Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...
Saved in:
Published in | Eukaryotic Cell Vol. 13; no. 1; pp. 2 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1535-9778 1535-9786 1535-9786 |
DOI | 10.1128/EC.00250-13 |
Cover
Loading…
Abstract | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
EC
About
EC
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
EC
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
1535-9778
Online ISSN:
1535-9786
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
EC
.asm.org, visit:
EC
|
---|---|
AbstractList | Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast
Saccharomyces cerevisiae
and the polymorphic, pathogenic fungus
Candida albicans
. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of
in vivo
values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows
C. albicans
to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species. Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species. Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species. Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology. For an alternate route to EC .asm.org, visit: EC |
Author | Chris G. de Koster Frans M. Klis Stanley Brul |
Author_xml | – sequence: 1 givenname: Frans M. surname: Klis fullname: Klis, Frans M. organization: Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands – sequence: 2 givenname: Chris G. surname: de Koster fullname: de Koster, Chris G. organization: Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands – sequence: 3 givenname: Stanley surname: Brul fullname: Brul, Stanley organization: Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24243791$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctrFTEUxoO02Ieu3MvgSpCpOZPJJNkIOlwfUBB84M6QmznpjWYmbTJT6X9vem9bqrhwk9f5nY8v5zsie1OckJAnQE8AGvly1Z9Q2nBaA3tADoEzXishu727s5AH5CjnH5QCV4I9JAdN27RMKDgk33sMofpmQqg_YTAzDtUbH6dlXGPKlZm2V8yzH0stV9FVn421G5PieGXLg8WElz57g1u4L4sfTGXC2lsz5Udk35mQ8fHNfky-vl196d_Xpx_ffehfn9a2bWGuuQSFztmBdpIiZ52Qgg6DBGRILQMlHHdWcCGpobxr1NqKjnVOOMf5ICk7Jq92uufLesTB4jQnE_R5Kr7TlY7G6z8rk9_os3ipmQKqOBSB5zcCKV4s5cN69NmW2ZgJ45I1tKqTivOu_R-UiqZpKS_o0_u27vzczr8AsANsijkndNr62cwlgeLSBw1UX2esV73eZqyBlZ4Xf_Xcyv6bfrajN_5s88sn1CaPGpef144LoEE37Dc9prLe |
CitedBy_id | crossref_primary_10_1002_ange_201506205 crossref_primary_10_1016_j_powtec_2017_11_017 crossref_primary_10_3390_mi15030342 crossref_primary_10_1155_2017_7610420 crossref_primary_10_3390_cells9051113 crossref_primary_10_3389_fmicb_2017_00980 crossref_primary_10_3390_jof4030093 crossref_primary_10_1021_acssynbio_3c00718 crossref_primary_10_1016_j_mec_2020_e00148 crossref_primary_10_1371_journal_pcbi_1005940 crossref_primary_10_3389_fcell_2016_00111 crossref_primary_10_3390_cells12151946 crossref_primary_10_1039_D2LC00896C crossref_primary_10_1021_jacs_4c11554 crossref_primary_10_1038_nrmicro3480 crossref_primary_10_3390_ijms25052496 crossref_primary_10_1371_journal_pcbi_1007971 crossref_primary_10_3389_fcimb_2021_765942 crossref_primary_10_7554_eLife_11611 crossref_primary_10_1016_j_bbamem_2019_183032 crossref_primary_10_1021_acsabm_1c00754 crossref_primary_10_1099_mic_0_000091 crossref_primary_10_1016_j_mimet_2021_106327 crossref_primary_10_3390_nano8020091 crossref_primary_10_3390_ijms18061226 crossref_primary_10_1038_s41564_018_0191_x crossref_primary_10_1016_j_jmb_2020_02_006 crossref_primary_10_1016_j_pestbp_2014_10_015 crossref_primary_10_1007_s00775_020_01796_x crossref_primary_10_1039_C9MT00228F crossref_primary_10_1016_j_enconman_2021_114359 crossref_primary_10_1371_journal_ppat_1004407 crossref_primary_10_1134_S0026893319060062 crossref_primary_10_1016_j_crfs_2023_100603 crossref_primary_10_1051_meca_2023028 crossref_primary_10_1080_21505594_2024_2313413 crossref_primary_10_1016_j_fbp_2017_05_003 crossref_primary_10_1155_2018_1898421 crossref_primary_10_3389_fcimb_2022_930585 crossref_primary_10_1016_j_tcsw_2020_100047 crossref_primary_10_2174_1871526518666180531101605 crossref_primary_10_3390_pharmaceutics15122707 crossref_primary_10_1007_s12010_018_2845_9 crossref_primary_10_1002_cnm_3710 crossref_primary_10_1080_08927014_2018_1440392 crossref_primary_10_1002_smll_201904154 crossref_primary_10_1016_j_molcel_2016_04_026 crossref_primary_10_3390_vaccines10010030 crossref_primary_10_1016_j_bioorg_2020_104070 crossref_primary_10_1093_nar_gkx974 crossref_primary_10_3389_fcimb_2019_00471 crossref_primary_10_3390_colloids7040066 crossref_primary_10_7554_eLife_20437 crossref_primary_10_1016_j_biomaterials_2022_121379 crossref_primary_10_3389_fimmu_2023_1333864 crossref_primary_10_1016_j_jbiotec_2016_08_002 crossref_primary_10_1021_acssynbio_1c00552 crossref_primary_10_1098_rsif_2019_0064 crossref_primary_10_1016_j_cels_2017_03_003 crossref_primary_10_1534_g3_116_032490 crossref_primary_10_1002_anie_201506205 crossref_primary_10_1007_s10295_015_1596_7 crossref_primary_10_1038_srep33537 crossref_primary_10_1016_j_mec_2019_e00101 crossref_primary_10_1128_EC_00142_15 crossref_primary_10_1371_journal_pcbi_1012491 crossref_primary_10_1186_s40694_018_0046_5 crossref_primary_10_1128_EC_00287_14 crossref_primary_10_1016_j_biotechadv_2019_02_008 crossref_primary_10_3389_fmicb_2019_03150 |
Cites_doi | 10.1073/pnas.91.25.12228 10.1091/mbc.11.5.1727 10.1128/EC.00364-12 10.1007/s00249-010-0612-0 10.1099/mic.0.043851-0 10.1006/bbrc.1996.1539 10.1083/jcb.110.5.1833 10.1042/bj1050189 10.1016/0147-5975(83)90021-X 10.1099/mic.0.25940-0 10.1038/nature11865 10.1016/j.tim.2004.05.008 10.1128/IAI.00368-08 10.1002/pmic.201200228 10.1111/j.1567-1364.2009.00541.x 10.1002/yea.1465 10.1021/nn101598v 10.1073/pnas.0907732106 10.1002/yea.1443 10.1074/jbc.275.20.14882 10.1038/nrmicro3090 10.1016/S0953-7562(09)80634-5 10.1099/mic.0.2007/012617-0 10.1126/science.1070850 10.1099/00221287-77-2-417 10.1091/mbc.E10-08-0721 10.1002/yea.1775 10.1128/jb.131.2.564-571.1977 10.1128/EC.00284-08 10.1002/yea.320060605 10.1074/mcp.M400129-MCP200 10.1139/m84-030 10.1093/genetics/76.2.327 10.1099/00221287-72-2-243 10.1534/genetics.111.135731 10.1091/mbc.e05-08-0738 10.1016/j.ab.2004.09.022 10.1128/jb.158.2.701-704.1984 10.1038/ncb0107-7 10.1099/mic.0.028902-0 10.2307/3570795 10.1371/journal.ppat.1003050 10.1111/j.1462-5822.2012.01813.x 10.1128/EC.3.5.1076-1087.2004 10.1111/j.1365-2958.2007.05588.x 10.1099/mic.0.049395-0 10.1111/j.1567-1364.2007.00272.x 10.1371/journal.ppat.1003516 10.1099/00221287-94-1-180 10.1002/yea.1747 10.1099/mic.0.044206-0 10.1046/j.1365-2958.2000.01729.x 10.1002/yea.1349 10.1002/yea.320060606 10.1093/jmicro/52.2.133 10.1038/nature02046 10.1038/nprot.2006.457 10.1128/jb.118.2.534-540.1974 10.1002/yea.1781 10.1038/nature07341 10.1093/nar/gkp889 10.1128/MMBR.00032-07 10.1099/mic.0.065599-0 10.1128/jb.138.1.92-98.1979 10.1083/jcb.75.2.422 10.1016/0014-4827(58)90077-6 10.1002/yea.1801 10.1534/genetics.112.144485 10.1128/EC.05011-11 10.1111/1574-6968.12049 10.1128/jb.137.1.1-5.1979 10.1534/genetics.111.128264 10.1111/j.1462-5822.2008.01160.x 10.1128/EC.00278-12 10.1007/BF02826554 10.1016/S0378-1097(02)01181-3 10.1016/0304-4165(75)90141-5 10.1007/s12575-009-9008-x 10.1007/BF00508720 |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 M7N 5PM |
DOI | 10.1128/EC.00250-13 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1535-9786 |
EndPage | 9 |
ExternalDocumentID | PMC3910951 24243791 10_1128_EC_00250_13 eukcell_13_1_2 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS AAFWJ AAGFI AAYXX ACGFO ADBBV ADXHL AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ KQ8 O9- OK1 P2P RHI RNS RPM RSF TR2 W8F WHG WOQ CGR CUY CVF ECM EIF NPM RHF 7X8 M7N 5PM |
ID | FETCH-LOGICAL-c441t-5819effcd0680e5367870dd81e3e0c3197f5fc75780a05629bc7636f7ff55d803 |
ISSN | 1535-9778 1535-9786 |
IngestDate | Thu Aug 21 18:20:35 EDT 2025 Fri Jul 11 09:37:09 EDT 2025 Fri Jul 11 11:36:21 EDT 2025 Thu Jan 02 22:12:24 EST 2025 Tue Jul 01 01:19:57 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Wed May 18 15:26:37 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-5819effcd0680e5367870dd81e3e0c3197f5fc75780a05629bc7636f7ff55d803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://ec.asm.org/content/eukcell/13/1/2.full.pdf |
PMID | 24243791 |
PQID | 1490722405 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1496895564 crossref_citationtrail_10_1128_EC_00250_13 crossref_primary_10_1128_EC_00250_13 highwire_asm_eukcell_13_1_2 proquest_miscellaneous_1490722405 pubmed_primary_24243791 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910951 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140101 2014-01-00 2014-Jan |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 20140101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Eukaryotic Cell |
PublicationTitleAlternate | Eukaryot Cell |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Gow NA (e_1_3_1_29_2) 1982; 128 e_1_3_1_81_2 e_1_3_1_60_2 Herman MA (e_1_3_1_79_2) 1984; 130 e_1_3_1_43_2 e_1_3_1_66_2 e_1_3_1_89_2 e_1_3_1_22_2 e_1_3_1_45_2 e_1_3_1_68_2 e_1_3_1_87_2 e_1_3_1_24_2 Cope JE (e_1_3_1_61_2) 1980; 119 e_1_3_1_8_2 e_1_3_1_85_2 Morris GJ (e_1_3_1_15_2) 1986; 132 e_1_3_1_41_2 e_1_3_1_64_2 e_1_3_1_83_2 e_1_3_1_4_2 Soll DR (e_1_3_1_28_2) 1983; 129 e_1_3_1_6_2 e_1_3_1_26_2 e_1_3_1_47_2 e_1_3_1_2_2 e_1_3_1_49_2 e_1_3_1_70_2 e_1_3_1_91_2 Kocková-Kratochvílová A (e_1_3_1_55_2) 1990 e_1_3_1_32_2 e_1_3_1_78_2 e_1_3_1_34_2 e_1_3_1_57_2 e_1_3_1_76_2 e_1_3_1_13_2 e_1_3_1_51_2 e_1_3_1_74_2 e_1_3_1_11_2 e_1_3_1_53_2 e_1_3_1_72_2 e_1_3_1_17_2 e_1_3_1_36_2 e_1_3_1_59_2 e_1_3_1_19_2 e_1_3_1_38_2 Kocková-Kratochvílová A (e_1_3_1_90_2) 1990 De Nobel JG (e_1_3_1_62_2) 1989; 135 Munro CA (e_1_3_1_44_2) 2012 e_1_3_1_82_2 e_1_3_1_80_2 e_1_3_1_21_2 e_1_3_1_65_2 e_1_3_1_46_2 e_1_3_1_67_2 e_1_3_1_88_2 e_1_3_1_7_2 e_1_3_1_40_2 e_1_3_1_86_2 e_1_3_1_9_2 e_1_3_1_42_2 e_1_3_1_63_2 e_1_3_1_84_2 e_1_3_1_3_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_48_2 e_1_3_1_69_2 e_1_3_1_27_2 Kocková-Kratochvílová A (e_1_3_1_23_2) 1990 Sevilla MJ (e_1_3_1_20_2) 1986; 132 e_1_3_1_71_2 e_1_3_1_92_2 e_1_3_1_33_2 e_1_3_1_54_2 Gow NAR (e_1_3_1_30_2) 1982; 128 e_1_3_1_35_2 e_1_3_1_56_2 e_1_3_1_77_2 e_1_3_1_12_2 e_1_3_1_50_2 e_1_3_1_75_2 e_1_3_1_10_2 e_1_3_1_31_2 e_1_3_1_52_2 e_1_3_1_73_2 e_1_3_1_16_2 e_1_3_1_14_2 e_1_3_1_37_2 e_1_3_1_58_2 e_1_3_1_18_2 e_1_3_1_39_2 17617218 - FEMS Yeast Res. 2007 Sep;7(6):887-96 10672182 - Mol Microbiol. 2000 Feb;35(3):601-11 6370398 - Can J Microbiol. 1984 Feb;30(2):192-203 16498706 - Yeast. 2006 Feb;23(3):185-202 12868584 - J Electron Microsc (Tokyo). 2003;52(2):133-43 6373726 - J Bacteriol. 1984 May;158(2):701-4 20804167 - ACS Nano. 2010 Sep 28;4(9):5498-504 20641015 - Yeast. 2010 Aug;27(8):661-72 22964838 - Genetics. 2012 Sep;192(1):73-105 20705663 - Microbiology. 2010 Dec;156(Pt 12):3645-59 20602335 - Yeast. 2010 Aug;27(8):673-84 21622905 - Eukaryot Cell. 2011 Aug;10(8):1071-81 19495910 - Biol Proced Online. 2009 May 15;11:32-51 17315267 - Yeast. 2007 Apr;24(4):309-19 23135325 - Genetics. 2012 Nov;192(3):775-818 6751259 - Arch Microbiol. 1982 Aug;132(2):144-8 15620885 - Anal Biochem. 2005 Jan 15;336(2):202-12 400873 - J Cell Biol. 1977 Nov;75(2 Pt 1):422-35 18419773 - Cell Microbiol. 2008 Aug;10(8):1695-710 19854939 - Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3 6757384 - J Gen Microbiol. 1982 Sep;128(9):2195-8 23364695 - Nature. 2013 Feb 7;494(7435):55-9 13574174 - Exp Cell Res. 1958 Aug;15(1):214-21 6056621 - Biochem J. 1967 Oct;105(1):189-203 14600225 - Microbiology. 2003 Nov;149(Pt 11):3129-37 18820680 - Nature. 2008 Oct 30;455(7217):1251-4 22997008 - Proteomics. 2012 Nov;12(21):3164-79 10793147 - Mol Biol Cell. 2000 May;11(5):1727-37 1100119 - Biochim Biophys Acta. 1975 Sep 8;404(1):1-6 2186051 - J Cell Biol. 1990 May;110(5):1833-43 4584062 - J Gen Microbiol. 1973 Aug;77(2):417-26 21965291 - Mol Biol Cell. 2011 Nov;22(22):4435-46 18772287 - Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544 8878546 - Biochem Biophys Res Commun. 1996 Oct 14;227(2):519-23 20864472 - Microbiology. 2011 Jan;157(Pt 1):136-46 18644880 - Infect Immun. 2008 Oct;76(10):4509-17 368010 - J Bacteriol. 1979 Jan;137(1):1-5 15470236 - Eukaryot Cell. 2004 Oct;3(5):1076-87 23949603 - Nat Rev Microbiol. 2013 Sep;11(9):648-55 23397570 - Eukaryot Cell. 2013 Apr;12(4):470-81 22174182 - Genetics. 2011 Dec;189(4):1145-75 19624749 - FEMS Yeast Res. 2009 Oct;9(7):1013-28 3305781 - J Gen Microbiol. 1986 Nov;132(11):3083-8 20563574 - Eur Biophys J. 2010 Oct;39(11):1547-56 4597447 - J Bacteriol. 1974 May;118(2):534-40 6757383 - J Gen Microbiol. 1982 Sep;128(9):2187-94 16672383 - Mol Biol Cell. 2006 Jul;17(7):3267-80 21602216 - Microbiology. 2011 Aug;157(Pt 8):2297-307 23728625 - Microbiology. 2013 Aug;159(Pt 8):1673-82 15223059 - Trends Microbiol. 2004 Jul;12(7):317-24 20043286 - Yeast. 2010 Aug;27(8):489-93 17199125 - Nat Cell Biol. 2007 Jan;9(1):7-14 2080666 - Yeast. 1990 Nov-Dec;6(6):491-9 10809732 - J Biol Chem. 2000 May 19;275(20):14882-9 17406560 - Nat Protoc. 2006;1(6):2995-3000 7991610 - Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12228-32 18227255 - Microbiology. 2008 Feb;154(Pt 2):510-20 9438349 - Folia Microbiol (Praha). 1997;42(5):463-7 12089449 - Science. 2002 Jul 19;297(5580):395-400 2080665 - Yeast. 1990 Nov-Dec;6(6):483-90 22587014 - Cell Microbiol. 2012 Sep;14(9):1319-35 18806209 - Eukaryot Cell. 2008 Nov;7(11):1951-64 14562106 - Nature. 2003 Oct 16;425(6959):737-41 15385600 - Mol Cell Proteomics. 2004 Dec;3(12):1154-69 17302816 - Mol Microbiol. 2007 Mar;63(5):1399-413 17230583 - Yeast. 2007 Apr;24(4):267-78 4595645 - Genetics. 1974 Feb;76(2):327-38 19383685 - Microbiology. 2009 Jun;155(Pt 6):2004-20 24039570 - PLoS Pathog. 2013;9(9):e1003516 20018695 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21465-71 778330 - J Gen Microbiol. 1976 May;94(1):180-92 23300436 - PLoS Pathog. 2012 Dec;8(12):e1003050 23170918 - FEMS Microbiol Lett. 2013 Jan;338(1):10-7 12594017 - FEMS Microbiol Lett. 2003 Feb 14;219(1):17-21 20641021 - Yeast. 2010 Aug;27(8):647-60 23243062 - Eukaryot Cell. 2013 Feb;12(2):254-64 6997435 - J Gen Microbiol. 1980 Jul;119(1):253-5 6389759 - J Gen Microbiol. 1984 Sep;130(9):2219-28 3540191 - J Gen Microbiol. 1986 Jul;132(7):2023-34 407215 - J Bacteriol. 1977 Aug;131(2):564-71 374379 - J Bacteriol. 1979 Apr;138(1):92-8 6355393 - J Gen Microbiol. 1983 Sep;129(9):2809-24 13579200 - Radiat Res. 1958 Sep;9(3):312-26 4116719 - J Gen Microbiol. 1972 Sep;72(2):243-7 |
References_xml | – volume: 130 start-page: 2219 year: 1984 ident: e_1_3_1_79_2 article-title: A comparison of volume growth during bud and mycelium formation in Candida albicans: a single cell analysis publication-title: J. Gen. Microbiol. – start-page: 35 volume-title: Yeasts and yeast-like organisms year: 1990 ident: e_1_3_1_55_2 – ident: e_1_3_1_81_2 doi: 10.1073/pnas.91.25.12228 – ident: e_1_3_1_80_2 doi: 10.1091/mbc.11.5.1727 – ident: e_1_3_1_52_2 doi: 10.1128/EC.00364-12 – ident: e_1_3_1_14_2 doi: 10.1007/s00249-010-0612-0 – ident: e_1_3_1_76_2 doi: 10.1099/mic.0.043851-0 – ident: e_1_3_1_16_2 doi: 10.1006/bbrc.1996.1539 – ident: e_1_3_1_92_2 doi: 10.1083/jcb.110.5.1833 – ident: e_1_3_1_8_2 doi: 10.1042/bj1050189 – ident: e_1_3_1_26_2 doi: 10.1016/0147-5975(83)90021-X – volume: 128 start-page: 2187 year: 1982 ident: e_1_3_1_30_2 article-title: Growth kinetics and morphology of colonies of the filamentous form of Candida albicans publication-title: J. Gen. Microbiol. – ident: e_1_3_1_24_2 doi: 10.1099/mic.0.25940-0 – ident: e_1_3_1_27_2 doi: 10.1038/nature11865 – ident: e_1_3_1_25_2 doi: 10.1016/j.tim.2004.05.008 – ident: e_1_3_1_31_2 doi: 10.1128/IAI.00368-08 – ident: e_1_3_1_50_2 doi: 10.1002/pmic.201200228 – ident: e_1_3_1_32_2 doi: 10.1111/j.1567-1364.2009.00541.x – ident: e_1_3_1_64_2 doi: 10.1002/yea.1465 – ident: e_1_3_1_54_2 doi: 10.1021/nn101598v – ident: e_1_3_1_2_2 doi: 10.1073/pnas.0907732106 – ident: e_1_3_1_88_2 doi: 10.1002/yea.1443 – ident: e_1_3_1_57_2 doi: 10.1074/jbc.275.20.14882 – ident: e_1_3_1_58_2 doi: 10.1038/nrmicro3090 – ident: e_1_3_1_82_2 doi: 10.1016/S0953-7562(09)80634-5 – volume: 132 start-page: 2023 year: 1986 ident: e_1_3_1_15_2 article-title: Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae publication-title: J. Gen. Microbiol. – ident: e_1_3_1_46_2 doi: 10.1099/mic.0.2007/012617-0 – ident: e_1_3_1_5_2 doi: 10.1126/science.1070850 – ident: e_1_3_1_53_2 doi: 10.1099/00221287-77-2-417 – ident: e_1_3_1_11_2 doi: 10.1091/mbc.E10-08-0721 – ident: e_1_3_1_73_2 doi: 10.1002/yea.1775 – ident: e_1_3_1_19_2 doi: 10.1128/jb.131.2.564-571.1977 – ident: e_1_3_1_63_2 doi: 10.1128/EC.00284-08 – ident: e_1_3_1_17_2 doi: 10.1002/yea.320060605 – ident: e_1_3_1_69_2 doi: 10.1074/mcp.M400129-MCP200 – ident: e_1_3_1_21_2 doi: 10.1139/m84-030 – ident: e_1_3_1_6_2 doi: 10.1093/genetics/76.2.327 – volume: 128 start-page: 2195 year: 1982 ident: e_1_3_1_29_2 article-title: Vacuolation, branch production and linear growth of germ tubes in Candida albicans publication-title: J. Gen. Microbiol. – ident: e_1_3_1_72_2 doi: 10.1099/00221287-72-2-243 – start-page: 134 volume-title: Yeasts and yeast-like organisms year: 1990 ident: e_1_3_1_90_2 – ident: e_1_3_1_13_2 doi: 10.1534/genetics.111.135731 – ident: e_1_3_1_67_2 doi: 10.1091/mbc.e05-08-0738 – ident: e_1_3_1_87_2 doi: 10.1016/j.ab.2004.09.022 – ident: e_1_3_1_89_2 doi: 10.1128/jb.158.2.701-704.1984 – ident: e_1_3_1_85_2 doi: 10.1038/ncb0107-7 – ident: e_1_3_1_36_2 doi: 10.1099/mic.0.028902-0 – ident: e_1_3_1_4_2 doi: 10.2307/3570795 – volume: 119 start-page: 253 year: 1980 ident: e_1_3_1_61_2 article-title: The porosity of the cell wall of Candida albicans publication-title: J. Gen. Microbiol. – ident: e_1_3_1_40_2 doi: 10.1371/journal.ppat.1003050 – ident: e_1_3_1_18_2 doi: 10.1111/j.1462-5822.2012.01813.x – ident: e_1_3_1_83_2 doi: 10.1128/EC.3.5.1076-1087.2004 – ident: e_1_3_1_84_2 doi: 10.1111/j.1365-2958.2007.05588.x – ident: e_1_3_1_51_2 doi: 10.1099/mic.0.049395-0 – volume: 132 start-page: 3083 year: 1986 ident: e_1_3_1_20_2 article-title: Development of Candida albicans hyphae in different growth media—variations in growth rates, cell dimensions and timing of morphogenetic events publication-title: J. Gen. Microbiol. – ident: e_1_3_1_68_2 doi: 10.1111/j.1567-1364.2007.00272.x – ident: e_1_3_1_59_2 doi: 10.1371/journal.ppat.1003516 – ident: e_1_3_1_91_2 doi: 10.1099/00221287-94-1-180 – ident: e_1_3_1_34_2 doi: 10.1002/yea.1747 – ident: e_1_3_1_45_2 doi: 10.1099/mic.0.044206-0 – ident: e_1_3_1_43_2 doi: 10.1046/j.1365-2958.2000.01729.x – ident: e_1_3_1_39_2 doi: 10.1002/yea.1349 – ident: e_1_3_1_12_2 doi: 10.1002/yea.320060606 – start-page: 29 volume-title: Yeasts and yeast-like organisms year: 1990 ident: e_1_3_1_23_2 – start-page: 197 volume-title: Candida and candidiasis year: 2012 ident: e_1_3_1_44_2 – ident: e_1_3_1_37_2 doi: 10.1093/jmicro/52.2.133 – ident: e_1_3_1_65_2 doi: 10.1038/nature02046 – volume: 129 start-page: 2809 year: 1983 ident: e_1_3_1_28_2 article-title: Growth and the inducibility of mycelium formation in Candida albicans: a single-cell analysis using a perfusion chamber publication-title: J. Gen. Microbiol. – ident: e_1_3_1_41_2 doi: 10.1038/nprot.2006.457 – ident: e_1_3_1_60_2 doi: 10.1128/jb.118.2.534-540.1974 – ident: e_1_3_1_86_2 doi: 10.1002/yea.1781 – ident: e_1_3_1_7_2 doi: 10.1038/nature07341 – ident: e_1_3_1_3_2 doi: 10.1093/nar/gkp889 – ident: e_1_3_1_35_2 doi: 10.1128/MMBR.00032-07 – ident: e_1_3_1_48_2 doi: 10.1099/mic.0.065599-0 – ident: e_1_3_1_10_2 doi: 10.1128/jb.138.1.92-98.1979 – ident: e_1_3_1_22_2 doi: 10.1083/jcb.75.2.422 – ident: e_1_3_1_78_2 doi: 10.1016/0014-4827(58)90077-6 – ident: e_1_3_1_56_2 doi: 10.1002/yea.1801 – ident: e_1_3_1_33_2 doi: 10.1534/genetics.112.144485 – ident: e_1_3_1_47_2 doi: 10.1128/EC.05011-11 – ident: e_1_3_1_74_2 doi: 10.1111/1574-6968.12049 – ident: e_1_3_1_9_2 doi: 10.1128/jb.137.1.1-5.1979 – ident: e_1_3_1_42_2 doi: 10.1534/genetics.111.128264 – ident: e_1_3_1_77_2 doi: 10.1111/j.1462-5822.2008.01160.x – ident: e_1_3_1_49_2 doi: 10.1128/EC.00278-12 – ident: e_1_3_1_75_2 doi: 10.1007/BF02826554 – ident: e_1_3_1_38_2 doi: 10.1016/S0378-1097(02)01181-3 – volume: 135 start-page: 2017 year: 1989 ident: e_1_3_1_62_2 article-title: Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA publication-title: J. Gen. Microbiol. – ident: e_1_3_1_70_2 doi: 10.1016/0304-4165(75)90141-5 – ident: e_1_3_1_66_2 doi: 10.1007/s12575-009-9008-x – ident: e_1_3_1_71_2 doi: 10.1007/BF00508720 – reference: 17302816 - Mol Microbiol. 2007 Mar;63(5):1399-413 – reference: 10809732 - J Biol Chem. 2000 May 19;275(20):14882-9 – reference: 778330 - J Gen Microbiol. 1976 May;94(1):180-92 – reference: 20804167 - ACS Nano. 2010 Sep 28;4(9):5498-504 – reference: 6751259 - Arch Microbiol. 1982 Aug;132(2):144-8 – reference: 20641021 - Yeast. 2010 Aug;27(8):647-60 – reference: 21622905 - Eukaryot Cell. 2011 Aug;10(8):1071-81 – reference: 17199125 - Nat Cell Biol. 2007 Jan;9(1):7-14 – reference: 14562106 - Nature. 2003 Oct 16;425(6959):737-41 – reference: 13579200 - Radiat Res. 1958 Sep;9(3):312-26 – reference: 12594017 - FEMS Microbiol Lett. 2003 Feb 14;219(1):17-21 – reference: 6757384 - J Gen Microbiol. 1982 Sep;128(9):2195-8 – reference: 17406560 - Nat Protoc. 2006;1(6):2995-3000 – reference: 10793147 - Mol Biol Cell. 2000 May;11(5):1727-37 – reference: 17617218 - FEMS Yeast Res. 2007 Sep;7(6):887-96 – reference: 22964838 - Genetics. 2012 Sep;192(1):73-105 – reference: 19854939 - Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3 – reference: 6373726 - J Bacteriol. 1984 May;158(2):701-4 – reference: 16672383 - Mol Biol Cell. 2006 Jul;17(7):3267-80 – reference: 10672182 - Mol Microbiol. 2000 Feb;35(3):601-11 – reference: 18806209 - Eukaryot Cell. 2008 Nov;7(11):1951-64 – reference: 16498706 - Yeast. 2006 Feb;23(3):185-202 – reference: 23364695 - Nature. 2013 Feb 7;494(7435):55-9 – reference: 13574174 - Exp Cell Res. 1958 Aug;15(1):214-21 – reference: 6997435 - J Gen Microbiol. 1980 Jul;119(1):253-5 – reference: 15385600 - Mol Cell Proteomics. 2004 Dec;3(12):1154-69 – reference: 368010 - J Bacteriol. 1979 Jan;137(1):1-5 – reference: 4595645 - Genetics. 1974 Feb;76(2):327-38 – reference: 20018695 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21465-71 – reference: 2186051 - J Cell Biol. 1990 May;110(5):1833-43 – reference: 7991610 - Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12228-32 – reference: 14600225 - Microbiology. 2003 Nov;149(Pt 11):3129-37 – reference: 9438349 - Folia Microbiol (Praha). 1997;42(5):463-7 – reference: 20563574 - Eur Biophys J. 2010 Oct;39(11):1547-56 – reference: 18419773 - Cell Microbiol. 2008 Aug;10(8):1695-710 – reference: 20705663 - Microbiology. 2010 Dec;156(Pt 12):3645-59 – reference: 6355393 - J Gen Microbiol. 1983 Sep;129(9):2809-24 – reference: 24039570 - PLoS Pathog. 2013;9(9):e1003516 – reference: 23728625 - Microbiology. 2013 Aug;159(Pt 8):1673-82 – reference: 18227255 - Microbiology. 2008 Feb;154(Pt 2):510-20 – reference: 23243062 - Eukaryot Cell. 2013 Feb;12(2):254-64 – reference: 400873 - J Cell Biol. 1977 Nov;75(2 Pt 1):422-35 – reference: 19495910 - Biol Proced Online. 2009 May 15;11:32-51 – reference: 12089449 - Science. 2002 Jul 19;297(5580):395-400 – reference: 12868584 - J Electron Microsc (Tokyo). 2003;52(2):133-43 – reference: 15223059 - Trends Microbiol. 2004 Jul;12(7):317-24 – reference: 15620885 - Anal Biochem. 2005 Jan 15;336(2):202-12 – reference: 407215 - J Bacteriol. 1977 Aug;131(2):564-71 – reference: 6757383 - J Gen Microbiol. 1982 Sep;128(9):2187-94 – reference: 23300436 - PLoS Pathog. 2012 Dec;8(12):e1003050 – reference: 20864472 - Microbiology. 2011 Jan;157(Pt 1):136-46 – reference: 23135325 - Genetics. 2012 Nov;192(3):775-818 – reference: 374379 - J Bacteriol. 1979 Apr;138(1):92-8 – reference: 17315267 - Yeast. 2007 Apr;24(4):309-19 – reference: 23170918 - FEMS Microbiol Lett. 2013 Jan;338(1):10-7 – reference: 3305781 - J Gen Microbiol. 1986 Nov;132(11):3083-8 – reference: 8878546 - Biochem Biophys Res Commun. 1996 Oct 14;227(2):519-23 – reference: 6389759 - J Gen Microbiol. 1984 Sep;130(9):2219-28 – reference: 23397570 - Eukaryot Cell. 2013 Apr;12(4):470-81 – reference: 6370398 - Can J Microbiol. 1984 Feb;30(2):192-203 – reference: 4584062 - J Gen Microbiol. 1973 Aug;77(2):417-26 – reference: 21965291 - Mol Biol Cell. 2011 Nov;22(22):4435-46 – reference: 22997008 - Proteomics. 2012 Nov;12(21):3164-79 – reference: 18644880 - Infect Immun. 2008 Oct;76(10):4509-17 – reference: 2080666 - Yeast. 1990 Nov-Dec;6(6):491-9 – reference: 20043286 - Yeast. 2010 Aug;27(8):489-93 – reference: 18820680 - Nature. 2008 Oct 30;455(7217):1251-4 – reference: 2080665 - Yeast. 1990 Nov-Dec;6(6):483-90 – reference: 20602335 - Yeast. 2010 Aug;27(8):673-84 – reference: 19624749 - FEMS Yeast Res. 2009 Oct;9(7):1013-28 – reference: 3540191 - J Gen Microbiol. 1986 Jul;132(7):2023-34 – reference: 20641015 - Yeast. 2010 Aug;27(8):661-72 – reference: 4116719 - J Gen Microbiol. 1972 Sep;72(2):243-7 – reference: 18772287 - Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544 – reference: 23949603 - Nat Rev Microbiol. 2013 Sep;11(9):648-55 – reference: 22587014 - Cell Microbiol. 2012 Sep;14(9):1319-35 – reference: 17230583 - Yeast. 2007 Apr;24(4):267-78 – reference: 19383685 - Microbiology. 2009 Jun;155(Pt 6):2004-20 – reference: 22174182 - Genetics. 2011 Dec;189(4):1145-75 – reference: 1100119 - Biochim Biophys Acta. 1975 Sep 8;404(1):1-6 – reference: 21602216 - Microbiology. 2011 Aug;157(Pt 8):2297-307 – reference: 4597447 - J Bacteriol. 1974 May;118(2):534-40 – reference: 6056621 - Biochem J. 1967 Oct;105(1):189-203 – reference: 15470236 - Eukaryot Cell. 2004 Oct;3(5):1076-87 |
SSID | ssj0015973 |
Score | 2.389297 |
SecondaryResourceType | review_article |
Snippet | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Candida albicans Candida albicans - cytology Candida albicans - metabolism Candida albicans - physiology Cell Growth Processes Cell Wall - chemistry Cell Wall - metabolism Fungal Proteins - metabolism Minireview Proteome - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - physiology |
Title | Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans |
URI | http://ec.asm.org/content/13/1/2.abstract https://www.ncbi.nlm.nih.gov/pubmed/24243791 https://www.proquest.com/docview/1490722405 https://www.proquest.com/docview/1496895564 https://pubmed.ncbi.nlm.nih.gov/PMC3910951 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDdhgIK0J1BGEsdJ84iiThMbQ0itVPGA5Ti2Nq1N0Npq6v567hznCyI0eIlc23Ws3C-X39m-O0IOdCFzRZn28sgvvCjR1EsjFnoiVb7UKYMvOPoOfzmLj-fR5wVbNDncrXfJJj-UN6N-Jf8jVagDuaKX7D9Ith0UKqAM8oUrSBiut5Jxhgtv12K59IxLCpJJuJfJ8VGHXoafGEVjhYTSuKcIiW5W1WqHB7GkOeO7vhD1FkKGHi6FwBPLqBvXw0X7S3G1qzC6Ky71t2raZlM39LdbWC3Uh5OqSflhwhd0KbwATMv6eJkom01lu-oQRL1Vh0ZRMg8sUBvGeqSu0a70DxRZVTmuwEN0Sphmh4acefbfgzDZZ1_50fz0lM-mi9ldci8E-wA18sm3bvsIrCRaB8qtJ2QdM2Hwj72hh1SkCQ89Zmr8fmK2R0Fmj8hDazu4n2ogPCZ3VPmE3K-zie6g9L0ypafkBwLD7QPD7YDhgpjdPjDcSrsDYLgdMExnCwy3AcYzMj-azrJjzybS8CSw3Y3HgPYprWWBiVYUozFq6aKYBIrCGwlKONFMS8xs4AskxGku4bMT60RrxoqJT5-TvbIq1Uvial8oeLiJAsUd5UBmqJ-KIgqDuMhjlU8c8r55plzaKPOY7GTJjbUZTvg040YAPKAOOWg7_6yDq4x322-Ew8V6xdX2EqEOLTzgoUPeNfLioBqxRZSq2q7Bqk39BCkr-2ufeJIyFkcOeVHLuJ0Kek7RJA0ckgyk33bA0OzDlvLi3IRop8DCwXZ5dYu57ZMH3Qv2muxtrrbqDRDdTf7WgPoXctCrOw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+wall-related+bionumbers+and+bioestimates+of+Saccharomyces+cerevisiae+and+Candida+albicans&rft.jtitle=Eukaryotic+cell&rft.au=Klis%2C+Frans+M&rft.au=de+Koster%2C+Chris+G&rft.au=Brul%2C+Stanley&rft.date=2014-01-01&rft.issn=1535-9786&rft.eissn=1535-9786&rft.volume=13&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1128%2FEC.00250-13&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon |