-4787-1869 surname: Harrison fullname: Harrison, Jack organization: Clarendon Laboratory, Department of Physics, University of Oxford – sequence: 5 givenname: Francesco surname: Maccherozzi fullname: Maccherozzi, Francesco organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 6 givenname: Jonathon orcidid: 0000-0002-8510-3919 surname: Schad fullname: Schad, Jonathon organization: Department of Materials Science and Engineering, University of Wisconsin–Madison – sequence: 7 givenname: Saurav orcidid: 0000-0002-1334-5767 surname: Prakash fullname: Prakash, Saurav organization: Department of Physics, National University of Singapore – sequence: 8 givenname: Chang-Beom surname: Eom fullname: Eom, Chang-Beom organization: Department of Materials Science and Engineering, University of Wisconsin–Madison – sequence: 9 givenname: A. surname: Ariando fullname: Ariando, A. organization: Department of Physics, National University of Singapore, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore – sequence: 10 givenname: T. orcidid: 0000-0001-9683-4584 surname: Venkatesan fullname: Venkatesan, T. email: venky@nus.edu.sg organization: Department of Electrical and Computer Engineering, National University of Singapore – sequence: 11 givenname: Paolo G. orcidid: 0000-0002-6717-035X surname: Radaelli fullname: Radaelli, Paolo G. email: paolo.radaelli@physics.ox.ac.uk organization: Clarendon Laboratory, Department of Physics, University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33536652$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1vFDEQhi0URC6BP0CBVqKhMYy_veUpCh9SJBqoLa93NmzYtQ_bW-TfY-4CSClSWWM9z8xo3gtyFlNEQl4zeM9A2A9FMmU1Bc4oCM56qp-RHZNGU6mtOSM7AG4pWKHPyUUpdwCgmJEvyLkQSmit-I7s97HOE-acVn8bsc6h--GXiZaf93mdUyydj2M3zCvmY1G7nNLaVVwPmH3dMr4kzye_FHz18F6S7x-vv119pjdfP3252t_QICWrVCthQq8scNCDhmCZ7hmi4JJNsoeBsdErIwFGOfqJQ9_-jRmHwMJkbI_ikrw79T3k9GvDUt06l4DL4iOmrTgurZZa90Y29O0j9C5tObbtjpTVvVK8UW8eqG1YcXSHPK8-37u_x2kAPwEhp1IyTv8QBu5PAu6UgGsJuGMCTjfJPpLCXH1tp6zZz8vTqjippc2Jt5j_r_2E9Rt3kJh5 |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c03044 crossref_primary_10_1103_PhysRevLett_134_056701 crossref_primary_10_1088_1361_6463_ac71e4 crossref_primary_10_1002_adma_202300247 crossref_primary_10_1016_j_jmmm_2024_172024 crossref_primary_10_1016_j_jmmm_2023_171219 crossref_primary_10_1021_acs_chemmater_3c02170 crossref_primary_10_1088_0256_307X_40_11_117501 crossref_primary_10_1103_PhysRevB_108_024410 crossref_primary_10_1103_PhysRevB_105_224424 crossref_primary_10_1103_PhysRevB_109_024418 crossref_primary_10_1007_s12598_021_01908_9 crossref_primary_10_1126_science_add5751 crossref_primary_10_1016_j_physe_2024_115912 crossref_primary_10_1364_OE_508005 crossref_primary_10_1063_5_0172053 crossref_primary_10_1038_s41524_022_00809_4 crossref_primary_10_1039_D1CP02554F crossref_primary_10_1103_PhysRevB_104_064438 crossref_primary_10_1016_j_jmmm_2022_169127 crossref_primary_10_1038_s41467_022_32525_4 crossref_primary_10_1016_j_physleta_2022_128350 crossref_primary_10_1038_s41467_024_54521_6 crossref_primary_10_1063_5_0189712 crossref_primary_10_1016_j_commatsci_2023_112540 crossref_primary_10_1088_1361_648X_acb523 crossref_primary_10_1103_PhysRevB_109_094116 crossref_primary_10_3788_AOS240431 crossref_primary_10_1103_PhysRevB_110_094430 crossref_primary_10_1088_1361_6463_ad2337 crossref_primary_10_1021_acsphotonics_1c01703 crossref_primary_10_1038_s41565_023_01386_3 crossref_primary_10_1557_s43577_021_00227_9 crossref_primary_10_1016_j_jmmm_2021_168823 crossref_primary_10_1002_agt2_590 crossref_primary_10_1103_PhysRevB_108_094409 crossref_primary_10_1016_j_jpcs_2023_111458 crossref_primary_10_1088_1361_648X_ac2a79 crossref_primary_10_1039_D2CP03534K crossref_primary_10_1016_j_mtadv_2023_100423 crossref_primary_10_1063_5_0161132 crossref_primary_10_1007_s11433_023_2163_3 crossref_primary_10_1038_s44306_024_00029_0 crossref_primary_10_1103_PhysRevB_109_L241105 crossref_primary_10_1103_PhysRevResearch_6_043144 crossref_primary_10_1117_1_AP_5_1_015001 crossref_primary_10_1038_s44306_024_00049_w crossref_primary_10_1103_PhysRevB_106_224406 crossref_primary_10_1103_PhysRevApplied_21_024025 crossref_primary_10_1038_s41586_024_08234_x crossref_primary_10_1038_s42005_024_01925_x crossref_primary_10_1016_j_physe_2023_115776 crossref_primary_10_3389_fphy_2023_1175317 crossref_primary_10_1002_adma_202211634 crossref_primary_10_1016_j_physleta_2024_129982 crossref_primary_10_1016_j_commatsci_2024_113070 crossref_primary_10_1038_s41467_021_21807_y crossref_primary_10_1103_PhysRevResearch_4_033132 crossref_primary_10_1109_TED_2024_3369579 crossref_primary_10_1038_s41467_022_35102_x crossref_primary_10_1103_PhysRevB_109_L060402 crossref_primary_10_1364_OL_431122 crossref_primary_10_1002_adma_202312935 crossref_primary_10_1002_adfm_202416927 crossref_primary_10_1002_advs_202401048 crossref_primary_10_3390_nano14060504 crossref_primary_10_1021_acsnano_2c01948 crossref_primary_10_1103_PhysRevB_106_224419 crossref_primary_10_1063_5_0087643 crossref_primary_10_1021_acs_jpclett_3c02419 crossref_primary_10_1088_1361_6463_ac2b63 crossref_primary_10_1021_acs_jpcc_4c05320 crossref_primary_10_1103_PhysRevB_108_024426 crossref_primary_10_1103_PhysRevB_108_134438 crossref_primary_10_1038_s42005_025_01965_x crossref_primary_10_1103_PhysRevA_105_013328 crossref_primary_10_1021_acs_nanolett_4c00804 crossref_primary_10_1016_j_physleta_2023_129170 crossref_primary_10_1021_acs_nanolett_1c04803 crossref_primary_10_1038_s41467_024_52834_0 crossref_primary_10_1016_j_diamond_2025_112049 crossref_primary_10_1146_annurev_conmatphys_031620_110344 crossref_primary_10_21468_SciPostPhys_18_1_037 crossref_primary_10_1103_PhysRevB_105_214423 crossref_primary_10_1021_acs_cgd_1c00841 crossref_primary_10_1063_5_0223004 crossref_primary_10_1103_PhysRevB_110_144408 crossref_primary_10_1063_5_0089999 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_1038_s41586_024_08233_y crossref_primary_10_1016_j_physleta_2021_127868 crossref_primary_10_1109_TMAG_2022_3149664 crossref_primary_10_1038_s41467_023_36619_5 crossref_primary_10_1002_andp_202100336 crossref_primary_10_1088_2053_1583_acfb1f crossref_primary_10_1103_PhysRevB_107_L020405 crossref_primary_10_1088_1361_648X_acb8f2 crossref_primary_10_1038_s41598_021_98337_6 crossref_primary_10_1002_adfm_202422040 crossref_primary_10_1063_5_0054025 crossref_primary_10_1016_j_jmmm_2022_169343 crossref_primary_10_1021_acs_cgd_2c00485 crossref_primary_10_1126_sciadv_abi6468 crossref_primary_10_1002_advs_202206203 crossref_primary_10_1103_PhysRevB_111_115115 crossref_primary_10_1063_5_0049912 crossref_primary_10_1038_s41467_024_49976_6 crossref_primary_10_1103_PhysRevB_105_014422 crossref_primary_10_1088_2053_1583_ac9b6e crossref_primary_10_1103_PhysRevB_108_014402 crossref_primary_10_1103_PhysRevB_106_054426 crossref_primary_10_1038_s41928_023_00990_4 crossref_primary_10_1016_j_jmmm_2021_168507 crossref_primary_10_1088_2053_1583_acd2e9 crossref_primary_10_1016_j_physleta_2021_127448 crossref_primary_10_1038_s41467_022_30743_4 crossref_primary_10_1016_j_jmmm_2023_171599 crossref_primary_10_1038_s41467_024_45375_z crossref_primary_10_1016_j_jmmm_2023_170420 crossref_primary_10_1021_jacs_1c06662 crossref_primary_10_1063_5_0149290 crossref_primary_10_1002_idm2_12072 crossref_primary_10_1021_acs_nanolett_4c01486 crossref_primary_10_3390_nano14211759 crossref_primary_10_1103_PhysRevMaterials_9_034410 crossref_primary_10_1039_D3TC00060E crossref_primary_10_1103_PhysRevLett_130_096701 crossref_primary_10_1021_acs_nanolett_3c00731 crossref_primary_10_1103_PhysRevLett_130_106703 crossref_primary_10_1007_s11468_022_01682_z crossref_primary_10_1038_s41566_023_01325_7 crossref_primary_10_1038_s41563_024_01806_2 crossref_primary_10_1002_adma_202306441 crossref_primary_10_1038_s41467_025_56263_5 crossref_primary_10_1038_s41578_021_00395_9 crossref_primary_10_1088_1361_6463_ac28fa crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1038_s41598_023_33220_0 crossref_primary_10_1063_5_0050241 crossref_primary_10_1103_PhysRevB_103_L100410 crossref_primary_10_1103_PhysRevApplied_21_064030 crossref_primary_10_1002_adfm_202104452 crossref_primary_10_1016_j_physleta_2021_127399 crossref_primary_10_1063_5_0057794 crossref_primary_10_1063_5_0244952 crossref_primary_10_1038_s41563_023_01737_4 crossref_primary_10_1038_s44306_024_00015_6 crossref_primary_10_1063_5_0119960 crossref_primary_10_1002_advs_202407982 crossref_primary_10_1016_j_jmmm_2021_168331 crossref_primary_10_1088_1361_6528_acae29 crossref_primary_10_1103_RevModPhys_94_035005 crossref_primary_10_1038_s42254_022_00529_0 crossref_primary_10_1063_5_0066766 crossref_primary_10_1002_adma_202208930 crossref_primary_10_1063_5_0135079 crossref_primary_10_1038_s41563_024_01870_8 crossref_primary_10_1016_j_jmmm_2021_168840 crossref_primary_10_1103_PhysRevB_107_064422 crossref_primary_10_1016_j_apsusc_2022_152598 crossref_primary_10_1021_acsnano_2c08544 crossref_primary_10_1134_S0021364021130087 |
Cites_doi | 10.1038/s41928-019-0360-9 10.1103/PhysRevB.99.054423 10.1103/PhysRevApplied.12.044007 10.1103/PhysRevLett.117.087203 10.1038/s41565-018-0255-3 10.1103/PhysRevB.99.140411 10.1038/s41524-020-00435-y 10.1038/s41586-018-0490-7 10.1103/PhysRevB.74.094407 10.1038/s41586-020-2061-y 10.1103/PhysRevB.96.014423 10.1038/nmat4934 10.1088/1361-6463/ab8418 10.1103/PhysRevB.81.184413 10.1103/PhysRevLett.124.027202 10.1038/s41586-018-0745-3 10.1103/PhysRevLett.119.207201 10.1103/PhysRevB.83.064409 10.1038/nphoton.2010.259 10.1209/0295-5075/103/27007 10.1038/s41563-019-0468-3 10.1088/1361-648X/ab5488 10.1126/science.aav8076 10.1088/0022-3719/4/15/025 10.1038/nature23466 10.1103/PhysRevB.101.144420 10.1103/PhysRevLett.116.147203 10.1038/nmat4593 10.1103/RevModPhys.90.015005 10.1103/PhysRevLett.123.247206 10.1038/nature02659 10.1103/PhysRevLett.124.037202 10.1103/PhysRevLett.70.1549 10.1038/nnano.2015.315 10.1103/PhysRev.153.632 10.1038/s41563-018-0101-x 10.1038/ncomms10293 10.1038/s41467-019-14232-9 10.1038/nphys4000 10.1016/j.jmmm.2017.10.030 10.1038/317505a0 10.1103/PhysRevLett.83.1862 10.1038/s41467-019-13182-6 10.1103/PhysRevB.99.060407 10.1103/PhysRevB.67.214433 10.1142/S0218625X98001638 10.1038/s41598-018-22242-8 10.1103/PhysRevLett.117.177601 10.1088/1367-2630/18/5/055009 10.1126/science.aau0968 10.1088/0305-4470/9/8/029 10.1038/nnano.2015.313 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 Copyright Nature Publishing Group Feb 4, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: Copyright Nature Publishing Group Feb 4, 2021 |
DBID | AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-021-03219-6 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 79 |
ExternalDocumentID | 33536652 10_1038_s41586_021_03219_6 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Jul 10 23:40:11 EDT 2025 Sat Aug 23 12:53:45 EDT 2025 Mon Jul 21 06:01:08 EDT 2025 Tue Jul 01 02:32:18 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Fri Feb 21 02:38:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7844 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8510-3919 0000-0003-4787-1869 0000-0002-6717-035X 0000-0001-9683-4584 0000-0003-4902-5180 0000-0002-1334-5767 |
PMID | 33536652 |
PQID | 2486869552 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2486466974 proquest_journals_2486869552 pubmed_primary_33536652 crossref_primary_10_1038_s41586_021_03219_6 crossref_citationtrail_10_1038_s41586_021_03219_6 springer_journals_10_1038_s41586_021_03219_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-04 |
PublicationDateYYYYMMDD | 2021-02-04 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chmiel (CR28) 2018; 17 Boulle (CR4) 2016; 11 Nayak (CR7) 2017; 548 Shiino (CR33) 2016; 117 Dohi, DuttaGupta, Fukami, Ohno (CR18) 2019; 10 Kibble (CR20) 1976; 9 Woo (CR3) 2016; 15 Zeissler (CR53) 2020; 11 Zhang (CR10) 2020; 32 Kharkov, Sushkov, Mostovoy (CR34) 2017; 119 Lüning (CR43) 2003; 67 Leonov, Kézsmárki (CR35) 2017; 96 Back (CR1) 2020; 53 Barker, Tretiakov (CR13) 2016; 116 Coey, Sawatzky (CR30) 1971; 4 Radaelli, Radaelli, Waterfield-Price, Johnson (CR49) 2020; 101 Park (CR41) 2013; 103 CR5 Arenholz, van der Laan, Chopdekar, Suzuki (CR31) 2006; 74 Cheng, Yu, Zhu, Hwang, Yang (CR38) 2020; 124 Galkina, Galkin, Ivanov, Nori (CR25) 2010; 81 Baltz (CR15) 2018; 90 Litzius (CR12) 2017; 13 Lebrun (CR26) 2018; 561 Kimel, Kirilyuk, Tsvetkov, Pisarev, Rasing (CR39) 2004; 429 Besser, Morrish, Searle (CR29) 1967; 153 Luo (CR32) 2020; 579 Kampfrath (CR24) 2011; 5 Wang (CR27) 2019; 366 Hanneken, Kubetzka, von Bergmann, Wiesendanger (CR50) 2016; 18 Göbel, Mook, Henk, Mertig, Tretiakov (CR22) 2019; 99 Kuiper, Searle, Rudolf, Tjeng, Chen (CR42) 1993; 70 Grollier (CR11) 2020; 3 Juge (CR52) 2018; 455 Legrand (CR19) 2020; 19 Khoshlahni, Qaiumzadeh, Bergman, Brataas (CR40) 2019; 99 Yu (CR8) 2018; 564 van der Laan, Telling, Potenza, Dhesi, Arenholz (CR46) 2011; 83 Soumyanarayanan (CR6) 2017; 16 Li (CR48) 2020; 6 Zhang, Zhou, Ezawa (CR14) 2016; 7 Stöhr (CR44) 1999; 83 Caretta (CR17) 2018; 13 Zurek (CR21) 1985; 317 Bessarab (CR36) 2019; 99 Stöhr, Padmore, Anders, Stammler, Scheinfein (CR45) 1998; 05 CR23 Büttner, Lemesh, Beach (CR9) 2018; 8 Zhang, Finley, Safi, Liu (CR37) 2019; 123 Kurumaji (CR2) 2019; 365 Waterfield Price (CR47) 2016; 117 Juge (CR51) 2019; 12 Shen (CR16) 2020; 124 P Radaelli (3219_CR49) 2020; 101 WH Zurek (3219_CR21) 1985; 317 F Büttner (3219_CR9) 2018; 8 T Kurumaji (3219_CR2) 2019; 365 S Woo (3219_CR3) 2016; 15 J Grollier (3219_CR11) 2020; 3 X Zhang (3219_CR14) 2016; 7 P Zhang (3219_CR37) 2019; 123 X Li (3219_CR48) 2020; 6 V Baltz (3219_CR15) 2018; 90 3219_CR23 PF Bessarab (3219_CR36) 2019; 99 XZ Yu (3219_CR8) 2018; 564 YA Kharkov (3219_CR34) 2017; 119 JMD Coey (3219_CR30) 1971; 4 Z Luo (3219_CR32) 2020; 579 PJ Besser (3219_CR29) 1967; 153 W Legrand (3219_CR19) 2020; 19 S Park (3219_CR41) 2013; 103 O Boulle (3219_CR4) 2016; 11 R Juge (3219_CR52) 2018; 455 A Soumyanarayanan (3219_CR6) 2017; 16 C Back (3219_CR1) 2020; 53 R Khoshlahni (3219_CR40) 2019; 99 L Shen (3219_CR16) 2020; 124 B Göbel (3219_CR22) 2019; 99 AO Leonov (3219_CR35) 2017; 96 T Dohi (3219_CR18) 2019; 10 Y Wang (3219_CR27) 2019; 366 P Kuiper (3219_CR42) 1993; 70 R Juge (3219_CR51) 2019; 12 J Stöhr (3219_CR44) 1999; 83 K Zeissler (3219_CR53) 2020; 11 Y Cheng (3219_CR38) 2020; 124 TWB Kibble (3219_CR20) 1976; 9 E Arenholz (3219_CR31) 2006; 74 X Zhang (3219_CR10) 2020; 32 EG Galkina (3219_CR25) 2010; 81 T Shiino (3219_CR33) 2016; 117 C Hanneken (3219_CR50) 2016; 18 L Caretta (3219_CR17) 2018; 13 T Kampfrath (3219_CR24) 2011; 5 AV Kimel (3219_CR39) 2004; 429 G van der Laan (3219_CR46) 2011; 83 FP Chmiel (3219_CR28) 2018; 17 N Waterfield Price (3219_CR47) 2016; 117 J Lüning (3219_CR43) 2003; 67 3219_CR5 AK Nayak (3219_CR7) 2017; 548 J Stöhr (3219_CR45) 1998; 05 R Lebrun (3219_CR26) 2018; 561 J Barker (3219_CR13) 2016; 116 K Litzius (3219_CR12) 2017; 13 |
References_xml | – volume: 3 start-page: 360 year: 2020 end-page: 370 ident: CR11 article-title: Neuromorphic spintronics publication-title: Nat. Electron. doi: 10.1038/s41928-019-0360-9 – volume: 99 start-page: 054423 year: 2019 ident: CR40 article-title: Ultrafast generation and dynamics of isolated skyrmions in antiferromagnetic insulators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.054423 – volume: 12 start-page: 044007 year: 2019 ident: CR51 article-title: Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044007 – volume: 117 start-page: 087203 year: 2016 ident: CR33 article-title: Antiferromagnetic domain wall motion driven by spin-orbit torques publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.087203 – volume: 13 start-page: 1154 year: 2018 end-page: 1160 ident: CR17 article-title: Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0255-3 – volume: 99 start-page: 140411 year: 2019 ident: CR36 article-title: Stability and lifetime of antiferromagnetic skyrmions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.140411 – volume: 6 start-page: 169 year: 2020 ident: CR48 article-title: Bimeron clusters in chiral antiferromagnets publication-title: npj Comp. Mater. doi: 10.1038/s41524-020-00435-y – volume: 561 start-page: 222 year: 2018 end-page: 225 ident: CR26 article-title: Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide publication-title: Nature doi: 10.1038/s41586-018-0490-7 – volume: 74 start-page: 094407 year: 2006 ident: CR31 article-title: Anisotropic X-ray magnetic linear dichroism at the Fe L edges in Fe O publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.094407 – volume: 579 start-page: 214 year: 2020 end-page: 218 ident: CR32 article-title: Current-driven magnetic domain-wall logic publication-title: Nature doi: 10.1038/s41586-020-2061-y – volume: 96 start-page: 014423 year: 2017 ident: CR35 article-title: Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.014423 – volume: 16 start-page: 898 year: 2017 end-page: 904 ident: CR6 article-title: Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers publication-title: Nat. Mater. doi: 10.1038/nmat4934 – volume: 53 start-page: 363001 year: 2020 ident: CR1 article-title: The 2020 skyrmionics roadmap publication-title: J. Phys. D doi: 10.1088/1361-6463/ab8418 – volume: 81 start-page: 184413 year: 2010 ident: CR25 article-title: Magnetic vortex as a ground state for micron-scale antiferromagnetic samples publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.184413 – volume: 124 start-page: 027202 year: 2020 ident: CR38 article-title: Electrical switching of tristate antiferromagnetic Néel order in α-Fe O epitaxial films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.027202 – volume: 564 start-page: 95 year: 2018 end-page: 98 ident: CR8 article-title: Transformation between meron and skyrmion topological spin textures in a chiral magnet publication-title: Nature doi: 10.1038/s41586-018-0745-3 – volume: 119 start-page: 207201 year: 2017 ident: CR34 article-title: Bound states of skyrmions and merons near the Lifshitz point publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.207201 – volume: 83 start-page: 064409 year: 2011 ident: CR46 article-title: Anisotropic X-ray magnetic linear dichroism and spectromicroscopy of interfacial Co/NiO(001) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.064409 – volume: 5 start-page: 31 year: 2011 end-page: 34 ident: CR24 article-title: Coherent terahertz control of antiferromagnetic spin waves publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.259 – volume: 103 start-page: 27007 year: 2013 ident: CR41 article-title: Strain control of Morin temperature in epitaxial α-Fe O (0001) film publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/27007 – volume: 19 start-page: 34 year: 2020 end-page: 42 ident: CR19 article-title: Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets publication-title: Nat. Mater. doi: 10.1038/s41563-019-0468-3 – volume: 32 start-page: 143001 year: 2020 ident: CR10 article-title: Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab5488 – volume: 366 start-page: 1125 year: 2019 end-page: 1128 ident: CR27 article-title: Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator publication-title: Science doi: 10.1126/science.aav8076 – volume: 4 start-page: 2386 year: 1971 ident: CR30 article-title: A study of hyperfine interactions in the system (Fe Rh ) O using the Mössbauer effect (bonding parameters) publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/4/15/025 – volume: 548 start-page: 561 year: 2017 end-page: 566 ident: CR7 article-title: Magnetic antiskyrmions above room temperature in tetragonal heusler materials publication-title: Nature doi: 10.1038/nature23466 – volume: 101 start-page: 144420 year: 2020 ident: CR49 article-title: Micromagnetic modelling and imaging of vortex|merons structures in an oxide|metal heterostructure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.144420 – volume: 116 start-page: 147203 year: 2016 ident: CR13 article-title: Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.147203 – volume: 15 start-page: 501 year: 2016 end-page: 506 ident: CR3 article-title: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets publication-title: Nat. Mater. doi: 10.1038/nmat4593 – volume: 90 start-page: 015005 year: 2018 ident: CR15 article-title: Antiferromagnetic spintronics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015005 – ident: CR5 – volume: 123 start-page: 247206 year: 2019 ident: CR37 article-title: Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.247206 – volume: 429 start-page: 850 year: 2004 ident: CR39 article-title: Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO publication-title: Nature doi: 10.1038/nature02659 – volume: 124 start-page: 037202 year: 2020 ident: CR16 article-title: Current-induced dynamics and chaos of antiferromagnetic bimerons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.037202 – volume: 70 start-page: 1549 year: 1993 end-page: 1552 ident: CR42 article-title: X-ray magnetic dichroism of antiferromagnet Fe O : the orientation of magnetic moments observed by Fe 2 X-ray absorption spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1549 – volume: 11 start-page: 449 year: 2016 end-page: 454 ident: CR4 article-title: Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.315 – volume: 153 start-page: 632 year: 1967 end-page: 640 ident: CR29 article-title: Magnetocrystalline anisotropy of pure and doped hematite publication-title: Phys. Rev. doi: 10.1103/PhysRev.153.632 – volume: 17 start-page: 581 year: 2018 end-page: 585 ident: CR28 article-title: Observation of magnetic vortex pairs at room temperature in a planar α-Fe O /Co heterostructure publication-title: Nat. Mater. doi: 10.1038/s41563-018-0101-x – volume: 7 year: 2016 ident: CR14 article-title: Magnetic bilayer-skyrmions without skyrmion Hall effect publication-title: Nat. Commun. doi: 10.1038/ncomms10293 – ident: CR23 – volume: 11 year: 2020 ident: CR53 article-title: Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers publication-title: Nat. Commun. doi: 10.1038/s41467-019-14232-9 – volume: 13 start-page: 170 year: 2017 end-page: 175 ident: CR12 article-title: Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy publication-title: Nat. Phys. doi: 10.1038/nphys4000 – volume: 455 start-page: 3 year: 2018 end-page: 8 ident: CR52 article-title: Magnetic skyrmions in confined geometries: effect of the magnetic field and the disorder publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.10.030 – volume: 317 start-page: 505 year: 1985 end-page: 508 ident: CR21 article-title: Cosmological experiments in superfluid helium? publication-title: Nature doi: 10.1038/317505a0 – volume: 83 start-page: 1862 year: 1999 end-page: 1865 ident: CR44 article-title: Images of the antiferromagnetic structure of a NiO(100) surface by means of X-ray magnetic linear dichroism spectromicroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1862 – volume: 10 year: 2019 ident: CR18 article-title: Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles publication-title: Nat. Commun. doi: 10.1038/s41467-019-13182-6 – volume: 99 start-page: 060407 year: 2019 ident: CR22 article-title: Magnetic bimerons as skyrmion analogues in in-plane magnets publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.060407 – volume: 67 start-page: 214433 year: 2003 ident: CR43 article-title: Determination of the antiferromagnetic spin axis in epitaxial LaFeO films by X-ray magnetic linear dichroism spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.214433 – volume: 05 start-page: 1297 year: 1998 end-page: 1308 ident: CR45 article-title: Principles of X-ray magnetic dichroism spectromicroscopy publication-title: Surf. Rev. Lett. doi: 10.1142/S0218625X98001638 – volume: 8 year: 2018 ident: CR9 article-title: Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications publication-title: Sci. Rep. doi: 10.1038/s41598-018-22242-8 – volume: 117 start-page: 177601 year: 2016 ident: CR47 article-title: Coherent magnetoelastic domains in multiferroic BiFeO films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.177601 – volume: 18 start-page: 055009 year: 2016 ident: CR50 article-title: Pinning and movement of individual nanoscale magnetic skyrmions via defects publication-title: New J. Phys. doi: 10.1088/1367-2630/18/5/055009 – volume: 365 start-page: 914 year: 2019 end-page: 918 ident: CR2 article-title: Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet publication-title: Science doi: 10.1126/science.aau0968 – volume: 9 start-page: 1387 year: 1976 end-page: 1398 ident: CR20 article-title: Topology of cosmic domains and strings publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/9/8/029 – volume: 99 start-page: 140411 year: 2019 ident: 3219_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.140411 – volume: 365 start-page: 914 year: 2019 ident: 3219_CR2 publication-title: Science doi: 10.1126/science.aau0968 – volume: 124 start-page: 037202 year: 2020 ident: 3219_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.037202 – volume: 96 start-page: 014423 year: 2017 ident: 3219_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.014423 – volume: 123 start-page: 247206 year: 2019 ident: 3219_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.247206 – volume: 124 start-page: 027202 year: 2020 ident: 3219_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.027202 – volume: 561 start-page: 222 year: 2018 ident: 3219_CR26 publication-title: Nature doi: 10.1038/s41586-018-0490-7 – volume: 99 start-page: 054423 year: 2019 ident: 3219_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.054423 – volume: 317 start-page: 505 year: 1985 ident: 3219_CR21 publication-title: Nature doi: 10.1038/317505a0 – volume: 119 start-page: 207201 year: 2017 ident: 3219_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.207201 – volume: 67 start-page: 214433 year: 2003 ident: 3219_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.214433 – volume: 70 start-page: 1549 year: 1993 ident: 3219_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1549 – volume: 13 start-page: 1154 year: 2018 ident: 3219_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0255-3 – volume: 366 start-page: 1125 year: 2019 ident: 3219_CR27 publication-title: Science doi: 10.1126/science.aav8076 – volume: 117 start-page: 087203 year: 2016 ident: 3219_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.087203 – volume: 11 year: 2020 ident: 3219_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14232-9 – volume: 11 start-page: 449 year: 2016 ident: 3219_CR4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.315 – volume: 12 start-page: 044007 year: 2019 ident: 3219_CR51 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044007 – volume: 153 start-page: 632 year: 1967 ident: 3219_CR29 publication-title: Phys. Rev. doi: 10.1103/PhysRev.153.632 – volume: 05 start-page: 1297 year: 1998 ident: 3219_CR45 publication-title: Surf. Rev. Lett. doi: 10.1142/S0218625X98001638 – volume: 10 year: 2019 ident: 3219_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13182-6 – volume: 4 start-page: 2386 year: 1971 ident: 3219_CR30 publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/4/15/025 – volume: 90 start-page: 015005 year: 2018 ident: 3219_CR15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015005 – volume: 101 start-page: 144420 year: 2020 ident: 3219_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.144420 – volume: 548 start-page: 561 year: 2017 ident: 3219_CR7 publication-title: Nature doi: 10.1038/nature23466 – volume: 9 start-page: 1387 year: 1976 ident: 3219_CR20 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/9/8/029 – volume: 429 start-page: 850 year: 2004 ident: 3219_CR39 publication-title: Nature doi: 10.1038/nature02659 – volume: 579 start-page: 214 year: 2020 ident: 3219_CR32 publication-title: Nature doi: 10.1038/s41586-020-2061-y – volume: 13 start-page: 170 year: 2017 ident: 3219_CR12 publication-title: Nat. Phys. doi: 10.1038/nphys4000 – volume: 5 start-page: 31 year: 2011 ident: 3219_CR24 publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.259 – volume: 15 start-page: 501 year: 2016 ident: 3219_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat4593 – ident: 3219_CR5 doi: 10.1038/nnano.2015.313 – volume: 81 start-page: 184413 year: 2010 ident: 3219_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.184413 – volume: 16 start-page: 898 year: 2017 ident: 3219_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat4934 – volume: 83 start-page: 064409 year: 2011 ident: 3219_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.064409 – volume: 8 year: 2018 ident: 3219_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22242-8 – volume: 455 start-page: 3 year: 2018 ident: 3219_CR52 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.10.030 – volume: 7 year: 2016 ident: 3219_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms10293 – volume: 117 start-page: 177601 year: 2016 ident: 3219_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.177601 – volume: 564 start-page: 95 year: 2018 ident: 3219_CR8 publication-title: Nature doi: 10.1038/s41586-018-0745-3 – volume: 3 start-page: 360 year: 2020 ident: 3219_CR11 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0360-9 – volume: 103 start-page: 27007 year: 2013 ident: 3219_CR41 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/27007 – volume: 32 start-page: 143001 year: 2020 ident: 3219_CR10 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab5488 – volume: 99 start-page: 060407 year: 2019 ident: 3219_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.060407 – volume: 83 start-page: 1862 year: 1999 ident: 3219_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1862 – volume: 18 start-page: 055009 year: 2016 ident: 3219_CR50 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/5/055009 – volume: 116 start-page: 147203 year: 2016 ident: 3219_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.147203 – volume: 19 start-page: 34 year: 2020 ident: 3219_CR19 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0468-3 – volume: 6 start-page: 169 year: 2020 ident: 3219_CR48 publication-title: npj Comp. Mater. doi: 10.1038/s41524-020-00435-y – volume: 53 start-page: 363001 year: 2020 ident: 3219_CR1 publication-title: J. Phys. D doi: 10.1088/1361-6463/ab8418 – volume: 17 start-page: 581 year: 2018 ident: 3219_CR28 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0101-x – ident: 3219_CR23 – volume: 74 start-page: 094407 year: 2006 ident: 3219_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.094407 |
SSID | ssj0005174 |
Score | 2.6856093 |
Snippet | In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically... In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 74 |
SubjectTerms | 639/301/119/544 639/301/119/997 639/766/119/1001 639/766/119/2793 639/766/119/2795 Anisotropy Antiferromagnetism Antiparticles CMOS Ferric oxide Ferromagnetism Hall effect Heavy metals Humanities and Social Sciences Hypothetical particles Magnetic fields multidisciplinary Particle theory Platinum Room temperature Science Science (multidisciplinary) Spintronics Temperature |
Title | Antiferromagnetic half-skyrmions and bimerons at room temperature |
URI | https://link.springer.com/article/10.1038/s41586-021-03219-6 https://www.ncbi.nlm.nih.gov/pubmed/33536652 https://www.proquest.com/docview/2486869552 https://www.proquest.com/docview/2486466974 |
Volume | 590 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BERIvaHyuG0OZxAMILJI4dtynqUN0iAeEEEh9i_zJppUUmvZh__3OjttqQ_BiKYqdWPfhO_vOvwM40lQqKlNJnGKUFELhOiilIEbnQjNnitSGLN8bfvVQXA_ZMB64NTGtcr4mhoXajLU_Iz_PC8EF7zGWf3t-Ib5qlI-uxhIaq7Dmoct8Slc5LJcpHv-hMMdLMykV5w0aLuHTb31CEWot4f8aplfe5qtIaTBAgw-wGT3HpN-yegtWbL0N6yGDUzfbsBW1tEmOI5T0yQ70-z4XyE4m4yf5WPv7islPOXKk-f0HGYwCl8jaJOrXk52Eh2niHenE41VFsOVdeBhc3l9ckVg0gWj0bKaEM1pqJAW6gVzxVAuPhmMt-k2ZK3qpyjIjWYmaawojXY67u8yVpVE6064UPUv3oFOPa_sREios09RwSqlBW0dV2ZOOZVo5ZKAxsgvZnGKVjojivrDFqAqRbSqqlsoVUrkKVK54F04XY55bPI13ex_MGVFF3WqqpSR04eviNWqFD3XI2o5nbZ-Cc9wsdWG_ZeDid5QyyrkffTbn6PLjb8_l0_tz-QwbeZCmnKTFAXSmk5n9gv7KVB0GocRWXGS-Hfw4hLXvlze3d38Bipjm1g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxsgLEfw6QK2JJhrZ0Ha72-2DMReVHII8QXJv634qEXp4PUL4p_wbnd22d1Eibzw23d1uZn7zsZ3ZGYBXhipNVaqI14ySQmjUg0oJYk0uDPO2SF3M8j3ko-Piy5iNl-B3fxcmpFX2OjEqajsx4R_5Tl4ILnjFWP7h_BcJXaNCdLVvodHCYt9dXeKRrXm_9wn5-zrPdz8ffRyRrqsAMWj6Z4QzWpqKCfSTuOapEaFcjHPoWGS-qFKdZVaxEqFtC6t8jsefzJel1SYzvhSVo7juHbiLhjcNElWOy0VKyT9Vn7tLOikVOw0aShHSfUMCE2oJwv82hNe822uR2Wjwdh_AauepJsMWWmuw5Op1uBczRk2zDmudVmiSN13p6rcPYTgMuUduOp2cqe91uB-Z_FCnnjQ_rxBQCPBE1TbRJ2duGh9mSXDck1Afqyvu_AiOb4Wcj2G5ntTuKSRUOGao5ZRSi7aV6rJSnmVGewSMtWoAWU8xaboK5qGRxqmMkXQqZEtliVSWkcqSD-DdfM55W7_jxtFbPSNkJ8uNXCBvAC_nr1EKQ2hF1W5y0Y4pOMfD2QCetAycf45SRjkPs7d7ji4W__9eNm7eywu4Pzr6eiAP9g73N2Elj8jKSVpswfJseuGeoa80088jQBP4dtsS8Qfj_B6p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvVVseXVogSCCBwNokjh85ILSirFqKKg5U2lvwExBttmy2Qv1r_LqOE2dXUNFbj1Fsx5r55uHMeAbguaFKU5Uq4jWjpJAa9aBSkliTS8O8LVLXZvke8f3j4uOETVbgT38XJqRV9jqxVdR2asI_8mFeSC55yVg-9DEt4vPe-N3ZLxI6SIVIa99Oo4PIobv4jce35u3BHvL6RZ6PP3x5v09ihwFi0A2YE86oMCWT6DNxzVMjQ-kY59DJyHxRpjrLrGICYW4Lq3yOR6HMC2G1yYwXsnQU170FtwVlWZAxMRHL9JJ_KkDHCzsplcMGjaYMqb8hmQk1BuF_G8Urnu6VKG1r_MYbsB691mTUwWwTVly9BXfa7FHTbMFm1BBN8jKWsX51D0ajkIfkZrPpqfpWh7uSyXd14knz8wLBhWBPVG0T_ePUzdqHeRKc-CTUyoqFnu_D8Y2Q8wGs1tPabUNCpWOGWk4ptWhnqRal8iwz2iN4rFUDyHqKVSZWMw9NNU6qNqpOZdVRuUIqVy2VKz6A14s5Z10tj2tH7_aMqKJcN9UShQN4tniNEhnCLKp20_NuTME5HtQG8LBj4OJzlDLKeZj9pufocvH_7-XR9Xt5CndRFqpPB0eHO7CWt8DKSVrswup8du4eo9s0109afCbw9aYF4hKFIiLf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antiferromagnetic+half-skyrmions+and+bimerons+at+room+temperature&rft.jtitle=Nature+%28London%29&rft.au=Jani%2C+Hariom&rft.au=Lin%2C+Jheng-Cyuan&rft.au=Chen%2C+Jiahao&rft.au=Harrison%2C+Jack&rft.date=2021-02-04&rft.eissn=1476-4687&rft.volume=590&rft.issue=7844&rft.spage=74&rft_id=info:doi/10.1038%2Fs41586-021-03219-6&rft_id=info%3Apmid%2F33536652&rft.externalDocID=33536652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |