CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm

Purpose Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimet...

Full description

Saved in:
Bibliographic Details
Published inRadiologia medica Vol. 125; no. 1; pp. 87 - 97
Main Authors Mostafaei, Shayan, Abdollahi, Hamid, Kazempour Dehkordi, Shiva, Shiri, Isaac, Razzaghdoust, Abolfazl, Zoljalali Moghaddam, Seyed Hamid, Saadipoor, Afshin, Koosha, Fereshteh, Cheraghi, Susan, Mahdavi, Seied Rabi
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. Methods In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical–radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, − 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. Results Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical–radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical–radiomics models was 0.71, 0.67 and 0.77, respectively. Conclusions We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling.
AbstractList PurposeRadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters.MethodsIn this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical–radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, − 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic.ResultsSixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical–radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical–radiomics models was 0.71, 0.67 and 0.77, respectively.ConclusionsWe have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling.
PURPOSERadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. METHODSIn this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical-radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, - 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. RESULTSSixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical-radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical-radiomics models was 0.71, 0.67 and 0.77, respectively. CONCLUSIONSWe have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling.
Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical-radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, - 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical-radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical-radiomics models was 0.71, 0.67 and 0.77, respectively. We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling.
Purpose Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters. Methods In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical–radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, − 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic. Results Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical–radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical–radiomics models was 0.71, 0.67 and 0.77, respectively. Conclusions We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling.
Author Abdollahi, Hamid
Kazempour Dehkordi, Shiva
Razzaghdoust, Abolfazl
Mahdavi, Seied Rabi
Saadipoor, Afshin
Mostafaei, Shayan
Shiri, Isaac
Cheraghi, Susan
Zoljalali Moghaddam, Seyed Hamid
Koosha, Fereshteh
Author_xml – sequence: 1
  givenname: Shayan
  orcidid: 0000-0003-2134-792X
  surname: Mostafaei
  fullname: Mostafaei, Shayan
  email: Shayan.mostafaei@kums.ac.ir
  organization: Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences
– sequence: 2
  givenname: Hamid
  surname: Abdollahi
  fullname: Abdollahi, Hamid
  email: hamid_rbp@yahoo.com
  organization: Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences
– sequence: 3
  givenname: Shiva
  surname: Kazempour Dehkordi
  fullname: Kazempour Dehkordi, Shiva
  organization: Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center
– sequence: 4
  givenname: Isaac
  surname: Shiri
  fullname: Shiri, Isaac
  organization: Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital
– sequence: 5
  givenname: Abolfazl
  surname: Razzaghdoust
  fullname: Razzaghdoust, Abolfazl
  organization: Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences
– sequence: 6
  givenname: Seyed Hamid
  surname: Zoljalali Moghaddam
  fullname: Zoljalali Moghaddam, Seyed Hamid
  organization: Department of Medical Physics, School of Medicine, Iran University of Medical Sciences
– sequence: 7
  givenname: Afshin
  surname: Saadipoor
  fullname: Saadipoor, Afshin
  organization: Department of Radiation Oncology, Faculty of Medicine, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences
– sequence: 8
  givenname: Fereshteh
  surname: Koosha
  fullname: Koosha, Fereshteh
  organization: Radiology Technology Department, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences
– sequence: 9
  givenname: Susan
  surname: Cheraghi
  fullname: Cheraghi, Susan
  organization: Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Radiation Biology Research Center, Iran University of Medical Sciences
– sequence: 10
  givenname: Seied Rabi
  surname: Mahdavi
  fullname: Mahdavi, Seied Rabi
  organization: Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Radiation Biology Research Center, Iran University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31552555$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFL8ABReLSS2D8J05yRCsoSJW4lLPlOJPU7cZebC_qSnx4ZncLSBw4WJbHv_c843fBzkIMyNhrDu84QPs-c96otgbe04JO1PCMrXgndK37Tp6xFYCUdSe1OGcXOd8DKOL6F-xc8qYRTdOs2M_1beUXO_swV4tND5hyVSKVtin-wCrZ0dviY6Dio3e-7KttwtG7Y80HOsVcbMHK2eAwHQWx3GGy23017Cu6dA8H84RzwpwPMruZY_LlbnnJnk92k_HV037Jvn36eLv-XN98vf6y_nBTO6V4qZWzADgp1QvRTdhr28rBom54O8nJAh-llHxUoN3ogMbqJzXpVvcAfBhaJS_Z1cmXuv2-w1zM4rPDzcYGjLtshOhbLhrBBaFv_0Hv4y4F6s4IKYXUUmlNlDhRjsbPCSezTfSLaW84mEM25pSNoWzMMRsDJHrzZL0bFhz_SH6HQYA8AZmuwozp79v_sf0F3CKdFQ
CitedBy_id crossref_primary_10_1007_s11604_022_01271_4
crossref_primary_10_1080_09553002_2023_2214206
crossref_primary_10_1016_j_critrevonc_2021_103544
crossref_primary_10_1016_j_brachy_2022_06_007
crossref_primary_10_1259_bjr_20210032
crossref_primary_10_3390_jpm12091491
crossref_primary_10_1016_j_critrevonc_2022_103823
crossref_primary_10_7717_peerj_17254
crossref_primary_10_3390_cancers14123004
crossref_primary_10_3390_jpm14030287
crossref_primary_10_1016_j_saa_2022_121186
crossref_primary_10_1002_mp_14896
crossref_primary_10_1016_j_clon_2021_11_014
crossref_primary_10_1016_j_compbiomed_2020_104135
crossref_primary_10_1016_j_bulcan_2022_03_011
crossref_primary_10_1016_j_ejmp_2021_01_084
crossref_primary_10_1016_j_biosx_2023_100420
crossref_primary_10_1109_ACCESS_2021_3054823
crossref_primary_10_1259_bjr_20200358
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_1007_s00066_021_01886_y
crossref_primary_10_1200_EDBK_350931
crossref_primary_10_1007_s00261_023_04163_x
crossref_primary_10_1093_rpd_ncae154
crossref_primary_10_3390_ijms22189971
crossref_primary_10_1007_s13246_023_01260_5
crossref_primary_10_3389_fonc_2020_01708
crossref_primary_10_1007_s13246_022_01116_4
crossref_primary_10_1016_j_jmir_2019_11_006
crossref_primary_10_1016_j_compbiomed_2021_104304
crossref_primary_10_1016_j_clon_2024_03_003
crossref_primary_10_1016_j_saa_2022_121231
crossref_primary_10_1016_j_compbiomed_2021_104409
crossref_primary_10_1002_mp_14368
crossref_primary_10_1177_17562872221109020
crossref_primary_10_1186_s13244_021_01017_2
crossref_primary_10_1016_j_radonc_2023_109593
crossref_primary_10_61927_igmin161
crossref_primary_10_3390_cancers14215277
crossref_primary_10_3389_fonc_2020_00790
crossref_primary_10_3390_cancers15041105
crossref_primary_10_3389_fmicb_2022_1090770
crossref_primary_10_1088_2057_1976_ad0f3e
Cites_doi 10.3389/fonc.2018.00035
10.1016/S0893-6080(05)80023-1
10.1088/1361-6560/aa7c55
10.1080/09553002.2018.1492756
10.1007/s10115-006-0040-8
10.1016/j.ejrad.2018.03.019
10.1016/j.ijrobp.2009.03.078
10.1016/j.ijrobp.2010.10.009
10.1016/j.ijrobp.2009.02.090
10.1007/s11547-018-0966-4
10.1109/TPAMI.2009.187
10.1016/j.radonc.2016.07.007
10.1016/j.ejmp.2016.02.014
10.1016/j.eswa.2010.06.048
10.1016/j.radonc.2016.01.013
10.1007/s00066-017-1207-9
10.1016/j.ejrad.2009.01.050
10.1016/j.ijrobp.2017.08.003
10.5812/iranjradiol.48035
10.1016/j.ejrad.2018.06.020
10.1016/j.jmir.2018.12.002
10.1016/j.cllc.2017.05.014
10.1016/j.ijrobp.2013.07.041
10.1016/j.jocd.2018.06.004
10.1001/jamaoncol.2016.2631
10.1007/s00330-017-4859-z
10.1016/j.ijrobp.2018.04.059
10.1016/j.ejmp.2017.10.008
10.1016/j.csda.2009.04.009
10.1023/B:MACH.0000015881.36452.6e
10.4103/jcrt.JCRT_873_17
ContentType Journal Article
Copyright Italian Society of Medical Radiology 2019
Copyright Springer Nature B.V. 2020
Copyright_xml – notice: Italian Society of Medical Radiology 2019
– notice: Copyright Springer Nature B.V. 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1007/s11547-019-01082-0
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1826-6983
EndPage 97
ExternalDocumentID 10_1007_s11547_019_01082_0
31552555
Genre Journal Article
GrantInformation_xml – fundername: Behnam Daheshpour Charity Organization
– fundername: Shahid Beheshti University of Medical Sciences
  funderid: http://dx.doi.org/10.13039/501100005851
GroupedDBID -5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
P9S
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z87
ZA5
ZMTXR
ZOVNA
~A9
~S-
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c441t-4ca00ef449228fe96a73bae6517f3fa01d3331d406cdc05559f4f6769001bb743
IEDL.DBID AGYKE
ISSN 0033-8362
IngestDate Fri Oct 25 04:43:54 EDT 2024
Thu Oct 10 23:01:30 EDT 2024
Thu Sep 12 19:17:44 EDT 2024
Wed Oct 16 00:46:46 EDT 2024
Sat Dec 16 12:04:04 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tomography
Stacking ensemble algorithm
Radiotherapy
Toxicity
Prostate cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-4ca00ef449228fe96a73bae6517f3fa01d3331d406cdc05559f4f6769001bb743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2134-792X
PMID 31552555
PQID 2332363466
PQPubID 2043526
PageCount 11
ParticipantIDs proquest_miscellaneous_2297125212
proquest_journals_2332363466
crossref_primary_10_1007_s11547_019_01082_0
pubmed_primary_31552555
springer_journals_10_1007_s11547_019_01082_0
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Italy
– name: Torino
PublicationSubtitle Official Journal of the Italian Society of Medical Radiology
PublicationTitle Radiologia medica
PublicationTitleAbbrev Radiol med
PublicationTitleAlternate Radiol Med
PublicationYear 2020
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Michalski, Yan, Watkins-Bruner, Bosch, Winter, Galvin, Bahary, Morton, Parliament, Sandler (CR1) 2013; 87
Coates, El Naqa (CR27) 2016; 32
Abdollahi, Shiri, Heydari (CR32) 2019; 48
van Dijk, Brouwer, van der Laan, Burgerhof, Langendijk, Steenbakkers, Sijtsema (CR22) 2017; 99
Abdollahi, Moid, Shiri, Razzaghdoust, Saadipoor, Mahdavi, Galandooz, Mahdavi (CR8) 2019
El Naqa, Kerns, Coates, Luo, Speers, West, Rosenstein, Ten Haken (CR7) 2017; 62
Džeroski, Ženko (CR26) 2004; 54
Mohammed, Kestin, Ghilezan, Krauss, Vicini, Brabbins, Gustafson, Ye, Martinez (CR2) 2012; 82
Abdollahi, Mahdavi, Mofid, Bakhshandeh, Razzaghdoust, Saadipoor, Tanha (CR13) 2018; 94
Fazal, Patel, Tye, Gupta (CR12) 2018; 105
Abdollahi, Tanha, Mofid, Razzaghdoust, Saadipoor, Khalafi, Bakhshandeh, Mahdavi (CR14) 2019
Liew (CR11) 2018; 102
Moran, Daly, Yip, Yamamoto (CR15) 2017; 18
Michalski, Gay, Jackson, Tucker, Deasy (CR3) 2010; 76
Abdollahi, Mahdavi, Shiri, Mofid, Bakhshandeh, Rahmani (CR31) 2019; 15
Rutman, Kuo (CR9) 2009; 70
Wolpert (CR18) 1992; 5
Rodriguez, Perez, Lozano (CR21) 2010; 32
Viswanathan, Yorke, Marks, Eifel, Shipley (CR5) 2010; 76
Kim (CR19) 2009; 53
Wu, Chen, Yang, Tao, Xia, Deng, Zheng, Robbins, Schultz, Li (CR17) 2018; 102
Saeedi, Dezhkam, Beigi, Rastegar, Yousefi, Mehdipour, Abdollahi, Tanha (CR30) 2018
Abdollahi, Mostafaei, Cheraghi, Shiri, Rabi Mahdavi, Kazemnejad (CR16) 2018; 45
CR25
Thor, Olsson, Oh, Petersen, Alsadius, Bentzen, Pettersson, Muren, Hoyer, Steineck, Deasy (CR4) 2016; 119
Aerts (CR10) 2016; 2
Kalousis, Prados, Hilario (CR20) 2007; 12
Fahrig, Koch, Lenhart, Rieckmann, Fietkau, Distel, Schuster (CR6) 2018; 194
Shiri, Abdollahi, Shaysteh, Rabi Mahdavi (CR29) 2017
Wang, Hao, Ma, Jiang (CR33) 2011; 38
Shiri, Rahmim, Ghaffarian, Geramifar, Abdollahi, Bitarafan-Rajabi (CR28) 2017; 27
Gabrys, Buettner, Sterzing, Hauswald, Bangert (CR24) 2018; 8
van Dijk, Brouwer, van der Schaaf, Burgerhof, Beukinga, Langendijk, Sijtsema, Steenbakkers (CR23) 2017; 122
H Abdollahi (1082_CR14) 2019
H Abdollahi (1082_CR8) 2019
1082_CR25
E Saeedi (1082_CR30) 2018
J Coates (1082_CR27) 2016; 32
HS Gabrys (1082_CR24) 2018; 8
S Džeroski (1082_CR26) 2004; 54
LV van Dijk (1082_CR23) 2017; 122
AN Viswanathan (1082_CR5) 2010; 76
H Abdollahi (1082_CR32) 2019; 48
I Shiri (1082_CR29) 2017
AM Rutman (1082_CR9) 2009; 70
H Abdollahi (1082_CR13) 2018; 94
JM Michalski (1082_CR1) 2013; 87
JM Michalski (1082_CR3) 2010; 76
G Wang (1082_CR33) 2011; 38
M Thor (1082_CR4) 2016; 119
A Fahrig (1082_CR6) 2018; 194
LV van Dijk (1082_CR22) 2017; 99
A Moran (1082_CR15) 2017; 18
C Liew (1082_CR11) 2018; 102
HJ Aerts (1082_CR10) 2016; 2
H Abdollahi (1082_CR31) 2019; 15
I Shiri (1082_CR28) 2017; 27
J-H Kim (1082_CR19) 2009; 53
H Abdollahi (1082_CR16) 2018; 45
I El Naqa (1082_CR7) 2017; 62
DH Wolpert (1082_CR18) 1992; 5
MI Fazal (1082_CR12) 2018; 105
JD Rodriguez (1082_CR21) 2010; 32
N Mohammed (1082_CR2) 2012; 82
A Kalousis (1082_CR20) 2007; 12
H Wu (1082_CR17) 2018; 102
References_xml – volume: 8
  start-page: 35
  year: 2018
  ident: CR24
  article-title: Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00035
  contributor:
    fullname: Bangert
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  end-page: 259
  ident: CR18
  article-title: Stacked generalization
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
  contributor:
    fullname: Wolpert
– volume: 62
  start-page: R179
  issue: 16
  year: 2017
  end-page: R206
  ident: CR7
  article-title: Radiogenomics and radiotherapy response modeling
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa7c55
  contributor:
    fullname: Ten Haken
– volume: 94
  start-page: 829
  issue: 9
  year: 2018
  end-page: 837
  ident: CR13
  article-title: Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity
  publication-title: Int J Radiat Biol
  doi: 10.1080/09553002.2018.1492756
  contributor:
    fullname: Tanha
– volume: 12
  start-page: 95
  issue: 1
  year: 2007
  end-page: 116
  ident: CR20
  article-title: Stability of feature selection algorithms: a study on high-dimensional spaces
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0040-8
  contributor:
    fullname: Hilario
– volume: 102
  start-page: 152
  year: 2018
  end-page: 156
  ident: CR11
  article-title: The future of radiology augmented with artificial intelligence: a strategy for success
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.03.019
  contributor:
    fullname: Liew
– volume: 76
  start-page: S123
  issue: 3 Suppl
  year: 2010
  end-page: S129
  ident: CR3
  article-title: Radiation dose-volume effects in radiation-induced rectal injury
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.03.078
  contributor:
    fullname: Deasy
– volume: 82
  start-page: 204
  issue: 1
  year: 2012
  end-page: 212
  ident: CR2
  article-title: Comparison of acute and late toxicities for three modern high-dose radiation treatment techniques for localized prostate cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.10.009
  contributor:
    fullname: Martinez
– volume: 76
  start-page: S116
  issue: 3 Suppl
  year: 2010
  end-page: S122
  ident: CR5
  article-title: Radiation dose-volume effects of the urinary bladder
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.02.090
  contributor:
    fullname: Shipley
– year: 2019
  ident: CR8
  article-title: Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer
  publication-title: Radiol Med
  doi: 10.1007/s11547-018-0966-4
  contributor:
    fullname: Mahdavi
– volume: 32
  start-page: 569
  issue: 3
  year: 2010
  end-page: 575
  ident: CR21
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.187
  contributor:
    fullname: Lozano
– volume: 122
  start-page: 185
  issue: 2
  year: 2017
  end-page: 191
  ident: CR23
  article-title: CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.07.007
  contributor:
    fullname: Steenbakkers
– volume: 32
  start-page: 512
  issue: 3
  year: 2016
  end-page: 520
  ident: CR27
  article-title: Outcome modeling techniques for prostate cancer radiotherapy: data, models, and validation
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2016.02.014
  contributor:
    fullname: El Naqa
– volume: 48
  start-page: 184
  issue: 1
  year: 2019
  ident: CR32
  article-title: Medical imaging technologists in radiomics era: an alice in wonderland problem
  publication-title: Iran J Pub Health
  contributor:
    fullname: Heydari
– volume: 38
  start-page: 223
  issue: 1
  year: 2011
  end-page: 230
  ident: CR33
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.06.048
  contributor:
    fullname: Jiang
– volume: 119
  start-page: 117
  issue: 1
  year: 2016
  end-page: 122
  ident: CR4
  article-title: Urinary bladder dose-response relationships for patient-reported genitourinary morbidity domains following prostate cancer radiotherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.01.013
  contributor:
    fullname: Deasy
– ident: CR25
– volume: 194
  start-page: 60
  issue: 1
  year: 2018
  end-page: 66
  ident: CR6
  article-title: Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity: case report and literature review
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-017-1207-9
  contributor:
    fullname: Schuster
– volume: 70
  start-page: 232
  issue: 2
  year: 2009
  end-page: 241
  ident: CR9
  article-title: Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.01.050
  contributor:
    fullname: Kuo
– volume: 99
  start-page: 1101
  issue: 5
  year: 2017
  end-page: 1110
  ident: CR22
  article-title: Geometric image biomarker changes of the parotid gland are associated with late xerostomia
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.08.003
  contributor:
    fullname: Sijtsema
– year: 2017
  ident: CR29
  article-title: Test-retest reproducibility and robustness analysis of recurrent glioblastoma MRI radiomics texture features
  publication-title: Iran J Radiol
  doi: 10.5812/iranjradiol.48035
  contributor:
    fullname: Rabi Mahdavi
– volume: 105
  start-page: 246
  year: 2018
  end-page: 250
  ident: CR12
  article-title: The past, present and future role of artificial intelligence in imaging
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.06.020
  contributor:
    fullname: Gupta
– year: 2019
  ident: CR14
  article-title: MRI radiomic analysis of IMRT-induced bladder wall changes in prostate cancer patients: a relationship with radiation dose and toxicity
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2018.12.002
  contributor:
    fullname: Mahdavi
– volume: 18
  start-page: e425
  issue: 6
  year: 2017
  end-page: e431
  ident: CR15
  article-title: Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2017.05.014
  contributor:
    fullname: Yamamoto
– volume: 87
  start-page: 932
  issue: 5
  year: 2013
  end-page: 938
  ident: CR1
  article-title: Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2013.07.041
  contributor:
    fullname: Sandler
– year: 2018
  ident: CR30
  article-title: Radiomic feature robustness and reproducibility in quantitative bone radiography: a study on radiologic parameter changes
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2018.06.004
  contributor:
    fullname: Tanha
– volume: 2
  start-page: 1636
  issue: 12
  year: 2016
  end-page: 1642
  ident: CR10
  article-title: The potential of radiomic-based phenotyping in precision medicine: a review
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2016.2631
  contributor:
    fullname: Aerts
– volume: 27
  start-page: 4498
  issue: 11
  year: 2017
  end-page: 4509
  ident: CR28
  article-title: The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4859-z
  contributor:
    fullname: Bitarafan-Rajabi
– volume: 102
  start-page: 1308
  issue: 4
  year: 2018
  end-page: 1318
  ident: CR17
  article-title: Early Prediction of acute xerostomia during radiation therapy for head and neck cancer based on texture analysis of daily CT
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.04.059
  contributor:
    fullname: Li
– volume: 45
  start-page: 192
  year: 2018
  end-page: 197
  ident: CR16
  article-title: Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2017.10.008
  contributor:
    fullname: Kazemnejad
– volume: 53
  start-page: 3735
  issue: 11
  year: 2009
  end-page: 3745
  ident: CR19
  article-title: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.04.009
  contributor:
    fullname: Kim
– volume: 15
  start-page: S9
  issue: 1
  year: 2019
  end-page: S11
  ident: CR31
  article-title: Magnetic resonance imaging radiomic feature analysis of radiation-induced femoral head changes in prostate cancer radiotherapy
  publication-title: J Cancer Res Ther
  contributor:
    fullname: Rahmani
– volume: 54
  start-page: 255
  issue: 3
  year: 2004
  end-page: 273
  ident: CR26
  article-title: Is combining classifiers with stacking better than selecting the best one?
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000015881.36452.6e
  contributor:
    fullname: Ženko
– volume: 76
  start-page: S123
  issue: 3 Suppl
  year: 2010
  ident: 1082_CR3
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.03.078
  contributor:
    fullname: JM Michalski
– volume: 48
  start-page: 184
  issue: 1
  year: 2019
  ident: 1082_CR32
  publication-title: Iran J Pub Health
  contributor:
    fullname: H Abdollahi
– volume: 62
  start-page: R179
  issue: 16
  year: 2017
  ident: 1082_CR7
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa7c55
  contributor:
    fullname: I El Naqa
– volume: 87
  start-page: 932
  issue: 5
  year: 2013
  ident: 1082_CR1
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2013.07.041
  contributor:
    fullname: JM Michalski
– volume: 122
  start-page: 185
  issue: 2
  year: 2017
  ident: 1082_CR23
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.07.007
  contributor:
    fullname: LV van Dijk
– volume: 54
  start-page: 255
  issue: 3
  year: 2004
  ident: 1082_CR26
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000015881.36452.6e
  contributor:
    fullname: S Džeroski
– volume: 102
  start-page: 1308
  issue: 4
  year: 2018
  ident: 1082_CR17
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.04.059
  contributor:
    fullname: H Wu
– volume: 2
  start-page: 1636
  issue: 12
  year: 2016
  ident: 1082_CR10
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2016.2631
  contributor:
    fullname: HJ Aerts
– volume: 53
  start-page: 3735
  issue: 11
  year: 2009
  ident: 1082_CR19
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.04.009
  contributor:
    fullname: J-H Kim
– volume: 99
  start-page: 1101
  issue: 5
  year: 2017
  ident: 1082_CR22
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.08.003
  contributor:
    fullname: LV van Dijk
– volume: 76
  start-page: S116
  issue: 3 Suppl
  year: 2010
  ident: 1082_CR5
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.02.090
  contributor:
    fullname: AN Viswanathan
– volume: 102
  start-page: 152
  year: 2018
  ident: 1082_CR11
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.03.019
  contributor:
    fullname: C Liew
– volume: 12
  start-page: 95
  issue: 1
  year: 2007
  ident: 1082_CR20
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0040-8
  contributor:
    fullname: A Kalousis
– volume: 32
  start-page: 512
  issue: 3
  year: 2016
  ident: 1082_CR27
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2016.02.014
  contributor:
    fullname: J Coates
– year: 2018
  ident: 1082_CR30
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2018.06.004
  contributor:
    fullname: E Saeedi
– year: 2019
  ident: 1082_CR8
  publication-title: Radiol Med
  doi: 10.1007/s11547-018-0966-4
  contributor:
    fullname: H Abdollahi
– volume: 119
  start-page: 117
  issue: 1
  year: 2016
  ident: 1082_CR4
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.01.013
  contributor:
    fullname: M Thor
– year: 2019
  ident: 1082_CR14
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2018.12.002
  contributor:
    fullname: H Abdollahi
– volume: 194
  start-page: 60
  issue: 1
  year: 2018
  ident: 1082_CR6
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-017-1207-9
  contributor:
    fullname: A Fahrig
– volume: 94
  start-page: 829
  issue: 9
  year: 2018
  ident: 1082_CR13
  publication-title: Int J Radiat Biol
  doi: 10.1080/09553002.2018.1492756
  contributor:
    fullname: H Abdollahi
– volume: 8
  start-page: 35
  year: 2018
  ident: 1082_CR24
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00035
  contributor:
    fullname: HS Gabrys
– ident: 1082_CR25
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 1082_CR18
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
  contributor:
    fullname: DH Wolpert
– volume: 105
  start-page: 246
  year: 2018
  ident: 1082_CR12
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.06.020
  contributor:
    fullname: MI Fazal
– volume: 27
  start-page: 4498
  issue: 11
  year: 2017
  ident: 1082_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4859-z
  contributor:
    fullname: I Shiri
– year: 2017
  ident: 1082_CR29
  publication-title: Iran J Radiol
  doi: 10.5812/iranjradiol.48035
  contributor:
    fullname: I Shiri
– volume: 38
  start-page: 223
  issue: 1
  year: 2011
  ident: 1082_CR33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.06.048
  contributor:
    fullname: G Wang
– volume: 32
  start-page: 569
  issue: 3
  year: 2010
  ident: 1082_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.187
  contributor:
    fullname: JD Rodriguez
– volume: 70
  start-page: 232
  issue: 2
  year: 2009
  ident: 1082_CR9
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.01.050
  contributor:
    fullname: AM Rutman
– volume: 18
  start-page: e425
  issue: 6
  year: 2017
  ident: 1082_CR15
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2017.05.014
  contributor:
    fullname: A Moran
– volume: 15
  start-page: S9
  issue: 1
  year: 2019
  ident: 1082_CR31
  publication-title: J Cancer Res Ther
  doi: 10.4103/jcrt.JCRT_873_17
  contributor:
    fullname: H Abdollahi
– volume: 82
  start-page: 204
  issue: 1
  year: 2012
  ident: 1082_CR2
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.10.009
  contributor:
    fullname: N Mohammed
– volume: 45
  start-page: 192
  year: 2018
  ident: 1082_CR16
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2017.10.008
  contributor:
    fullname: H Abdollahi
SSID ssj0040109
Score 2.4933631
Snippet Purpose Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop...
Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction...
PurposeRadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop...
PURPOSERadiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 87
SubjectTerms Aged
Algorithms
Area Under Curve
Bladder
Computed tomography
Cystitis - etiology
Diagnostic Radiology
Feature extraction
Goodness of fit
Humans
Imaging
Interventional Radiology
Logistic Models
Male
Mathematical models
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Modelling
Neuroradiology
Oncology Imaging
Parameters
Performance prediction
Proctitis - etiology
Prospective Studies
Prostate cancer
Prostatic Neoplasms - radiotherapy
Radiation effects
Radiation Injuries - diagnostic imaging
Radiation Injuries - etiology
Radiation therapy
Radiation Tolerance
Radiology
Radiotherapy Dosage
Rectum - diagnostic imaging
Rectum - radiation effects
ROC Curve
Stacking
Tomography, X-Ray Computed - methods
Toxicity
Ultrasound
Urinary Bladder - diagnostic imaging
Urinary Bladder - radiation effects
Title CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm
URI https://link.springer.com/article/10.1007/s11547-019-01082-0
https://www.ncbi.nlm.nih.gov/pubmed/31552555
https://www.proquest.com/docview/2332363466
https://search.proquest.com/docview/2297125212
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAX9iVsMhI3CEpjN8uxqlgEglMrwSlyHAcqaIJCKlHExzPjJFSocOAUx0sSe8aeF89igGMhnFQG0rfDUHu20FzacRhITKVCJb4jlDm15PbOuxqI6_vO_dSP2xi7NxpJs1BPfd1Q2JOVJJn3oNyy8T99oXY8XehePtycNwuwIG1PFY2R2wEu0LWvzO9P-SmPZkDmjILUyJ2LFeg33juVucnz2biMz9THbDDH_3RpFZZrHMq6FeOswZzO1mHxtta0b8Bnr8-GI3OEERuRCU_xxsocs2gPQrOCQhoQTTHzHZuUE_ZaUGOTN8zwLje-SkwRWxWmQe3sNWHxhGGhol16VujHyhQ3Y_LlMS-G5dNoEwYX5_3elV2f1GArhFOlLZR0HKSuCF03SHXoSZ_HUnudtp_yVDrthHPeThA8qERRiLEwFSkZ16KQjGMEMVvQyvJM7wBLdNzRiGKwmHSygXQxLZIQL4GQiltw0tAreq0CckTT0Ms0oBEOaGQGNHIs2G9IGtWT8y1yOXe5x4XnWXD0XYzTinQlMtP5GOu4oY_YD_nLgu2KFb5fxylsHXbCgtOGrtOH__0tu_-rvgdLLv3bm-2efWiVxVgfIAAq48Oa4Q9hfuB2vwAnLfws
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EQb2Ib-NzBW8aSLPbPI5FLPVRTy14C5vNRgs2KWkKFvzxzmwSi1QPnpLsK8l-m53Jzsy3AFdCOKkMpG-HofZsobm04zCQeJYKlfiOUGbXkv6z1xuKh5f2Sx0UNm283RuTpJmpF8FuKO3JTZL8e1Bw2fijvkb86sSYP3Q7zfwryNhTkTFyO8D5uQ6V-b2Nn-JoScdcso8asdPdhq1aX2SdCuAdWNHZLqz3a4v4HnzeDthobLYaYmNytSmmrMwxidYKNCuIeoD6HhM_sEo5Z5OCKpu0UYZXuYkpYorgL0yFOihrzuI5w0xFq-ms0K-Vy2zG5PtrXozKt_E-DLt3g9ueXe-oYCtUe0pbKOk4iIIIXTdIdehJn8dSe-2Wn_JUOq2Ec95KUMirRBEVWJiKlJxgUZjFMSobB7Ca5Zk-ApbouK1R28Bssp0G0sVzkYR4CIRU3ILrpmOjSUWcES0okgmGCGGIDAyRY8Fp0_dR_RFNI5dzl3tceJ4Fl9_ZOPzJpiEznc-wjBv6qKOhALbgsMLs-3ac6OXwJSy4aUBcNP73sxz_r_gFbPQG_afo6f758QQ2XfofN0s0p7BaFjN9hkpLGZ-bMfoF81XiKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFD4xM1l8Md7Fa018UyKjHZdHoy7e44NLfCOlFF3iYGEscYk_3nMKOI364BOlpQX6Qb_TnksBDoVwUhlI3w5D7dlCc2nHYSAxlQqV-I5QZteSu3vvsi-un7pPX7z4jbV7o5KsfBooSlNWnoyS9GTm-IbMTyaTZOuDJGbjpH0eqYiTUV_fPW3GYkGKnyowI7cDHKtrt5nf2_hOTT_kzR-6UkNBvSVYrGVHdlqBvQxzOluB9l2tHV-F97NHNhiabYfYkMxuijErc8yidQPNCgpDQDhg5htWKadsVFBlkzfI8Cw3_kVM0adQmAq1g9aUxVOGhYpW1lmhnyvz2YzJ1-e8GJQvwzXo9y4ezy7tencFW6EIVNpCScdBREToukGqQ0_6PJba63b8lKfS6SSc806ChK8SRWHBwlSkZBCLxBbHKHisQyvLM70JLNFxV6PkgcWkRw2ki2mRhHgIhFTcgqOmY6NRFUQjmoVLJhgihCEyMESOBTtN30f1DzWOXM5d7nHheRYcfBbjr0D6DZnpfILXuKGP8hqSsQUbFWaft-MUag5fwoLjBsRZ438_y9b_Lt-H9sN5L7q9ur_ZhgWXpuZmtWYHWmUx0bsov5TxnvlEPwAqGuZt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT+imaging+markers+to+improve+radiation+toxicity+prediction+in+prostate+cancer+radiotherapy+by+stacking+regression+algorithm&rft.jtitle=Radiologia+medica&rft.au=Mostafaei%2C+Shayan&rft.au=Abdollahi%2C+Hamid&rft.au=Kazempour+Dehkordi%2C+Shiva&rft.au=Shiri%2C+Isaac&rft.date=2020-01-01&rft.issn=0033-8362&rft.eissn=1826-6983&rft.volume=125&rft.issue=1&rft.spage=87&rft.epage=97&rft_id=info:doi/10.1007%2Fs11547-019-01082-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11547_019_01082_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8362&client=summon