Toward Efficient Image Recognition in Sensor-Based IoT: A Weight Initialization Optimizing Method for CNN Based on RGB Influence Proportion

As the Internet of Things (IoT) is predicted to deal with different problems based on big data, its applications have become increasingly dependent on visual data and deep learning technology, and it is a big challenge to find a suitable method for IoT systems to analyze image data. Traditional deep...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 10; p. 2866
Main Authors Deng, Zile, Cao, Yuanlong, Zhou, Xinyu, Yi, Yugen, Jiang, Yirui, You, Ilsun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 18.05.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20102866

Cover

Loading…
Abstract As the Internet of Things (IoT) is predicted to deal with different problems based on big data, its applications have become increasingly dependent on visual data and deep learning technology, and it is a big challenge to find a suitable method for IoT systems to analyze image data. Traditional deep learning methods have never explicitly taken the color differences of data into account, but from the experience of human vision, colors play differently significant roles in recognizing things. This paper proposes a weight initialization method for deep learning in image recognition problems based on RGB influence proportion, aiming to improve the training process of the learning algorithms. In this paper, we try to extract the RGB proportion and utilize it in the weight initialization process. We conduct several experiments on different datasets to evaluate the effectiveness of our proposal, and it is proven to be effective on small datasets. In addition, as for the access to the RGB influence proportion, we also provide an expedient approach to get the early proportion for the following usage. We assume that the proposed method can be used for IoT sensors to securely analyze complex data in the future.
AbstractList As the Internet of Things (IoT) is predicted to deal with different problems based on big data, its applications have become increasingly dependent on visual data and deep learning technology, and it is a big challenge to find a suitable method for IoT systems to analyze image data. Traditional deep learning methods have never explicitly taken the color differences of data into account, but from the experience of human vision, colors play differently significant roles in recognizing things. This paper proposes a weight initialization method for deep learning in image recognition problems based on RGB influence proportion, aiming to improve the training process of the learning algorithms. In this paper, we try to extract the RGB proportion and utilize it in the weight initialization process. We conduct several experiments on different datasets to evaluate the effectiveness of our proposal, and it is proven to be effective on small datasets. In addition, as for the access to the RGB influence proportion, we also provide an expedient approach to get the early proportion for the following usage. We assume that the proposed method can be used for IoT sensors to securely analyze complex data in the future.
As the Internet of Things (IoT) is predicted to deal with different problems based on big data, its applications have become increasingly dependent on visual data and deep learning technology, and it is a big challenge to find a suitable method for IoT systems to analyze image data. Traditional deep learning methods have never explicitly taken the color differences of data into account, but from the experience of human vision, colors play differently significant roles in recognizing things. This paper proposes a weight initialization method for deep learning in image recognition problems based on RGB influence proportion, aiming to improve the training process of the learning algorithms. In this paper, we try to extract the RGB proportion and utilize it in the weight initialization process. We conduct several experiments on different datasets to evaluate the effectiveness of our proposal, and it is proven to be effective on small datasets. In addition, as for the access to the RGB influence proportion, we also provide an expedient approach to get the early proportion for the following usage. We assume that the proposed method can be used for IoT sensors to securely analyze complex data in the future.As the Internet of Things (IoT) is predicted to deal with different problems based on big data, its applications have become increasingly dependent on visual data and deep learning technology, and it is a big challenge to find a suitable method for IoT systems to analyze image data. Traditional deep learning methods have never explicitly taken the color differences of data into account, but from the experience of human vision, colors play differently significant roles in recognizing things. This paper proposes a weight initialization method for deep learning in image recognition problems based on RGB influence proportion, aiming to improve the training process of the learning algorithms. In this paper, we try to extract the RGB proportion and utilize it in the weight initialization process. We conduct several experiments on different datasets to evaluate the effectiveness of our proposal, and it is proven to be effective on small datasets. In addition, as for the access to the RGB influence proportion, we also provide an expedient approach to get the early proportion for the following usage. We assume that the proposed method can be used for IoT sensors to securely analyze complex data in the future.
Author Yi, Yugen
Zhou, Xinyu
Deng, Zile
Cao, Yuanlong
You, Ilsun
Jiang, Yirui
AuthorAffiliation 3 Department of Information Security Engineering, Soonchunhyang University, Asan 31538, Korea
1 School of Software, Jiangxi Normal University, Nanchang 330022, China; chitoseyono@gmail.com (Z.D.); ylcao@jxnu.edu.cn (Y.C.); yg510@jxnu.edu.cn (Y.Y.); yiruijiang512@gmail.com (Y.J.)
2 School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China; xyzhou@jxnu.edu.cn
AuthorAffiliation_xml – name: 2 School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China; xyzhou@jxnu.edu.cn
– name: 3 Department of Information Security Engineering, Soonchunhyang University, Asan 31538, Korea
– name: 1 School of Software, Jiangxi Normal University, Nanchang 330022, China; chitoseyono@gmail.com (Z.D.); ylcao@jxnu.edu.cn (Y.C.); yg510@jxnu.edu.cn (Y.Y.); yiruijiang512@gmail.com (Y.J.)
Author_xml – sequence: 1
  givenname: Zile
  surname: Deng
  fullname: Deng, Zile
– sequence: 2
  givenname: Yuanlong
  orcidid: 0000-0002-6557-6559
  surname: Cao
  fullname: Cao, Yuanlong
– sequence: 3
  givenname: Xinyu
  surname: Zhou
  fullname: Zhou, Xinyu
– sequence: 4
  givenname: Yugen
  orcidid: 0000-0001-9828-0319
  surname: Yi
  fullname: Yi, Yugen
– sequence: 5
  givenname: Yirui
  surname: Jiang
  fullname: Jiang, Yirui
– sequence: 6
  givenname: Ilsun
  orcidid: 0000-0002-0604-3445
  surname: You
  fullname: You, Ilsun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32443591$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEUhUeoiP7AghdAXsJiqD22Z2wWSG3UlkilRSWIpeXxXE9cTexgT0DtK_DSOEmJWsTKlu93zrnyvYfFng8eiuI1we8plfg4VZjgStT1s-KAsIqVoqrw3qP7fnGY0i3GFaVUvCj2acUY5ZIcFL9n4ZeOHTqz1hkHfkTThe4B3YAJvXejCx45j76CTyGWpzpBh6Zh9gGdoO_g-nnm15Qe3L3ewNfL0S3cvfM9-gzjPHTIhogmV1doK87IzcVpVtlhBd4A-hLDMsS19mXx3OohwauH86j4dn42m3wqL68vppOTy9IwRsaSt23bUSEB2wYEb6StuQZpqKS1lpS0BjhljeAEQ2e6FnMpgHEKAkBqi-lRMd36dkHfqmV0Cx3vVNBObR5C7JXODZkBlJAUGKmFlS2wRnPdyJa2nFtqjCF67fVx67VctYscl38w6uGJ6dOKd3PVh5-qqYSoCM8Gbx8MYvixgjSqhUsGhkF7CKukKoZrijklLKNvHmftQv5OMwPvtoCJIaUIdocQrNabonabktnjf1jjxs0Ic5tu-I_iD8tpwJU
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124344
crossref_primary_10_36548_jismac_2021_3_008
crossref_primary_10_1016_j_bbe_2022_05_008
crossref_primary_10_3390_s20164608
crossref_primary_10_3389_fnbot_2022_1095717
Cites_doi 10.1016/j.ins.2017.08.035
10.1109/ICRA.2012.6225316
10.1109/MNET.2018.1800187
10.1016/j.ins.2018.06.002
10.1109/ICCI-CC.2015.7259377
10.14778/2904121.2904125
10.1109/CVPR.2014.81
10.1109/JIOT.2019.2958097
10.3390/s17071631
10.1088/1742-6596/978/1/012047
10.1109/ICCV.2015.123
10.1109/COMST.2018.2844341
10.3390/s18061926
10.1038/s41598-020-61171-3
10.1109/ISCAS.2010.5537907
10.3390/s120100573
10.1109/ICASSP.2013.6638947
10.1080/17517575.2020.1730445
10.1109/ACCESS.2018.2818790
10.1109/ACCESS.2015.2437951
10.1109/TCCN.2017.2758370
10.1109/ACCESS.2019.2962247
10.1109/TIT.1967.1053964
10.1186/1687-5281-2013-52
10.1162/089976603321192103
10.1109/TII.2019.2950109
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s20102866
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_893e4168f9be47a5a79b3b55f3ccc1a0
PMC7288215
32443591
10_3390_s20102866
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61962026
– fundername: Soonchunhyang University
  grantid: The Soonchunhyang University Research Fund
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-5bbbd389e0f7e8579f65ae9c3936a931bce53478510edcdb0598e453e8ee9af03
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:23:11 EDT 2025
Thu Aug 21 18:21:32 EDT 2025
Fri Jul 11 02:45:26 EDT 2025
Mon Jul 21 05:47:49 EDT 2025
Tue Jul 01 00:42:31 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords convolution neural network (CNN)
IoT application
image recognition
k-nearest neighbor (k-NN)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-5bbbd389e0f7e8579f65ae9c3936a931bce53478510edcdb0598e453e8ee9af03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors contributed equally to this work and share the first authorship.
ORCID 0000-0002-0604-3445
0000-0001-9828-0319
0000-0002-6557-6559
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20102866
PMID 32443591
PQID 2406305314
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_893e4168f9be47a5a79b3b55f3ccc1a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7288215
proquest_miscellaneous_2406305314
pubmed_primary_32443591
crossref_primary_10_3390_s20102866
crossref_citationtrail_10_3390_s20102866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200518
PublicationDateYYYYMMDD 2020-05-18
PublicationDate_xml – month: 5
  year: 2020
  text: 20200518
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Song (ref_9) 2019; 479
Song (ref_12) 2020; 16
Cover (ref_36) 1967; 13
Schwedhelm (ref_29) 2020; 10
ref_14
ref_34
ref_11
Xavier (ref_26) 2010; 9
ref_33
ref_32
Hahnloser (ref_38) 2013; 15
ref_31
ref_30
Lee (ref_8) 2012; 12
Ai (ref_13) 2018; 6
ref_19
ref_18
ref_17
ref_16
Syaliman (ref_35) 2018; 978
ref_37
Yu (ref_4) 2013; 1
Mohammadi (ref_15) 2018; 20
Islam (ref_1) 2015; 3
Chena (ref_6) 2017; 432
ref_25
ref_24
ref_23
ref_22
ref_43
ref_20
ref_42
Song (ref_7) 2019; 33
ref_41
ref_40
Ai (ref_10) 2020; 8
Srivastava (ref_39) 2014; 15
ref_3
ref_2
ref_28
ref_27
Hoydis (ref_21) 2017; 3
ref_5
References_xml – volume: 432
  start-page: 559
  year: 2017
  ident: ref_6
  article-title: Multi-task learning for dangerous object detection in autonomous driving
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.035
– ident: ref_28
– ident: ref_31
  doi: 10.1109/ICRA.2012.6225316
– volume: 33
  start-page: 51
  year: 2019
  ident: ref_7
  article-title: Modeling Space-Terrestrial Integrated Networks with Smart Collaborative Theory
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800187
– volume: 479
  start-page: 593
  year: 2019
  ident: ref_9
  article-title: Smart Collaborative Distribution for Privacy Enhancement in Moving Target Defense
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.002
– ident: ref_19
  doi: 10.1109/ICCI-CC.2015.7259377
– ident: ref_32
– ident: ref_24
– ident: ref_34
  doi: 10.14778/2904121.2904125
– ident: ref_11
  doi: 10.1109/CVPR.2014.81
– ident: ref_2
  doi: 10.1109/JIOT.2019.2958097
– ident: ref_5
  doi: 10.3390/s17071631
– ident: ref_16
– ident: ref_40
– ident: ref_37
– ident: ref_42
– ident: ref_18
– volume: 978
  start-page: 012047
  year: 2018
  ident: ref_35
  article-title: Improving the accuracy of k-nearest neighbor using local mean based and distance weight
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/978/1/012047
– ident: ref_23
– ident: ref_27
  doi: 10.1109/ICCV.2015.123
– volume: 20
  start-page: 2923
  year: 2018
  ident: ref_15
  article-title: Deep Learning for IoT Big Data and Streaming Analytics: A Survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2018.2844341
– ident: ref_14
  doi: 10.3390/s18061926
– volume: 10
  start-page: 4216
  year: 2020
  ident: ref_29
  article-title: The lateral prefrontal cortex of primates encodes stimulus colors and their behavioral relevance during a match-to-sample task
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61171-3
– ident: ref_25
– ident: ref_30
  doi: 10.1109/ISCAS.2010.5537907
– volume: 12
  start-page: 573
  year: 2012
  ident: ref_8
  article-title: Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications
  publication-title: Sensors
  doi: 10.3390/s120100573
– ident: ref_20
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref_33
– ident: ref_3
  doi: 10.1080/17517575.2020.1730445
– volume: 6
  start-page: 28668
  year: 2018
  ident: ref_13
  article-title: A Smart Collaborative Charging Algorithm for Mobile Power Distribution in 5G Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818790
– volume: 3
  start-page: 678
  year: 2015
  ident: ref_1
  article-title: The internet of things for health care: A comprehensive survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2437951
– volume: 3
  start-page: 563
  year: 2017
  ident: ref_21
  article-title: An Introduction to Deep Learning for the Physical Layer
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2017.2758370
– ident: ref_41
– volume: 8
  start-page: 8101
  year: 2020
  ident: ref_10
  article-title: A Smart Collaborative Authentication Framework for Multi-Dimensional Fine-Grained Control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962247
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_36
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: ref_17
– ident: ref_43
– volume: 1
  start-page: 52
  year: 2013
  ident: ref_4
  article-title: Automated identification of animal species in camera trap images
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2013-52
– ident: ref_22
– volume: 15
  start-page: 621
  year: 2013
  ident: ref_38
  article-title: Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks
  publication-title: Neural Comput.
  doi: 10.1162/089976603321192103
– volume: 9
  start-page: 249
  year: 2010
  ident: ref_26
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J. Mach. Learn. Res. Proc. Track
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_39
  article-title: Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 1385
  year: 2020
  ident: ref_12
  article-title: Smart Collaborative Automation for Receive Buffer Control in Multipath Industrial Networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2950109
SSID ssj0023338
Score 2.3444972
Snippet As the Internet of Things (IoT) is predicted to deal with different problems based on big data, its applications have become increasingly dependent on visual...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2866
SubjectTerms convolution neural network (CNN)
image recognition
IoT application
k-nearest neighbor (k-NN)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYQJzhMG7AtDNADcdglahLHib0bRUCLRJlYq_UW2Y4tKkGCSrnwF_aneXbS0k5IXLgmz45lP_t9n-18j5BjHiHvkYjcEqVsmLIyC1XMZJiklsssETw2bh_yapD1RunlmI2XUn25O2GNPHDTcR2MpwZBA7dCmTSXTOZCUcWYpVrrWHq2jjFvTqZaqkWxBY2OEEVS33l0Z74J91KIr9HHi_S_hSz_vyC5FHHOP5NPLVSEk6aJX8iaqbbI5pKA4Db5N_S3XuHMC0FgNdC_xwUCbubXguoKJhX8Qa5aT8MuRqwS-vXwF5zAX78nCn1nJe_avzHhGleQ-8kzVg5XPrc0IKiF08EAmsJocnPRxVJtahP47bIsTF3ZHTI6Pxue9sI2vUKoEQPNQqaUKhGvmMjmhrNc2IxJIzQVNJOCxkobRtMcIVmEPVEqBGLcpIwaboyQNqJfyXpVV-Y7AcWiWFuM_DJSqTtszCKsgWpRIoBQVgTk57zbC91qj7sUGHcFchA3QsVihAJytDB9aAQ33jLqurFbGDiNbP8APadoPad4z3MCcjgf-QLnlDsokZWpnx4Lh3KoW53SgHxrPGHxKQSgiDBFHJB8xUdW2rL6pprcet3uPEE6E7Pdj2j8D7KROObvdGT5HlmfTZ_MPsKjmTrwM-EFsEcPxQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Toward Efficient Image Recognition in Sensor-Based IoT: A Weight Initialization Optimizing Method for CNN Based on RGB Influence Proportion
URI https://www.ncbi.nlm.nih.gov/pubmed/32443591
https://www.proquest.com/docview/2406305314
https://pubmed.ncbi.nlm.nih.gov/PMC7288215
https://doaj.org/article/893e4168f9be47a5a79b3b55f3ccc1a0
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ0LLAfFcwqMyiAOXQBLHsY2E0HbV7hapZVVa0VtkJw5U6ia7bVcC_gJ_mnFe2qByySEZTyKPx_7G43wD8EZ4GPcoRG6B1pkbsjRytc-UG4SZUFEghW_sPuR4Ep3Pw88LttiDpsZm3YGbnaGdrSc1X6_e_bz-9Qkd_qONODFkf7-xGd1ARNE-HOKCxG0Fh3HYJhMCip9TkQp1xY_gDsIJxAvS76xKJXn_LsT578HJWyvR8D7cqyEkOals_gD2TP4Q7t4iFnwEf2blaVgyKAkiUA0ZXeLEQabNcaEiJ8ucfMUYtli7fVzJUjIqZh_ICflW7pWSkZVSq_ovTfIFZ5bL5W9UTsZlzWmCYJecTiakaowi07M-tqpLnpALW31hbds-hvlwMDs9d-uyC26C2GjrMq11ijjGeBk3gnGZRUwZmVBJIyWprxPDaMgRqnnYE6lGgCZMyKgRxkiVefQJHORFbp4C0czzkwwRgfJ0aJOQkYcaaCJTBBY6kw68bbo9TmpOclsaYxVjbGKNFbfGcuB1K3pVEXHsEupb27UClju7vFGsv8e1K8aI0AzCUJFJbUKumOJSU81YRpMk8ZXnwKvG8jH6mk2gqNwUN5vYoh9qZ63QgeNqJLSvakaSA7wzRjrf0n2SL3-UfN48wDDHZ8_-q_M5HAU2zLekseIFHGzXN-YlYqGt7sE-X3C8iuFZDw77g8nFtFfuK_RKH_gLs_gMUA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Efficient+Image+Recognition+in+Sensor-Based+IoT%3A+A+Weight+Initialization+Optimizing+Method+for+CNN+Based+on+RGB+Influence+Proportion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Deng%2C+Zile&rft.au=Cao%2C+Yuanlong&rft.au=Zhou%2C+Xinyu&rft.au=Yi%2C+Yugen&rft.date=2020-05-18&rft.eissn=1424-8220&rft.volume=20&rft.issue=10&rft_id=info:doi/10.3390%2Fs20102866&rft_id=info%3Apmid%2F32443591&rft.externalDocID=32443591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon