A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures
Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in e...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 17; p. 4965 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
02.09.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods. |
---|---|
AbstractList | Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods. Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods.Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault diagnosis is vital in industry to avoid these massive economical costs and casualties. Since convolutional neural networks (CNN) are poor in extracting reliable features from original signal data, the time-frequency analysis method is usually called for to transform 1D signal into a 2D time-frequency coefficient matrix in which richer information could be exposed more easily. However, realistic fault diagnosis applications face a dilemma in that signal time-frequency analysis and fault classification cannot be implemented together, which means manual signal conversion work is also needed, which reduces the integrity and robustness of the fault diagnosis method. In this paper, a novel network named WPT-CNN is proposed for end-to-end intelligent fault diagnosis of rolling bearings. WPT-CNN creatively uses the standard deep neural network structure to realize the wavelet packet transform (WPT) time-frequency analysis function, which seamlessly integrates fault diagnosis domain knowledge into deep learning algorithms. The overall network architecture can be trained with gradient descent backpropagation algorithms, indicating that the time-frequency analysis module of WPT-CNN is also able to learn the dataset characteristics, adaptively representing signal information in the most suitable way. Two experimental rolling bearing fault datasets were used to validate the proposed method. Testing results showed that WPT-CNN obtained the testing accuracies of 99.73% and 99.89%, respectively, in two datasets, which exhibited a better and more reliable diagnosis performance than any other existing deep learning and machine learning methods. |
Author | Xia, Qi He, Shuai Xuan, Jianping Xiong, Shoucong Zhang, Leilei Zhou, Hongdi Shi, Tielin |
AuthorAffiliation | 1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; xiongsc@hust.edu.cn (S.X.); shuaihe@hust.edu.cn (S.H.); d201780233@hust.edu.cn (L.Z.); qxia@mail.hust.edu.cn (Q.X.); jpxuan@hust.edu.cn (J.X.) 2 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; zh_hongdi@163.com |
AuthorAffiliation_xml | – name: 1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; xiongsc@hust.edu.cn (S.X.); shuaihe@hust.edu.cn (S.H.); d201780233@hust.edu.cn (L.Z.); qxia@mail.hust.edu.cn (Q.X.); jpxuan@hust.edu.cn (J.X.) – name: 2 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; zh_hongdi@163.com |
Author_xml | – sequence: 1 givenname: Shoucong orcidid: 0000-0003-4597-5103 surname: Xiong fullname: Xiong, Shoucong – sequence: 2 givenname: Hongdi surname: Zhou fullname: Zhou, Hongdi – sequence: 3 givenname: Shuai surname: He fullname: He, Shuai – sequence: 4 givenname: Leilei surname: Zhang fullname: Zhang, Leilei – sequence: 5 givenname: Qi surname: Xia fullname: Xia, Qi – sequence: 6 givenname: Jianping surname: Xuan fullname: Xuan, Jianping – sequence: 7 givenname: Tielin orcidid: 0000-0001-6977-9700 surname: Shi fullname: Shi, Tielin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32887331$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhleoiH7AgT-AfITDUu_6cy9IIbQQqSoIgjhas14ndevYwfYG9Yfwf3GaErWI02vNvPPMWDPH1YEP3lTVywa_JaTDp6nFjaAdZ0-qo4a2tJZtiw8evA-r45SuMW4JIfJZdUhaKQUhzVH1e4Iuw8Y4dOaHeh7qIugcRpfRBwtLH5JNaLJexwD6Ci1CRF-Dc9Yv0XsDsWhC_S2a-WyWEfI2_gMKzWT0BfRNkXkEn0rdClmfA5oGvwluzDZ4cOjSjPFO8q8Qb9C3HEedx2jS8-rpAlwyL-71pPp-fjaffqovPn-cTScXtaa0yTXTEksBlPa8xwBAGR6o5kYSKkg3tGYh-kFgMkAnm44Zss3whjEGXILoyEk123GHANdqHe0K4q0KYNVdIMSlgpitdkaRruODMAR6rCkDCpL0Riwa1nIucIML692OtR77lRm08bl87hH0ccbbK7UMGyUY5oK3BfD6HhDDz9GkrFY2aeMceBPGpFpKMeWMYVmsrx722jf5u9dieLMz6BhSimaxtzRYbW9G7W-meE__8WqbYbuiMqZ1_6n4A9z-xD4 |
CitedBy_id | crossref_primary_10_1016_j_ast_2023_108420 crossref_primary_10_1177_16878140211072990 crossref_primary_10_1016_j_aei_2025_103132 crossref_primary_10_1016_j_engappai_2023_107179 crossref_primary_10_1016_j_engstruct_2023_115708 crossref_primary_10_3390_s20205734 crossref_primary_10_1007_s12046_024_02515_x crossref_primary_10_1088_1361_6501_ad461f crossref_primary_10_1109_ACCESS_2021_3067152 crossref_primary_10_1007_s12206_024_0109_x crossref_primary_10_3390_machines10121204 crossref_primary_10_1016_j_advengsoft_2023_103445 crossref_primary_10_1007_s42417_022_00484_1 crossref_primary_10_3390_s21020581 crossref_primary_10_3390_electronics10111248 crossref_primary_10_1016_j_eswa_2024_126358 crossref_primary_10_1016_j_ast_2022_107883 crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_3390_app12199670 crossref_primary_10_3390_s20226576 crossref_primary_10_1016_j_knosys_2023_111344 crossref_primary_10_1177_09574565221139638 crossref_primary_10_3390_s23020855 crossref_primary_10_1177_09544062221102721 crossref_primary_10_3390_s22176330 crossref_primary_10_1016_j_measurement_2023_113796 crossref_primary_10_1177_1748006X241264446 crossref_primary_10_36306_konjes_1049489 crossref_primary_10_1016_j_ymssp_2023_110545 crossref_primary_10_3390_s25030768 crossref_primary_10_1108_SRT_04_2022_0005 crossref_primary_10_35193_bseufbd_847763 crossref_primary_10_3390_s24206581 crossref_primary_10_1016_j_eswa_2025_126782 crossref_primary_10_1016_j_ast_2024_109886 crossref_primary_10_1016_j_measurement_2025_116755 crossref_primary_10_3390_en14041079 crossref_primary_10_1088_2631_8695_ad84a0 crossref_primary_10_1016_j_aei_2024_102669 crossref_primary_10_3390_s22134881 crossref_primary_10_1088_1742_6596_1707_1_012010 crossref_primary_10_3389_fenrg_2022_815256 crossref_primary_10_1109_TIM_2023_3282664 crossref_primary_10_1155_2021_5581843 crossref_primary_10_1177_14759217241298490 crossref_primary_10_3390_machines12030207 crossref_primary_10_1088_1361_6501_ad28b0 crossref_primary_10_1177_00202940231202531 crossref_primary_10_21595_jve_2023_23391 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_3390_machines11020185 crossref_primary_10_3390_s20247152 |
Cites_doi | 10.1109/TSMC.2017.2754287 10.1109/TIM.2017.2674738 10.3390/s19122750 10.1016/j.measurement.2016.07.054 10.1016/j.measurement.2015.03.017 10.1016/j.ymssp.2018.05.050 10.1016/j.jsv.2018.04.036 10.1109/TIM.2017.2669947 10.1109/ACCESS.2019.2912072 10.1016/j.ymssp.2015.11.013 10.1109/TIE.2016.2519325 10.1109/TIE.2012.2219838 10.1109/34.192463 10.1109/TIE.2018.2844856 10.1016/j.ymssp.2017.06.012 10.1016/j.ymssp.2012.10.003 10.1016/j.ymssp.2015.04.021 10.1109/WACV.2017.58 10.1109/BigComp.2018.00137 10.1109/TIE.2017.2774777 10.20944/preprints201701.0132.v1 10.1177/1077546318783886 10.1109/ACCESS.2018.2834540 10.1016/j.compind.2019.01.008 10.1016/j.knosys.2018.09.004 10.1016/j.ymssp.2014.09.002 10.1016/j.compind.2019.02.001 10.1145/3065386 10.1016/S0169-7439(96)00077-9 10.1177/1077546315608724 10.1177/1475921716687167 10.1109/TIE.2017.2762639 10.1002/tee.23012 10.1109/ACCESS.2018.2877447 10.1177/1475921719841690 10.1016/j.ymssp.2015.10.025 10.1016/j.ymssp.2015.11.014 10.3390/s19102381 10.1016/j.ymssp.2017.09.023 10.1109/ACCESS.2018.2888842 10.1109/TIM.2014.2330494 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s20174965 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3996d7e3ab0c45a4a83be7f152667010 PMC7506762 32887331 10_3390_s20174965 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2020B090927002 – fundername: Scientific Research Foundation for Doctoral Program of Hubei University of Technology grantid: BSQD2017003 – fundername: Natural Science Foundation of Hubei Province grantid: 2019CFB326 – fundername: National Natural Science Foundation of China grantid: 51575202 – fundername: National Natural Science Foundation of China grantid: 51675204 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-5c8087a44b6b0aaa450d4c6e834739d2ef7bd703da98195e3e83461555a68a793 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:24:53 EDT 2025 Thu Aug 21 18:19:59 EDT 2025 Fri Jul 11 12:05:26 EDT 2025 Mon Jul 21 05:38:47 EDT 2025 Tue Jul 01 03:55:47 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | deep learning fault diagnosis wavelet packet transform sensor signal bearing convolutional neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-5c8087a44b6b0aaa450d4c6e834739d2ef7bd703da98195e3e83461555a68a793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4597-5103 0000-0001-6977-9700 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20174965 |
PMID | 32887331 |
PQID | 2440465508 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3996d7e3ab0c45a4a83be7f152667010 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7506762 proquest_miscellaneous_2440465508 pubmed_primary_32887331 crossref_primary_10_3390_s20174965 crossref_citationtrail_10_3390_s20174965 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200902 |
PublicationDateYYYYMMDD | 2020-09-02 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200902 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Cerrada (ref_5) 2018; 99 Lei (ref_16) 2016; 63 Zhao (ref_17) 2019; 115 Zhao (ref_27) 2019; 107 Jia (ref_15) 2016; 72–73 Yang (ref_7) 2019; 14 Wang (ref_9) 2013; 35 Deng (ref_12) 2018; 6 Mallat (ref_41) 1989; 11 Soualhi (ref_4) 2015; 64 Wen (ref_47) 2018; 65 ref_25 Hinton (ref_49) 2008; 9 ref_24 Krizhevsky (ref_36) 2017; 60 Chandra (ref_11) 2016; 72–73 Islam (ref_32) 2019; 106 Walczak (ref_40) 1997; 36 Wen (ref_19) 2019; 49 ref_26 Srivastava (ref_42) 2014; 15 Cao (ref_1) 2018; 102 Xu (ref_21) 2019; 25 ref_35 ref_34 ref_31 Fei (ref_6) 2018; 17 Yan (ref_13) 2019; 163 Peng (ref_23) 2019; 7 Wang (ref_10) 2015; 54 ref_38 ref_37 Smith (ref_44) 2015; 64–65 Zhu (ref_28) 2019; 66 Prieto (ref_3) 2013; 60 Xie (ref_8) 2018; 6 Ding (ref_29) 2017; 66 Zhou (ref_48) 2017; 23 Yu (ref_20) 2020; 19 ref_46 ref_45 Gan (ref_30) 2016; 72–73 ref_43 Li (ref_14) 2018; 428 Zhao (ref_39) 2018; 65 Ma (ref_33) 2019; 7 Chen (ref_18) 2017; 66 Zhang (ref_2) 2015; 69 Guo (ref_22) 2016; 93 |
References_xml | – volume: 9 start-page: 2579 year: 2008 ident: ref_49 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 136 year: 2019 ident: ref_19 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2754287 – volume: 15 start-page: 1929 year: 2014 ident: ref_42 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 66 start-page: 1926 year: 2017 ident: ref_29 article-title: Energy-Fluctuated Multiscale Feature Learning with Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2674738 – ident: ref_26 doi: 10.3390/s19122750 – volume: 93 start-page: 490 year: 2016 ident: ref_22 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2016.07.054 – ident: ref_35 – volume: 69 start-page: 164 year: 2015 ident: ref_2 article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2015.03.017 – volume: 115 start-page: 213 year: 2019 ident: ref_17 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2018.05.050 – volume: 428 start-page: 72 year: 2018 ident: ref_14 article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.04.036 – volume: 66 start-page: 1693 year: 2017 ident: ref_18 article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2669947 – volume: 7 start-page: 57023 year: 2019 ident: ref_33 article-title: Lightweight Deep Residual CNN for Fault Diagnosis of Rotating Machinery Based on Depthwise Separable Convolutions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912072 – volume: 72–73 start-page: 105 year: 2016 ident: ref_11 article-title: Fault detection in rotor bearing systems using time frequency techniques publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2015.11.013 – volume: 63 start-page: 3137 year: 2016 ident: ref_16 article-title: An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2519325 – volume: 60 start-page: 3398 year: 2013 ident: ref_3 article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2219838 – volume: 11 start-page: 674 year: 1989 ident: ref_41 article-title: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – volume: 66 start-page: 3208 year: 2019 ident: ref_28 article-title: Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2844856 – volume: 99 start-page: 169 year: 2018 ident: ref_5 article-title: A review on data-driven fault severity assessment in rolling bearings publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2017.06.012 – volume: 35 start-page: 176 year: 2013 ident: ref_9 article-title: An enhanced Kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2012.10.003 – ident: ref_38 – ident: ref_45 – volume: 64–65 start-page: 100 year: 2015 ident: ref_44 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2015.04.021 – ident: ref_46 doi: 10.1109/WACV.2017.58 – ident: ref_34 – ident: ref_24 doi: 10.1109/BigComp.2018.00137 – volume: 65 start-page: 5990 year: 2018 ident: ref_47 article-title: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – ident: ref_25 doi: 10.20944/preprints201701.0132.v1 – volume: 25 start-page: 473 year: 2019 ident: ref_21 article-title: Combined deep belief network in deep learning with affinity propagation clustering algorithm for roller bearings fault diagnosis without data label publication-title: JVC/J. Vib. Control. doi: 10.1177/1077546318783886 – volume: 6 start-page: 35042 year: 2018 ident: ref_12 article-title: A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2834540 – volume: 106 start-page: 142 year: 2019 ident: ref_32 article-title: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.01.008 – ident: ref_37 – volume: 163 start-page: 450 year: 2019 ident: ref_13 article-title: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.09.004 – volume: 54 start-page: 259 year: 2015 ident: ref_10 article-title: Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2014.09.002 – volume: 107 start-page: 59 year: 2019 ident: ref_27 article-title: Deep convolutional neural network based planet bearing fault classification publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.02.001 – volume: 60 start-page: 84 year: 2017 ident: ref_36 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 36 start-page: 81 year: 1997 ident: ref_40 article-title: Noise suppression and spinal compression using the wavelet packet transform publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(96)00077-9 – volume: 23 start-page: 2167 year: 2017 ident: ref_48 article-title: Using supervised kernel entropy component analysis for fault diagnosis of rolling bearings publication-title: JVC/J. Vib. Control. doi: 10.1177/1077546315608724 – volume: 17 start-page: 156 year: 2018 ident: ref_6 article-title: Multi-feature entropy distance approach with vibration and acoustic emission signals for process feature recognition of rolling element bearing faults publication-title: Struct. Health Monit. doi: 10.1177/1475921716687167 – volume: 65 start-page: 4290 year: 2018 ident: ref_39 article-title: Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2762639 – volume: 14 start-page: 1851 year: 2019 ident: ref_7 article-title: An improved deep network for intelligent diagnosis of machinery faults with similar features publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.23012 – volume: 6 start-page: 63584 year: 2018 ident: ref_8 article-title: An End-to-End Model Based on Improved Adaptive Deep Belief Network and Its Application to Bearing Fault Diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877447 – volume: 19 start-page: 240 year: 2020 ident: ref_20 article-title: A bearing fault and severity diagnostic technique using adaptive deep belief networks and Dempster–Shafer theory publication-title: Struct. Health Monit. doi: 10.1177/1475921719841690 – volume: 72–73 start-page: 303 year: 2016 ident: ref_15 article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 72–73 start-page: 92 year: 2016 ident: ref_30 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2015.11.014 – ident: ref_31 doi: 10.3390/s19102381 – volume: 102 start-page: 37 year: 2018 ident: ref_1 article-title: Mechanical model development of rolling bearing-rotor systems: A review publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2017.09.023 – ident: ref_43 – volume: 7 start-page: 10278 year: 2019 ident: ref_23 article-title: A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888842 – volume: 64 start-page: 52 year: 2015 ident: ref_4 article-title: Bearing health monitoring based on hilbert-huang transform, support vector machine, and regression publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2014.2330494 |
SSID | ssj0023338 |
Score | 2.5072746 |
Snippet | Accidental failures of rotating machinery components such as rolling bearings may trigger the sudden breakdown of the whole manufacturing system, thus, fault... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4965 |
SubjectTerms | bearing convolutional neural network deep learning fault diagnosis sensor signal wavelet packet transform |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9wwDDZlT-2h9N30hVp66CVs1nbs5Di73WHbw1LoLN1bkB-hA0OyMJmF_pD-30qJZ5gpC730ZLANEZFkSZb8SYiPteTmJ5pik1aWua6jyR1Gn9fkvMooLao4Fshemosr_fW6vN5r9cU1YRM88PTjjsmAmmCjQld4XaLGSrloWzI7xtj0uIps3jaYSqGWoshrwhFSFNQfr8nMWUZGP7A-I0j_XZ7l3wWSexZn_kg8TK4izCYSH4t7sXsiHuwBCD4Vv2dw2d_GFZx3IV_0OQ0wx81qgM9TCd1yDbOEGg7knkLC4IZTEnC-Iwf3C74kxAie_4HciGKAb0jaPcBi69bCsht6OOu72ySqRBjjeozDWEgO30ck2g2F78_E1fx8cXaRp0YLuSdvaMhLXxWVRa2dcQUi6rII2ptYKW1VHWRsrQt0NASsOe0WFa9wQrNEUyFp-HNx1PVdfClA12174n1wgVOEyC95o3LKO-JbDEXIxKctAxqfUMi5GcaqoWiEedXseJWJD7utNxP0xl2bTpmLuw2Mlj1OkAw1SYaaf8lQJt5vZaAh7eKUCXax36wbyfCJhqK4KhMvJpnYfUpJOqCVOsmEPZCWA1oOV7rlzxHBm9w0Q1bo1f8g_rW4L_kOgJNc8o04ImbHt-QoDe7dqBN_AJ-YEzE priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32887331 https://www.proquest.com/docview/2440465508 https://pubmed.ncbi.nlm.nih.gov/PMC7506762 https://doaj.org/article/3996d7e3ab0c45a4a83be7f152667010 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0K7B8R7w6MyiAOXQLCdODkg1C4tCxLVClrRW2THDlSqEtimK_aH8H-ZyYst6olLIiWOYnVmMt_ncb8BeJ5wan4ikZvkPPRl4iLfaJf5CYJX7rjSwtUbZKfR2Vx-XISLPeh6bLY_4HontaN-UvOL1ctfP6_eYsC_IcaJlP3VGpOYIt3zfTjEhKQoPj_JvpjABdKwRlRoe_gR3BAcg6zpMPc3K9Xi_bsQ578bJ69losktuNlCSDZsbH4b9lxxB46vCQvehd9DNi0v3YqNC-vPSh9PbKI3q4q9a7bWLdds2KqJM4StrNXmZiN0fFo7Z-aKfWiVJOj6V00NKip2rjHqKzbr4C5bFlXJTsvisnVhnBjpfdSneoM5-1Ir1G6Q1t-D-WQ8Oz3z2wYMfoYoqfLDLA5ipaU0kQm01jIMrMwiFwupRGK5y5Wx-MmwOqFynBN0hwqdoY5ijZF_Hw6KsnAnwGSS56-zzBpLpUNN__B1wojM6Fg4G1gPXnQGSLNWnZyaZKxSZClktrQ3mwfP-qE_GkmOXYNGZMV-AKlo1xfKi29pG5QpgrPIKie0CTIZaolzMU7lCGmiSCFR9eBp5wMpRh2VUnThys065SSrGCG7iz140PhE_6rOpzxQW96yNZftO8Xye63sjfAtwuz08L-ffARHnBYEqOLFH8MBWtg9QdRUmQHsq4XCYzx5P4DD0Xh6_nlQr0AM6mj5A7NZHoE |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+End-To-End+Fault+Diagnosis+Approach+for+Rolling+Bearings+by+Integrating+Wavelet+Packet+Transform+into+Convolutional+Neural+Network+Structures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xiong%2C+Shoucong&rft.au=Zhou%2C+Hongdi&rft.au=He%2C+Shuai&rft.au=Zhang%2C+Leilei&rft.date=2020-09-02&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=17&rft_id=info:doi/10.3390%2Fs20174965&rft_id=info%3Apmid%2F32887331&rft.externalDocID=PMC7506762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |