Identification of Motor and Mental Imagery EEG in Two and Multiclass Subject-Dependent Tasks Using Successive Decomposition Index
The development of fast and robust brain–computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our kno...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 18; p. 5283 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
16.09.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of fast and robust brain–computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems. |
---|---|
AbstractList | The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems. The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems.The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems. |
Author | Aziz, Muhammad Zulkifal Yu, Xiaojun Yuan, Zhaohui Sadiq, Muhammad Tariq |
AuthorAffiliation | School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; tariq.sadiq@mail.nwpu.edu.cn (M.T.S.); XJYU@nwpu.edu.cn (X.Y.); zulkifalaziz@mail.nwpu.edu.cn (M.Z.A.) |
AuthorAffiliation_xml | – name: School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; tariq.sadiq@mail.nwpu.edu.cn (M.T.S.); XJYU@nwpu.edu.cn (X.Y.); zulkifalaziz@mail.nwpu.edu.cn (M.Z.A.) |
Author_xml | – sequence: 1 givenname: Muhammad Tariq orcidid: 0000-0002-7410-5951 surname: Sadiq fullname: Sadiq, Muhammad Tariq – sequence: 2 givenname: Xiaojun orcidid: 0000-0001-7361-0780 surname: Yu fullname: Yu, Xiaojun – sequence: 3 givenname: Zhaohui orcidid: 0000-0002-2040-7815 surname: Yuan fullname: Yuan, Zhaohui – sequence: 4 givenname: Muhammad Zulkifal orcidid: 0000-0002-3829-6287 surname: Aziz fullname: Aziz, Muhammad Zulkifal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32947766$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_gwB9APsIh1PFXnAsSapcSqRUHtmfLdiaLl8Re7KTQI_8c725ZtQjJkq15Xz8zo5nT4sgHD0XxusLvKW3weSK4kpxI-qw4qRhhpSQEHz16HxenKa0xJpRS-aI4pqRhdS3ESfG77cBPrndWTy54FHp0E6YQkfYdusmSHlA76hXEe7RYXCHn0fJn2KvzMDk76JTQ19mswU7lJWzAb4FoqdP3hG6T86usWgspuTtAl2DDuAnJ7ZK12fvrZfG810OCVw_3WXH7abG8-Fxef7lqLz5el5axaiq5rbuedJpXhLBOGtrUgndVQzih3IIRXc0rTSXIXjIjoKlk0wgwGDcGam3oWdHuuV3Qa7WJbtTxXgXt1C4Q4krpuG0IFMsM3hghJKYMG6sNCNFrkg_VOZpZH_aszWxG6GzuOOrhCfSp4t03tQp3quY1rhnOgLcPgBh-zJAmNbpkYRi0hzAnRRhjVHJRb61vHuc6JPk7w2x4tzfYGFKK0B8sFVbb_VCH_cje83-81k27yecy3fCfH38AUwe9WA |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_1007_s13755_021_00139_7 crossref_primary_10_1109_ACCESS_2023_3321067 crossref_primary_10_3390_electronics11152473 crossref_primary_10_1007_s13755_022_00187_7 crossref_primary_10_3390_s21175746 crossref_primary_10_1007_s42044_021_00087_1 crossref_primary_10_1016_j_compbiomed_2022_105242 crossref_primary_10_1155_2021_6283900 crossref_primary_10_1007_s00521_022_07861_7 crossref_primary_10_32604_cmc_2022_027922 crossref_primary_10_1016_j_bbe_2022_05_002 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1088_2057_1976_ad3cde crossref_primary_10_1515_bmt_2023_0407 crossref_primary_10_3390_sym14122677 crossref_primary_10_1109_JBHI_2022_3151570 crossref_primary_10_1016_j_chaos_2022_112036 crossref_primary_10_1016_j_compbiomed_2021_104922 crossref_primary_10_1007_s13246_020_00963_3 crossref_primary_10_3389_fncom_2023_1142948 crossref_primary_10_3389_fbioe_2023_1190211 crossref_primary_10_3390_math11214409 crossref_primary_10_47978_TUS_2022_72_01_001 crossref_primary_10_3390_computers11050061 crossref_primary_10_1080_10255842_2024_2319701 crossref_primary_10_1088_1741_2552_acb102 crossref_primary_10_1109_TFUZZ_2023_3336673 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_3390_virtualworlds2020008 crossref_primary_10_53433_yyufbed_1066340 crossref_primary_10_1007_s13755_023_00227_w crossref_primary_10_1016_j_bspc_2021_102917 crossref_primary_10_1109_TIM_2021_3069026 crossref_primary_10_1155_2020_8889412 crossref_primary_10_1109_ACCESS_2021_3076347 |
Cites_doi | 10.1007/s00521-018-3531-0 10.1016/j.asej.2017.12.003 10.1113/JP278775 10.1109/ICCSS.2018.8572438 10.3390/s20123496 10.1016/j.neucom.2008.02.017 10.1109/CINE.2016.22 10.1007/s11517-006-0107-4 10.1016/j.cmpb.2020.105325 10.1016/j.amc.2006.09.022 10.1016/j.patcog.2007.10.023 10.1109/ACCESS.2019.2939623 10.1007/s00521-019-04389-1 10.1016/j.patrec.2007.06.018 10.1007/978-981-10-5828-8_8 10.1109/ACCESS.2020.2976744 10.1007/978-3-319-68155-9_12 10.1007/s10916-012-9893-4 10.1097/WCO.0b013e328315ee2d 10.1016/j.cmpb.2010.11.014 10.1109/TIM.2018.2799059 10.4015/S1016237214500409 10.3390/electronics9060918 10.1109/IJCNN.2016.7727457 10.1109/TBME.2008.919125 10.1109/TBME.2010.2082540 10.1016/j.brainresbull.2008.01.007 10.1109/ACCESS.2019.2956018 10.1186/1471-2105-8-S4-S2 10.1007/s00357-020-09362-5 10.1007/s00034-014-9864-8 10.1155/2011/156869 10.1109/ACCESS.2020.2994950 10.1016/j.jneumeth.2011.07.002 10.1016/j.bspc.2016.09.007 10.1155/2017/7575280 10.1007/s10916-014-0031-3 10.1016/j.rehab.2014.11.002 10.1088/1741-2552/aab2f2 10.1080/2326263X.2020.1736453 10.1016/j.jneumeth.2003.10.009 10.1109/86.712230 10.3390/s20102804 10.1109/JBHI.2019.2922976 10.1371/journal.pone.0074433 10.1155/2018/9385947 10.1155/2007/57180 10.1109/TBME.2010.2082539 10.3390/s19050987 10.1088/1742-6596/1453/1/012123 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s20185283 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_48f859b6680340bcabe66fa2fa23a668 PMC7570740 32947766 10_3390_s20185283 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: G2018KY0308 – fundername: Postdoctoral Science Foundation of Shaanxi Province grantid: 2018BSHYDZZ05 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2018JQ6014 – fundername: Chinese Postdoctoral Science Foundation grantid: 2018M641013 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-5c7df2da51224d8b39765d1925235ceb6d751a38e8f84b6e918996eb009be7ab3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Thu Aug 21 13:22:47 EDT 2025 Fri Jul 11 16:39:56 EDT 2025 Mon Jul 21 05:39:19 EDT 2025 Tue Jul 01 03:55:49 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | electroencephalography successive decomposition index motor imagery Brain-Computer Interface classification neurorehabilitation mental imagery multiscale principal component analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-5c7df2da51224d8b39765d1925235ceb6d751a38e8f84b6e918996eb009be7ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Muhammad Tariq Sadiq and Xiaojun Yu are co-first author. |
ORCID | 0000-0002-2040-7815 0000-0002-7410-5951 0000-0002-3829-6287 0000-0001-7361-0780 |
OpenAccessLink | https://doaj.org/article/48f859b6680340bcabe66fa2fa23a668 |
PMID | 32947766 |
PQID | 2444385670 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48f859b6680340bcabe66fa2fa23a668 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570740 proquest_miscellaneous_2444385670 pubmed_primary_32947766 crossref_primary_10_3390_s20185283 crossref_citationtrail_10_3390_s20185283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200916 |
PublicationDateYYYYMMDD | 2020-09-16 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200916 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Gokgoz (ref_14) 2014; 38 Sun (ref_56) 2008; 41 Sun (ref_53) 2006; 44 Oostenveld (ref_33) 2011; 2011 ref_12 ref_10 ref_54 ref_52 ref_51 Lu (ref_19) 2010; 57 Akhter (ref_45) 2020; 8 Wan (ref_59) 2016; 14 Taran (ref_35) 2019; 31 Lotte (ref_18) 2010; 58 ref_60 Lotte (ref_15) 2018; 15 Gupta (ref_17) 2019; 99 Song (ref_50) 2007; 2007 ref_25 Sadiq (ref_24) 2019; 7 Chaudhary (ref_5) 2015; 58 Chaudhary (ref_36) 2020; 187 ref_28 ref_26 Delorme (ref_32) 2004; 134 Alickovic (ref_13) 2015; 34 Sadiq (ref_23) 2019; 7 Kevric (ref_22) 2017; 31 Lin (ref_55) 2009; 72 Pfurtscheller (ref_3) 2003; 11 Chen (ref_29) 2020; 1453 Teixeira (ref_31) 2011; 200 Sun (ref_57) 2007; 28 Wu (ref_11) 2019; 24 ref_39 ref_38 ref_37 Taewijit (ref_58) 2017; 2017 Sadiq (ref_4) 2013; 10 (ref_20) 2012; 36 Maksimenko (ref_41) 2018; 2018 ref_46 Polat (ref_16) 2007; 187 Birbaumer (ref_1) 2008; 21 Alickovic (ref_34) 2018; 67 Raghu (ref_30) 2019; 32 ref_42 Wu (ref_48) 2008; 55 Siuly (ref_9) 2012; 20 Chaudhary (ref_27) 2020; 7 ref_2 Fu (ref_40) 2019; 36 Siuly (ref_47) 2014; 26 Jana (ref_43) 2018; 9 Chaudhary (ref_6) 2016; 12 Cincotti (ref_8) 2008; 75 Pfurtscheller (ref_21) 1998; 6 Akhter (ref_44) 2020; 8 ref_7 Li (ref_49) 2011; 104 |
References_xml | – volume: 31 start-page: 6925 year: 2019 ident: ref_35 article-title: Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-018-3531-0 – volume: 9 start-page: 2871 year: 2018 ident: ref_43 article-title: Enhancing the performance of motor imagery classification to design a robust brain computer interface using feed forward back-propagation neural network publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2017.12.003 – ident: ref_7 doi: 10.1113/JP278775 – ident: ref_26 – ident: ref_38 doi: 10.1109/ICCSS.2018.8572438 – ident: ref_28 doi: 10.3390/s20123496 – volume: 72 start-page: 1121 year: 2009 ident: ref_55 article-title: Classification of mental task from EEG data using neural networks based on particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.02.017 – ident: ref_42 – ident: ref_37 doi: 10.1109/CINE.2016.22 – volume: 44 start-page: 931 year: 2006 ident: ref_53 article-title: Adaptive feature extraction for EEG signal classification publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0107-4 – volume: 99 start-page: 1 year: 2019 ident: ref_17 article-title: On the Utility of Power Spectral Techniques With Feature Selection Techniques for Effective Mental Task Classification in Noninvasive BCI publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 187 start-page: 105325 year: 2020 ident: ref_36 article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105325 – volume: 187 start-page: 1017 year: 2007 ident: ref_16 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.022 – volume: 41 start-page: 1663 year: 2008 ident: ref_56 article-title: The random electrode selection ensemble for EEG signal classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.10.023 – volume: 7 start-page: 127678 year: 2019 ident: ref_23 article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939623 – ident: ref_52 – volume: 32 start-page: 8965 year: 2019 ident: ref_30 article-title: Automated detection of epileptic seizures using successive decomposition index and support vector machine classifier in long-term EEG publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04389-1 – volume: 28 start-page: 2157 year: 2007 ident: ref_57 article-title: An experimental evaluation of ensemble methods for EEG signal classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.06.018 – ident: ref_25 doi: 10.1007/978-981-10-5828-8_8 – volume: 8 start-page: 42689 year: 2020 ident: ref_44 article-title: Document-level text classification using single-layer multisize filters convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976744 – ident: ref_54 doi: 10.1007/978-3-319-68155-9_12 – volume: 36 start-page: 51 year: 2012 ident: ref_20 article-title: Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces publication-title: J. Med. Syst. doi: 10.1007/s10916-012-9893-4 – volume: 21 start-page: 634 year: 2008 ident: ref_1 article-title: Brain–computer interface in paralysis publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e328315ee2d – volume: 104 start-page: 358 year: 2011 ident: ref_49 article-title: Clustering technique-based least square support vector machine for EEG signal classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.11.014 – volume: 67 start-page: 1258 year: 2018 ident: ref_34 article-title: Ensemble SVM method for automatic sleep stage classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2799059 – volume: 36 start-page: 911 year: 2019 ident: ref_40 article-title: Recognition method of single trial motor imagery electroencephalogram signal based on sparse common spatial pattern and Fisher discriminant analysis publication-title: J. Biomed. Eng. – volume: 26 start-page: 1450040 year: 2014 ident: ref_47 article-title: Comparisons between motor area EEG and all-channels EEG for two algorithms in motor imagery task classification publication-title: Biomed. Eng. Appl. Basis C doi: 10.4015/S1016237214500409 – ident: ref_10 doi: 10.3390/electronics9060918 – ident: ref_39 doi: 10.1109/IJCNN.2016.7727457 – volume: 55 start-page: 1733 year: 2008 ident: ref_48 article-title: Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL) publication-title: IEEE. Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919125 – volume: 57 start-page: 2936 year: 2010 ident: ref_19 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE. Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082540 – volume: 75 start-page: 796 year: 2008 ident: ref_8 article-title: Non-invasive brain–computer interface system: Towards its application as assistive technology publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2008.01.007 – volume: 7 start-page: 171431 year: 2019 ident: ref_24 article-title: Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956018 – ident: ref_60 doi: 10.1186/1471-2105-8-S4-S2 – ident: ref_46 doi: 10.1007/s00357-020-09362-5 – volume: 20 start-page: 526 year: 2012 ident: ref_9 article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface publication-title: IEEE Trans. – volume: 34 start-page: 513 year: 2015 ident: ref_13 article-title: Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-014-9864-8 – volume: 2011 start-page: 156869 year: 2011 ident: ref_33 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – volume: 8 start-page: 91213 year: 2020 ident: ref_45 article-title: Automatic Detection of Offensive Language for Urdu and Roman Urdu publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994950 – volume: 200 start-page: 257 year: 2011 ident: ref_31 article-title: EPILAB: A software package for studies on the prediction of epileptic seizures publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.07.002 – volume: 11 start-page: 1 year: 2003 ident: ref_3 article-title: Graz-BCI: State of the art and clinical applications publication-title: IEEE Trans. – volume: 31 start-page: 398 year: 2017 ident: ref_22 article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2016.09.007 – volume: 2017 start-page: 7575280 year: 2017 ident: ref_58 article-title: Distant supervision with transductive learning for adverse drug reaction identification from electronic medical records publication-title: J. Healthc. Eng. doi: 10.1155/2017/7575280 – volume: 38 start-page: 31 year: 2014 ident: ref_14 article-title: Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders publication-title: J. Med. Syst. doi: 10.1007/s10916-014-0031-3 – volume: 58 start-page: 9 year: 2015 ident: ref_5 article-title: Brain-machine interface (BMI) in paralysis publication-title: Ann. Phys. Rehabil. Med. doi: 10.1016/j.rehab.2014.11.002 – volume: 15 start-page: 031005 year: 2018 ident: ref_15 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 7 start-page: 1 year: 2020 ident: ref_27 article-title: Non-dyadic wavelet decomposition for sensory-motor imagery EEG classification publication-title: Brain Comput. Interfaces doi: 10.1080/2326263X.2020.1736453 – volume: 134 start-page: 9 year: 2004 ident: ref_32 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 6 start-page: 316 year: 1998 ident: ref_21 article-title: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng. doi: 10.1109/86.712230 – volume: 14 start-page: 212 year: 2016 ident: ref_59 article-title: Transductive learning for multi-label protein subchloroplast localization prediction publication-title: TCBB – volume: 10 start-page: 282 year: 2013 ident: ref_4 article-title: Spectral subtraction for speech enhancement in modulation domain publication-title: Ijcsi – ident: ref_2 doi: 10.3390/s20102804 – volume: 24 start-page: 775 year: 2019 ident: ref_11 article-title: To explore the potentials of independent component analysis in brain-computer interface of motor imagery publication-title: IEEE J. Biomed Health doi: 10.1109/JBHI.2019.2922976 – ident: ref_51 doi: 10.1371/journal.pone.0074433 – volume: 2018 start-page: 9385947 year: 2018 ident: ref_41 article-title: Artificial neural network classification of motor-related eeg: An increase in classification accuracy by reducing signal complexity publication-title: Complexity doi: 10.1155/2018/9385947 – volume: 12 start-page: 513 year: 2016 ident: ref_6 article-title: Brain–computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurosci. – volume: 2007 start-page: 57180 year: 2007 ident: ref_50 article-title: Classifying EEG for brain-computer interface: Learning optimal filters for dynamical system features publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/57180 – volume: 58 start-page: 355 year: 2010 ident: ref_18 article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms publication-title: IEEE. Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – ident: ref_12 doi: 10.3390/s19050987 – volume: 1453 start-page: 12123 year: 2020 ident: ref_29 article-title: NAO Robot Walking Control System Based on Motor Imagery publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1453/1/012123 |
SSID | ssj0023338 |
Score | 2.495068 |
Snippet | The development of fast and robust brain–computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted... The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5283 |
SubjectTerms | Algorithms Brain-Computer Interface Brain-Computer Interfaces Electroencephalography Humans Imagination mental imagery motor imagery multiscale principal component analysis Signal Processing, Computer-Assisted successive decomposition index |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VcoEDKp8NBWQQBy6BJP5KDggB3dIiLaddqbfIdmyoWhLYbAU98s-ZSbJRg_aIlJNtKZYnjt-zx-8BvDTSC5d6FfPC61hw52JrKNHVhTTwJCsyQ_uQ8y_qeCk-n8rTHdh4bA4D2G6lduQntVxdvP798-odTvi3xDiRsr9pcRHLSaTkBtzEBUnT_JyL8TAh40jDelGhafPJUtQp9m-Dmf9mS15bfo724M6AG9n7PtB3YcfX9-D2NTXB-_Cnv3Qbhl041gQ2b5BSM1NXrNfqYSffSbPiis1mn9hZzRa_mr62E-EgIM3wT0JbM_Hh4I67ZgvTnresyy3A2s5gEX-R7NBTOvqQ88VOSHXxASyPZouPx_HgsBA7hEHrWDpdhawyks7XqtwSOJEVgj6kp9J5qyotU8Nzn4dcWOWLFOmZIruhwnptLH8Iu3VT-31gOVcyBLoXQI7qhTMCsZNNXeKq4FJTRPBqM9ilG-THyQXjokQaQnEpx7hE8GJs-qPX3NjW6ANFbGxAMtldQbP6Wg6zrhTYb1lYpfKEi8Q6Y71SwWT4cIOlETzfxLvEaUVnJab2zWVbIuoRPJdKJxE86uM_vopnhdBaqQj05MuY9GVaU59966S7tdSI2ZLH_6PzB3ArI_JPfhbqCeyuV5f-KSKktX3Wff9_AZ4kEqU priority: 102 providerName: Scholars Portal |
Title | Identification of Motor and Mental Imagery EEG in Two and Multiclass Subject-Dependent Tasks Using Successive Decomposition Index |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32947766 https://www.proquest.com/docview/2444385670 https://pubmed.ncbi.nlm.nih.gov/PMC7570740 https://doaj.org/article/48f859b6680340bcabe66fa2fa23a668 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC50vehBfNs-higevDTb3Xn20XVndleYRWQW5tYk6QQXtVucWcSj_9yqTs8wIwtehCaHJNAhlcf3JZWvAN5YGYQvg8p5HXQuuPe5s-To6mMZeVHVlaVzyPm5Or0QH5ZyuRPqi3zCkjxw6rhDYaKRtVPKFFwUzlsXlIq2wo9bzKXVF_e8DZkaqRZH5pV0hDiS-sMVbnOGZEz2dp9BpP86ZPm3g-TOjjO7B3dHqMjepSbehxuhewB3dgQEH8Lv9M42jgdvrI9s3iOLZrZrWZLnYWffSKbiF5tOT9hlxxY_-1Q66G4Qdma4eNBpTH48BsRds4VdfVmxwZ0AS4eYirgqsuNAHuijmxc7I6HFR3Axmy7en-ZjUIXcI_JZ59LrNlatlXSl1hpHeES2iPOQkUofnGq1LC03AftdOBXqEhmZoghDtQvaOv4YDrq-C0-BGa5kjPQUgIKo194KhEuu9IVvoy9tncHbTWc3flQcp8AXXxtkHmSXZmuXDF5vq35PMhvXVToii20rkDL2kIHjpRnHS_Ov8ZLBq429G5xJdD1iu9BfrRoEOoIbqXSRwZNk_-2veFULrZXKQO-NjL227Jd0l58HtW4tNcK04tn_aPxzuF0R36cQFuoFHKx_XIWXCIrWbgI39VJjamYnE7h1ND3_-GkyzAlM58L8AdDqEQ0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Motor+and+Mental+Imagery+EEG+in+Two+and+Multiclass+Subject-Dependent+Tasks+Using+Successive+Decomposition+Index&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Muhammad+Tariq+Sadiq&rft.au=Xiaojun+Yu&rft.au=Zhaohui+Yuan&rft.au=Muhammad+Zulkifal+Aziz&rft.date=2020-09-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft.spage=5283&rft_id=info:doi/10.3390%2Fs20185283&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48f859b6680340bcabe66fa2fa23a668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |