CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm
Purpose Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimet...
Saved in:
Published in | Radiologia medica Vol. 125; no. 1; pp. 87 - 97 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Milan
Springer Milan
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters.
Methods
In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical–radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, − 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic.
Results
Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical–radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical–radiomics models was 0.71, 0.67 and 0.77, respectively.
Conclusions
We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling. |
---|---|
AbstractList | PurposeRadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters.MethodsIn this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical–radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, − 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic.ResultsSixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical–radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical–radiomics models was 0.71, 0.67 and 0.77, respectively.ConclusionsWe have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling. PURPOSERadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. METHODSIn this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical-radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, - 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. RESULTSSixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical-radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical-radiomics models was 0.71, 0.67 and 0.77, respectively. CONCLUSIONSWe have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling. Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical-radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, - 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical-radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical-radiomics models was 0.71, 0.67 and 0.77, respectively. We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling. Purpose Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. Methods In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical–radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, − 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. Results Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical–radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical–radiomics models was 0.71, 0.67 and 0.77, respectively. Conclusions We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling. |
Author | Abdollahi, Hamid Kazempour Dehkordi, Shiva Razzaghdoust, Abolfazl Mahdavi, Seied Rabi Saadipoor, Afshin Mostafaei, Shayan Shiri, Isaac Cheraghi, Susan Zoljalali Moghaddam, Seyed Hamid Koosha, Fereshteh |
Author_xml | – sequence: 1 givenname: Shayan orcidid: 0000-0003-2134-792X surname: Mostafaei fullname: Mostafaei, Shayan email: Shayan.mostafaei@kums.ac.ir organization: Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences – sequence: 2 givenname: Hamid surname: Abdollahi fullname: Abdollahi, Hamid email: hamid_rbp@yahoo.com organization: Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences – sequence: 3 givenname: Shiva surname: Kazempour Dehkordi fullname: Kazempour Dehkordi, Shiva organization: Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center – sequence: 4 givenname: Isaac surname: Shiri fullname: Shiri, Isaac organization: Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital – sequence: 5 givenname: Abolfazl surname: Razzaghdoust fullname: Razzaghdoust, Abolfazl organization: Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences – sequence: 6 givenname: Seyed Hamid surname: Zoljalali Moghaddam fullname: Zoljalali Moghaddam, Seyed Hamid organization: Department of Medical Physics, School of Medicine, Iran University of Medical Sciences – sequence: 7 givenname: Afshin surname: Saadipoor fullname: Saadipoor, Afshin organization: Department of Radiation Oncology, Faculty of Medicine, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences – sequence: 8 givenname: Fereshteh surname: Koosha fullname: Koosha, Fereshteh organization: Radiology Technology Department, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences – sequence: 9 givenname: Susan surname: Cheraghi fullname: Cheraghi, Susan organization: Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Radiation Biology Research Center, Iran University of Medical Sciences – sequence: 10 givenname: Seied Rabi surname: Mahdavi fullname: Mahdavi, Seied Rabi organization: Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Radiation Biology Research Center, Iran University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31552555$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFL8ABReLSS2D8J05yRCsoSJW4lLPlOJPU7cZebC_qSnx4ZncLSBw4WJbHv_c843fBzkIMyNhrDu84QPs-c96otgbe04JO1PCMrXgndK37Tp6xFYCUdSe1OGcXOd8DKOL6F-xc8qYRTdOs2M_1beUXO_swV4tND5hyVSKVtin-wCrZ0dviY6Dio3e-7KttwtG7Y80HOsVcbMHK2eAwHQWx3GGy23017Cu6dA8H84RzwpwPMruZY_LlbnnJnk92k_HV037Jvn36eLv-XN98vf6y_nBTO6V4qZWzADgp1QvRTdhr28rBom54O8nJAh-llHxUoN3ogMbqJzXpVvcAfBhaJS_Z1cmXuv2-w1zM4rPDzcYGjLtshOhbLhrBBaFv_0Hv4y4F6s4IKYXUUmlNlDhRjsbPCSezTfSLaW84mEM25pSNoWzMMRsDJHrzZL0bFhz_SH6HQYA8AZmuwozp79v_sf0F3CKdFQ |
CitedBy_id | crossref_primary_10_1007_s11604_022_01271_4 crossref_primary_10_1080_09553002_2023_2214206 crossref_primary_10_1016_j_critrevonc_2021_103544 crossref_primary_10_1016_j_brachy_2022_06_007 crossref_primary_10_1259_bjr_20210032 crossref_primary_10_3390_jpm12091491 crossref_primary_10_1016_j_critrevonc_2022_103823 crossref_primary_10_7717_peerj_17254 crossref_primary_10_3390_cancers14123004 crossref_primary_10_3390_jpm14030287 crossref_primary_10_1016_j_saa_2022_121186 crossref_primary_10_1002_mp_14896 crossref_primary_10_1016_j_clon_2021_11_014 crossref_primary_10_1016_j_compbiomed_2020_104135 crossref_primary_10_1016_j_bulcan_2022_03_011 crossref_primary_10_1016_j_ejmp_2021_01_084 crossref_primary_10_1016_j_biosx_2023_100420 crossref_primary_10_1109_ACCESS_2021_3054823 crossref_primary_10_1259_bjr_20200358 crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_1007_s00066_021_01886_y crossref_primary_10_1200_EDBK_350931 crossref_primary_10_1007_s00261_023_04163_x crossref_primary_10_1093_rpd_ncae154 crossref_primary_10_3390_ijms22189971 crossref_primary_10_1007_s13246_023_01260_5 crossref_primary_10_3389_fonc_2020_01708 crossref_primary_10_1007_s13246_022_01116_4 crossref_primary_10_1016_j_jmir_2019_11_006 crossref_primary_10_1016_j_compbiomed_2021_104304 crossref_primary_10_1016_j_clon_2024_03_003 crossref_primary_10_1016_j_saa_2022_121231 crossref_primary_10_1016_j_compbiomed_2021_104409 crossref_primary_10_1002_mp_14368 crossref_primary_10_1177_17562872221109020 crossref_primary_10_1186_s13244_021_01017_2 crossref_primary_10_1016_j_radonc_2023_109593 crossref_primary_10_61927_igmin161 crossref_primary_10_3390_cancers14215277 crossref_primary_10_3389_fonc_2020_00790 crossref_primary_10_3390_cancers15041105 crossref_primary_10_3389_fmicb_2022_1090770 crossref_primary_10_1088_2057_1976_ad0f3e |
Cites_doi | 10.3389/fonc.2018.00035 10.1016/S0893-6080(05)80023-1 10.1088/1361-6560/aa7c55 10.1080/09553002.2018.1492756 10.1007/s10115-006-0040-8 10.1016/j.ejrad.2018.03.019 10.1016/j.ijrobp.2009.03.078 10.1016/j.ijrobp.2010.10.009 10.1016/j.ijrobp.2009.02.090 10.1007/s11547-018-0966-4 10.1109/TPAMI.2009.187 10.1016/j.radonc.2016.07.007 10.1016/j.ejmp.2016.02.014 10.1016/j.eswa.2010.06.048 10.1016/j.radonc.2016.01.013 10.1007/s00066-017-1207-9 10.1016/j.ejrad.2009.01.050 10.1016/j.ijrobp.2017.08.003 10.5812/iranjradiol.48035 10.1016/j.ejrad.2018.06.020 10.1016/j.jmir.2018.12.002 10.1016/j.cllc.2017.05.014 10.1016/j.ijrobp.2013.07.041 10.1016/j.jocd.2018.06.004 10.1001/jamaoncol.2016.2631 10.1007/s00330-017-4859-z 10.1016/j.ijrobp.2018.04.059 10.1016/j.ejmp.2017.10.008 10.1016/j.csda.2009.04.009 10.1023/B:MACH.0000015881.36452.6e 10.4103/jcrt.JCRT_873_17 |
ContentType | Journal Article |
Copyright | Italian Society of Medical Radiology 2019 Copyright Springer Nature B.V. 2020 |
Copyright_xml | – notice: Italian Society of Medical Radiology 2019 – notice: Copyright Springer Nature B.V. 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s11547-019-01082-0 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1826-6983 |
EndPage | 97 |
ExternalDocumentID | 10_1007_s11547_019_01082_0 31552555 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Behnam Daheshpour Charity Organization – fundername: Shahid Beheshti University of Medical Sciences funderid: http://dx.doi.org/10.13039/501100005851 |
GroupedDBID | -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J P9S PF0 PT4 QOR QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z7X Z82 Z87 ZA5 ZMTXR ZOVNA ~A9 ~S- AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c441t-4ca00ef449228fe96a73bae6517f3fa01d3331d406cdc05559f4f6769001bb743 |
IEDL.DBID | AGYKE |
ISSN | 0033-8362 |
IngestDate | Fri Oct 25 04:43:54 EDT 2024 Thu Oct 10 23:01:30 EDT 2024 Thu Sep 12 19:17:44 EDT 2024 Wed Oct 16 00:46:46 EDT 2024 Sat Dec 16 12:04:04 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Tomography Stacking ensemble algorithm Radiotherapy Toxicity Prostate cancer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-4ca00ef449228fe96a73bae6517f3fa01d3331d406cdc05559f4f6769001bb743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2134-792X |
PMID | 31552555 |
PQID | 2332363466 |
PQPubID | 2043526 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2297125212 proquest_journals_2332363466 crossref_primary_10_1007_s11547_019_01082_0 pubmed_primary_31552555 springer_journals_10_1007_s11547_019_01082_0 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan – name: Italy – name: Torino |
PublicationSubtitle | Official Journal of the Italian Society of Medical Radiology |
PublicationTitle | Radiologia medica |
PublicationTitleAbbrev | Radiol med |
PublicationTitleAlternate | Radiol Med |
PublicationYear | 2020 |
Publisher | Springer Milan Springer Nature B.V |
Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
References | Michalski, Yan, Watkins-Bruner, Bosch, Winter, Galvin, Bahary, Morton, Parliament, Sandler (CR1) 2013; 87 Coates, El Naqa (CR27) 2016; 32 Abdollahi, Shiri, Heydari (CR32) 2019; 48 van Dijk, Brouwer, van der Laan, Burgerhof, Langendijk, Steenbakkers, Sijtsema (CR22) 2017; 99 Abdollahi, Moid, Shiri, Razzaghdoust, Saadipoor, Mahdavi, Galandooz, Mahdavi (CR8) 2019 El Naqa, Kerns, Coates, Luo, Speers, West, Rosenstein, Ten Haken (CR7) 2017; 62 Džeroski, Ženko (CR26) 2004; 54 Mohammed, Kestin, Ghilezan, Krauss, Vicini, Brabbins, Gustafson, Ye, Martinez (CR2) 2012; 82 Abdollahi, Mahdavi, Mofid, Bakhshandeh, Razzaghdoust, Saadipoor, Tanha (CR13) 2018; 94 Fazal, Patel, Tye, Gupta (CR12) 2018; 105 Abdollahi, Tanha, Mofid, Razzaghdoust, Saadipoor, Khalafi, Bakhshandeh, Mahdavi (CR14) 2019 Liew (CR11) 2018; 102 Moran, Daly, Yip, Yamamoto (CR15) 2017; 18 Michalski, Gay, Jackson, Tucker, Deasy (CR3) 2010; 76 Abdollahi, Mahdavi, Shiri, Mofid, Bakhshandeh, Rahmani (CR31) 2019; 15 Rutman, Kuo (CR9) 2009; 70 Wolpert (CR18) 1992; 5 Rodriguez, Perez, Lozano (CR21) 2010; 32 Viswanathan, Yorke, Marks, Eifel, Shipley (CR5) 2010; 76 Kim (CR19) 2009; 53 Wu, Chen, Yang, Tao, Xia, Deng, Zheng, Robbins, Schultz, Li (CR17) 2018; 102 Saeedi, Dezhkam, Beigi, Rastegar, Yousefi, Mehdipour, Abdollahi, Tanha (CR30) 2018 Abdollahi, Mostafaei, Cheraghi, Shiri, Rabi Mahdavi, Kazemnejad (CR16) 2018; 45 CR25 Thor, Olsson, Oh, Petersen, Alsadius, Bentzen, Pettersson, Muren, Hoyer, Steineck, Deasy (CR4) 2016; 119 Aerts (CR10) 2016; 2 Kalousis, Prados, Hilario (CR20) 2007; 12 Fahrig, Koch, Lenhart, Rieckmann, Fietkau, Distel, Schuster (CR6) 2018; 194 Shiri, Abdollahi, Shaysteh, Rabi Mahdavi (CR29) 2017 Wang, Hao, Ma, Jiang (CR33) 2011; 38 Shiri, Rahmim, Ghaffarian, Geramifar, Abdollahi, Bitarafan-Rajabi (CR28) 2017; 27 Gabrys, Buettner, Sterzing, Hauswald, Bangert (CR24) 2018; 8 van Dijk, Brouwer, van der Schaaf, Burgerhof, Beukinga, Langendijk, Sijtsema, Steenbakkers (CR23) 2017; 122 H Abdollahi (1082_CR14) 2019 H Abdollahi (1082_CR8) 2019 1082_CR25 E Saeedi (1082_CR30) 2018 J Coates (1082_CR27) 2016; 32 HS Gabrys (1082_CR24) 2018; 8 S Džeroski (1082_CR26) 2004; 54 LV van Dijk (1082_CR23) 2017; 122 AN Viswanathan (1082_CR5) 2010; 76 H Abdollahi (1082_CR32) 2019; 48 I Shiri (1082_CR29) 2017 AM Rutman (1082_CR9) 2009; 70 H Abdollahi (1082_CR13) 2018; 94 JM Michalski (1082_CR1) 2013; 87 JM Michalski (1082_CR3) 2010; 76 G Wang (1082_CR33) 2011; 38 M Thor (1082_CR4) 2016; 119 A Fahrig (1082_CR6) 2018; 194 LV van Dijk (1082_CR22) 2017; 99 A Moran (1082_CR15) 2017; 18 C Liew (1082_CR11) 2018; 102 HJ Aerts (1082_CR10) 2016; 2 H Abdollahi (1082_CR31) 2019; 15 I Shiri (1082_CR28) 2017; 27 J-H Kim (1082_CR19) 2009; 53 H Abdollahi (1082_CR16) 2018; 45 I El Naqa (1082_CR7) 2017; 62 DH Wolpert (1082_CR18) 1992; 5 MI Fazal (1082_CR12) 2018; 105 JD Rodriguez (1082_CR21) 2010; 32 N Mohammed (1082_CR2) 2012; 82 A Kalousis (1082_CR20) 2007; 12 H Wu (1082_CR17) 2018; 102 |
References_xml | – volume: 8 start-page: 35 year: 2018 ident: CR24 article-title: Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia publication-title: Front Oncol doi: 10.3389/fonc.2018.00035 contributor: fullname: Bangert – volume: 5 start-page: 241 issue: 2 year: 1992 end-page: 259 ident: CR18 article-title: Stacked generalization publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 contributor: fullname: Wolpert – volume: 62 start-page: R179 issue: 16 year: 2017 end-page: R206 ident: CR7 article-title: Radiogenomics and radiotherapy response modeling publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa7c55 contributor: fullname: Ten Haken – volume: 94 start-page: 829 issue: 9 year: 2018 end-page: 837 ident: CR13 article-title: Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity publication-title: Int J Radiat Biol doi: 10.1080/09553002.2018.1492756 contributor: fullname: Tanha – volume: 12 start-page: 95 issue: 1 year: 2007 end-page: 116 ident: CR20 article-title: Stability of feature selection algorithms: a study on high-dimensional spaces publication-title: Knowl Inf Syst doi: 10.1007/s10115-006-0040-8 contributor: fullname: Hilario – volume: 102 start-page: 152 year: 2018 end-page: 156 ident: CR11 article-title: The future of radiology augmented with artificial intelligence: a strategy for success publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.03.019 contributor: fullname: Liew – volume: 76 start-page: S123 issue: 3 Suppl year: 2010 end-page: S129 ident: CR3 article-title: Radiation dose-volume effects in radiation-induced rectal injury publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.03.078 contributor: fullname: Deasy – volume: 82 start-page: 204 issue: 1 year: 2012 end-page: 212 ident: CR2 article-title: Comparison of acute and late toxicities for three modern high-dose radiation treatment techniques for localized prostate cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.10.009 contributor: fullname: Martinez – volume: 76 start-page: S116 issue: 3 Suppl year: 2010 end-page: S122 ident: CR5 article-title: Radiation dose-volume effects of the urinary bladder publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.02.090 contributor: fullname: Shipley – year: 2019 ident: CR8 article-title: Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer publication-title: Radiol Med doi: 10.1007/s11547-018-0966-4 contributor: fullname: Mahdavi – volume: 32 start-page: 569 issue: 3 year: 2010 end-page: 575 ident: CR21 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.187 contributor: fullname: Lozano – volume: 122 start-page: 185 issue: 2 year: 2017 end-page: 191 ident: CR23 article-title: CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.07.007 contributor: fullname: Steenbakkers – volume: 32 start-page: 512 issue: 3 year: 2016 end-page: 520 ident: CR27 article-title: Outcome modeling techniques for prostate cancer radiotherapy: data, models, and validation publication-title: Phys Med doi: 10.1016/j.ejmp.2016.02.014 contributor: fullname: El Naqa – volume: 48 start-page: 184 issue: 1 year: 2019 ident: CR32 article-title: Medical imaging technologists in radiomics era: an alice in wonderland problem publication-title: Iran J Pub Health contributor: fullname: Heydari – volume: 38 start-page: 223 issue: 1 year: 2011 end-page: 230 ident: CR33 article-title: A comparative assessment of ensemble learning for credit scoring publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.06.048 contributor: fullname: Jiang – volume: 119 start-page: 117 issue: 1 year: 2016 end-page: 122 ident: CR4 article-title: Urinary bladder dose-response relationships for patient-reported genitourinary morbidity domains following prostate cancer radiotherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.01.013 contributor: fullname: Deasy – ident: CR25 – volume: 194 start-page: 60 issue: 1 year: 2018 end-page: 66 ident: CR6 article-title: Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity: case report and literature review publication-title: Strahlenther Onkol doi: 10.1007/s00066-017-1207-9 contributor: fullname: Schuster – volume: 70 start-page: 232 issue: 2 year: 2009 end-page: 241 ident: CR9 article-title: Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2009.01.050 contributor: fullname: Kuo – volume: 99 start-page: 1101 issue: 5 year: 2017 end-page: 1110 ident: CR22 article-title: Geometric image biomarker changes of the parotid gland are associated with late xerostomia publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.08.003 contributor: fullname: Sijtsema – year: 2017 ident: CR29 article-title: Test-retest reproducibility and robustness analysis of recurrent glioblastoma MRI radiomics texture features publication-title: Iran J Radiol doi: 10.5812/iranjradiol.48035 contributor: fullname: Rabi Mahdavi – volume: 105 start-page: 246 year: 2018 end-page: 250 ident: CR12 article-title: The past, present and future role of artificial intelligence in imaging publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.06.020 contributor: fullname: Gupta – year: 2019 ident: CR14 article-title: MRI radiomic analysis of IMRT-induced bladder wall changes in prostate cancer patients: a relationship with radiation dose and toxicity publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2018.12.002 contributor: fullname: Mahdavi – volume: 18 start-page: e425 issue: 6 year: 2017 end-page: e431 ident: CR15 article-title: Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2017.05.014 contributor: fullname: Yamamoto – volume: 87 start-page: 932 issue: 5 year: 2013 end-page: 938 ident: CR1 article-title: Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2013.07.041 contributor: fullname: Sandler – year: 2018 ident: CR30 article-title: Radiomic feature robustness and reproducibility in quantitative bone radiography: a study on radiologic parameter changes publication-title: J Clin Densitom doi: 10.1016/j.jocd.2018.06.004 contributor: fullname: Tanha – volume: 2 start-page: 1636 issue: 12 year: 2016 end-page: 1642 ident: CR10 article-title: The potential of radiomic-based phenotyping in precision medicine: a review publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2016.2631 contributor: fullname: Aerts – volume: 27 start-page: 4498 issue: 11 year: 2017 end-page: 4509 ident: CR28 article-title: The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies publication-title: Eur Radiol doi: 10.1007/s00330-017-4859-z contributor: fullname: Bitarafan-Rajabi – volume: 102 start-page: 1308 issue: 4 year: 2018 end-page: 1318 ident: CR17 article-title: Early Prediction of acute xerostomia during radiation therapy for head and neck cancer based on texture analysis of daily CT publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.04.059 contributor: fullname: Li – volume: 45 start-page: 192 year: 2018 end-page: 197 ident: CR16 article-title: Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study publication-title: Phys Med doi: 10.1016/j.ejmp.2017.10.008 contributor: fullname: Kazemnejad – volume: 53 start-page: 3735 issue: 11 year: 2009 end-page: 3745 ident: CR19 article-title: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.04.009 contributor: fullname: Kim – volume: 15 start-page: S9 issue: 1 year: 2019 end-page: S11 ident: CR31 article-title: Magnetic resonance imaging radiomic feature analysis of radiation-induced femoral head changes in prostate cancer radiotherapy publication-title: J Cancer Res Ther contributor: fullname: Rahmani – volume: 54 start-page: 255 issue: 3 year: 2004 end-page: 273 ident: CR26 article-title: Is combining classifiers with stacking better than selecting the best one? publication-title: Mach Learn doi: 10.1023/B:MACH.0000015881.36452.6e contributor: fullname: Ženko – volume: 76 start-page: S123 issue: 3 Suppl year: 2010 ident: 1082_CR3 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.03.078 contributor: fullname: JM Michalski – volume: 48 start-page: 184 issue: 1 year: 2019 ident: 1082_CR32 publication-title: Iran J Pub Health contributor: fullname: H Abdollahi – volume: 62 start-page: R179 issue: 16 year: 2017 ident: 1082_CR7 publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa7c55 contributor: fullname: I El Naqa – volume: 87 start-page: 932 issue: 5 year: 2013 ident: 1082_CR1 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2013.07.041 contributor: fullname: JM Michalski – volume: 122 start-page: 185 issue: 2 year: 2017 ident: 1082_CR23 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.07.007 contributor: fullname: LV van Dijk – volume: 54 start-page: 255 issue: 3 year: 2004 ident: 1082_CR26 publication-title: Mach Learn doi: 10.1023/B:MACH.0000015881.36452.6e contributor: fullname: S Džeroski – volume: 102 start-page: 1308 issue: 4 year: 2018 ident: 1082_CR17 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.04.059 contributor: fullname: H Wu – volume: 2 start-page: 1636 issue: 12 year: 2016 ident: 1082_CR10 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2016.2631 contributor: fullname: HJ Aerts – volume: 53 start-page: 3735 issue: 11 year: 2009 ident: 1082_CR19 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.04.009 contributor: fullname: J-H Kim – volume: 99 start-page: 1101 issue: 5 year: 2017 ident: 1082_CR22 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.08.003 contributor: fullname: LV van Dijk – volume: 76 start-page: S116 issue: 3 Suppl year: 2010 ident: 1082_CR5 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.02.090 contributor: fullname: AN Viswanathan – volume: 102 start-page: 152 year: 2018 ident: 1082_CR11 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.03.019 contributor: fullname: C Liew – volume: 12 start-page: 95 issue: 1 year: 2007 ident: 1082_CR20 publication-title: Knowl Inf Syst doi: 10.1007/s10115-006-0040-8 contributor: fullname: A Kalousis – volume: 32 start-page: 512 issue: 3 year: 2016 ident: 1082_CR27 publication-title: Phys Med doi: 10.1016/j.ejmp.2016.02.014 contributor: fullname: J Coates – year: 2018 ident: 1082_CR30 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2018.06.004 contributor: fullname: E Saeedi – year: 2019 ident: 1082_CR8 publication-title: Radiol Med doi: 10.1007/s11547-018-0966-4 contributor: fullname: H Abdollahi – volume: 119 start-page: 117 issue: 1 year: 2016 ident: 1082_CR4 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.01.013 contributor: fullname: M Thor – year: 2019 ident: 1082_CR14 publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2018.12.002 contributor: fullname: H Abdollahi – volume: 194 start-page: 60 issue: 1 year: 2018 ident: 1082_CR6 publication-title: Strahlenther Onkol doi: 10.1007/s00066-017-1207-9 contributor: fullname: A Fahrig – volume: 94 start-page: 829 issue: 9 year: 2018 ident: 1082_CR13 publication-title: Int J Radiat Biol doi: 10.1080/09553002.2018.1492756 contributor: fullname: H Abdollahi – volume: 8 start-page: 35 year: 2018 ident: 1082_CR24 publication-title: Front Oncol doi: 10.3389/fonc.2018.00035 contributor: fullname: HS Gabrys – ident: 1082_CR25 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 1082_CR18 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 contributor: fullname: DH Wolpert – volume: 105 start-page: 246 year: 2018 ident: 1082_CR12 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.06.020 contributor: fullname: MI Fazal – volume: 27 start-page: 4498 issue: 11 year: 2017 ident: 1082_CR28 publication-title: Eur Radiol doi: 10.1007/s00330-017-4859-z contributor: fullname: I Shiri – year: 2017 ident: 1082_CR29 publication-title: Iran J Radiol doi: 10.5812/iranjradiol.48035 contributor: fullname: I Shiri – volume: 38 start-page: 223 issue: 1 year: 2011 ident: 1082_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.06.048 contributor: fullname: G Wang – volume: 32 start-page: 569 issue: 3 year: 2010 ident: 1082_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.187 contributor: fullname: JD Rodriguez – volume: 70 start-page: 232 issue: 2 year: 2009 ident: 1082_CR9 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2009.01.050 contributor: fullname: AM Rutman – volume: 18 start-page: e425 issue: 6 year: 2017 ident: 1082_CR15 publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2017.05.014 contributor: fullname: A Moran – volume: 15 start-page: S9 issue: 1 year: 2019 ident: 1082_CR31 publication-title: J Cancer Res Ther doi: 10.4103/jcrt.JCRT_873_17 contributor: fullname: H Abdollahi – volume: 82 start-page: 204 issue: 1 year: 2012 ident: 1082_CR2 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.10.009 contributor: fullname: N Mohammed – volume: 45 start-page: 192 year: 2018 ident: 1082_CR16 publication-title: Phys Med doi: 10.1016/j.ejmp.2017.10.008 contributor: fullname: H Abdollahi |
SSID | ssj0040109 |
Score | 2.4933631 |
Snippet | Purpose
Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop... Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction... PurposeRadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop... PURPOSERadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 87 |
SubjectTerms | Aged Algorithms Area Under Curve Bladder Computed tomography Cystitis - etiology Diagnostic Radiology Feature extraction Goodness of fit Humans Imaging Interventional Radiology Logistic Models Male Mathematical models Medical imaging Medicine Medicine & Public Health Middle Aged Modelling Neuroradiology Oncology Imaging Parameters Performance prediction Proctitis - etiology Prospective Studies Prostate cancer Prostatic Neoplasms - radiotherapy Radiation effects Radiation Injuries - diagnostic imaging Radiation Injuries - etiology Radiation therapy Radiation Tolerance Radiology Radiotherapy Dosage Rectum - diagnostic imaging Rectum - radiation effects ROC Curve Stacking Tomography, X-Ray Computed - methods Toxicity Ultrasound Urinary Bladder - diagnostic imaging Urinary Bladder - radiation effects |
Title | CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm |
URI | https://link.springer.com/article/10.1007/s11547-019-01082-0 https://www.ncbi.nlm.nih.gov/pubmed/31552555 https://www.proquest.com/docview/2332363466 https://search.proquest.com/docview/2297125212 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAX9iVsMhI3CEpjN8uxqlgEglMrwSlyHAcqaIJCKlHExzPjJFSocOAUx0sSe8aeF89igGMhnFQG0rfDUHu20FzacRhITKVCJb4jlDm15PbOuxqI6_vO_dSP2xi7NxpJs1BPfd1Q2JOVJJn3oNyy8T99oXY8XehePtycNwuwIG1PFY2R2wEu0LWvzO9P-SmPZkDmjILUyJ2LFeg33juVucnz2biMz9THbDDH_3RpFZZrHMq6FeOswZzO1mHxtta0b8Bnr8-GI3OEERuRCU_xxsocs2gPQrOCQhoQTTHzHZuUE_ZaUGOTN8zwLje-SkwRWxWmQe3sNWHxhGGhol16VujHyhQ3Y_LlMS-G5dNoEwYX5_3elV2f1GArhFOlLZR0HKSuCF03SHXoSZ_HUnudtp_yVDrthHPeThA8qERRiLEwFSkZ16KQjGMEMVvQyvJM7wBLdNzRiGKwmHSygXQxLZIQL4GQiltw0tAreq0CckTT0Ms0oBEOaGQGNHIs2G9IGtWT8y1yOXe5x4XnWXD0XYzTinQlMtP5GOu4oY_YD_nLgu2KFb5fxylsHXbCgtOGrtOH__0tu_-rvgdLLv3bm-2efWiVxVgfIAAq48Oa4Q9hfuB2vwAnLfws |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EQb2Ib-NzBW8aSLPbPI5FLPVRTy14C5vNRgs2KWkKFvzxzmwSi1QPnpLsK8l-m53Jzsy3AFdCOKkMpG-HofZsobm04zCQeJYKlfiOUGbXkv6z1xuKh5f2Sx0UNm283RuTpJmpF8FuKO3JTZL8e1Bw2fijvkb86sSYP3Q7zfwryNhTkTFyO8D5uQ6V-b2Nn-JoScdcso8asdPdhq1aX2SdCuAdWNHZLqz3a4v4HnzeDthobLYaYmNytSmmrMwxidYKNCuIeoD6HhM_sEo5Z5OCKpu0UYZXuYkpYorgL0yFOihrzuI5w0xFq-ms0K-Vy2zG5PtrXozKt_E-DLt3g9ueXe-oYCtUe0pbKOk4iIIIXTdIdehJn8dSe-2Wn_JUOq2Ec95KUMirRBEVWJiKlJxgUZjFMSobB7Ca5Zk-ApbouK1R28Bssp0G0sVzkYR4CIRU3ILrpmOjSUWcES0okgmGCGGIDAyRY8Fp0_dR_RFNI5dzl3tceJ4Fl9_ZOPzJpiEznc-wjBv6qKOhALbgsMLs-3ac6OXwJSy4aUBcNP73sxz_r_gFbPQG_afo6f758QQ2XfofN0s0p7BaFjN9hkpLGZ-bMfoF81XiKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFD4xM1l8Md7Fa018UyKjHZdHoy7e44NLfCOlFF3iYGEscYk_3nMKOI364BOlpQX6Qb_TnksBDoVwUhlI3w5D7dlCc2nHYSAxlQqV-I5QZteSu3vvsi-un7pPX7z4jbV7o5KsfBooSlNWnoyS9GTm-IbMTyaTZOuDJGbjpH0eqYiTUV_fPW3GYkGKnyowI7cDHKtrt5nf2_hOTT_kzR-6UkNBvSVYrGVHdlqBvQxzOluB9l2tHV-F97NHNhiabYfYkMxuijErc8yidQPNCgpDQDhg5htWKadsVFBlkzfI8Cw3_kVM0adQmAq1g9aUxVOGhYpW1lmhnyvz2YzJ1-e8GJQvwzXo9y4ezy7tencFW6EIVNpCScdBREToukGqQ0_6PJba63b8lKfS6SSc806ChK8SRWHBwlSkZBCLxBbHKHisQyvLM70JLNFxV6PkgcWkRw2ki2mRhHgIhFTcgqOmY6NRFUQjmoVLJhgihCEyMESOBTtN30f1DzWOXM5d7nHheRYcfBbjr0D6DZnpfILXuKGP8hqSsQUbFWaft-MUag5fwoLjBsRZ438_y9b_Lt-H9sN5L7q9ur_ZhgWXpuZmtWYHWmUx0bsov5TxnvlEPwAqGuZt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT+imaging+markers+to+improve+radiation+toxicity+prediction+in+prostate+cancer+radiotherapy+by+stacking+regression+algorithm&rft.jtitle=Radiologia+medica&rft.au=Mostafaei%2C+Shayan&rft.au=Abdollahi%2C+Hamid&rft.au=Kazempour+Dehkordi%2C+Shiva&rft.au=Shiri%2C+Isaac&rft.date=2020-01-01&rft.issn=0033-8362&rft.eissn=1826-6983&rft.volume=125&rft.issue=1&rft.spage=87&rft.epage=97&rft_id=info:doi/10.1007%2Fs11547-019-01082-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11547_019_01082_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8362&client=summon |