Antiferromagnetic half-skyrmions and bimerons at room temperature

In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 590; no. 7844; pp. 74 - 79
Main Authors Jani, Hariom, Lin, Jheng-Cyuan, Chen, Jiahao, Harrison, Jack, Maccherozzi, Francesco, Schad, Jonathon, Prakash, Saurav, Eom, Chang-Beom, Ariando, A., Venkatesan, T., Radaelli, Paolo G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.02.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.
AbstractList In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3-an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23.In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3-an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23.
In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe O -an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism , we stabilize exotic merons and antimerons (half-skyrmions) and their pairs (bimerons) , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature .
In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.
In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family oftopological antiferromagnetic spin textures in a-Fe2O3-an Earth-abundant oxide insulatorcapped with a platinum overlayer. By exploiting a first-order analogue of the KibbleZurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning ofthe exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23.
Author Lin, Jheng-Cyuan
Maccherozzi, Francesco
Jani, Hariom
Harrison, Jack
Prakash, Saurav
Schad, Jonathon
Eom, Chang-Beom
Radaelli, Paolo G.
Chen, Jiahao
Venkatesan, T.
Ariando, A.
Author_xml – sequence: 1
  givenname: Hariom
  orcidid: 0000-0003-4902-5180
  surname: Jani
  fullname: Jani, Hariom
  email: hariom.k.jani@u.nus.edu
  organization: Department of Physics, National University of Singapore
– sequence: 2
  givenname: Jheng-Cyuan
  surname: Lin
  fullname: Lin, Jheng-Cyuan
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
– sequence: 3
  givenname: Jiahao
  surname: Chen
  fullname: Chen, Jiahao
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
– sequence: 4
  givenname: Jack
  orcidid: 0000-0003-4787-1869
  surname: Harrison
  fullname: Harrison, Jack
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
– sequence: 5
  givenname: Francesco
  surname: Maccherozzi
  fullname: Maccherozzi, Francesco
  organization: Diamond Light Source, Harwell Science and Innovation Campus
– sequence: 6
  givenname: Jonathon
  orcidid: 0000-0002-8510-3919
  surname: Schad
  fullname: Schad, Jonathon
  organization: Department of Materials Science and Engineering, University of Wisconsin–Madison
– sequence: 7
  givenname: Saurav
  orcidid: 0000-0002-1334-5767
  surname: Prakash
  fullname: Prakash, Saurav
  organization: Department of Physics, National University of Singapore
– sequence: 8
  givenname: Chang-Beom
  surname: Eom
  fullname: Eom, Chang-Beom
  organization: Department of Materials Science and Engineering, University of Wisconsin–Madison
– sequence: 9
  givenname: A.
  surname: Ariando
  fullname: Ariando, A.
  organization: Department of Physics, National University of Singapore, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore
– sequence: 10
  givenname: T.
  orcidid: 0000-0001-9683-4584
  surname: Venkatesan
  fullname: Venkatesan, T.
  email: venky@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore
– sequence: 11
  givenname: Paolo G.
  orcidid: 0000-0002-6717-035X
  surname: Radaelli
  fullname: Radaelli, Paolo G.
  email: paolo.radaelli@physics.ox.ac.uk
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33536652$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi0URC6BP0CBVqKhMYy_veUpCh9SJBqoLa93NmzYtQ_bW-TfY-4CSClSWWM9z8xo3gtyFlNEQl4zeM9A2A9FMmU1Bc4oCM56qp-RHZNGU6mtOSM7AG4pWKHPyUUpdwCgmJEvyLkQSmit-I7s97HOE-acVn8bsc6h--GXiZaf93mdUyydj2M3zCvmY1G7nNLaVVwPmH3dMr4kzye_FHz18F6S7x-vv119pjdfP3252t_QICWrVCthQq8scNCDhmCZ7hmi4JJNsoeBsdErIwFGOfqJQ9_-jRmHwMJkbI_ikrw79T3k9GvDUt06l4DL4iOmrTgurZZa90Y29O0j9C5tObbtjpTVvVK8UW8eqG1YcXSHPK8-37u_x2kAPwEhp1IyTv8QBu5PAu6UgGsJuGMCTjfJPpLCXH1tp6zZz8vTqjippc2Jt5j_r_2E9Rt3kJh5
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c03044
crossref_primary_10_1103_PhysRevLett_134_056701
crossref_primary_10_1088_1361_6463_ac71e4
crossref_primary_10_1002_adma_202300247
crossref_primary_10_1016_j_jmmm_2024_172024
crossref_primary_10_1016_j_jmmm_2023_171219
crossref_primary_10_1021_acs_chemmater_3c02170
crossref_primary_10_1088_0256_307X_40_11_117501
crossref_primary_10_1103_PhysRevB_108_024410
crossref_primary_10_1103_PhysRevB_105_224424
crossref_primary_10_1103_PhysRevB_109_024418
crossref_primary_10_1007_s12598_021_01908_9
crossref_primary_10_1126_science_add5751
crossref_primary_10_1016_j_physe_2024_115912
crossref_primary_10_1364_OE_508005
crossref_primary_10_1063_5_0172053
crossref_primary_10_1038_s41524_022_00809_4
crossref_primary_10_1039_D1CP02554F
crossref_primary_10_1103_PhysRevB_104_064438
crossref_primary_10_1016_j_jmmm_2022_169127
crossref_primary_10_1038_s41467_022_32525_4
crossref_primary_10_1016_j_physleta_2022_128350
crossref_primary_10_1038_s41467_024_54521_6
crossref_primary_10_1063_5_0189712
crossref_primary_10_1016_j_commatsci_2023_112540
crossref_primary_10_1088_1361_648X_acb523
crossref_primary_10_1103_PhysRevB_109_094116
crossref_primary_10_3788_AOS240431
crossref_primary_10_1103_PhysRevB_110_094430
crossref_primary_10_1088_1361_6463_ad2337
crossref_primary_10_1021_acsphotonics_1c01703
crossref_primary_10_1038_s41565_023_01386_3
crossref_primary_10_1557_s43577_021_00227_9
crossref_primary_10_1016_j_jmmm_2021_168823
crossref_primary_10_1002_agt2_590
crossref_primary_10_1103_PhysRevB_108_094409
crossref_primary_10_1016_j_jpcs_2023_111458
crossref_primary_10_1088_1361_648X_ac2a79
crossref_primary_10_1039_D2CP03534K
crossref_primary_10_1016_j_mtadv_2023_100423
crossref_primary_10_1063_5_0161132
crossref_primary_10_1007_s11433_023_2163_3
crossref_primary_10_1038_s44306_024_00029_0
crossref_primary_10_1103_PhysRevB_109_L241105
crossref_primary_10_1103_PhysRevResearch_6_043144
crossref_primary_10_1117_1_AP_5_1_015001
crossref_primary_10_1038_s44306_024_00049_w
crossref_primary_10_1103_PhysRevB_106_224406
crossref_primary_10_1103_PhysRevApplied_21_024025
crossref_primary_10_1038_s41586_024_08234_x
crossref_primary_10_1038_s42005_024_01925_x
crossref_primary_10_1016_j_physe_2023_115776
crossref_primary_10_3389_fphy_2023_1175317
crossref_primary_10_1002_adma_202211634
crossref_primary_10_1016_j_physleta_2024_129982
crossref_primary_10_1016_j_commatsci_2024_113070
crossref_primary_10_1038_s41467_021_21807_y
crossref_primary_10_1103_PhysRevResearch_4_033132
crossref_primary_10_1109_TED_2024_3369579
crossref_primary_10_1038_s41467_022_35102_x
crossref_primary_10_1103_PhysRevB_109_L060402
crossref_primary_10_1364_OL_431122
crossref_primary_10_1002_adma_202312935
crossref_primary_10_1002_adfm_202416927
crossref_primary_10_1002_advs_202401048
crossref_primary_10_3390_nano14060504
crossref_primary_10_1021_acsnano_2c01948
crossref_primary_10_1103_PhysRevB_106_224419
crossref_primary_10_1063_5_0087643
crossref_primary_10_1021_acs_jpclett_3c02419
crossref_primary_10_1088_1361_6463_ac2b63
crossref_primary_10_1021_acs_jpcc_4c05320
crossref_primary_10_1103_PhysRevB_108_024426
crossref_primary_10_1103_PhysRevB_108_134438
crossref_primary_10_1038_s42005_025_01965_x
crossref_primary_10_1103_PhysRevA_105_013328
crossref_primary_10_1021_acs_nanolett_4c00804
crossref_primary_10_1016_j_physleta_2023_129170
crossref_primary_10_1021_acs_nanolett_1c04803
crossref_primary_10_1038_s41467_024_52834_0
crossref_primary_10_1016_j_diamond_2025_112049
crossref_primary_10_1146_annurev_conmatphys_031620_110344
crossref_primary_10_21468_SciPostPhys_18_1_037
crossref_primary_10_1103_PhysRevB_105_214423
crossref_primary_10_1021_acs_cgd_1c00841
crossref_primary_10_1063_5_0223004
crossref_primary_10_1103_PhysRevB_110_144408
crossref_primary_10_1063_5_0089999
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_1038_s41586_024_08233_y
crossref_primary_10_1016_j_physleta_2021_127868
crossref_primary_10_1109_TMAG_2022_3149664
crossref_primary_10_1038_s41467_023_36619_5
crossref_primary_10_1002_andp_202100336
crossref_primary_10_1088_2053_1583_acfb1f
crossref_primary_10_1103_PhysRevB_107_L020405
crossref_primary_10_1088_1361_648X_acb8f2
crossref_primary_10_1038_s41598_021_98337_6
crossref_primary_10_1002_adfm_202422040
crossref_primary_10_1063_5_0054025
crossref_primary_10_1016_j_jmmm_2022_169343
crossref_primary_10_1021_acs_cgd_2c00485
crossref_primary_10_1126_sciadv_abi6468
crossref_primary_10_1002_advs_202206203
crossref_primary_10_1103_PhysRevB_111_115115
crossref_primary_10_1063_5_0049912
crossref_primary_10_1038_s41467_024_49976_6
crossref_primary_10_1103_PhysRevB_105_014422
crossref_primary_10_1088_2053_1583_ac9b6e
crossref_primary_10_1103_PhysRevB_108_014402
crossref_primary_10_1103_PhysRevB_106_054426
crossref_primary_10_1038_s41928_023_00990_4
crossref_primary_10_1016_j_jmmm_2021_168507
crossref_primary_10_1088_2053_1583_acd2e9
crossref_primary_10_1016_j_physleta_2021_127448
crossref_primary_10_1038_s41467_022_30743_4
crossref_primary_10_1016_j_jmmm_2023_171599
crossref_primary_10_1038_s41467_024_45375_z
crossref_primary_10_1016_j_jmmm_2023_170420
crossref_primary_10_1021_jacs_1c06662
crossref_primary_10_1063_5_0149290
crossref_primary_10_1002_idm2_12072
crossref_primary_10_1021_acs_nanolett_4c01486
crossref_primary_10_3390_nano14211759
crossref_primary_10_1103_PhysRevMaterials_9_034410
crossref_primary_10_1039_D3TC00060E
crossref_primary_10_1103_PhysRevLett_130_096701
crossref_primary_10_1021_acs_nanolett_3c00731
crossref_primary_10_1103_PhysRevLett_130_106703
crossref_primary_10_1007_s11468_022_01682_z
crossref_primary_10_1038_s41566_023_01325_7
crossref_primary_10_1038_s41563_024_01806_2
crossref_primary_10_1002_adma_202306441
crossref_primary_10_1038_s41467_025_56263_5
crossref_primary_10_1038_s41578_021_00395_9
crossref_primary_10_1088_1361_6463_ac28fa
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1038_s41598_023_33220_0
crossref_primary_10_1063_5_0050241
crossref_primary_10_1103_PhysRevB_103_L100410
crossref_primary_10_1103_PhysRevApplied_21_064030
crossref_primary_10_1002_adfm_202104452
crossref_primary_10_1016_j_physleta_2021_127399
crossref_primary_10_1063_5_0057794
crossref_primary_10_1063_5_0244952
crossref_primary_10_1038_s41563_023_01737_4
crossref_primary_10_1038_s44306_024_00015_6
crossref_primary_10_1063_5_0119960
crossref_primary_10_1002_advs_202407982
crossref_primary_10_1016_j_jmmm_2021_168331
crossref_primary_10_1088_1361_6528_acae29
crossref_primary_10_1103_RevModPhys_94_035005
crossref_primary_10_1038_s42254_022_00529_0
crossref_primary_10_1063_5_0066766
crossref_primary_10_1002_adma_202208930
crossref_primary_10_1063_5_0135079
crossref_primary_10_1038_s41563_024_01870_8
crossref_primary_10_1016_j_jmmm_2021_168840
crossref_primary_10_1103_PhysRevB_107_064422
crossref_primary_10_1016_j_apsusc_2022_152598
crossref_primary_10_1021_acsnano_2c08544
crossref_primary_10_1134_S0021364021130087
Cites_doi 10.1038/s41928-019-0360-9
10.1103/PhysRevB.99.054423
10.1103/PhysRevApplied.12.044007
10.1103/PhysRevLett.117.087203
10.1038/s41565-018-0255-3
10.1103/PhysRevB.99.140411
10.1038/s41524-020-00435-y
10.1038/s41586-018-0490-7
10.1103/PhysRevB.74.094407
10.1038/s41586-020-2061-y
10.1103/PhysRevB.96.014423
10.1038/nmat4934
10.1088/1361-6463/ab8418
10.1103/PhysRevB.81.184413
10.1103/PhysRevLett.124.027202
10.1038/s41586-018-0745-3
10.1103/PhysRevLett.119.207201
10.1103/PhysRevB.83.064409
10.1038/nphoton.2010.259
10.1209/0295-5075/103/27007
10.1038/s41563-019-0468-3
10.1088/1361-648X/ab5488
10.1126/science.aav8076
10.1088/0022-3719/4/15/025
10.1038/nature23466
10.1103/PhysRevB.101.144420
10.1103/PhysRevLett.116.147203
10.1038/nmat4593
10.1103/RevModPhys.90.015005
10.1103/PhysRevLett.123.247206
10.1038/nature02659
10.1103/PhysRevLett.124.037202
10.1103/PhysRevLett.70.1549
10.1038/nnano.2015.315
10.1103/PhysRev.153.632
10.1038/s41563-018-0101-x
10.1038/ncomms10293
10.1038/s41467-019-14232-9
10.1038/nphys4000
10.1016/j.jmmm.2017.10.030
10.1038/317505a0
10.1103/PhysRevLett.83.1862
10.1038/s41467-019-13182-6
10.1103/PhysRevB.99.060407
10.1103/PhysRevB.67.214433
10.1142/S0218625X98001638
10.1038/s41598-018-22242-8
10.1103/PhysRevLett.117.177601
10.1088/1367-2630/18/5/055009
10.1126/science.aau0968
10.1088/0305-4470/9/8/029
10.1038/nnano.2015.313
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
Copyright Nature Publishing Group Feb 4, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: Copyright Nature Publishing Group Feb 4, 2021
DBID AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-021-03219-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 79
ExternalDocumentID 33536652
10_1038_s41586_021_03219_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Jul 10 23:40:11 EDT 2025
Sat Aug 23 12:53:45 EDT 2025
Mon Jul 21 06:01:08 EDT 2025
Tue Jul 01 02:32:18 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Fri Feb 21 02:38:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7844
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8510-3919
0000-0003-4787-1869
0000-0002-6717-035X
0000-0001-9683-4584
0000-0003-4902-5180
0000-0002-1334-5767
PMID 33536652
PQID 2486869552
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2486466974
proquest_journals_2486869552
pubmed_primary_33536652
crossref_primary_10_1038_s41586_021_03219_6
crossref_citationtrail_10_1038_s41586_021_03219_6
springer_journals_10_1038_s41586_021_03219_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-04
PublicationDateYYYYMMDD 2021-02-04
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chmiel (CR28) 2018; 17
Boulle (CR4) 2016; 11
Nayak (CR7) 2017; 548
Shiino (CR33) 2016; 117
Dohi, DuttaGupta, Fukami, Ohno (CR18) 2019; 10
Kibble (CR20) 1976; 9
Woo (CR3) 2016; 15
Zeissler (CR53) 2020; 11
Zhang (CR10) 2020; 32
Kharkov, Sushkov, Mostovoy (CR34) 2017; 119
Lüning (CR43) 2003; 67
Leonov, Kézsmárki (CR35) 2017; 96
Back (CR1) 2020; 53
Barker, Tretiakov (CR13) 2016; 116
Coey, Sawatzky (CR30) 1971; 4
Radaelli, Radaelli, Waterfield-Price, Johnson (CR49) 2020; 101
Park (CR41) 2013; 103
CR5
Arenholz, van der Laan, Chopdekar, Suzuki (CR31) 2006; 74
Cheng, Yu, Zhu, Hwang, Yang (CR38) 2020; 124
Galkina, Galkin, Ivanov, Nori (CR25) 2010; 81
Baltz (CR15) 2018; 90
Litzius (CR12) 2017; 13
Lebrun (CR26) 2018; 561
Kimel, Kirilyuk, Tsvetkov, Pisarev, Rasing (CR39) 2004; 429
Besser, Morrish, Searle (CR29) 1967; 153
Luo (CR32) 2020; 579
Kampfrath (CR24) 2011; 5
Wang (CR27) 2019; 366
Hanneken, Kubetzka, von Bergmann, Wiesendanger (CR50) 2016; 18
Göbel, Mook, Henk, Mertig, Tretiakov (CR22) 2019; 99
Kuiper, Searle, Rudolf, Tjeng, Chen (CR42) 1993; 70
Grollier (CR11) 2020; 3
Juge (CR52) 2018; 455
Legrand (CR19) 2020; 19
Khoshlahni, Qaiumzadeh, Bergman, Brataas (CR40) 2019; 99
Yu (CR8) 2018; 564
van der Laan, Telling, Potenza, Dhesi, Arenholz (CR46) 2011; 83
Soumyanarayanan (CR6) 2017; 16
Li (CR48) 2020; 6
Zhang, Zhou, Ezawa (CR14) 2016; 7
Stöhr (CR44) 1999; 83
Caretta (CR17) 2018; 13
Zurek (CR21) 1985; 317
Bessarab (CR36) 2019; 99
Stöhr, Padmore, Anders, Stammler, Scheinfein (CR45) 1998; 05
CR23
Büttner, Lemesh, Beach (CR9) 2018; 8
Zhang, Finley, Safi, Liu (CR37) 2019; 123
Kurumaji (CR2) 2019; 365
Waterfield Price (CR47) 2016; 117
Juge (CR51) 2019; 12
Shen (CR16) 2020; 124
P Radaelli (3219_CR49) 2020; 101
WH Zurek (3219_CR21) 1985; 317
F Büttner (3219_CR9) 2018; 8
T Kurumaji (3219_CR2) 2019; 365
S Woo (3219_CR3) 2016; 15
J Grollier (3219_CR11) 2020; 3
X Zhang (3219_CR14) 2016; 7
P Zhang (3219_CR37) 2019; 123
X Li (3219_CR48) 2020; 6
V Baltz (3219_CR15) 2018; 90
3219_CR23
PF Bessarab (3219_CR36) 2019; 99
XZ Yu (3219_CR8) 2018; 564
YA Kharkov (3219_CR34) 2017; 119
JMD Coey (3219_CR30) 1971; 4
Z Luo (3219_CR32) 2020; 579
PJ Besser (3219_CR29) 1967; 153
W Legrand (3219_CR19) 2020; 19
S Park (3219_CR41) 2013; 103
O Boulle (3219_CR4) 2016; 11
R Juge (3219_CR52) 2018; 455
A Soumyanarayanan (3219_CR6) 2017; 16
C Back (3219_CR1) 2020; 53
R Khoshlahni (3219_CR40) 2019; 99
L Shen (3219_CR16) 2020; 124
B Göbel (3219_CR22) 2019; 99
AO Leonov (3219_CR35) 2017; 96
T Dohi (3219_CR18) 2019; 10
Y Wang (3219_CR27) 2019; 366
P Kuiper (3219_CR42) 1993; 70
R Juge (3219_CR51) 2019; 12
J Stöhr (3219_CR44) 1999; 83
K Zeissler (3219_CR53) 2020; 11
Y Cheng (3219_CR38) 2020; 124
TWB Kibble (3219_CR20) 1976; 9
E Arenholz (3219_CR31) 2006; 74
X Zhang (3219_CR10) 2020; 32
EG Galkina (3219_CR25) 2010; 81
T Shiino (3219_CR33) 2016; 117
C Hanneken (3219_CR50) 2016; 18
L Caretta (3219_CR17) 2018; 13
T Kampfrath (3219_CR24) 2011; 5
AV Kimel (3219_CR39) 2004; 429
G van der Laan (3219_CR46) 2011; 83
FP Chmiel (3219_CR28) 2018; 17
N Waterfield Price (3219_CR47) 2016; 117
J Lüning (3219_CR43) 2003; 67
3219_CR5
AK Nayak (3219_CR7) 2017; 548
J Stöhr (3219_CR45) 1998; 05
R Lebrun (3219_CR26) 2018; 561
J Barker (3219_CR13) 2016; 116
K Litzius (3219_CR12) 2017; 13
References_xml – volume: 3
  start-page: 360
  year: 2020
  end-page: 370
  ident: CR11
  article-title: Neuromorphic spintronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0360-9
– volume: 99
  start-page: 054423
  year: 2019
  ident: CR40
  article-title: Ultrafast generation and dynamics of isolated skyrmions in antiferromagnetic insulators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.054423
– volume: 12
  start-page: 044007
  year: 2019
  ident: CR51
  article-title: Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044007
– volume: 117
  start-page: 087203
  year: 2016
  ident: CR33
  article-title: Antiferromagnetic domain wall motion driven by spin-orbit torques
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.087203
– volume: 13
  start-page: 1154
  year: 2018
  end-page: 1160
  ident: CR17
  article-title: Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0255-3
– volume: 99
  start-page: 140411
  year: 2019
  ident: CR36
  article-title: Stability and lifetime of antiferromagnetic skyrmions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.140411
– volume: 6
  start-page: 169
  year: 2020
  ident: CR48
  article-title: Bimeron clusters in chiral antiferromagnets
  publication-title: npj Comp. Mater.
  doi: 10.1038/s41524-020-00435-y
– volume: 561
  start-page: 222
  year: 2018
  end-page: 225
  ident: CR26
  article-title: Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
  publication-title: Nature
  doi: 10.1038/s41586-018-0490-7
– volume: 74
  start-page: 094407
  year: 2006
  ident: CR31
  article-title: Anisotropic X-ray magnetic linear dichroism at the Fe L edges in Fe O
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.094407
– volume: 579
  start-page: 214
  year: 2020
  end-page: 218
  ident: CR32
  article-title: Current-driven magnetic domain-wall logic
  publication-title: Nature
  doi: 10.1038/s41586-020-2061-y
– volume: 96
  start-page: 014423
  year: 2017
  ident: CR35
  article-title: Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.014423
– volume: 16
  start-page: 898
  year: 2017
  end-page: 904
  ident: CR6
  article-title: Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4934
– volume: 53
  start-page: 363001
  year: 2020
  ident: CR1
  article-title: The 2020 skyrmionics roadmap
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/ab8418
– volume: 81
  start-page: 184413
  year: 2010
  ident: CR25
  article-title: Magnetic vortex as a ground state for micron-scale antiferromagnetic samples
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.184413
– volume: 124
  start-page: 027202
  year: 2020
  ident: CR38
  article-title: Electrical switching of tristate antiferromagnetic Néel order in α-Fe O epitaxial films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.027202
– volume: 564
  start-page: 95
  year: 2018
  end-page: 98
  ident: CR8
  article-title: Transformation between meron and skyrmion topological spin textures in a chiral magnet
  publication-title: Nature
  doi: 10.1038/s41586-018-0745-3
– volume: 119
  start-page: 207201
  year: 2017
  ident: CR34
  article-title: Bound states of skyrmions and merons near the Lifshitz point
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.207201
– volume: 83
  start-page: 064409
  year: 2011
  ident: CR46
  article-title: Anisotropic X-ray magnetic linear dichroism and spectromicroscopy of interfacial Co/NiO(001)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.064409
– volume: 5
  start-page: 31
  year: 2011
  end-page: 34
  ident: CR24
  article-title: Coherent terahertz control of antiferromagnetic spin waves
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.259
– volume: 103
  start-page: 27007
  year: 2013
  ident: CR41
  article-title: Strain control of Morin temperature in epitaxial α-Fe O (0001) film
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/27007
– volume: 19
  start-page: 34
  year: 2020
  end-page: 42
  ident: CR19
  article-title: Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0468-3
– volume: 32
  start-page: 143001
  year: 2020
  ident: CR10
  article-title: Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab5488
– volume: 366
  start-page: 1125
  year: 2019
  end-page: 1128
  ident: CR27
  article-title: Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator
  publication-title: Science
  doi: 10.1126/science.aav8076
– volume: 4
  start-page: 2386
  year: 1971
  ident: CR30
  article-title: A study of hyperfine interactions in the system (Fe Rh ) O using the Mössbauer effect (bonding parameters)
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/4/15/025
– volume: 548
  start-page: 561
  year: 2017
  end-page: 566
  ident: CR7
  article-title: Magnetic antiskyrmions above room temperature in tetragonal heusler materials
  publication-title: Nature
  doi: 10.1038/nature23466
– volume: 101
  start-page: 144420
  year: 2020
  ident: CR49
  article-title: Micromagnetic modelling and imaging of vortex|merons structures in an oxide|metal heterostructure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.144420
– volume: 116
  start-page: 147203
  year: 2016
  ident: CR13
  article-title: Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.147203
– volume: 15
  start-page: 501
  year: 2016
  end-page: 506
  ident: CR3
  article-title: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4593
– volume: 90
  start-page: 015005
  year: 2018
  ident: CR15
  article-title: Antiferromagnetic spintronics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015005
– ident: CR5
– volume: 123
  start-page: 247206
  year: 2019
  ident: CR37
  article-title: Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.247206
– volume: 429
  start-page: 850
  year: 2004
  ident: CR39
  article-title: Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO
  publication-title: Nature
  doi: 10.1038/nature02659
– volume: 124
  start-page: 037202
  year: 2020
  ident: CR16
  article-title: Current-induced dynamics and chaos of antiferromagnetic bimerons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.037202
– volume: 70
  start-page: 1549
  year: 1993
  end-page: 1552
  ident: CR42
  article-title: X-ray magnetic dichroism of antiferromagnet Fe O : the orientation of magnetic moments observed by Fe 2 X-ray absorption spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1549
– volume: 11
  start-page: 449
  year: 2016
  end-page: 454
  ident: CR4
  article-title: Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.315
– volume: 153
  start-page: 632
  year: 1967
  end-page: 640
  ident: CR29
  article-title: Magnetocrystalline anisotropy of pure and doped hematite
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.153.632
– volume: 17
  start-page: 581
  year: 2018
  end-page: 585
  ident: CR28
  article-title: Observation of magnetic vortex pairs at room temperature in a planar α-Fe O /Co heterostructure
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0101-x
– volume: 7
  year: 2016
  ident: CR14
  article-title: Magnetic bilayer-skyrmions without skyrmion Hall effect
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10293
– ident: CR23
– volume: 11
  year: 2020
  ident: CR53
  article-title: Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14232-9
– volume: 13
  start-page: 170
  year: 2017
  end-page: 175
  ident: CR12
  article-title: Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4000
– volume: 455
  start-page: 3
  year: 2018
  end-page: 8
  ident: CR52
  article-title: Magnetic skyrmions in confined geometries: effect of the magnetic field and the disorder
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.10.030
– volume: 317
  start-page: 505
  year: 1985
  end-page: 508
  ident: CR21
  article-title: Cosmological experiments in superfluid helium?
  publication-title: Nature
  doi: 10.1038/317505a0
– volume: 83
  start-page: 1862
  year: 1999
  end-page: 1865
  ident: CR44
  article-title: Images of the antiferromagnetic structure of a NiO(100) surface by means of X-ray magnetic linear dichroism spectromicroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1862
– volume: 10
  year: 2019
  ident: CR18
  article-title: Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13182-6
– volume: 99
  start-page: 060407
  year: 2019
  ident: CR22
  article-title: Magnetic bimerons as skyrmion analogues in in-plane magnets
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.060407
– volume: 67
  start-page: 214433
  year: 2003
  ident: CR43
  article-title: Determination of the antiferromagnetic spin axis in epitaxial LaFeO films by X-ray magnetic linear dichroism spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.214433
– volume: 05
  start-page: 1297
  year: 1998
  end-page: 1308
  ident: CR45
  article-title: Principles of X-ray magnetic dichroism spectromicroscopy
  publication-title: Surf. Rev. Lett.
  doi: 10.1142/S0218625X98001638
– volume: 8
  year: 2018
  ident: CR9
  article-title: Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22242-8
– volume: 117
  start-page: 177601
  year: 2016
  ident: CR47
  article-title: Coherent magnetoelastic domains in multiferroic BiFeO films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.177601
– volume: 18
  start-page: 055009
  year: 2016
  ident: CR50
  article-title: Pinning and movement of individual nanoscale magnetic skyrmions via defects
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/5/055009
– volume: 365
  start-page: 914
  year: 2019
  end-page: 918
  ident: CR2
  article-title: Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet
  publication-title: Science
  doi: 10.1126/science.aau0968
– volume: 9
  start-page: 1387
  year: 1976
  end-page: 1398
  ident: CR20
  article-title: Topology of cosmic domains and strings
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/9/8/029
– volume: 99
  start-page: 140411
  year: 2019
  ident: 3219_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.140411
– volume: 365
  start-page: 914
  year: 2019
  ident: 3219_CR2
  publication-title: Science
  doi: 10.1126/science.aau0968
– volume: 124
  start-page: 037202
  year: 2020
  ident: 3219_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.037202
– volume: 96
  start-page: 014423
  year: 2017
  ident: 3219_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.014423
– volume: 123
  start-page: 247206
  year: 2019
  ident: 3219_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.247206
– volume: 124
  start-page: 027202
  year: 2020
  ident: 3219_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.027202
– volume: 561
  start-page: 222
  year: 2018
  ident: 3219_CR26
  publication-title: Nature
  doi: 10.1038/s41586-018-0490-7
– volume: 99
  start-page: 054423
  year: 2019
  ident: 3219_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.054423
– volume: 317
  start-page: 505
  year: 1985
  ident: 3219_CR21
  publication-title: Nature
  doi: 10.1038/317505a0
– volume: 119
  start-page: 207201
  year: 2017
  ident: 3219_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.207201
– volume: 67
  start-page: 214433
  year: 2003
  ident: 3219_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.214433
– volume: 70
  start-page: 1549
  year: 1993
  ident: 3219_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1549
– volume: 13
  start-page: 1154
  year: 2018
  ident: 3219_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0255-3
– volume: 366
  start-page: 1125
  year: 2019
  ident: 3219_CR27
  publication-title: Science
  doi: 10.1126/science.aav8076
– volume: 117
  start-page: 087203
  year: 2016
  ident: 3219_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.087203
– volume: 11
  year: 2020
  ident: 3219_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14232-9
– volume: 11
  start-page: 449
  year: 2016
  ident: 3219_CR4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.315
– volume: 12
  start-page: 044007
  year: 2019
  ident: 3219_CR51
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044007
– volume: 153
  start-page: 632
  year: 1967
  ident: 3219_CR29
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.153.632
– volume: 05
  start-page: 1297
  year: 1998
  ident: 3219_CR45
  publication-title: Surf. Rev. Lett.
  doi: 10.1142/S0218625X98001638
– volume: 10
  year: 2019
  ident: 3219_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13182-6
– volume: 4
  start-page: 2386
  year: 1971
  ident: 3219_CR30
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/4/15/025
– volume: 90
  start-page: 015005
  year: 2018
  ident: 3219_CR15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015005
– volume: 101
  start-page: 144420
  year: 2020
  ident: 3219_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.144420
– volume: 548
  start-page: 561
  year: 2017
  ident: 3219_CR7
  publication-title: Nature
  doi: 10.1038/nature23466
– volume: 9
  start-page: 1387
  year: 1976
  ident: 3219_CR20
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/9/8/029
– volume: 429
  start-page: 850
  year: 2004
  ident: 3219_CR39
  publication-title: Nature
  doi: 10.1038/nature02659
– volume: 579
  start-page: 214
  year: 2020
  ident: 3219_CR32
  publication-title: Nature
  doi: 10.1038/s41586-020-2061-y
– volume: 13
  start-page: 170
  year: 2017
  ident: 3219_CR12
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4000
– volume: 5
  start-page: 31
  year: 2011
  ident: 3219_CR24
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.259
– volume: 15
  start-page: 501
  year: 2016
  ident: 3219_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4593
– ident: 3219_CR5
  doi: 10.1038/nnano.2015.313
– volume: 81
  start-page: 184413
  year: 2010
  ident: 3219_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.184413
– volume: 16
  start-page: 898
  year: 2017
  ident: 3219_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4934
– volume: 83
  start-page: 064409
  year: 2011
  ident: 3219_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.064409
– volume: 8
  year: 2018
  ident: 3219_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22242-8
– volume: 455
  start-page: 3
  year: 2018
  ident: 3219_CR52
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.10.030
– volume: 7
  year: 2016
  ident: 3219_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10293
– volume: 117
  start-page: 177601
  year: 2016
  ident: 3219_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.177601
– volume: 564
  start-page: 95
  year: 2018
  ident: 3219_CR8
  publication-title: Nature
  doi: 10.1038/s41586-018-0745-3
– volume: 3
  start-page: 360
  year: 2020
  ident: 3219_CR11
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0360-9
– volume: 103
  start-page: 27007
  year: 2013
  ident: 3219_CR41
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/27007
– volume: 32
  start-page: 143001
  year: 2020
  ident: 3219_CR10
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab5488
– volume: 99
  start-page: 060407
  year: 2019
  ident: 3219_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.060407
– volume: 83
  start-page: 1862
  year: 1999
  ident: 3219_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1862
– volume: 18
  start-page: 055009
  year: 2016
  ident: 3219_CR50
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/5/055009
– volume: 116
  start-page: 147203
  year: 2016
  ident: 3219_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.147203
– volume: 19
  start-page: 34
  year: 2020
  ident: 3219_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0468-3
– volume: 6
  start-page: 169
  year: 2020
  ident: 3219_CR48
  publication-title: npj Comp. Mater.
  doi: 10.1038/s41524-020-00435-y
– volume: 53
  start-page: 363001
  year: 2020
  ident: 3219_CR1
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/ab8418
– volume: 17
  start-page: 581
  year: 2018
  ident: 3219_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0101-x
– ident: 3219_CR23
– volume: 74
  start-page: 094407
  year: 2006
  ident: 3219_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.094407
SSID ssj0005174
Score 2.6856093
Snippet In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically...
In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms 639/301/119/544
639/301/119/997
639/766/119/1001
639/766/119/2793
639/766/119/2795
Anisotropy
Antiferromagnetism
Antiparticles
CMOS
Ferric oxide
Ferromagnetism
Hall effect
Heavy metals
Humanities and Social Sciences
Hypothetical particles
Magnetic fields
multidisciplinary
Particle theory
Platinum
Room temperature
Science
Science (multidisciplinary)
Spintronics
Temperature
Title Antiferromagnetic half-skyrmions and bimerons at room temperature
URI https://link.springer.com/article/10.1038/s41586-021-03219-6
https://www.ncbi.nlm.nih.gov/pubmed/33536652
https://www.proquest.com/docview/2486869552
https://www.proquest.com/docview/2486466974
Volume 590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BERIvaHyuG0OZxAMILJI4dtynqUN0iAeEEEh9i_zJppUUmvZh__3OjttqQ_BiKYqdWPfhO_vOvwM40lQqKlNJnGKUFELhOiilIEbnQjNnitSGLN8bfvVQXA_ZMB64NTGtcr4mhoXajLU_Iz_PC8EF7zGWf3t-Ib5qlI-uxhIaq7Dmoct8Slc5LJcpHv-hMMdLMykV5w0aLuHTb31CEWot4f8aplfe5qtIaTBAgw-wGT3HpN-yegtWbL0N6yGDUzfbsBW1tEmOI5T0yQ70-z4XyE4m4yf5WPv7islPOXKk-f0HGYwCl8jaJOrXk52Eh2niHenE41VFsOVdeBhc3l9ckVg0gWj0bKaEM1pqJAW6gVzxVAuPhmMt-k2ZK3qpyjIjWYmaawojXY67u8yVpVE6064UPUv3oFOPa_sREios09RwSqlBW0dV2ZOOZVo5ZKAxsgvZnGKVjojivrDFqAqRbSqqlsoVUrkKVK54F04XY55bPI13ex_MGVFF3WqqpSR04eviNWqFD3XI2o5nbZ-Cc9wsdWG_ZeDid5QyyrkffTbn6PLjb8_l0_tz-QwbeZCmnKTFAXSmk5n9gv7KVB0GocRWXGS-Hfw4hLXvlze3d38Bipjm1g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxsgLEfw6QK2JJhrZ0Ha72-2DMReVHII8QXJv634qEXp4PUL4p_wbnd22d1Eibzw23d1uZn7zsZ3ZGYBXhipNVaqI14ySQmjUg0oJYk0uDPO2SF3M8j3ko-Piy5iNl-B3fxcmpFX2OjEqajsx4R_5Tl4ILnjFWP7h_BcJXaNCdLVvodHCYt9dXeKRrXm_9wn5-zrPdz8ffRyRrqsAMWj6Z4QzWpqKCfSTuOapEaFcjHPoWGS-qFKdZVaxEqFtC6t8jsefzJel1SYzvhSVo7juHbiLhjcNElWOy0VKyT9Vn7tLOikVOw0aShHSfUMCE2oJwv82hNe822uR2Wjwdh_AauepJsMWWmuw5Op1uBczRk2zDmudVmiSN13p6rcPYTgMuUduOp2cqe91uB-Z_FCnnjQ_rxBQCPBE1TbRJ2duGh9mSXDck1Afqyvu_AiOb4Wcj2G5ntTuKSRUOGao5ZRSi7aV6rJSnmVGewSMtWoAWU8xaboK5qGRxqmMkXQqZEtliVSWkcqSD-DdfM55W7_jxtFbPSNkJ8uNXCBvAC_nr1EKQ2hF1W5y0Y4pOMfD2QCetAycf45SRjkPs7d7ji4W__9eNm7eywu4Pzr6eiAP9g73N2Elj8jKSVpswfJseuGeoa80088jQBP4dtsS8Qfj_B6p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvVVseXVogSCCBwNokjh85ILSirFqKKg5U2lvwExBttmy2Qv1r_LqOE2dXUNFbj1Fsx5r55uHMeAbguaFKU5Uq4jWjpJAa9aBSkliTS8O8LVLXZvke8f3j4uOETVbgT38XJqRV9jqxVdR2asI_8mFeSC55yVg-9DEt4vPe-N3ZLxI6SIVIa99Oo4PIobv4jce35u3BHvL6RZ6PP3x5v09ihwFi0A2YE86oMCWT6DNxzVMjQ-kY59DJyHxRpjrLrGICYW4Lq3yOR6HMC2G1yYwXsnQU170FtwVlWZAxMRHL9JJ_KkDHCzsplcMGjaYMqb8hmQk1BuF_G8Urnu6VKG1r_MYbsB691mTUwWwTVly9BXfa7FHTbMFm1BBN8jKWsX51D0ajkIfkZrPpqfpWh7uSyXd14knz8wLBhWBPVG0T_ePUzdqHeRKc-CTUyoqFnu_D8Y2Q8wGs1tPabUNCpWOGWk4ptWhnqRal8iwz2iN4rFUDyHqKVSZWMw9NNU6qNqpOZdVRuUIqVy2VKz6A14s5Z10tj2tH7_aMqKJcN9UShQN4tniNEhnCLKp20_NuTME5HtQG8LBj4OJzlDLKeZj9pufocvH_7-XR9Xt5CndRFqpPB0eHO7CWt8DKSVrswup8du4eo9s0109afCbw9aYF4hKFIiLf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antiferromagnetic+half-skyrmions+and+bimerons+at+room+temperature&rft.jtitle=Nature+%28London%29&rft.au=Jani%2C+Hariom&rft.au=Lin%2C+Jheng-Cyuan&rft.au=Chen%2C+Jiahao&rft.au=Harrison%2C+Jack&rft.date=2021-02-04&rft.eissn=1476-4687&rft.volume=590&rft.issue=7844&rft.spage=74&rft_id=info:doi/10.1038%2Fs41586-021-03219-6&rft_id=info%3Apmid%2F33536652&rft.externalDocID=33536652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon