A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification
Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hypersp...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 5; p. 1751 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
03.03.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hyperspectral image classification are based on convolutional neural networks (CNN). Those methods require heavy GPU memory resources and run time. Recently, another deep learning model, the transformer, has been applied for image recognition, and the study result demonstrates the great potential of the transformer network for computer vision tasks. In this paper, we propose a model for hyperspectral image classification based on the transformer, which is widely used in natural language processing. Besides, we believe we are the first to combine the metric learning and the transformer model in hyperspectral image classification. Moreover, to improve the model classification performance when the available training samples are limited, we use the 1-D convolution and Mish activation function. The experimental results on three widely used hyperspectral image data sets demonstrate the proposed model’s advantages in accuracy, GPU memory cost, and running time. |
---|---|
AbstractList | Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hyperspectral image classification are based on convolutional neural networks (CNN). Those methods require heavy GPU memory resources and run time. Recently, another deep learning model, the transformer, has been applied for image recognition, and the study result demonstrates the great potential of the transformer network for computer vision tasks. In this paper, we propose a model for hyperspectral image classification based on the transformer, which is widely used in natural language processing. Besides, we believe we are the first to combine the metric learning and the transformer model in hyperspectral image classification. Moreover, to improve the model classification performance when the available training samples are limited, we use the 1-D convolution and Mish activation function. The experimental results on three widely used hyperspectral image data sets demonstrate the proposed model's advantages in accuracy, GPU memory cost, and running time. Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hyperspectral image classification are based on convolutional neural networks (CNN). Those methods require heavy GPU memory resources and run time. Recently, another deep learning model, the transformer, has been applied for image recognition, and the study result demonstrates the great potential of the transformer network for computer vision tasks. In this paper, we propose a model for hyperspectral image classification based on the transformer, which is widely used in natural language processing. Besides, we believe we are the first to combine the metric learning and the transformer model in hyperspectral image classification. Moreover, to improve the model classification performance when the available training samples are limited, we use the 1-D convolution and Mish activation function. The experimental results on three widely used hyperspectral image data sets demonstrate the proposed model's advantages in accuracy, GPU memory cost, and running time.Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hyperspectral image classification are based on convolutional neural networks (CNN). Those methods require heavy GPU memory resources and run time. Recently, another deep learning model, the transformer, has been applied for image recognition, and the study result demonstrates the great potential of the transformer network for computer vision tasks. In this paper, we propose a model for hyperspectral image classification based on the transformer, which is widely used in natural language processing. Besides, we believe we are the first to combine the metric learning and the transformer model in hyperspectral image classification. Moreover, to improve the model classification performance when the available training samples are limited, we use the 1-D convolution and Mish activation function. The experimental results on three widely used hyperspectral image data sets demonstrate the proposed model's advantages in accuracy, GPU memory cost, and running time. |
Author | Peng, Yuanxi Liu, Yu Yang, Wenjing Wen, Hao Hu, Xiang |
AuthorAffiliation | The State Key Laboratory of High-Performance Computing, College of Computer, National University of Defense Technology, Changsha 410000, China; huxiang@nudt.edu.cn (X.H.); wenjing.yang@nudt.edu.cn (W.Y.); hao.wen@nudt.edu.cn (H.W.); liuyu11@nudt.edu.cn (Y.L.) |
AuthorAffiliation_xml | – name: The State Key Laboratory of High-Performance Computing, College of Computer, National University of Defense Technology, Changsha 410000, China; huxiang@nudt.edu.cn (X.H.); wenjing.yang@nudt.edu.cn (W.Y.); hao.wen@nudt.edu.cn (H.W.); liuyu11@nudt.edu.cn (Y.L.) |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0002-1798-8508 surname: Hu fullname: Hu, Xiang – sequence: 2 givenname: Wenjing surname: Yang fullname: Yang, Wenjing – sequence: 3 givenname: Hao surname: Wen fullname: Wen, Hao – sequence: 4 givenname: Yu surname: Liu fullname: Liu, Yu – sequence: 5 givenname: Yuanxi surname: Peng fullname: Peng, Yuanxi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33802533$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1vFCEUwCemxn7owX_AcNTDWj4H5mKy2ardZI2XeiYM82aWZgZWYNr0v5ft1k1rvADh_fg94L3z6sQHD1X1nuDPjDX4MlGCBZGCvKrOCKd8oSjFJ8_Wp9V5SrcYU8aYelOdlhFTwdhZFZZo44Ztvof9iMjiCq2CvwvjnF3waDkPE_gMHbqJxqc-xAkiund5i35Ajs6iDZjonR9QiaHrhx3EtAOboxnRejIDoNVoUnK9s2ZvfFu97s2Y4N3TfFH9-vb1ZnW92Pz8vl4tNwvLOckLUTe9MhgEs12NrREUJNRCEmJI31gmhOW24bRrOqYkkU3Ty56BqXvFWAeMXVTrg7cL5lbvoptMfNDBOP24EeKgTczOjqCFNEJwYKa1tEht23CGVaswbrkiau_6cnDt5naCzpYPKc97IX0Z8W6rh3CnZVMTKUURfHwSxPB7hpT15JKFcTQewpw0FViJmmFOC_rhea5jkr8VK8CnA2BjSClCf0QI1vtu0MduKOzlP6x1-bEM5Zpu_M-JP_MbtrI |
CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3174135 crossref_primary_10_3390_diagnostics13193054 crossref_primary_10_1109_TGRS_2023_3244805 crossref_primary_10_1155_2022_7071485 crossref_primary_10_1155_2023_4305594 crossref_primary_10_1109_TGRS_2023_3277014 crossref_primary_10_3390_rs15102696 crossref_primary_10_1007_s10462_024_10877_1 crossref_primary_10_1080_01431161_2023_2297178 crossref_primary_10_3390_rs13163176 crossref_primary_10_1109_MGRS_2024_3489613 crossref_primary_10_1111_1750_3841_17512 crossref_primary_10_1109_TGRS_2023_3321840 crossref_primary_10_3390_drones7040240 crossref_primary_10_1109_TGRS_2024_3384403 crossref_primary_10_3788_LOP232211 crossref_primary_10_1155_2022_2974960 crossref_primary_10_1155_2023_9150482 crossref_primary_10_3390_rs15184592 crossref_primary_10_1016_j_neucom_2023_02_006 crossref_primary_10_1080_01431161_2022_2102952 |
Cites_doi | 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2017.2783902 10.1109/TGRS.2016.2584107 10.1109/TGRS.2018.2869004 10.1109/TGRS.2018.2818945 10.1109/ICIP.2017.8297014 10.1080/2150704X.2017.1331053 10.1109/TPAMI.2016.2577031 10.1109/LGRS.2017.2737823 10.1016/j.ecoinf.2014.07.004 10.1109/ICPR.2018.8546126 10.1109/IJCNN.2019.8852422 10.1109/LGRS.2019.2918719 10.1109/ICCV.2017.322 10.1109/CVPR.2019.00074 10.1109/ICASSP.2019.8682194 10.1007/s00371-021-02058-w 10.3390/rs8020099 10.1109/JSTARS.2016.2517204 10.1007/978-3-319-46478-7_31 10.1109/TGRS.2017.2686842 10.1109/IGARSS.2017.8126919 10.1109/JSTARS.2015.2388577 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s21051751 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_57a554e3abc24c9cb94308b800b48183 PMC7961775 33802533 10_3390_s21051751 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No.91648204 and 61803375 – fundername: National Key Research and Development Program of China grantid: No.2017YFB1301104 and 2017YFB1001900 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c441t-569f8a0e53cd60ca52e7e65711a1f9c355c4c942d9d3871799f7f3ea6f833de33 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:24 EDT 2025 Thu Aug 21 18:13:45 EDT 2025 Fri Jul 11 10:33:40 EDT 2025 Wed Feb 19 02:27:56 EST 2025 Tue Jul 01 03:56:06 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | transformer deep learning remote sensing metric learning hyperspectral image classification 1-D convolution |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-569f8a0e53cd60ca52e7e65711a1f9c355c4c942d9d3871799f7f3ea6f833de33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1798-8508 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21051751 |
PMID | 33802533 |
PQID | 2508563042 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_57a554e3abc24c9cb94308b800b48183 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7961775 proquest_miscellaneous_2508563042 pubmed_primary_33802533 crossref_primary_10_3390_s21051751 crossref_citationtrail_10_3390_s21051751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210303 |
PublicationDateYYYYMMDD | 2021-03-03 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210303 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Zhang (ref_14) 2017; 14 Chen (ref_16) 2016; 54 Ma (ref_13) 2016; 9 Chen (ref_12) 2014; 7 ref_11 ref_10 Roy (ref_17) 2019; 17 Sun (ref_3) 2017; 55 Awad (ref_4) 2014; 24 Guo (ref_19) 2018; 57 Cheng (ref_18) 2018; 56 Hamida (ref_26) 2018; 56 Vaswani (ref_20) 2017; 30 ref_24 ref_23 ref_22 ref_21 ref_1 ref_2 ref_27 Liu (ref_25) 2017; 8 ref_8 Chen (ref_15) 2015; 8 ref_5 ref_7 ref_6 Ren (ref_9) 2016; 39 |
References_xml | – volume: 7 start-page: 2094 year: 2014 ident: ref_12 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 56 start-page: 2811 year: 2018 ident: ref_18 article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2783902 – volume: 54 start-page: 6232 year: 2016 ident: ref_16 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2016.2584107 – volume: 57 start-page: 1755 year: 2018 ident: ref_19 article-title: Spectral-spatial feature extraction and classification by ann supervised with center loss in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2018.2869004 – ident: ref_5 – volume: 56 start-page: 4420 year: 2018 ident: ref_26 article-title: 3-d deep learning approach for remote sensing image classification publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2018.2818945 – ident: ref_27 doi: 10.1109/ICIP.2017.8297014 – volume: 8 start-page: 839 year: 2017 ident: ref_25 article-title: A semi-supervised convolutional neural network for hyperspectral image classification publication-title: Remote. Sens. Lett. doi: 10.1080/2150704X.2017.1331053 – volume: 39 start-page: 1137 year: 2016 ident: ref_9 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 14 start-page: 1928 year: 2017 ident: ref_14 article-title: Recursive autoencoders-based unsupervised feature learning for hyperspectral image classification publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2017.2737823 – volume: 24 start-page: 60 year: 2014 ident: ref_4 article-title: Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2014.07.004 – ident: ref_21 – ident: ref_8 doi: 10.1109/ICPR.2018.8546126 – ident: ref_11 doi: 10.1109/IJCNN.2019.8852422 – volume: 17 start-page: 277 year: 2019 ident: ref_17 article-title: Hybridsn: Exploring 3-d–2-d cnn feature hierarchy for hyperspectral image classification publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2019.2918719 – ident: ref_10 doi: 10.1109/ICCV.2017.322 – ident: ref_6 doi: 10.1109/CVPR.2019.00074 – ident: ref_23 doi: 10.1109/ICASSP.2019.8682194 – ident: ref_7 doi: 10.1007/s00371-021-02058-w – ident: ref_2 doi: 10.3390/rs8020099 – volume: 9 start-page: 4073 year: 2016 ident: ref_13 article-title: Spectral–spatial classification of hyperspectral image based on deep auto-encoder publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2016.2517204 – ident: ref_24 doi: 10.1007/978-3-319-46478-7_31 – volume: 55 start-page: 4032 year: 2017 ident: ref_3 article-title: A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2686842 – ident: ref_1 doi: 10.1109/IGARSS.2017.8126919 – volume: 30 start-page: 5998 year: 2017 ident: ref_20 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 2381 year: 2015 ident: ref_15 article-title: Spectral–spatial classification of hyperspectral data based on deep belief network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2015.2388577 – ident: ref_22 |
SSID | ssj0023338 |
Score | 2.4559104 |
Snippet | Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1751 |
SubjectTerms | 1-D convolution deep learning hyperspectral image classification metric learning remote sensing transformer |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIN-UlgxhYIhKfE9tjeakgYKJStyjxoyBBikoLf5-zk1YtqsTCGjvKyXfJfZ9z_o6QM8cAMmBpFDu_dSO5jqTkJiqMUwKy2CbCn3d-fMo6XX7fS3szrb58TVgtD1wvHBL2AjOehaLUjGulS68XLkvEOSXHZBN0PjHnTchUQ7UAmVetIwRI6i8-kdikmCiTuewTRPoXIcvfBZIzGed2naw1UJG2axM3yJKtNsnqjIDgFhm06YNn199hg5Mm0TW9GlRfTTjR9rgfNDcNfZ7gUzukfuuVPvpOWpo28qp9imO0g5y0PnqJ1tC7d_zU0NA005cTBQ9uk-7tzfNVJ2paKEQacc4oSjPlZBHbFLTJYl2kzAqbpSJJisQpjWBD46JyZpQBpE5CKScc2CJzEsBYgB2yXA0qu0doDM4YlRjBneE6htJpyzOjRcliZqVskfPJ0ua60Rf3bS7ecuQZ3gv51Astcjqd-lGLaiyadOn9M53gdbDDBYyOvImO_K_oaJGTiXdzfG_8z5CisoPxZ47QT3ptNM5aZLf29vRRGDwIBQHvFnNxMGfL_Ej1-hK0uYVCSCjS_f8w_oCsMF9B4yve4JAsj4Zje4QQaFQeh2j_AfklBX8 priority: 102 providerName: Directory of Open Access Journals |
Title | A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33802533 https://www.proquest.com/docview/2508563042 https://pubmed.ncbi.nlm.nih.gov/PMC7961775 https://doaj.org/article/57a554e3abc24c9cb94308b800b48183 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZKe4EDYu9QGBnEgUsg8RI7B4SmpcOAmAqhjjS3KPEyIJWEzgL03_c9JxM1aA5ccoht2fGz877Py_cIeeUZ5ylnMoo9Lt1oYSKthY0K6zPF09glCu87T8_SyUx8nsv5HtnG2Gw7cLWT2mE8qdny4s3fy6v3MOHfIeMEyv52BbRFghsEEnQADklhIIOp6DYToDUhoDXe6YrAH8aNwFC_aM8tBfX-XZDz35OTN1zR-B6522JIOmqMfp_sueoBuXNDWfAhqUf0C9LuP2HlkybRB3pSV7_bcUZHm0UQ47T0fAtc3ZLimiydYogtQ1vd1QWFNDoBstrcyYTW0E8_4R9EQzRNPGcUTPuIzMan5yeTqI2tEBkAQOtIppnXRewkNzaNTSGZUy6VKkmKxGcGUIgRJhPMZpYDp1JZ5pXnrki95tw6zh-T_aqu3CGhMffWZolVwlthYl5640RqjSpZzJzWA_J627W5aYXHMf7FRQ4EBK2Qd1YYkJdd1l-N2sauTMdony4DCmSHF_VykbfzLZeqAKDkeFEaBh9iSpSZ1yXA41IARuED8mJr3RwmFO6SFJWrN6scMKFG0TTBBuRJY-2uKhhIgBE5lFa9cdBrSz-l-vE9iHarDLCikk__o94jcpvhyRk86cafkf31cuOeA_RZl0NyS80VPPX445AcHJ-eff02DMsIwzDkrwHsMQdJ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+1-D+Convolution+Augmented+Transformer+with+Metric+Learning+for+Hyperspectral+Image+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Xiang&rft.au=Yang%2C+Wenjing&rft.au=Wen%2C+Hao&rft.au=Liu%2C+Yu&rft.date=2021-03-03&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fs21051751&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |