Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method

The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 11; p. 3156
Main Authors Nardelli, Mimma, Vanello, Nicola, Galperti, Guenda, Greco, Alberto, Scilingo, Enzo Pasquale
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 02.06.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.
AbstractList The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.
The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions ( p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.
The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions ( < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.
The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.
Author Scilingo, Enzo Pasquale
Nardelli, Mimma
Vanello, Nicola
Galperti, Guenda
Greco, Alberto
AuthorAffiliation 2 Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy; guendagalperti@gmail.com
1 Bioengineering and Robotics Research Centre E. Piaggio, University of Pisa, 56122 Pisa, Italy; m.nardelli@ing.unipi.it (M.N.); nicola.vanello@unipi.it (N.V.); alberto.greco@unipi.it (A.G.)
AuthorAffiliation_xml – name: 2 Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy; guendagalperti@gmail.com
– name: 1 Bioengineering and Robotics Research Centre E. Piaggio, University of Pisa, 56122 Pisa, Italy; m.nardelli@ing.unipi.it (M.N.); nicola.vanello@unipi.it (N.V.); alberto.greco@unipi.it (A.G.)
Author_xml – sequence: 1
  givenname: Mimma
  orcidid: 0000-0003-0453-7465
  surname: Nardelli
  fullname: Nardelli, Mimma
– sequence: 2
  givenname: Nicola
  orcidid: 0000-0002-2312-6699
  surname: Vanello
  fullname: Vanello, Nicola
– sequence: 3
  givenname: Guenda
  surname: Galperti
  fullname: Galperti, Guenda
– sequence: 4
  givenname: Alberto
  orcidid: 0000-0002-4822-5562
  surname: Greco
  fullname: Greco, Alberto
– sequence: 5
  givenname: Enzo Pasquale
  orcidid: 0000-0003-2588-4917
  surname: Scilingo
  fullname: Scilingo, Enzo Pasquale
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32498403$$D View this record in MEDLINE/PubMed
BookMark eNptksluFDEQhi2UiCxw4AWQj3DoxFtvHJCGUTYpgYBYjla1u3rGUU-7Y3si5cyL486EUYI4uVT111eL64DsDG5AQt5wdiRlzY6DYJxLnhcvyD5XQmWVEGznib1HDkK4YUxIKauXZE8KVVeKyX3yexYChmCHBY1LpF_X0Nt4T11HzxF8pN8gIv0J3kJjHyInIdpVcra0825Ff3kbIoWhpaeJgZ5eX599oDP62d1hT2fj6B2YJf0EIWW4gc69CyG7gnGcSl5hXLr2FdntoA_4-vE9JD9OT77Pz7PLL2cX89llZpTiMctZqQQyZUpedaYD01VK1CY3OTSNKg0YLFVtlESlkoldhQ1TEpo2L2tAJQ_JxYbbOrjRo09z-HvtwOoHh_MLnUa2pkfdNFCAaQve8kZh1YAwpmYtdGnRFeYmsT5uWOO6WWFrcIge-mfQ55HBLvXC3elSspqzqZl3jwDvbtcYol7ZYLDvYUC3DloozmRRlEWVpG-f1toW-fuLSfB-IzDTdj12WwlneroQvb2QpD3-R2tshGjd1Kbt_5PxB3BAvuI
CitedBy_id crossref_primary_10_1111_psyp_13898
crossref_primary_10_1049_syb2_12063
crossref_primary_10_1016_j_jss_2024_07_009
crossref_primary_10_2478_joeb_2021_0012
crossref_primary_10_3390_bioengineering9040157
crossref_primary_10_3390_s22155831
crossref_primary_10_3390_s22187047
crossref_primary_10_1038_s41398_024_02909_9
crossref_primary_10_3390_s23031505
crossref_primary_10_3390_children9020140
crossref_primary_10_1016_j_smhl_2024_100446
crossref_primary_10_3390_s21165544
crossref_primary_10_3390_s24020382
crossref_primary_10_1049_wss2_12103
crossref_primary_10_1109_JTEHM_2022_3175361
crossref_primary_10_1016_j_eswa_2024_123167
crossref_primary_10_1016_j_cmpb_2022_106724
crossref_primary_10_3390_s21113719
crossref_primary_10_1016_j_advengsoft_2022_103294
crossref_primary_10_3390_s23146403
crossref_primary_10_3390_diagnostics12020412
crossref_primary_10_1002_hsr2_70194
crossref_primary_10_1016_j_bspc_2024_107336
crossref_primary_10_1038_s41746_024_01144_2
crossref_primary_10_1145_3587256
crossref_primary_10_3390_ijerph192316066
Cites_doi 10.1016/j.ijcard.2012.03.119
10.1109/TBME.2017.2676243
10.3390/brainsci9070162
10.1109/TBME.2011.2144981
10.1038/tp.2011.23
10.1152/japplphysiol.01110.2002
10.3109/03091900903150998
10.1088/0967-3334/37/11/1934
10.1016/S0167-2789(98)00240-1
10.5220/0006594301820189
10.1016/j.chaos.2018.09.016
10.1007/978-3-540-68017-8_83
10.1016/j.neuroimage.2008.07.056
10.1109/TBME.2015.2441951
10.1016/j.bspc.2019.101666
10.1016/j.future.2016.12.009
10.1152/ajpregu.00499.2016
10.3390/bioengineering3040021
10.1037/1089-2680.10.3.229
10.1109/EMBC.2013.6609996
10.1109/JBHI.2017.2694999
10.1126/science.1227079
10.1093/biomet/93.3.491
10.1007/s10916-010-9505-0
10.1038/344734a0
10.1111/j.1542-474X.1996.tb00275.x
10.1037/h0077714
10.1109/JSEN.2019.2914166
10.1152/ajpheart.1991.261.4.H1231
10.1109/ICBME.2012.6519672
10.1038/jhh.2008.4
10.1088/0967-3334/28/3/R01
10.1109/IEMBS.2011.6091232
10.1145/3009960.3009962
10.3389/fphys.2019.00198
10.1007/BFb0091924
10.1016/j.cmpb.2013.07.024
10.1111/1469-8986.3920246
10.1088/1361-6579/aa670e
10.1016/j.physa.2019.121543
10.1109/T-AFFC.2011.30
10.1007/978-1-4614-8557-5_19
10.1016/j.medengphy.2010.09.020
10.3390/s18061894
10.1109/JBHI.2017.2714674
10.1038/s41598-017-18036-z
10.1080/03091900701781317
10.1109/ISBB.2015.7344944
10.1007/s11517-006-0119-0
10.1097/CCM.0b013e3181760d0c
10.1042/cs0970391
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s20113156
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bba6acd61d1b4e8ba2cc90daf0118e5c
PMC7309104
32498403
10_3390_s20113156
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c441t-50742e04c718fcfacf8429c5c5abb47cace749c43e44ce7ef8eb043abd579ae43
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:20:36 EDT 2025
Thu Aug 21 18:29:53 EDT 2025
Thu Jul 10 21:23:20 EDT 2025
Thu Apr 03 06:56:34 EDT 2025
Tue Jul 01 00:42:33 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords photoplethysmographic (PPG) signal
pulse rate variability (PRV)
phase space reconstruction
signal quality indexes
heart rate variability (HRV)
Shannon entropy
cross-mapping
kurtosis
wearable monitoring systems
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-50742e04c718fcfacf8429c5c5abb47cace749c43e44ce7ef8eb043abd579ae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4822-5562
0000-0003-0453-7465
0000-0002-2312-6699
0000-0003-2588-4917
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20113156
PMID 32498403
PQID 2410366768
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_bba6acd61d1b4e8ba2cc90daf0118e5c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7309104
proquest_miscellaneous_2410366768
pubmed_primary_32498403
crossref_primary_10_3390_s20113156
crossref_citationtrail_10_3390_s20113156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200602
PublicationDateYYYYMMDD 2020-06-02
PublicationDate_xml – month: 6
  year: 2020
  text: 20200602
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Vagedes (ref_21) 2013; 166
ref_57
ref_56
Iozzia (ref_23) 2016; 37
Constant (ref_24) 1999; 97
ref_51
Cooke (ref_11) 2008; 36
Charlton (ref_16) 2017; 38
ref_19
ref_18
Appelhans (ref_52) 2006; 10
ref_17
McKinley (ref_47) 2003; 95
ref_15
Lane (ref_3) 2009; 44
Selvaraj (ref_22) 2008; 32
Tarvainen (ref_38) 2014; 113
Kim (ref_41) 1999; 127
Valenza (ref_55) 2016; 374
Nardelli (ref_59) 2019; 530
ref_25
Sugihara (ref_32) 2012; 338
ref_20
ref_29
Benjamini (ref_43) 2006; 93
ref_28
ref_27
ref_26
Allen (ref_6) 2007; 28
Yoon (ref_36) 2017; 22
Lu (ref_44) 2009; 33
Fusaroli (ref_40) 2017; 73
Sviridova (ref_33) 2018; 116
Valenza (ref_53) 2011; 3
Saul (ref_49) 1991; 261
Sugihara (ref_31) 1990; 344
Acharya (ref_1) 2006; 44
Biswas (ref_58) 2019; 19
ref_30
Leistedt (ref_4) 2011; 1
ref_39
Nardelli (ref_5) 2017; 7
Orphanidou (ref_13) 2014; 19
Lang (ref_34) 1997; 1
Lydakis (ref_50) 2008; 22
Nardelli (ref_14) 2020; 56
Mukkamala (ref_37) 2015; 62
ref_42
Temko (ref_7) 2017; 64
Giardino (ref_46) 2002; 39
Dobson (ref_12) 2017; 312
Khandoker (ref_45) 2011; 33
Russell (ref_35) 1980; 39
ref_9
ref_8
Selvaraj (ref_10) 2011; 58
Nardelli (ref_54) 2017; 22
Malik (ref_2) 1996; 1
Maeda (ref_48) 2011; 35
References_xml – volume: 166
  start-page: 15
  year: 2013
  ident: ref_21
  article-title: How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2012.03.119
– volume: 64
  start-page: 2016
  year: 2017
  ident: ref_7
  article-title: Accurate heart rate monitoring during physical exercises using PPG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2676243
– ident: ref_51
  doi: 10.3390/brainsci9070162
– volume: 58
  start-page: 2272
  year: 2011
  ident: ref_10
  article-title: A novel approach using time–frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2144981
– ident: ref_26
– volume: 1
  start-page: e27
  year: 2011
  ident: ref_4
  article-title: Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2011.23
– volume: 95
  start-page: 1431
  year: 2003
  ident: ref_47
  article-title: Deriving heart period variability from blood pressure waveforms
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01110.2002
– ident: ref_42
– volume: 33
  start-page: 634
  year: 2009
  ident: ref_44
  article-title: A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091900903150998
– volume: 19
  start-page: 832
  year: 2014
  ident: ref_13
  article-title: Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 37
  start-page: 1934
  year: 2016
  ident: ref_23
  article-title: Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/11/1934
– volume: 127
  start-page: 48
  year: 1999
  ident: ref_41
  article-title: Nonlinear dynamics, delay times, and embedding windows
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00240-1
– ident: ref_15
  doi: 10.5220/0006594301820189
– volume: 116
  start-page: 157
  year: 2018
  ident: ref_33
  article-title: Photoplethysmogram at green light: Where does chaos arise from?
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.09.016
– ident: ref_25
  doi: 10.1007/978-3-540-68017-8_83
– ident: ref_27
– volume: 44
  start-page: 213
  year: 2009
  ident: ref_3
  article-title: Neural correlates of heart rate variability during emotion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.056
– volume: 62
  start-page: 1879
  year: 2015
  ident: ref_37
  article-title: Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2441951
– volume: 56
  start-page: 101666
  year: 2020
  ident: ref_14
  article-title: A tool for the real-time evaluation of ECG signal quality and activity: Application to submaximal treadmill test in horses
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101666
– volume: 73
  start-page: 52
  year: 2017
  ident: ref_40
  article-title: Causal inference from noisy time-series data—Testing the Convergent Cross-Mapping algorithm in the presence of noise and external influence
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.12.009
– volume: 312
  start-page: R575
  year: 2017
  ident: ref_12
  article-title: Sport-related concussion induces transient cardiovascular autonomic dysfunction
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00499.2016
– ident: ref_20
  doi: 10.3390/bioengineering3040021
– volume: 10
  start-page: 229
  year: 2006
  ident: ref_52
  article-title: Heart rate variability as an index of regulated emotional responding
  publication-title: Rev. Gen. Psychol.
  doi: 10.1037/1089-2680.10.3.229
– ident: ref_39
  doi: 10.1109/EMBC.2013.6609996
– volume: 22
  start-page: 741
  year: 2017
  ident: ref_54
  article-title: Reliability of lagged poincaré plot parameters in ultrashort heart rate variability series: Application on affective sounds
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2017.2694999
– volume: 338
  start-page: 496
  year: 2012
  ident: ref_32
  article-title: Detecting causality in complex ecosystems
  publication-title: Science
  doi: 10.1126/science.1227079
– ident: ref_28
– volume: 93
  start-page: 491
  year: 2006
  ident: ref_43
  article-title: Adaptive linear step-up procedures that control the false discovery rate
  publication-title: Biometrika
  doi: 10.1093/biomet/93.3.491
– volume: 35
  start-page: 969
  year: 2011
  ident: ref_48
  article-title: Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9505-0
– volume: 344
  start-page: 734
  year: 1990
  ident: ref_31
  article-title: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
  publication-title: Nature
  doi: 10.1038/344734a0
– volume: 1
  start-page: 151
  year: 1996
  ident: ref_2
  article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use: Task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology
  publication-title: Ann. Noninvasive Electrocardiol.
  doi: 10.1111/j.1542-474X.1996.tb00275.x
– volume: 39
  start-page: 1161
  year: 1980
  ident: ref_35
  article-title: A circumplex model of affect
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 19
  start-page: 6560
  year: 2019
  ident: ref_58
  article-title: Heart rate estimation from wrist-worn photoplethysmography: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2914166
– volume: 261
  start-page: H1231
  year: 1991
  ident: ref_49
  article-title: Transfer function analysis of the circulation: unique insights into cardiovascular regulation
  publication-title: Am. J. Physiol. Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.1991.261.4.H1231
– ident: ref_57
  doi: 10.1109/ICBME.2012.6519672
– volume: 22
  start-page: 320
  year: 2008
  ident: ref_50
  article-title: Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise
  publication-title: J. Hum. Hypertens.
  doi: 10.1038/jhh.2008.4
– volume: 28
  start-page: R1
  year: 2007
  ident: ref_6
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– ident: ref_19
  doi: 10.1109/IEMBS.2011.6091232
– ident: ref_8
  doi: 10.1145/3009960.3009962
– ident: ref_17
  doi: 10.3389/fphys.2019.00198
– ident: ref_30
  doi: 10.1007/BFb0091924
– volume: 113
  start-page: 210
  year: 2014
  ident: ref_38
  article-title: Kubios HRV–heart rate variability analysis software
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.07.024
– volume: 39
  start-page: 246
  year: 2002
  ident: ref_46
  article-title: Comparison of finger plethysmograph to ECG in the measurement of heart rate variability
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3920246
– volume: 38
  start-page: 669
  year: 2017
  ident: ref_16
  article-title: Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa670e
– ident: ref_29
– volume: 530
  start-page: 121543
  year: 2019
  ident: ref_59
  article-title: Multichannel Complexity Index (MCI) for a multi-organ physiological complexity assessment
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121543
– volume: 3
  start-page: 237
  year: 2011
  ident: ref_53
  article-title: The role of nonlinear dynamics in affective valence and arousal recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.30
– ident: ref_18
  doi: 10.1007/978-1-4614-8557-5_19
– volume: 33
  start-page: 204
  year: 2011
  ident: ref_45
  article-title: Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.09.020
– ident: ref_9
  doi: 10.3390/s18061894
– volume: 1
  start-page: 39
  year: 1997
  ident: ref_34
  article-title: International affective picture system (IAPS): Technical manual and affective ratings
  publication-title: NIMH Center Study Emot. Atten.
– volume: 22
  start-page: 1068
  year: 2017
  ident: ref_36
  article-title: Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time
  publication-title: IEEE J. Biomed Health Inf.
  doi: 10.1109/JBHI.2017.2714674
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_5
  article-title: Heartbeat complexity modulation in bipolar disorder during daytime and nighttime
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18036-z
– volume: 32
  start-page: 479
  year: 2008
  ident: ref_22
  article-title: Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900701781317
– ident: ref_56
  doi: 10.1109/ISBB.2015.7344944
– volume: 44
  start-page: 1031
  year: 2006
  ident: ref_1
  article-title: Heart rate variability: A review
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0119-0
– volume: 36
  start-page: 1892
  year: 2008
  ident: ref_11
  article-title: Autonomic compensation to simulated hemorrhage monitored with heart period variability
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0b013e3181760d0c
– volume: 97
  start-page: 391
  year: 1999
  ident: ref_24
  article-title: Pulse rate variability is not a surrogate for heart rate variability
  publication-title: Clin. Sci.
  doi: 10.1042/cs0970391
– volume: 374
  start-page: 20150176
  year: 2016
  ident: ref_55
  article-title: Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
SSID ssj0023338
Score 2.4475532
Snippet The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3156
SubjectTerms Adult
cross-mapping
Electrocardiography
Female
Fingers
Heart Rate
heart rate variability (HRV)
Humans
kurtosis
Male
photoplethysmographic (PPG) signal
Photoplethysmography
pulse rate variability (PRV)
Reproducibility of Results
Shannon entropy
Signal Processing, Computer-Assisted
Wrist
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQTnCYGLARxqYH4rBLtCx20ni3bVqpkDpNiEFvkX88AxJKpq1F6nn_-N6L06qdKnHhZiWO7MTP_r4vib8nxKegM11pW6ReZiFVFZrUBLbc19bntCYTIvB-5_FVObpRXybFZCXVF_8TFu2B44M7ttaUxtE1_sQqrKzJndOZN4G3TGLhePUlzFuIqV5qSVJe0UdIkqg_vmeYkyecpXoFfTqT_k3M8ukPkiuIM3wptnuqCGexizviGTavxIsVA8HX4iF-s6UyEJGDaIgxhzbAiCJ4Cl-JScJ3ksPRjXsOlzSjiaOiB95XAj94ioNpPAy713twff35FM7gqv2L1HLvNw7nBHUe2gYu-K7SsWFTh58w7rJPvxE3w8tvF6O0T6uQOuI-07RgOYyZcgRLwQXjQkWg5ApXGGvVwBmHA6WdkqgUFTFUaDMljfXFQBtUcldsNW2DbwUEX4XMhlIrV6rSo5aO9IrXRZXbUmOeiKPF465d7znOqS_-1KQ9eGTq5cgk4uOy6m002thU6ZzHbFmBvbG7AxQxdR8x9b8iJhEfFiNe01ziDySmwXZ2XxObIUAvSYElYi9GwLIpIp6axLBMxGAtNtb6sn6m-f2r8-umRZRImXr3Pzq_L57nrPj5PVD-XmxN72Z4QLRoag-7GfAIDTUQ_A
  priority: 102
  providerName: Directory of Open Access Journals
Title Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method
URI https://www.ncbi.nlm.nih.gov/pubmed/32498403
https://www.proquest.com/docview/2410366768
https://pubmed.ncbi.nlm.nih.gov/PMC7309104
https://doaj.org/article/bba6acd61d1b4e8ba2cc90daf0118e5c
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JjtNAEC3NcoEDYscsUYE4cDF47PbSSAhNRslESImiEYHcrF4HpJENSQaRMz9Ole1EE5QDl8hKOnLsqvJ7rzv9CuC1l5EspE5Dm0Q-FIVTofJsuS-1jemZTIjA-53Hk2w0E5_m6fwANj02uxu43CvtuJ_UbHH19vfP9Ucq-A-sOEmyv1syiCUkRA7hmAAp5_oci-1iQpwkTUNr3tMVEh5GrcHQ7ld3YKlx799HOf_95-QNKBrehTsdh8TTNuj34MBV9-H2DWfBB_CnXcylYySGh61TxhprjyNK7RVeEMXEL6STW5vuNQ6o1Im8Oou84QS_cu2jqiwOm3k_nE7P3-MpTupfjs7cGZFjnzDQYl3hGV9VOFbs9nCJ46Yt9UOYDQefz0Zh128hNESKVmHKOtlFwhBeeeOV8QWhlUlNqrQWuVHG5UIakTgh6ND5wulIJErbNJfKieQRHFV15Z4Aelv4SPtMCpOJzDqZGBIyVqZFrDPp4gDebG53aTozcu6JcVWSKOHIlNvIBPBqO_RH68Cxb1CfY7YdwKbZzRv14rLsarDUWmXKUPrZEy1coVVsjIys8rz71qUmgJebiJdUZLxyoipXXy9LyipC-oykWQCP2wzYnooYqSSVnASQ7-TGzm_Z_aT6_q0x8qanK7E18fR_rvAZ3IpZ6vMEUPwcjlaLa_eC-NBK9-Awn-f0WgzPe3DcH0ymF71mbqHX1MFfkAMPUA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Quality+of+Heart+Rate+Variability+Estimated+from+Wrist+and+Finger+PPG%3A+A+Novel+Approach+Based+on+Cross-Mapping+Method&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nardelli%2C+Mimma&rft.au=Vanello%2C+Nicola&rft.au=Galperti%2C+Guenda&rft.au=Greco%2C+Alberto&rft.date=2020-06-02&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=11&rft.spage=3156&rft_id=info:doi/10.3390%2Fs20113156&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20113156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon