A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures

Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in e...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 17; p. 4965
Main Authors Xiong, Shoucong, Zhou, Hongdi, He, Shuai, Zhang, Leilei, Xia, Qi, Xuan, Jianping, Shi, Tielin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 02.09.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods.
AbstractList Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods.
Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods.Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods.
Author Xia, Qi
He, Shuai
Xuan, Jianping
Xiong, Shoucong
Zhang, Leilei
Zhou, Hongdi
Shi, Tielin
AuthorAffiliation 1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; xiongsc@hust.edu.cn (S.X.); shuaihe@hust.edu.cn (S.H.); d201780233@hust.edu.cn (L.Z.); qxia@mail.hust.edu.cn (Q.X.); jpxuan@hust.edu.cn (J.X.)
2 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; zh_hongdi@163.com
AuthorAffiliation_xml – name: 1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; xiongsc@hust.edu.cn (S.X.); shuaihe@hust.edu.cn (S.H.); d201780233@hust.edu.cn (L.Z.); qxia@mail.hust.edu.cn (Q.X.); jpxuan@hust.edu.cn (J.X.)
– name: 2 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; zh_hongdi@163.com
Author_xml – sequence: 1
  givenname: Shoucong
  orcidid: 0000-0003-4597-5103
  surname: Xiong
  fullname: Xiong, Shoucong
– sequence: 2
  givenname: Hongdi
  surname: Zhou
  fullname: Zhou, Hongdi
– sequence: 3
  givenname: Shuai
  surname: He
  fullname: He, Shuai
– sequence: 4
  givenname: Leilei
  surname: Zhang
  fullname: Zhang, Leilei
– sequence: 5
  givenname: Qi
  surname: Xia
  fullname: Xia, Qi
– sequence: 6
  givenname: Jianping
  surname: Xuan
  fullname: Xuan, Jianping
– sequence: 7
  givenname: Tielin
  orcidid: 0000-0001-6977-9700
  surname: Shi
  fullname: Shi, Tielin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32887331$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-AfITDUu_6cy9IIbQQqSoIgjhas14ndevYwfYG9Yfwf3GaErWI02vNvPPMWDPH1YEP3lTVywa_JaTDp6nFjaAdZ0-qo4a2tJZtiw8evA-r45SuMW4JIfJZdUhaKQUhzVH1e4Iuw8Y4dOaHeh7qIugcRpfRBwtLH5JNaLJexwD6Ci1CRF-Dc9Yv0XsDsWhC_S2a-WyWEfI2_gMKzWT0BfRNkXkEn0rdClmfA5oGvwluzDZ4cOjSjPFO8q8Qb9C3HEedx2jS8-rpAlwyL-71pPp-fjaffqovPn-cTScXtaa0yTXTEksBlPa8xwBAGR6o5kYSKkg3tGYh-kFgMkAnm44Zss3whjEGXILoyEk123GHANdqHe0K4q0KYNVdIMSlgpitdkaRruODMAR6rCkDCpL0Riwa1nIucIML692OtR77lRm08bl87hH0ccbbK7UMGyUY5oK3BfD6HhDDz9GkrFY2aeMceBPGpFpKMeWMYVmsrx722jf5u9dieLMz6BhSimaxtzRYbW9G7W-meE__8WqbYbuiMqZ1_6n4A9z-xD4
CitedBy_id crossref_primary_10_1016_j_ast_2023_108420
crossref_primary_10_1177_16878140211072990
crossref_primary_10_1016_j_aei_2025_103132
crossref_primary_10_1016_j_engappai_2023_107179
crossref_primary_10_1016_j_engstruct_2023_115708
crossref_primary_10_3390_s20205734
crossref_primary_10_1007_s12046_024_02515_x
crossref_primary_10_1088_1361_6501_ad461f
crossref_primary_10_1109_ACCESS_2021_3067152
crossref_primary_10_1007_s12206_024_0109_x
crossref_primary_10_3390_machines10121204
crossref_primary_10_1016_j_advengsoft_2023_103445
crossref_primary_10_1007_s42417_022_00484_1
crossref_primary_10_3390_s21020581
crossref_primary_10_3390_electronics10111248
crossref_primary_10_1016_j_eswa_2024_126358
crossref_primary_10_1016_j_ast_2022_107883
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_3390_app12199670
crossref_primary_10_3390_s20226576
crossref_primary_10_1016_j_knosys_2023_111344
crossref_primary_10_1177_09574565221139638
crossref_primary_10_3390_s23020855
crossref_primary_10_1177_09544062221102721
crossref_primary_10_3390_s22176330
crossref_primary_10_1016_j_measurement_2023_113796
crossref_primary_10_1177_1748006X241264446
crossref_primary_10_36306_konjes_1049489
crossref_primary_10_1016_j_ymssp_2023_110545
crossref_primary_10_3390_s25030768
crossref_primary_10_1108_SRT_04_2022_0005
crossref_primary_10_35193_bseufbd_847763
crossref_primary_10_3390_s24206581
crossref_primary_10_1016_j_eswa_2025_126782
crossref_primary_10_1016_j_ast_2024_109886
crossref_primary_10_1016_j_measurement_2025_116755
crossref_primary_10_3390_en14041079
crossref_primary_10_1088_2631_8695_ad84a0
crossref_primary_10_1016_j_aei_2024_102669
crossref_primary_10_3390_s22134881
crossref_primary_10_1088_1742_6596_1707_1_012010
crossref_primary_10_3389_fenrg_2022_815256
crossref_primary_10_1109_TIM_2023_3282664
crossref_primary_10_1155_2021_5581843
crossref_primary_10_1177_14759217241298490
crossref_primary_10_3390_machines12030207
crossref_primary_10_1088_1361_6501_ad28b0
crossref_primary_10_1177_00202940231202531
crossref_primary_10_21595_jve_2023_23391
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_3390_machines11020185
crossref_primary_10_3390_s20247152
Cites_doi 10.1109/TSMC.2017.2754287
10.1109/TIM.2017.2674738
10.3390/s19122750
10.1016/j.measurement.2016.07.054
10.1016/j.measurement.2015.03.017
10.1016/j.ymssp.2018.05.050
10.1016/j.jsv.2018.04.036
10.1109/TIM.2017.2669947
10.1109/ACCESS.2019.2912072
10.1016/j.ymssp.2015.11.013
10.1109/TIE.2016.2519325
10.1109/TIE.2012.2219838
10.1109/34.192463
10.1109/TIE.2018.2844856
10.1016/j.ymssp.2017.06.012
10.1016/j.ymssp.2012.10.003
10.1016/j.ymssp.2015.04.021
10.1109/WACV.2017.58
10.1109/BigComp.2018.00137
10.1109/TIE.2017.2774777
10.20944/preprints201701.0132.v1
10.1177/1077546318783886
10.1109/ACCESS.2018.2834540
10.1016/j.compind.2019.01.008
10.1016/j.knosys.2018.09.004
10.1016/j.ymssp.2014.09.002
10.1016/j.compind.2019.02.001
10.1145/3065386
10.1016/S0169-7439(96)00077-9
10.1177/1077546315608724
10.1177/1475921716687167
10.1109/TIE.2017.2762639
10.1002/tee.23012
10.1109/ACCESS.2018.2877447
10.1177/1475921719841690
10.1016/j.ymssp.2015.10.025
10.1016/j.ymssp.2015.11.014
10.3390/s19102381
10.1016/j.ymssp.2017.09.023
10.1109/ACCESS.2018.2888842
10.1109/TIM.2014.2330494
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s20174965
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3996d7e3ab0c45a4a83be7f152667010
PMC7506762
32887331
10_3390_s20174965
Genre Journal Article
GrantInformation_xml – fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2020B090927002
– fundername: Scientific Research Foundation for Doctoral Program of Hubei University of Technology
  grantid: BSQD2017003
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2019CFB326
– fundername: National Natural Science Foundation of China
  grantid: 51575202
– fundername: National Natural Science Foundation of China
  grantid: 51675204
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-5c8087a44b6b0aaa450d4c6e834739d2ef7bd703da98195e3e83461555a68a793
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:53 EDT 2025
Thu Aug 21 18:19:59 EDT 2025
Fri Jul 11 12:05:26 EDT 2025
Mon Jul 21 05:38:47 EDT 2025
Tue Jul 01 03:55:47 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords deep learning
fault diagnosis
wavelet packet transform
sensor signal
bearing
convolutional neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-5c8087a44b6b0aaa450d4c6e834739d2ef7bd703da98195e3e83461555a68a793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4597-5103
0000-0001-6977-9700
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20174965
PMID 32887331
PQID 2440465508
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3996d7e3ab0c45a4a83be7f152667010
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7506762
proquest_miscellaneous_2440465508
pubmed_primary_32887331
crossref_primary_10_3390_s20174965
crossref_citationtrail_10_3390_s20174965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200902
PublicationDateYYYYMMDD 2020-09-02
PublicationDate_xml – month: 9
  year: 2020
  text: 20200902
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Cerrada (ref_5) 2018; 99
Lei (ref_16) 2016; 63
Zhao (ref_17) 2019; 115
Zhao (ref_27) 2019; 107
Jia (ref_15) 2016; 72–73
Yang (ref_7) 2019; 14
Wang (ref_9) 2013; 35
Deng (ref_12) 2018; 6
Mallat (ref_41) 1989; 11
Soualhi (ref_4) 2015; 64
Wen (ref_47) 2018; 65
ref_25
Hinton (ref_49) 2008; 9
ref_24
Krizhevsky (ref_36) 2017; 60
Chandra (ref_11) 2016; 72–73
Islam (ref_32) 2019; 106
Walczak (ref_40) 1997; 36
Wen (ref_19) 2019; 49
ref_26
Srivastava (ref_42) 2014; 15
Cao (ref_1) 2018; 102
Xu (ref_21) 2019; 25
ref_35
ref_34
ref_31
Fei (ref_6) 2018; 17
Yan (ref_13) 2019; 163
Peng (ref_23) 2019; 7
Wang (ref_10) 2015; 54
ref_38
ref_37
Smith (ref_44) 2015; 64–65
Zhu (ref_28) 2019; 66
Prieto (ref_3) 2013; 60
Xie (ref_8) 2018; 6
Ding (ref_29) 2017; 66
Zhou (ref_48) 2017; 23
Yu (ref_20) 2020; 19
ref_46
ref_45
Gan (ref_30) 2016; 72–73
ref_43
Li (ref_14) 2018; 428
Zhao (ref_39) 2018; 65
Ma (ref_33) 2019; 7
Chen (ref_18) 2017; 66
Zhang (ref_2) 2015; 69
Guo (ref_22) 2016; 93
References_xml – volume: 9
  start-page: 2579
  year: 2008
  ident: ref_49
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 136
  year: 2019
  ident: ref_19
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2754287
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_42
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 1926
  year: 2017
  ident: ref_29
  article-title: Energy-Fluctuated Multiscale Feature Learning with Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2674738
– ident: ref_26
  doi: 10.3390/s19122750
– volume: 93
  start-page: 490
  year: 2016
  ident: ref_22
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2016.07.054
– ident: ref_35
– volume: 69
  start-page: 164
  year: 2015
  ident: ref_2
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2015.03.017
– volume: 115
  start-page: 213
  year: 2019
  ident: ref_17
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 428
  start-page: 72
  year: 2018
  ident: ref_14
  article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.04.036
– volume: 66
  start-page: 1693
  year: 2017
  ident: ref_18
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2669947
– volume: 7
  start-page: 57023
  year: 2019
  ident: ref_33
  article-title: Lightweight Deep Residual CNN for Fault Diagnosis of Rotating Machinery Based on Depthwise Separable Convolutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912072
– volume: 72–73
  start-page: 105
  year: 2016
  ident: ref_11
  article-title: Fault detection in rotor bearing systems using time frequency techniques
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2015.11.013
– volume: 63
  start-page: 3137
  year: 2016
  ident: ref_16
  article-title: An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2519325
– volume: 60
  start-page: 3398
  year: 2013
  ident: ref_3
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2219838
– volume: 11
  start-page: 674
  year: 1989
  ident: ref_41
  article-title: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– volume: 66
  start-page: 3208
  year: 2019
  ident: ref_28
  article-title: Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2844856
– volume: 99
  start-page: 169
  year: 2018
  ident: ref_5
  article-title: A review on data-driven fault severity assessment in rolling bearings
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2017.06.012
– volume: 35
  start-page: 176
  year: 2013
  ident: ref_9
  article-title: An enhanced Kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2012.10.003
– ident: ref_38
– ident: ref_45
– volume: 64–65
  start-page: 100
  year: 2015
  ident: ref_44
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2015.04.021
– ident: ref_46
  doi: 10.1109/WACV.2017.58
– ident: ref_34
– ident: ref_24
  doi: 10.1109/BigComp.2018.00137
– volume: 65
  start-page: 5990
  year: 2018
  ident: ref_47
  article-title: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– ident: ref_25
  doi: 10.20944/preprints201701.0132.v1
– volume: 25
  start-page: 473
  year: 2019
  ident: ref_21
  article-title: Combined deep belief network in deep learning with affinity propagation clustering algorithm for roller bearings fault diagnosis without data label
  publication-title: JVC/J. Vib. Control.
  doi: 10.1177/1077546318783886
– volume: 6
  start-page: 35042
  year: 2018
  ident: ref_12
  article-title: A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2834540
– volume: 106
  start-page: 142
  year: 2019
  ident: ref_32
  article-title: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.008
– ident: ref_37
– volume: 163
  start-page: 450
  year: 2019
  ident: ref_13
  article-title: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.004
– volume: 54
  start-page: 259
  year: 2015
  ident: ref_10
  article-title: Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2014.09.002
– volume: 107
  start-page: 59
  year: 2019
  ident: ref_27
  article-title: Deep convolutional neural network based planet bearing fault classification
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.001
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_36
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 36
  start-page: 81
  year: 1997
  ident: ref_40
  article-title: Noise suppression and spinal compression using the wavelet packet transform
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(96)00077-9
– volume: 23
  start-page: 2167
  year: 2017
  ident: ref_48
  article-title: Using supervised kernel entropy component analysis for fault diagnosis of rolling bearings
  publication-title: JVC/J. Vib. Control.
  doi: 10.1177/1077546315608724
– volume: 17
  start-page: 156
  year: 2018
  ident: ref_6
  article-title: Multi-feature entropy distance approach with vibration and acoustic emission signals for process feature recognition of rolling element bearing faults
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921716687167
– volume: 65
  start-page: 4290
  year: 2018
  ident: ref_39
  article-title: Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2762639
– volume: 14
  start-page: 1851
  year: 2019
  ident: ref_7
  article-title: An improved deep network for intelligent diagnosis of machinery faults with similar features
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23012
– volume: 6
  start-page: 63584
  year: 2018
  ident: ref_8
  article-title: An End-to-End Model Based on Improved Adaptive Deep Belief Network and Its Application to Bearing Fault Diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877447
– volume: 19
  start-page: 240
  year: 2020
  ident: ref_20
  article-title: A bearing fault and severity diagnostic technique using adaptive deep belief networks and Dempster–Shafer theory
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719841690
– volume: 72–73
  start-page: 303
  year: 2016
  ident: ref_15
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 72–73
  start-page: 92
  year: 2016
  ident: ref_30
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2015.11.014
– ident: ref_31
  doi: 10.3390/s19102381
– volume: 102
  start-page: 37
  year: 2018
  ident: ref_1
  article-title: Mechanical model development of rolling bearing-rotor systems: A review
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2017.09.023
– ident: ref_43
– volume: 7
  start-page: 10278
  year: 2019
  ident: ref_23
  article-title: A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888842
– volume: 64
  start-page: 52
  year: 2015
  ident: ref_4
  article-title: Bearing health monitoring based on hilbert-huang transform, support vector machine, and regression
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2330494
SSID ssj0023338
Score 2.5072746
Snippet Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4965
SubjectTerms bearing
convolutional neural network
deep learning
fault diagnosis
sensor signal
wavelet packet transform
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9wwDDZlT-2h9N30hVp66CVs1nbs5Di73WHbw1LoLN1bkB-hA0OyMJmF_pD-30qJZ5gpC730ZLANEZFkSZb8SYiPteTmJ5pik1aWua6jyR1Gn9fkvMooLao4Fshemosr_fW6vN5r9cU1YRM88PTjjsmAmmCjQld4XaLGSrloWzI7xtj0uIps3jaYSqGWoshrwhFSFNQfr8nMWUZGP7A-I0j_XZ7l3wWSexZn_kg8TK4izCYSH4t7sXsiHuwBCD4Vv2dw2d_GFZx3IV_0OQ0wx81qgM9TCd1yDbOEGg7knkLC4IZTEnC-Iwf3C74kxAie_4HciGKAb0jaPcBi69bCsht6OOu72ySqRBjjeozDWEgO30ck2g2F78_E1fx8cXaRp0YLuSdvaMhLXxWVRa2dcQUi6rII2ptYKW1VHWRsrQt0NASsOe0WFa9wQrNEUyFp-HNx1PVdfClA12174n1wgVOEyC95o3LKO-JbDEXIxKctAxqfUMi5GcaqoWiEedXseJWJD7utNxP0xl2bTpmLuw2Mlj1OkAw1SYaaf8lQJt5vZaAh7eKUCXax36wbyfCJhqK4KhMvJpnYfUpJOqCVOsmEPZCWA1oOV7rlzxHBm9w0Q1bo1f8g_rW4L_kOgJNc8o04ImbHt-QoDe7dqBN_AJ-YEzE
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures
URI https://www.ncbi.nlm.nih.gov/pubmed/32887331
https://www.proquest.com/docview/2440465508
https://pubmed.ncbi.nlm.nih.gov/PMC7506762
https://doaj.org/article/3996d7e3ab0c45a4a83be7f152667010
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0K7B8R7w6MyiAOXQLCdODkg1C4tCxLVClrRW2THDlSqEtimK_aH8H-ZyYst6olLIiWOYnVmMt_ncb8BeJ5wan4ikZvkPPRl4iLfaJf5CYJX7rjSwtUbZKfR2Vx-XISLPeh6bLY_4HontaN-UvOL1ctfP6_eYsC_IcaJlP3VGpOYIt3zfTjEhKQoPj_JvpjABdKwRlRoe_gR3BAcg6zpMPc3K9Xi_bsQ578bJ69losktuNlCSDZsbH4b9lxxB46vCQvehd9DNi0v3YqNC-vPSh9PbKI3q4q9a7bWLdds2KqJM4StrNXmZiN0fFo7Z-aKfWiVJOj6V00NKip2rjHqKzbr4C5bFlXJTsvisnVhnBjpfdSneoM5-1Ir1G6Q1t-D-WQ8Oz3z2wYMfoYoqfLDLA5ipaU0kQm01jIMrMwiFwupRGK5y5Wx-MmwOqFynBN0hwqdoY5ijZF_Hw6KsnAnwGSS56-zzBpLpUNN__B1wojM6Fg4G1gPXnQGSLNWnZyaZKxSZClktrQ3mwfP-qE_GkmOXYNGZMV-AKlo1xfKi29pG5QpgrPIKie0CTIZaolzMU7lCGmiSCFR9eBp5wMpRh2VUnThys065SSrGCG7iz140PhE_6rOpzxQW96yNZftO8Xye63sjfAtwuz08L-ffARHnBYEqOLFH8MBWtg9QdRUmQHsq4XCYzx5P4DD0Xh6_nlQr0AM6mj5A7NZHoE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+End-To-End+Fault+Diagnosis+Approach+for+Rolling+Bearings+by+Integrating+Wavelet+Packet+Transform+into+Convolutional+Neural+Network+Structures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xiong%2C+Shoucong&rft.au=Zhou%2C+Hongdi&rft.au=He%2C+Shuai&rft.au=Zhang%2C+Leilei&rft.date=2020-09-02&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=17&rft_id=info:doi/10.3390%2Fs20174965&rft_id=info%3Apmid%2F32887331&rft.externalDocID=PMC7506762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon