Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans

Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...

Full description

Saved in:
Bibliographic Details
Published inEukaryotic Cell Vol. 13; no. 1; pp. 2 - 9
Main Authors Klis, Frans M., de Koster, Chris G., Brul, Stanley
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.01.2014
Subjects
Online AccessGet full text
ISSN1535-9778
1535-9786
1535-9786
DOI10.1128/EC.00250-13

Cover

Loading…
Abstract Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
AbstractList Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans . We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.
Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.
Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
Author Chris G. de Koster
Frans M. Klis
Stanley Brul
Author_xml – sequence: 1
  givenname: Frans M.
  surname: Klis
  fullname: Klis, Frans M.
  organization: Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
– sequence: 2
  givenname: Chris G.
  surname: de Koster
  fullname: de Koster, Chris G.
  organization: Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
– sequence: 3
  givenname: Stanley
  surname: Brul
  fullname: Brul, Stanley
  organization: Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24243791$$D View this record in MEDLINE/PubMed
BookMark eNqNkctrFTEUxoO02Ieu3MvgSpCpOZPJJNkIOlwfUBB84M6QmznpjWYmbTJT6X9vem9bqrhwk9f5nY8v5zsie1OckJAnQE8AGvly1Z9Q2nBaA3tADoEzXishu727s5AH5CjnH5QCV4I9JAdN27RMKDgk33sMofpmQqg_YTAzDtUbH6dlXGPKlZm2V8yzH0stV9FVn421G5PieGXLg8WElz57g1u4L4sfTGXC2lsz5Udk35mQ8fHNfky-vl196d_Xpx_ffehfn9a2bWGuuQSFztmBdpIiZ52Qgg6DBGRILQMlHHdWcCGpobxr1NqKjnVOOMf5ICk7Jq92uufLesTB4jQnE_R5Kr7TlY7G6z8rk9_os3ipmQKqOBSB5zcCKV4s5cN69NmW2ZgJ45I1tKqTivOu_R-UiqZpKS_o0_u27vzczr8AsANsijkndNr62cwlgeLSBw1UX2esV73eZqyBlZ4Xf_Xcyv6bfrajN_5s88sn1CaPGpef144LoEE37Dc9prLe
CitedBy_id crossref_primary_10_1002_ange_201506205
crossref_primary_10_1016_j_powtec_2017_11_017
crossref_primary_10_3390_mi15030342
crossref_primary_10_1155_2017_7610420
crossref_primary_10_3390_cells9051113
crossref_primary_10_3389_fmicb_2017_00980
crossref_primary_10_3390_jof4030093
crossref_primary_10_1021_acssynbio_3c00718
crossref_primary_10_1016_j_mec_2020_e00148
crossref_primary_10_1371_journal_pcbi_1005940
crossref_primary_10_3389_fcell_2016_00111
crossref_primary_10_3390_cells12151946
crossref_primary_10_1039_D2LC00896C
crossref_primary_10_1021_jacs_4c11554
crossref_primary_10_1038_nrmicro3480
crossref_primary_10_3390_ijms25052496
crossref_primary_10_1371_journal_pcbi_1007971
crossref_primary_10_3389_fcimb_2021_765942
crossref_primary_10_7554_eLife_11611
crossref_primary_10_1016_j_bbamem_2019_183032
crossref_primary_10_1021_acsabm_1c00754
crossref_primary_10_1099_mic_0_000091
crossref_primary_10_1016_j_mimet_2021_106327
crossref_primary_10_3390_nano8020091
crossref_primary_10_3390_ijms18061226
crossref_primary_10_1038_s41564_018_0191_x
crossref_primary_10_1016_j_jmb_2020_02_006
crossref_primary_10_1016_j_pestbp_2014_10_015
crossref_primary_10_1007_s00775_020_01796_x
crossref_primary_10_1039_C9MT00228F
crossref_primary_10_1016_j_enconman_2021_114359
crossref_primary_10_1371_journal_ppat_1004407
crossref_primary_10_1134_S0026893319060062
crossref_primary_10_1016_j_crfs_2023_100603
crossref_primary_10_1051_meca_2023028
crossref_primary_10_1080_21505594_2024_2313413
crossref_primary_10_1016_j_fbp_2017_05_003
crossref_primary_10_1155_2018_1898421
crossref_primary_10_3389_fcimb_2022_930585
crossref_primary_10_1016_j_tcsw_2020_100047
crossref_primary_10_2174_1871526518666180531101605
crossref_primary_10_3390_pharmaceutics15122707
crossref_primary_10_1007_s12010_018_2845_9
crossref_primary_10_1002_cnm_3710
crossref_primary_10_1080_08927014_2018_1440392
crossref_primary_10_1002_smll_201904154
crossref_primary_10_1016_j_molcel_2016_04_026
crossref_primary_10_3390_vaccines10010030
crossref_primary_10_1016_j_bioorg_2020_104070
crossref_primary_10_1093_nar_gkx974
crossref_primary_10_3389_fcimb_2019_00471
crossref_primary_10_3390_colloids7040066
crossref_primary_10_7554_eLife_20437
crossref_primary_10_1016_j_biomaterials_2022_121379
crossref_primary_10_3389_fimmu_2023_1333864
crossref_primary_10_1016_j_jbiotec_2016_08_002
crossref_primary_10_1021_acssynbio_1c00552
crossref_primary_10_1098_rsif_2019_0064
crossref_primary_10_1016_j_cels_2017_03_003
crossref_primary_10_1534_g3_116_032490
crossref_primary_10_1002_anie_201506205
crossref_primary_10_1007_s10295_015_1596_7
crossref_primary_10_1038_srep33537
crossref_primary_10_1016_j_mec_2019_e00101
crossref_primary_10_1128_EC_00142_15
crossref_primary_10_1371_journal_pcbi_1012491
crossref_primary_10_1186_s40694_018_0046_5
crossref_primary_10_1128_EC_00287_14
crossref_primary_10_1016_j_biotechadv_2019_02_008
crossref_primary_10_3389_fmicb_2019_03150
Cites_doi 10.1073/pnas.91.25.12228
10.1091/mbc.11.5.1727
10.1128/EC.00364-12
10.1007/s00249-010-0612-0
10.1099/mic.0.043851-0
10.1006/bbrc.1996.1539
10.1083/jcb.110.5.1833
10.1042/bj1050189
10.1016/0147-5975(83)90021-X
10.1099/mic.0.25940-0
10.1038/nature11865
10.1016/j.tim.2004.05.008
10.1128/IAI.00368-08
10.1002/pmic.201200228
10.1111/j.1567-1364.2009.00541.x
10.1002/yea.1465
10.1021/nn101598v
10.1073/pnas.0907732106
10.1002/yea.1443
10.1074/jbc.275.20.14882
10.1038/nrmicro3090
10.1016/S0953-7562(09)80634-5
10.1099/mic.0.2007/012617-0
10.1126/science.1070850
10.1099/00221287-77-2-417
10.1091/mbc.E10-08-0721
10.1002/yea.1775
10.1128/jb.131.2.564-571.1977
10.1128/EC.00284-08
10.1002/yea.320060605
10.1074/mcp.M400129-MCP200
10.1139/m84-030
10.1093/genetics/76.2.327
10.1099/00221287-72-2-243
10.1534/genetics.111.135731
10.1091/mbc.e05-08-0738
10.1016/j.ab.2004.09.022
10.1128/jb.158.2.701-704.1984
10.1038/ncb0107-7
10.1099/mic.0.028902-0
10.2307/3570795
10.1371/journal.ppat.1003050
10.1111/j.1462-5822.2012.01813.x
10.1128/EC.3.5.1076-1087.2004
10.1111/j.1365-2958.2007.05588.x
10.1099/mic.0.049395-0
10.1111/j.1567-1364.2007.00272.x
10.1371/journal.ppat.1003516
10.1099/00221287-94-1-180
10.1002/yea.1747
10.1099/mic.0.044206-0
10.1046/j.1365-2958.2000.01729.x
10.1002/yea.1349
10.1002/yea.320060606
10.1093/jmicro/52.2.133
10.1038/nature02046
10.1038/nprot.2006.457
10.1128/jb.118.2.534-540.1974
10.1002/yea.1781
10.1038/nature07341
10.1093/nar/gkp889
10.1128/MMBR.00032-07
10.1099/mic.0.065599-0
10.1128/jb.138.1.92-98.1979
10.1083/jcb.75.2.422
10.1016/0014-4827(58)90077-6
10.1002/yea.1801
10.1534/genetics.112.144485
10.1128/EC.05011-11
10.1111/1574-6968.12049
10.1128/jb.137.1.1-5.1979
10.1534/genetics.111.128264
10.1111/j.1462-5822.2008.01160.x
10.1128/EC.00278-12
10.1007/BF02826554
10.1016/S0378-1097(02)01181-3
10.1016/0304-4165(75)90141-5
10.1007/s12575-009-9008-x
10.1007/BF00508720
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
5PM
DOI 10.1128/EC.00250-13
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1535-9786
EndPage 9
ExternalDocumentID PMC3910951
24243791
10_1128_EC_00250_13
eukcell_13_1_2
Genre Journal Article
Review
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
AAFWJ
AAGFI
AAYXX
ACGFO
ADBBV
ADXHL
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
M7N
5PM
ID FETCH-LOGICAL-c441t-5819effcd0680e5367870dd81e3e0c3197f5fc75780a05629bc7636f7ff55d803
ISSN 1535-9778
1535-9786
IngestDate Thu Aug 21 18:20:35 EDT 2025
Fri Jul 11 09:37:09 EDT 2025
Fri Jul 11 11:36:21 EDT 2025
Thu Jan 02 22:12:24 EST 2025
Tue Jul 01 01:19:57 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Wed May 18 15:26:37 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-5819effcd0680e5367870dd81e3e0c3197f5fc75780a05629bc7636f7ff55d803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://ec.asm.org/content/eukcell/13/1/2.full.pdf
PMID 24243791
PQID 1490722405
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1496895564
crossref_citationtrail_10_1128_EC_00250_13
crossref_primary_10_1128_EC_00250_13
highwire_asm_eukcell_13_1_2
proquest_miscellaneous_1490722405
pubmed_primary_24243791
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910951
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140101
2014-01-00
2014-Jan
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 20140101
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Eukaryotic Cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Gow NA (e_1_3_1_29_2) 1982; 128
e_1_3_1_81_2
e_1_3_1_60_2
Herman MA (e_1_3_1_79_2) 1984; 130
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_68_2
e_1_3_1_87_2
e_1_3_1_24_2
Cope JE (e_1_3_1_61_2) 1980; 119
e_1_3_1_8_2
e_1_3_1_85_2
Morris GJ (e_1_3_1_15_2) 1986; 132
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_83_2
e_1_3_1_4_2
Soll DR (e_1_3_1_28_2) 1983; 129
e_1_3_1_6_2
e_1_3_1_26_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_49_2
e_1_3_1_70_2
e_1_3_1_91_2
Kocková-Kratochvílová A (e_1_3_1_55_2) 1990
e_1_3_1_32_2
e_1_3_1_78_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_74_2
e_1_3_1_11_2
e_1_3_1_53_2
e_1_3_1_72_2
e_1_3_1_17_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_19_2
e_1_3_1_38_2
Kocková-Kratochvílová A (e_1_3_1_90_2) 1990
De Nobel JG (e_1_3_1_62_2) 1989; 135
Munro CA (e_1_3_1_44_2) 2012
e_1_3_1_82_2
e_1_3_1_80_2
e_1_3_1_21_2
e_1_3_1_65_2
e_1_3_1_46_2
e_1_3_1_67_2
e_1_3_1_88_2
e_1_3_1_7_2
e_1_3_1_40_2
e_1_3_1_86_2
e_1_3_1_9_2
e_1_3_1_42_2
e_1_3_1_63_2
e_1_3_1_84_2
e_1_3_1_3_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_69_2
e_1_3_1_27_2
Kocková-Kratochvílová A (e_1_3_1_23_2) 1990
Sevilla MJ (e_1_3_1_20_2) 1986; 132
e_1_3_1_71_2
e_1_3_1_92_2
e_1_3_1_33_2
e_1_3_1_54_2
Gow NAR (e_1_3_1_30_2) 1982; 128
e_1_3_1_35_2
e_1_3_1_56_2
e_1_3_1_77_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_75_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_52_2
e_1_3_1_73_2
e_1_3_1_16_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_58_2
e_1_3_1_18_2
e_1_3_1_39_2
17617218 - FEMS Yeast Res. 2007 Sep;7(6):887-96
10672182 - Mol Microbiol. 2000 Feb;35(3):601-11
6370398 - Can J Microbiol. 1984 Feb;30(2):192-203
16498706 - Yeast. 2006 Feb;23(3):185-202
12868584 - J Electron Microsc (Tokyo). 2003;52(2):133-43
6373726 - J Bacteriol. 1984 May;158(2):701-4
20804167 - ACS Nano. 2010 Sep 28;4(9):5498-504
20641015 - Yeast. 2010 Aug;27(8):661-72
22964838 - Genetics. 2012 Sep;192(1):73-105
20705663 - Microbiology. 2010 Dec;156(Pt 12):3645-59
20602335 - Yeast. 2010 Aug;27(8):673-84
21622905 - Eukaryot Cell. 2011 Aug;10(8):1071-81
19495910 - Biol Proced Online. 2009 May 15;11:32-51
17315267 - Yeast. 2007 Apr;24(4):309-19
23135325 - Genetics. 2012 Nov;192(3):775-818
6751259 - Arch Microbiol. 1982 Aug;132(2):144-8
15620885 - Anal Biochem. 2005 Jan 15;336(2):202-12
400873 - J Cell Biol. 1977 Nov;75(2 Pt 1):422-35
18419773 - Cell Microbiol. 2008 Aug;10(8):1695-710
19854939 - Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3
6757384 - J Gen Microbiol. 1982 Sep;128(9):2195-8
23364695 - Nature. 2013 Feb 7;494(7435):55-9
13574174 - Exp Cell Res. 1958 Aug;15(1):214-21
6056621 - Biochem J. 1967 Oct;105(1):189-203
14600225 - Microbiology. 2003 Nov;149(Pt 11):3129-37
18820680 - Nature. 2008 Oct 30;455(7217):1251-4
22997008 - Proteomics. 2012 Nov;12(21):3164-79
10793147 - Mol Biol Cell. 2000 May;11(5):1727-37
1100119 - Biochim Biophys Acta. 1975 Sep 8;404(1):1-6
2186051 - J Cell Biol. 1990 May;110(5):1833-43
4584062 - J Gen Microbiol. 1973 Aug;77(2):417-26
21965291 - Mol Biol Cell. 2011 Nov;22(22):4435-46
18772287 - Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544
8878546 - Biochem Biophys Res Commun. 1996 Oct 14;227(2):519-23
20864472 - Microbiology. 2011 Jan;157(Pt 1):136-46
18644880 - Infect Immun. 2008 Oct;76(10):4509-17
368010 - J Bacteriol. 1979 Jan;137(1):1-5
15470236 - Eukaryot Cell. 2004 Oct;3(5):1076-87
23949603 - Nat Rev Microbiol. 2013 Sep;11(9):648-55
23397570 - Eukaryot Cell. 2013 Apr;12(4):470-81
22174182 - Genetics. 2011 Dec;189(4):1145-75
19624749 - FEMS Yeast Res. 2009 Oct;9(7):1013-28
3305781 - J Gen Microbiol. 1986 Nov;132(11):3083-8
20563574 - Eur Biophys J. 2010 Oct;39(11):1547-56
4597447 - J Bacteriol. 1974 May;118(2):534-40
6757383 - J Gen Microbiol. 1982 Sep;128(9):2187-94
16672383 - Mol Biol Cell. 2006 Jul;17(7):3267-80
21602216 - Microbiology. 2011 Aug;157(Pt 8):2297-307
23728625 - Microbiology. 2013 Aug;159(Pt 8):1673-82
15223059 - Trends Microbiol. 2004 Jul;12(7):317-24
20043286 - Yeast. 2010 Aug;27(8):489-93
17199125 - Nat Cell Biol. 2007 Jan;9(1):7-14
2080666 - Yeast. 1990 Nov-Dec;6(6):491-9
10809732 - J Biol Chem. 2000 May 19;275(20):14882-9
17406560 - Nat Protoc. 2006;1(6):2995-3000
7991610 - Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12228-32
18227255 - Microbiology. 2008 Feb;154(Pt 2):510-20
9438349 - Folia Microbiol (Praha). 1997;42(5):463-7
12089449 - Science. 2002 Jul 19;297(5580):395-400
2080665 - Yeast. 1990 Nov-Dec;6(6):483-90
22587014 - Cell Microbiol. 2012 Sep;14(9):1319-35
18806209 - Eukaryot Cell. 2008 Nov;7(11):1951-64
14562106 - Nature. 2003 Oct 16;425(6959):737-41
15385600 - Mol Cell Proteomics. 2004 Dec;3(12):1154-69
17302816 - Mol Microbiol. 2007 Mar;63(5):1399-413
17230583 - Yeast. 2007 Apr;24(4):267-78
4595645 - Genetics. 1974 Feb;76(2):327-38
19383685 - Microbiology. 2009 Jun;155(Pt 6):2004-20
24039570 - PLoS Pathog. 2013;9(9):e1003516
20018695 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21465-71
778330 - J Gen Microbiol. 1976 May;94(1):180-92
23300436 - PLoS Pathog. 2012 Dec;8(12):e1003050
23170918 - FEMS Microbiol Lett. 2013 Jan;338(1):10-7
12594017 - FEMS Microbiol Lett. 2003 Feb 14;219(1):17-21
20641021 - Yeast. 2010 Aug;27(8):647-60
23243062 - Eukaryot Cell. 2013 Feb;12(2):254-64
6997435 - J Gen Microbiol. 1980 Jul;119(1):253-5
6389759 - J Gen Microbiol. 1984 Sep;130(9):2219-28
3540191 - J Gen Microbiol. 1986 Jul;132(7):2023-34
407215 - J Bacteriol. 1977 Aug;131(2):564-71
374379 - J Bacteriol. 1979 Apr;138(1):92-8
6355393 - J Gen Microbiol. 1983 Sep;129(9):2809-24
13579200 - Radiat Res. 1958 Sep;9(3):312-26
4116719 - J Gen Microbiol. 1972 Sep;72(2):243-7
References_xml – volume: 130
  start-page: 2219
  year: 1984
  ident: e_1_3_1_79_2
  article-title: A comparison of volume growth during bud and mycelium formation in Candida albicans: a single cell analysis
  publication-title: J. Gen. Microbiol.
– start-page: 35
  volume-title: Yeasts and yeast-like organisms
  year: 1990
  ident: e_1_3_1_55_2
– ident: e_1_3_1_81_2
  doi: 10.1073/pnas.91.25.12228
– ident: e_1_3_1_80_2
  doi: 10.1091/mbc.11.5.1727
– ident: e_1_3_1_52_2
  doi: 10.1128/EC.00364-12
– ident: e_1_3_1_14_2
  doi: 10.1007/s00249-010-0612-0
– ident: e_1_3_1_76_2
  doi: 10.1099/mic.0.043851-0
– ident: e_1_3_1_16_2
  doi: 10.1006/bbrc.1996.1539
– ident: e_1_3_1_92_2
  doi: 10.1083/jcb.110.5.1833
– ident: e_1_3_1_8_2
  doi: 10.1042/bj1050189
– ident: e_1_3_1_26_2
  doi: 10.1016/0147-5975(83)90021-X
– volume: 128
  start-page: 2187
  year: 1982
  ident: e_1_3_1_30_2
  article-title: Growth kinetics and morphology of colonies of the filamentous form of Candida albicans
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_24_2
  doi: 10.1099/mic.0.25940-0
– ident: e_1_3_1_27_2
  doi: 10.1038/nature11865
– ident: e_1_3_1_25_2
  doi: 10.1016/j.tim.2004.05.008
– ident: e_1_3_1_31_2
  doi: 10.1128/IAI.00368-08
– ident: e_1_3_1_50_2
  doi: 10.1002/pmic.201200228
– ident: e_1_3_1_32_2
  doi: 10.1111/j.1567-1364.2009.00541.x
– ident: e_1_3_1_64_2
  doi: 10.1002/yea.1465
– ident: e_1_3_1_54_2
  doi: 10.1021/nn101598v
– ident: e_1_3_1_2_2
  doi: 10.1073/pnas.0907732106
– ident: e_1_3_1_88_2
  doi: 10.1002/yea.1443
– ident: e_1_3_1_57_2
  doi: 10.1074/jbc.275.20.14882
– ident: e_1_3_1_58_2
  doi: 10.1038/nrmicro3090
– ident: e_1_3_1_82_2
  doi: 10.1016/S0953-7562(09)80634-5
– volume: 132
  start-page: 2023
  year: 1986
  ident: e_1_3_1_15_2
  article-title: Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_46_2
  doi: 10.1099/mic.0.2007/012617-0
– ident: e_1_3_1_5_2
  doi: 10.1126/science.1070850
– ident: e_1_3_1_53_2
  doi: 10.1099/00221287-77-2-417
– ident: e_1_3_1_11_2
  doi: 10.1091/mbc.E10-08-0721
– ident: e_1_3_1_73_2
  doi: 10.1002/yea.1775
– ident: e_1_3_1_19_2
  doi: 10.1128/jb.131.2.564-571.1977
– ident: e_1_3_1_63_2
  doi: 10.1128/EC.00284-08
– ident: e_1_3_1_17_2
  doi: 10.1002/yea.320060605
– ident: e_1_3_1_69_2
  doi: 10.1074/mcp.M400129-MCP200
– ident: e_1_3_1_21_2
  doi: 10.1139/m84-030
– ident: e_1_3_1_6_2
  doi: 10.1093/genetics/76.2.327
– volume: 128
  start-page: 2195
  year: 1982
  ident: e_1_3_1_29_2
  article-title: Vacuolation, branch production and linear growth of germ tubes in Candida albicans
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_72_2
  doi: 10.1099/00221287-72-2-243
– start-page: 134
  volume-title: Yeasts and yeast-like organisms
  year: 1990
  ident: e_1_3_1_90_2
– ident: e_1_3_1_13_2
  doi: 10.1534/genetics.111.135731
– ident: e_1_3_1_67_2
  doi: 10.1091/mbc.e05-08-0738
– ident: e_1_3_1_87_2
  doi: 10.1016/j.ab.2004.09.022
– ident: e_1_3_1_89_2
  doi: 10.1128/jb.158.2.701-704.1984
– ident: e_1_3_1_85_2
  doi: 10.1038/ncb0107-7
– ident: e_1_3_1_36_2
  doi: 10.1099/mic.0.028902-0
– ident: e_1_3_1_4_2
  doi: 10.2307/3570795
– volume: 119
  start-page: 253
  year: 1980
  ident: e_1_3_1_61_2
  article-title: The porosity of the cell wall of Candida albicans
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_40_2
  doi: 10.1371/journal.ppat.1003050
– ident: e_1_3_1_18_2
  doi: 10.1111/j.1462-5822.2012.01813.x
– ident: e_1_3_1_83_2
  doi: 10.1128/EC.3.5.1076-1087.2004
– ident: e_1_3_1_84_2
  doi: 10.1111/j.1365-2958.2007.05588.x
– ident: e_1_3_1_51_2
  doi: 10.1099/mic.0.049395-0
– volume: 132
  start-page: 3083
  year: 1986
  ident: e_1_3_1_20_2
  article-title: Development of Candida albicans hyphae in different growth media—variations in growth rates, cell dimensions and timing of morphogenetic events
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_68_2
  doi: 10.1111/j.1567-1364.2007.00272.x
– ident: e_1_3_1_59_2
  doi: 10.1371/journal.ppat.1003516
– ident: e_1_3_1_91_2
  doi: 10.1099/00221287-94-1-180
– ident: e_1_3_1_34_2
  doi: 10.1002/yea.1747
– ident: e_1_3_1_45_2
  doi: 10.1099/mic.0.044206-0
– ident: e_1_3_1_43_2
  doi: 10.1046/j.1365-2958.2000.01729.x
– ident: e_1_3_1_39_2
  doi: 10.1002/yea.1349
– ident: e_1_3_1_12_2
  doi: 10.1002/yea.320060606
– start-page: 29
  volume-title: Yeasts and yeast-like organisms
  year: 1990
  ident: e_1_3_1_23_2
– start-page: 197
  volume-title: Candida and candidiasis
  year: 2012
  ident: e_1_3_1_44_2
– ident: e_1_3_1_37_2
  doi: 10.1093/jmicro/52.2.133
– ident: e_1_3_1_65_2
  doi: 10.1038/nature02046
– volume: 129
  start-page: 2809
  year: 1983
  ident: e_1_3_1_28_2
  article-title: Growth and the inducibility of mycelium formation in Candida albicans: a single-cell analysis using a perfusion chamber
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_41_2
  doi: 10.1038/nprot.2006.457
– ident: e_1_3_1_60_2
  doi: 10.1128/jb.118.2.534-540.1974
– ident: e_1_3_1_86_2
  doi: 10.1002/yea.1781
– ident: e_1_3_1_7_2
  doi: 10.1038/nature07341
– ident: e_1_3_1_3_2
  doi: 10.1093/nar/gkp889
– ident: e_1_3_1_35_2
  doi: 10.1128/MMBR.00032-07
– ident: e_1_3_1_48_2
  doi: 10.1099/mic.0.065599-0
– ident: e_1_3_1_10_2
  doi: 10.1128/jb.138.1.92-98.1979
– ident: e_1_3_1_22_2
  doi: 10.1083/jcb.75.2.422
– ident: e_1_3_1_78_2
  doi: 10.1016/0014-4827(58)90077-6
– ident: e_1_3_1_56_2
  doi: 10.1002/yea.1801
– ident: e_1_3_1_33_2
  doi: 10.1534/genetics.112.144485
– ident: e_1_3_1_47_2
  doi: 10.1128/EC.05011-11
– ident: e_1_3_1_74_2
  doi: 10.1111/1574-6968.12049
– ident: e_1_3_1_9_2
  doi: 10.1128/jb.137.1.1-5.1979
– ident: e_1_3_1_42_2
  doi: 10.1534/genetics.111.128264
– ident: e_1_3_1_77_2
  doi: 10.1111/j.1462-5822.2008.01160.x
– ident: e_1_3_1_49_2
  doi: 10.1128/EC.00278-12
– ident: e_1_3_1_75_2
  doi: 10.1007/BF02826554
– ident: e_1_3_1_38_2
  doi: 10.1016/S0378-1097(02)01181-3
– volume: 135
  start-page: 2017
  year: 1989
  ident: e_1_3_1_62_2
  article-title: Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_1_70_2
  doi: 10.1016/0304-4165(75)90141-5
– ident: e_1_3_1_66_2
  doi: 10.1007/s12575-009-9008-x
– ident: e_1_3_1_71_2
  doi: 10.1007/BF00508720
– reference: 17302816 - Mol Microbiol. 2007 Mar;63(5):1399-413
– reference: 10809732 - J Biol Chem. 2000 May 19;275(20):14882-9
– reference: 778330 - J Gen Microbiol. 1976 May;94(1):180-92
– reference: 20804167 - ACS Nano. 2010 Sep 28;4(9):5498-504
– reference: 6751259 - Arch Microbiol. 1982 Aug;132(2):144-8
– reference: 20641021 - Yeast. 2010 Aug;27(8):647-60
– reference: 21622905 - Eukaryot Cell. 2011 Aug;10(8):1071-81
– reference: 17199125 - Nat Cell Biol. 2007 Jan;9(1):7-14
– reference: 14562106 - Nature. 2003 Oct 16;425(6959):737-41
– reference: 13579200 - Radiat Res. 1958 Sep;9(3):312-26
– reference: 12594017 - FEMS Microbiol Lett. 2003 Feb 14;219(1):17-21
– reference: 6757384 - J Gen Microbiol. 1982 Sep;128(9):2195-8
– reference: 17406560 - Nat Protoc. 2006;1(6):2995-3000
– reference: 10793147 - Mol Biol Cell. 2000 May;11(5):1727-37
– reference: 17617218 - FEMS Yeast Res. 2007 Sep;7(6):887-96
– reference: 22964838 - Genetics. 2012 Sep;192(1):73-105
– reference: 19854939 - Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3
– reference: 6373726 - J Bacteriol. 1984 May;158(2):701-4
– reference: 16672383 - Mol Biol Cell. 2006 Jul;17(7):3267-80
– reference: 10672182 - Mol Microbiol. 2000 Feb;35(3):601-11
– reference: 18806209 - Eukaryot Cell. 2008 Nov;7(11):1951-64
– reference: 16498706 - Yeast. 2006 Feb;23(3):185-202
– reference: 23364695 - Nature. 2013 Feb 7;494(7435):55-9
– reference: 13574174 - Exp Cell Res. 1958 Aug;15(1):214-21
– reference: 6997435 - J Gen Microbiol. 1980 Jul;119(1):253-5
– reference: 15385600 - Mol Cell Proteomics. 2004 Dec;3(12):1154-69
– reference: 368010 - J Bacteriol. 1979 Jan;137(1):1-5
– reference: 4595645 - Genetics. 1974 Feb;76(2):327-38
– reference: 20018695 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21465-71
– reference: 2186051 - J Cell Biol. 1990 May;110(5):1833-43
– reference: 7991610 - Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12228-32
– reference: 14600225 - Microbiology. 2003 Nov;149(Pt 11):3129-37
– reference: 9438349 - Folia Microbiol (Praha). 1997;42(5):463-7
– reference: 20563574 - Eur Biophys J. 2010 Oct;39(11):1547-56
– reference: 18419773 - Cell Microbiol. 2008 Aug;10(8):1695-710
– reference: 20705663 - Microbiology. 2010 Dec;156(Pt 12):3645-59
– reference: 6355393 - J Gen Microbiol. 1983 Sep;129(9):2809-24
– reference: 24039570 - PLoS Pathog. 2013;9(9):e1003516
– reference: 23728625 - Microbiology. 2013 Aug;159(Pt 8):1673-82
– reference: 18227255 - Microbiology. 2008 Feb;154(Pt 2):510-20
– reference: 23243062 - Eukaryot Cell. 2013 Feb;12(2):254-64
– reference: 400873 - J Cell Biol. 1977 Nov;75(2 Pt 1):422-35
– reference: 19495910 - Biol Proced Online. 2009 May 15;11:32-51
– reference: 12089449 - Science. 2002 Jul 19;297(5580):395-400
– reference: 12868584 - J Electron Microsc (Tokyo). 2003;52(2):133-43
– reference: 15223059 - Trends Microbiol. 2004 Jul;12(7):317-24
– reference: 15620885 - Anal Biochem. 2005 Jan 15;336(2):202-12
– reference: 407215 - J Bacteriol. 1977 Aug;131(2):564-71
– reference: 6757383 - J Gen Microbiol. 1982 Sep;128(9):2187-94
– reference: 23300436 - PLoS Pathog. 2012 Dec;8(12):e1003050
– reference: 20864472 - Microbiology. 2011 Jan;157(Pt 1):136-46
– reference: 23135325 - Genetics. 2012 Nov;192(3):775-818
– reference: 374379 - J Bacteriol. 1979 Apr;138(1):92-8
– reference: 17315267 - Yeast. 2007 Apr;24(4):309-19
– reference: 23170918 - FEMS Microbiol Lett. 2013 Jan;338(1):10-7
– reference: 3305781 - J Gen Microbiol. 1986 Nov;132(11):3083-8
– reference: 8878546 - Biochem Biophys Res Commun. 1996 Oct 14;227(2):519-23
– reference: 6389759 - J Gen Microbiol. 1984 Sep;130(9):2219-28
– reference: 23397570 - Eukaryot Cell. 2013 Apr;12(4):470-81
– reference: 6370398 - Can J Microbiol. 1984 Feb;30(2):192-203
– reference: 4584062 - J Gen Microbiol. 1973 Aug;77(2):417-26
– reference: 21965291 - Mol Biol Cell. 2011 Nov;22(22):4435-46
– reference: 22997008 - Proteomics. 2012 Nov;12(21):3164-79
– reference: 18644880 - Infect Immun. 2008 Oct;76(10):4509-17
– reference: 2080666 - Yeast. 1990 Nov-Dec;6(6):491-9
– reference: 20043286 - Yeast. 2010 Aug;27(8):489-93
– reference: 18820680 - Nature. 2008 Oct 30;455(7217):1251-4
– reference: 2080665 - Yeast. 1990 Nov-Dec;6(6):483-90
– reference: 20602335 - Yeast. 2010 Aug;27(8):673-84
– reference: 19624749 - FEMS Yeast Res. 2009 Oct;9(7):1013-28
– reference: 3540191 - J Gen Microbiol. 1986 Jul;132(7):2023-34
– reference: 20641015 - Yeast. 2010 Aug;27(8):661-72
– reference: 4116719 - J Gen Microbiol. 1972 Sep;72(2):243-7
– reference: 18772287 - Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544
– reference: 23949603 - Nat Rev Microbiol. 2013 Sep;11(9):648-55
– reference: 22587014 - Cell Microbiol. 2012 Sep;14(9):1319-35
– reference: 17230583 - Yeast. 2007 Apr;24(4):267-78
– reference: 19383685 - Microbiology. 2009 Jun;155(Pt 6):2004-20
– reference: 22174182 - Genetics. 2011 Dec;189(4):1145-75
– reference: 1100119 - Biochim Biophys Acta. 1975 Sep 8;404(1):1-6
– reference: 21602216 - Microbiology. 2011 Aug;157(Pt 8):2297-307
– reference: 4597447 - J Bacteriol. 1974 May;118(2):534-40
– reference: 6056621 - Biochem J. 1967 Oct;105(1):189-203
– reference: 15470236 - Eukaryot Cell. 2004 Oct;3(5):1076-87
SSID ssj0015973
Score 2.389297
SecondaryResourceType review_article
Snippet Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Candida albicans
Candida albicans - cytology
Candida albicans - metabolism
Candida albicans - physiology
Cell Growth Processes
Cell Wall - chemistry
Cell Wall - metabolism
Fungal Proteins - metabolism
Minireview
Proteome - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Title Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans
URI http://ec.asm.org/content/13/1/2.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24243791
https://www.proquest.com/docview/1490722405
https://www.proquest.com/docview/1496895564
https://pubmed.ncbi.nlm.nih.gov/PMC3910951
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDdhgIK0J1BGEsdJ84iiThMbQ0itVPGA5Ti2Nq1N0Npq6v567hznCyI0eIlc23Ws3C-X39m-O0IOdCFzRZn28sgvvCjR1EsjFnoiVb7UKYMvOPoOfzmLj-fR5wVbNDncrXfJJj-UN6N-Jf8jVagDuaKX7D9Ith0UKqAM8oUrSBiut5Jxhgtv12K59IxLCpJJuJfJ8VGHXoafGEVjhYTSuKcIiW5W1WqHB7GkOeO7vhD1FkKGHi6FwBPLqBvXw0X7S3G1qzC6Ky71t2raZlM39LdbWC3Uh5OqSflhwhd0KbwATMv6eJkom01lu-oQRL1Vh0ZRMg8sUBvGeqSu0a70DxRZVTmuwEN0Sphmh4acefbfgzDZZ1_50fz0lM-mi9ldci8E-wA18sm3bvsIrCRaB8qtJ2QdM2Hwj72hh1SkCQ89Zmr8fmK2R0Fmj8hDazu4n2ogPCZ3VPmE3K-zie6g9L0ypafkBwLD7QPD7YDhgpjdPjDcSrsDYLgdMExnCwy3AcYzMj-azrJjzybS8CSw3Y3HgPYprWWBiVYUozFq6aKYBIrCGwlKONFMS8xs4AskxGku4bMT60RrxoqJT5-TvbIq1Uvial8oeLiJAsUd5UBmqJ-KIgqDuMhjlU8c8r55plzaKPOY7GTJjbUZTvg040YAPKAOOWg7_6yDq4x322-Ew8V6xdX2EqEOLTzgoUPeNfLioBqxRZSq2q7Bqk39BCkr-2ufeJIyFkcOeVHLuJ0Kek7RJA0ckgyk33bA0OzDlvLi3IRop8DCwXZ5dYu57ZMH3Qv2muxtrrbqDRDdTf7WgPoXctCrOw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+wall-related+bionumbers+and+bioestimates+of+Saccharomyces+cerevisiae+and+Candida+albicans&rft.jtitle=Eukaryotic+cell&rft.au=Klis%2C+Frans+M&rft.au=de+Koster%2C+Chris+G&rft.au=Brul%2C+Stanley&rft.date=2014-01-01&rft.issn=1535-9786&rft.eissn=1535-9786&rft.volume=13&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1128%2FEC.00250-13&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon