Identification of Motor and Mental Imagery EEG in Two and Multiclass Subject-Dependent Tasks Using Successive Decomposition Index

The development of fast and robust brain–computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our kno...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 18; p. 5283
Main Authors Sadiq, Muhammad Tariq, Yu, Xiaojun, Yuan, Zhaohui, Aziz, Muhammad Zulkifal
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 16.09.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of fast and robust brain–computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems.
AbstractList The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems.
The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems.The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems.
Author Aziz, Muhammad Zulkifal
Yu, Xiaojun
Yuan, Zhaohui
Sadiq, Muhammad Tariq
AuthorAffiliation School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; tariq.sadiq@mail.nwpu.edu.cn (M.T.S.); XJYU@nwpu.edu.cn (X.Y.); zulkifalaziz@mail.nwpu.edu.cn (M.Z.A.)
AuthorAffiliation_xml – name: School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; tariq.sadiq@mail.nwpu.edu.cn (M.T.S.); XJYU@nwpu.edu.cn (X.Y.); zulkifalaziz@mail.nwpu.edu.cn (M.Z.A.)
Author_xml – sequence: 1
  givenname: Muhammad Tariq
  orcidid: 0000-0002-7410-5951
  surname: Sadiq
  fullname: Sadiq, Muhammad Tariq
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0001-7361-0780
  surname: Yu
  fullname: Yu, Xiaojun
– sequence: 3
  givenname: Zhaohui
  orcidid: 0000-0002-2040-7815
  surname: Yuan
  fullname: Yuan, Zhaohui
– sequence: 4
  givenname: Muhammad Zulkifal
  orcidid: 0000-0002-3829-6287
  surname: Aziz
  fullname: Aziz, Muhammad Zulkifal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32947766$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9APsIh1PFXnAsSapcSqRUHtmfLdiaLl8Re7KTQI_8c725ZtQjJkq15Xz8zo5nT4sgHD0XxusLvKW3weSK4kpxI-qw4qRhhpSQEHz16HxenKa0xJpRS-aI4pqRhdS3ESfG77cBPrndWTy54FHp0E6YQkfYdusmSHlA76hXEe7RYXCHn0fJn2KvzMDk76JTQ19mswU7lJWzAb4FoqdP3hG6T86usWgspuTtAl2DDuAnJ7ZK12fvrZfG810OCVw_3WXH7abG8-Fxef7lqLz5el5axaiq5rbuedJpXhLBOGtrUgndVQzih3IIRXc0rTSXIXjIjoKlk0wgwGDcGam3oWdHuuV3Qa7WJbtTxXgXt1C4Q4krpuG0IFMsM3hghJKYMG6sNCNFrkg_VOZpZH_aszWxG6GzuOOrhCfSp4t03tQp3quY1rhnOgLcPgBh-zJAmNbpkYRi0hzAnRRhjVHJRb61vHuc6JPk7w2x4tzfYGFKK0B8sFVbb_VCH_cje83-81k27yecy3fCfH38AUwe9WA
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_1007_s13755_021_00139_7
crossref_primary_10_1109_ACCESS_2023_3321067
crossref_primary_10_3390_electronics11152473
crossref_primary_10_1007_s13755_022_00187_7
crossref_primary_10_3390_s21175746
crossref_primary_10_1007_s42044_021_00087_1
crossref_primary_10_1016_j_compbiomed_2022_105242
crossref_primary_10_1155_2021_6283900
crossref_primary_10_1007_s00521_022_07861_7
crossref_primary_10_32604_cmc_2022_027922
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1088_2057_1976_ad3cde
crossref_primary_10_1515_bmt_2023_0407
crossref_primary_10_3390_sym14122677
crossref_primary_10_1109_JBHI_2022_3151570
crossref_primary_10_1016_j_chaos_2022_112036
crossref_primary_10_1016_j_compbiomed_2021_104922
crossref_primary_10_1007_s13246_020_00963_3
crossref_primary_10_3389_fncom_2023_1142948
crossref_primary_10_3389_fbioe_2023_1190211
crossref_primary_10_3390_math11214409
crossref_primary_10_47978_TUS_2022_72_01_001
crossref_primary_10_3390_computers11050061
crossref_primary_10_1080_10255842_2024_2319701
crossref_primary_10_1088_1741_2552_acb102
crossref_primary_10_1109_TFUZZ_2023_3336673
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_3390_virtualworlds2020008
crossref_primary_10_53433_yyufbed_1066340
crossref_primary_10_1007_s13755_023_00227_w
crossref_primary_10_1016_j_bspc_2021_102917
crossref_primary_10_1109_TIM_2021_3069026
crossref_primary_10_1155_2020_8889412
crossref_primary_10_1109_ACCESS_2021_3076347
Cites_doi 10.1007/s00521-018-3531-0
10.1016/j.asej.2017.12.003
10.1113/JP278775
10.1109/ICCSS.2018.8572438
10.3390/s20123496
10.1016/j.neucom.2008.02.017
10.1109/CINE.2016.22
10.1007/s11517-006-0107-4
10.1016/j.cmpb.2020.105325
10.1016/j.amc.2006.09.022
10.1016/j.patcog.2007.10.023
10.1109/ACCESS.2019.2939623
10.1007/s00521-019-04389-1
10.1016/j.patrec.2007.06.018
10.1007/978-981-10-5828-8_8
10.1109/ACCESS.2020.2976744
10.1007/978-3-319-68155-9_12
10.1007/s10916-012-9893-4
10.1097/WCO.0b013e328315ee2d
10.1016/j.cmpb.2010.11.014
10.1109/TIM.2018.2799059
10.4015/S1016237214500409
10.3390/electronics9060918
10.1109/IJCNN.2016.7727457
10.1109/TBME.2008.919125
10.1109/TBME.2010.2082540
10.1016/j.brainresbull.2008.01.007
10.1109/ACCESS.2019.2956018
10.1186/1471-2105-8-S4-S2
10.1007/s00357-020-09362-5
10.1007/s00034-014-9864-8
10.1155/2011/156869
10.1109/ACCESS.2020.2994950
10.1016/j.jneumeth.2011.07.002
10.1016/j.bspc.2016.09.007
10.1155/2017/7575280
10.1007/s10916-014-0031-3
10.1016/j.rehab.2014.11.002
10.1088/1741-2552/aab2f2
10.1080/2326263X.2020.1736453
10.1016/j.jneumeth.2003.10.009
10.1109/86.712230
10.3390/s20102804
10.1109/JBHI.2019.2922976
10.1371/journal.pone.0074433
10.1155/2018/9385947
10.1155/2007/57180
10.1109/TBME.2010.2082539
10.3390/s19050987
10.1088/1742-6596/1453/1/012123
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s20185283
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_48f859b6680340bcabe66fa2fa23a668
PMC7570740
32947766
10_3390_s20185283
Genre Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: G2018KY0308
– fundername: Postdoctoral Science Foundation of Shaanxi Province
  grantid: 2018BSHYDZZ05
– fundername: Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2018JQ6014
– fundername: Chinese Postdoctoral Science Foundation
  grantid: 2018M641013
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-5c7df2da51224d8b39765d1925235ceb6d751a38e8f84b6e918996eb009be7ab3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:46 EDT 2025
Thu Aug 21 13:22:47 EDT 2025
Fri Jul 11 16:39:56 EDT 2025
Mon Jul 21 05:39:19 EDT 2025
Tue Jul 01 03:55:49 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords electroencephalography
successive decomposition index
motor imagery
Brain-Computer Interface
classification
neurorehabilitation
mental imagery
multiscale principal component analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-5c7df2da51224d8b39765d1925235ceb6d751a38e8f84b6e918996eb009be7ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Muhammad Tariq Sadiq and Xiaojun Yu are co-first author.
ORCID 0000-0002-2040-7815
0000-0002-7410-5951
0000-0002-3829-6287
0000-0001-7361-0780
OpenAccessLink https://doaj.org/article/48f859b6680340bcabe66fa2fa23a668
PMID 32947766
PQID 2444385670
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_48f859b6680340bcabe66fa2fa23a668
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570740
proquest_miscellaneous_2444385670
pubmed_primary_32947766
crossref_primary_10_3390_s20185283
crossref_citationtrail_10_3390_s20185283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200916
PublicationDateYYYYMMDD 2020-09-16
PublicationDate_xml – month: 9
  year: 2020
  text: 20200916
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Gokgoz (ref_14) 2014; 38
Sun (ref_56) 2008; 41
Sun (ref_53) 2006; 44
Oostenveld (ref_33) 2011; 2011
ref_12
ref_10
ref_54
ref_52
ref_51
Lu (ref_19) 2010; 57
Akhter (ref_45) 2020; 8
Wan (ref_59) 2016; 14
Taran (ref_35) 2019; 31
Lotte (ref_18) 2010; 58
ref_60
Lotte (ref_15) 2018; 15
Gupta (ref_17) 2019; 99
Song (ref_50) 2007; 2007
ref_25
Sadiq (ref_24) 2019; 7
Chaudhary (ref_5) 2015; 58
Chaudhary (ref_36) 2020; 187
ref_28
ref_26
Delorme (ref_32) 2004; 134
Alickovic (ref_13) 2015; 34
Sadiq (ref_23) 2019; 7
Kevric (ref_22) 2017; 31
Lin (ref_55) 2009; 72
Pfurtscheller (ref_3) 2003; 11
Chen (ref_29) 2020; 1453
Teixeira (ref_31) 2011; 200
Sun (ref_57) 2007; 28
Wu (ref_11) 2019; 24
ref_39
ref_38
ref_37
Taewijit (ref_58) 2017; 2017
Sadiq (ref_4) 2013; 10
(ref_20) 2012; 36
Maksimenko (ref_41) 2018; 2018
ref_46
Polat (ref_16) 2007; 187
Birbaumer (ref_1) 2008; 21
Alickovic (ref_34) 2018; 67
Raghu (ref_30) 2019; 32
ref_42
Wu (ref_48) 2008; 55
Siuly (ref_9) 2012; 20
Chaudhary (ref_27) 2020; 7
ref_2
Fu (ref_40) 2019; 36
Siuly (ref_47) 2014; 26
Jana (ref_43) 2018; 9
Chaudhary (ref_6) 2016; 12
Cincotti (ref_8) 2008; 75
Pfurtscheller (ref_21) 1998; 6
Akhter (ref_44) 2020; 8
ref_7
Li (ref_49) 2011; 104
References_xml – volume: 31
  start-page: 6925
  year: 2019
  ident: ref_35
  article-title: Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-018-3531-0
– volume: 9
  start-page: 2871
  year: 2018
  ident: ref_43
  article-title: Enhancing the performance of motor imagery classification to design a robust brain computer interface using feed forward back-propagation neural network
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.12.003
– ident: ref_7
  doi: 10.1113/JP278775
– ident: ref_26
– ident: ref_38
  doi: 10.1109/ICCSS.2018.8572438
– ident: ref_28
  doi: 10.3390/s20123496
– volume: 72
  start-page: 1121
  year: 2009
  ident: ref_55
  article-title: Classification of mental task from EEG data using neural networks based on particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.02.017
– ident: ref_42
– ident: ref_37
  doi: 10.1109/CINE.2016.22
– volume: 44
  start-page: 931
  year: 2006
  ident: ref_53
  article-title: Adaptive feature extraction for EEG signal classification
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0107-4
– volume: 99
  start-page: 1
  year: 2019
  ident: ref_17
  article-title: On the Utility of Power Spectral Techniques With Feature Selection Techniques for Effective Mental Task Classification in Noninvasive BCI
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 187
  start-page: 105325
  year: 2020
  ident: ref_36
  article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105325
– volume: 187
  start-page: 1017
  year: 2007
  ident: ref_16
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.022
– volume: 41
  start-page: 1663
  year: 2008
  ident: ref_56
  article-title: The random electrode selection ensemble for EEG signal classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.10.023
– volume: 7
  start-page: 127678
  year: 2019
  ident: ref_23
  article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939623
– ident: ref_52
– volume: 32
  start-page: 8965
  year: 2019
  ident: ref_30
  article-title: Automated detection of epileptic seizures using successive decomposition index and support vector machine classifier in long-term EEG
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04389-1
– volume: 28
  start-page: 2157
  year: 2007
  ident: ref_57
  article-title: An experimental evaluation of ensemble methods for EEG signal classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.06.018
– ident: ref_25
  doi: 10.1007/978-981-10-5828-8_8
– volume: 8
  start-page: 42689
  year: 2020
  ident: ref_44
  article-title: Document-level text classification using single-layer multisize filters convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976744
– ident: ref_54
  doi: 10.1007/978-3-319-68155-9_12
– volume: 36
  start-page: 51
  year: 2012
  ident: ref_20
  article-title: Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-012-9893-4
– volume: 21
  start-page: 634
  year: 2008
  ident: ref_1
  article-title: Brain–computer interface in paralysis
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e328315ee2d
– volume: 104
  start-page: 358
  year: 2011
  ident: ref_49
  article-title: Clustering technique-based least square support vector machine for EEG signal classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.11.014
– volume: 67
  start-page: 1258
  year: 2018
  ident: ref_34
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2799059
– volume: 36
  start-page: 911
  year: 2019
  ident: ref_40
  article-title: Recognition method of single trial motor imagery electroencephalogram signal based on sparse common spatial pattern and Fisher discriminant analysis
  publication-title: J. Biomed. Eng.
– volume: 26
  start-page: 1450040
  year: 2014
  ident: ref_47
  article-title: Comparisons between motor area EEG and all-channels EEG for two algorithms in motor imagery task classification
  publication-title: Biomed. Eng. Appl. Basis C
  doi: 10.4015/S1016237214500409
– ident: ref_10
  doi: 10.3390/electronics9060918
– ident: ref_39
  doi: 10.1109/IJCNN.2016.7727457
– volume: 55
  start-page: 1733
  year: 2008
  ident: ref_48
  article-title: Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)
  publication-title: IEEE. Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919125
– volume: 57
  start-page: 2936
  year: 2010
  ident: ref_19
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE. Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082540
– volume: 75
  start-page: 796
  year: 2008
  ident: ref_8
  article-title: Non-invasive brain–computer interface system: Towards its application as assistive technology
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2008.01.007
– volume: 7
  start-page: 171431
  year: 2019
  ident: ref_24
  article-title: Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956018
– ident: ref_60
  doi: 10.1186/1471-2105-8-S4-S2
– ident: ref_46
  doi: 10.1007/s00357-020-09362-5
– volume: 20
  start-page: 526
  year: 2012
  ident: ref_9
  article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface
  publication-title: IEEE Trans.
– volume: 34
  start-page: 513
  year: 2015
  ident: ref_13
  article-title: Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-014-9864-8
– volume: 2011
  start-page: 156869
  year: 2011
  ident: ref_33
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 8
  start-page: 91213
  year: 2020
  ident: ref_45
  article-title: Automatic Detection of Offensive Language for Urdu and Roman Urdu
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994950
– volume: 200
  start-page: 257
  year: 2011
  ident: ref_31
  article-title: EPILAB: A software package for studies on the prediction of epileptic seizures
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.07.002
– volume: 11
  start-page: 1
  year: 2003
  ident: ref_3
  article-title: Graz-BCI: State of the art and clinical applications
  publication-title: IEEE Trans.
– volume: 31
  start-page: 398
  year: 2017
  ident: ref_22
  article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2016.09.007
– volume: 2017
  start-page: 7575280
  year: 2017
  ident: ref_58
  article-title: Distant supervision with transductive learning for adverse drug reaction identification from electronic medical records
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2017/7575280
– volume: 38
  start-page: 31
  year: 2014
  ident: ref_14
  article-title: Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0031-3
– volume: 58
  start-page: 9
  year: 2015
  ident: ref_5
  article-title: Brain-machine interface (BMI) in paralysis
  publication-title: Ann. Phys. Rehabil. Med.
  doi: 10.1016/j.rehab.2014.11.002
– volume: 15
  start-page: 031005
  year: 2018
  ident: ref_15
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_27
  article-title: Non-dyadic wavelet decomposition for sensory-motor imagery EEG classification
  publication-title: Brain Comput. Interfaces
  doi: 10.1080/2326263X.2020.1736453
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_32
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 6
  start-page: 316
  year: 1998
  ident: ref_21
  article-title: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters
  publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng.
  doi: 10.1109/86.712230
– volume: 14
  start-page: 212
  year: 2016
  ident: ref_59
  article-title: Transductive learning for multi-label protein subchloroplast localization prediction
  publication-title: TCBB
– volume: 10
  start-page: 282
  year: 2013
  ident: ref_4
  article-title: Spectral subtraction for speech enhancement in modulation domain
  publication-title: Ijcsi
– ident: ref_2
  doi: 10.3390/s20102804
– volume: 24
  start-page: 775
  year: 2019
  ident: ref_11
  article-title: To explore the potentials of independent component analysis in brain-computer interface of motor imagery
  publication-title: IEEE J. Biomed Health
  doi: 10.1109/JBHI.2019.2922976
– ident: ref_51
  doi: 10.1371/journal.pone.0074433
– volume: 2018
  start-page: 9385947
  year: 2018
  ident: ref_41
  article-title: Artificial neural network classification of motor-related eeg: An increase in classification accuracy by reducing signal complexity
  publication-title: Complexity
  doi: 10.1155/2018/9385947
– volume: 12
  start-page: 513
  year: 2016
  ident: ref_6
  article-title: Brain–computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurosci.
– volume: 2007
  start-page: 57180
  year: 2007
  ident: ref_50
  article-title: Classifying EEG for brain-computer interface: Learning optimal filters for dynamical system features
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/57180
– volume: 58
  start-page: 355
  year: 2010
  ident: ref_18
  article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms
  publication-title: IEEE. Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– ident: ref_12
  doi: 10.3390/s19050987
– volume: 1453
  start-page: 12123
  year: 2020
  ident: ref_29
  article-title: NAO Robot Walking Control System Based on Motor Imagery
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1453/1/012123
SSID ssj0023338
Score 2.495068
Snippet The development of fast and robust brain–computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted...
The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5283
SubjectTerms Algorithms
Brain-Computer Interface
Brain-Computer Interfaces
Electroencephalography
Humans
Imagination
mental imagery
motor imagery
multiscale principal component analysis
Signal Processing, Computer-Assisted
successive decomposition index
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VcoEDKp8NBWQQBy6BJP5KDggB3dIiLaddqbfIdmyoWhLYbAU98s-ZSbJRg_aIlJNtKZYnjt-zx-8BvDTSC5d6FfPC61hw52JrKNHVhTTwJCsyQ_uQ8y_qeCk-n8rTHdh4bA4D2G6lduQntVxdvP798-odTvi3xDiRsr9pcRHLSaTkBtzEBUnT_JyL8TAh40jDelGhafPJUtQp9m-Dmf9mS15bfo724M6AG9n7PtB3YcfX9-D2NTXB-_Cnv3Qbhl041gQ2b5BSM1NXrNfqYSffSbPiis1mn9hZzRa_mr62E-EgIM3wT0JbM_Hh4I67ZgvTnresyy3A2s5gEX-R7NBTOvqQ88VOSHXxASyPZouPx_HgsBA7hEHrWDpdhawyks7XqtwSOJEVgj6kp9J5qyotU8Nzn4dcWOWLFOmZIruhwnptLH8Iu3VT-31gOVcyBLoXQI7qhTMCsZNNXeKq4FJTRPBqM9ilG-THyQXjokQaQnEpx7hE8GJs-qPX3NjW6ANFbGxAMtldQbP6Wg6zrhTYb1lYpfKEi8Q6Y71SwWT4cIOlETzfxLvEaUVnJab2zWVbIuoRPJdKJxE86uM_vopnhdBaqQj05MuY9GVaU59966S7tdSI2ZLH_6PzB3ArI_JPfhbqCeyuV5f-KSKktX3Wff9_AZ4kEqU
  priority: 102
  providerName: Scholars Portal
Title Identification of Motor and Mental Imagery EEG in Two and Multiclass Subject-Dependent Tasks Using Successive Decomposition Index
URI https://www.ncbi.nlm.nih.gov/pubmed/32947766
https://www.proquest.com/docview/2444385670
https://pubmed.ncbi.nlm.nih.gov/PMC7570740
https://doaj.org/article/48f859b6680340bcabe66fa2fa23a668
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC50vehBfNs-higevDTb3Xn20XVndleYRWQW5tYk6QQXtVucWcSj_9yqTs8wIwtehCaHJNAhlcf3JZWvAN5YGYQvg8p5HXQuuPe5s-To6mMZeVHVlaVzyPm5Or0QH5ZyuRPqi3zCkjxw6rhDYaKRtVPKFFwUzlsXlIq2wo9bzKXVF_e8DZkaqRZH5pV0hDiS-sMVbnOGZEz2dp9BpP86ZPm3g-TOjjO7B3dHqMjepSbehxuhewB3dgQEH8Lv9M42jgdvrI9s3iOLZrZrWZLnYWffSKbiF5tOT9hlxxY_-1Q66G4Qdma4eNBpTH48BsRds4VdfVmxwZ0AS4eYirgqsuNAHuijmxc7I6HFR3Axmy7en-ZjUIXcI_JZ59LrNlatlXSl1hpHeES2iPOQkUofnGq1LC03AftdOBXqEhmZoghDtQvaOv4YDrq-C0-BGa5kjPQUgIKo194KhEuu9IVvoy9tncHbTWc3flQcp8AXXxtkHmSXZmuXDF5vq35PMhvXVToii20rkDL2kIHjpRnHS_Ov8ZLBq429G5xJdD1iu9BfrRoEOoIbqXSRwZNk_-2veFULrZXKQO-NjL227Jd0l58HtW4tNcK04tn_aPxzuF0R36cQFuoFHKx_XIWXCIrWbgI39VJjamYnE7h1ND3_-GkyzAlM58L8AdDqEQ0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Motor+and+Mental+Imagery+EEG+in+Two+and+Multiclass+Subject-Dependent+Tasks+Using+Successive+Decomposition+Index&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Muhammad+Tariq+Sadiq&rft.au=Xiaojun+Yu&rft.au=Zhaohui+Yuan&rft.au=Muhammad+Zulkifal+Aziz&rft.date=2020-09-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft.spage=5283&rft_id=info:doi/10.3390%2Fs20185283&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48f859b6680340bcabe66fa2fa23a668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon