A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS...
Saved in:
Published in | The Plant cell Vol. 29; no. 5; pp. 1073 - 1087 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-4651 1532-298X 1532-298X |
DOI | 10.1105/tpc.16.00863 |
Cover
Loading…
Abstract | Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in
We found that WUS-positive (WUS
) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the
locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate
expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of
. |
---|---|
AbstractList | The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and HD-ZIP III transcription factors. Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana. We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS. Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS. The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and HD-ZIP III transcription factors. Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana . We found that WUS-positive (WUS + ) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS . Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in We found that WUS-positive (WUS ) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of . |
Author | Zhang, Tian-Qi Lian, Heng Wang, Jia-Wei Zhou, Chuan-Miao Xu, Lin Jiao, Yuling |
Author_xml | – sequence: 1 givenname: Tian-Qi orcidid: 0000-0001-8000-4770 surname: Zhang fullname: Zhang, Tian-Qi organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China, University of Chinese Academy of Sciences, Shanghai 200032, P.R. China – sequence: 2 givenname: Heng orcidid: 0000-0003-0522-7290 surname: Lian fullname: Lian, Heng organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China – sequence: 3 givenname: Chuan-Miao surname: Zhou fullname: Zhou, Chuan-Miao organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China – sequence: 4 givenname: Lin orcidid: 0000-0003-4718-1286 surname: Xu fullname: Xu, Lin organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China – sequence: 5 givenname: Yuling orcidid: 0000-0002-1189-1676 surname: Jiao fullname: Jiao, Yuling organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China, National Center for Plant Gene Research, Beijing 100101, P.R. China – sequence: 6 givenname: Jia-Wei orcidid: 0000-0003-3885-6296 surname: Wang fullname: Wang, Jia-Wei organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China, ShanghaiTech University, Shanghai 200031, P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28389585$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYO02A9981kCvvjgrDczkzR5EZal2sK2SrdF38JMcrNNmU3WTGbF_97pbi1aBJ9u4P5yOOeeI7IXYkBCXjGYMAb8fV6bCRMTACmqZ-SQ8aosSiW_7Y1vqKGoBWcH5Kjv7wCAnTD1nByUspKKS35Irqb0-kcsFhnX9CJa7KiLiVqkl3ET6dRkv2myj4FGR7_eLGZnp3Nqh-TDkn7pmpDp4jbGTK9wiQHTFn1B9l3T9fjyYR6Tm4-n17OzYv750_lsOi9MXbNc1NIpCdY1XLnKojACTeOMAWytVbYFi5WCilfMnTjZ4pirVaxsDFohlODVMfmw010P7QqtwZBT0-l18qsm_dSx8frvTfC3ehk3mtdCQClGgbcPAil-H7DPeuV7g92YC-PQa6YYE6zmAP9HpeSKMyXvbb15gt7FIYXxEroEEArETvD1n-YfXf9uZgTe7QCTYt8ndI8IA31fvB6L10zobfEjXj7Bjc_bOsbovvv3p192krDA |
CitedBy_id | crossref_primary_10_1016_j_pbi_2022_102265 crossref_primary_10_1007_s42994_022_00093_2 crossref_primary_10_1016_j_scienta_2024_113897 crossref_primary_10_1111_jse_13144 crossref_primary_10_1007_s00018_018_2980_z crossref_primary_10_1016_j_pbi_2022_102262 crossref_primary_10_3390_biom10091222 crossref_primary_10_1016_j_devcel_2024_11_009 crossref_primary_10_1016_j_scienta_2021_110664 crossref_primary_10_3390_ijms241311190 crossref_primary_10_1038_s41598_019_50962_y crossref_primary_10_1146_annurev_arplant_042817_040549 crossref_primary_10_3390_ijms20164065 crossref_primary_10_1016_j_plantsci_2019_110323 crossref_primary_10_1093_jxb_ery132 crossref_primary_10_1186_s13619_022_00140_9 crossref_primary_10_1007_s00299_022_02932_4 crossref_primary_10_1093_pcp_pcx187 crossref_primary_10_1186_s12870_023_04617_w crossref_primary_10_3390_agriculture15010029 crossref_primary_10_1093_plphys_kiae474 crossref_primary_10_1093_jxb_erac281 crossref_primary_10_3390_ijms21155309 crossref_primary_10_1007_s11103_018_0786_x crossref_primary_10_1007_s00344_023_11025_9 crossref_primary_10_1016_j_devcel_2022_07_017 crossref_primary_10_1016_j_tplants_2018_10_012 crossref_primary_10_1111_tpj_13823 crossref_primary_10_3390_ijms231810595 crossref_primary_10_1016_j_tplants_2022_03_009 crossref_primary_10_1093_hr_uhad198 crossref_primary_10_1016_j_devcel_2021_02_021 crossref_primary_10_1093_pcp_pcx172 crossref_primary_10_1111_nph_19637 crossref_primary_10_3390_ijms21228451 crossref_primary_10_1093_jxb_erab421 crossref_primary_10_1007_s00299_020_02508_0 crossref_primary_10_1126_sciadv_abg8466 crossref_primary_10_1186_s13007_025_01352_1 crossref_primary_10_1038_s41477_022_01110_4 crossref_primary_10_1038_s41467_019_09386_5 crossref_primary_10_3389_fgene_2020_00766 crossref_primary_10_1016_j_plantsci_2017_10_009 crossref_primary_10_1093_plphys_kiab510 crossref_primary_10_3390_ijms23052632 crossref_primary_10_1093_plcell_koad255 crossref_primary_10_1016_j_indcrop_2021_113817 crossref_primary_10_1093_plcell_koad257 crossref_primary_10_1016_j_pbi_2023_102415 crossref_primary_10_1038_s41477_021_01016_7 crossref_primary_10_1186_s12870_022_03756_w crossref_primary_10_1371_journal_pbio_3002878 crossref_primary_10_1093_hr_uhad291 crossref_primary_10_3390_ijms23158786 crossref_primary_10_34133_2021_9890319 crossref_primary_10_1038_s41437_024_00721_1 crossref_primary_10_1016_j_devcel_2020_07_003 crossref_primary_10_1038_s41477_023_01536_4 crossref_primary_10_1134_S002689332002017X crossref_primary_10_1093_plphys_kiad125 crossref_primary_10_1016_j_molp_2023_12_014 crossref_primary_10_1093_plphys_kiae042 crossref_primary_10_1111_ppl_70023 crossref_primary_10_1146_annurev_genet_071719_020439 crossref_primary_10_1016_j_tplants_2017_08_007 crossref_primary_10_48130_opr_0024_0024 crossref_primary_10_3390_plants9070897 crossref_primary_10_1007_s00497_024_00510_0 crossref_primary_10_1186_s42397_020_0045_y crossref_primary_10_1111_pce_13898 crossref_primary_10_3390_genes10121034 crossref_primary_10_1016_j_plaphy_2023_107983 crossref_primary_10_1093_pcp_pcz202 crossref_primary_10_3389_fpls_2021_641257 crossref_primary_10_1016_j_molp_2024_03_008 crossref_primary_10_1016_j_pbi_2018_12_002 crossref_primary_10_1016_j_plaphy_2021_01_034 crossref_primary_10_1093_jxb_erz026 crossref_primary_10_1111_nph_19679 crossref_primary_10_3389_fgene_2022_943025 crossref_primary_10_3390_f11121367 crossref_primary_10_1007_s00425_022_03933_z crossref_primary_10_1007_s11103_023_01360_6 crossref_primary_10_3389_fpls_2019_00077 crossref_primary_10_1093_jxb_erae264 crossref_primary_10_1126_sciadv_adg6983 crossref_primary_10_1016_j_bbagen_2024_130749 crossref_primary_10_1093_hr_uhab014 crossref_primary_10_1093_jxb_erz395 crossref_primary_10_1111_nph_17139 crossref_primary_10_1093_hr_uhab018 crossref_primary_10_1093_pcp_pcy248 crossref_primary_10_1146_annurev_arplant_050718_100434 crossref_primary_10_3389_fgeed_2022_823486 crossref_primary_10_1007_s00344_025_11647_1 crossref_primary_10_1093_pcp_pcaa083 crossref_primary_10_3390_ijms19124047 crossref_primary_10_1093_jxb_erae054 crossref_primary_10_1111_jipb_13197 crossref_primary_10_1016_j_cpb_2025_100471 crossref_primary_10_3389_fpls_2022_894208 crossref_primary_10_3390_genes14081638 crossref_primary_10_3390_plants10071458 crossref_primary_10_1093_pcp_pcy010 crossref_primary_10_3390_genes12030438 crossref_primary_10_1093_pcp_pcy013 crossref_primary_10_1111_tpj_17002 crossref_primary_10_1016_j_scienta_2024_113885 crossref_primary_10_1111_nph_17594 crossref_primary_10_1242_dev_163907 crossref_primary_10_3390_ijms22168554 crossref_primary_10_1016_j_celrep_2021_109980 crossref_primary_10_1016_j_devcel_2021_12_019 crossref_primary_10_1111_nph_19412 crossref_primary_10_1134_S1021443721010106 crossref_primary_10_1007_s11240_020_01973_5 crossref_primary_10_1038_s41438_021_00558_3 crossref_primary_10_1111_nph_20409 crossref_primary_10_1016_j_tplants_2018_05_008 crossref_primary_10_1016_j_jplph_2021_153405 crossref_primary_10_1016_j_plantsci_2018_02_018 crossref_primary_10_1038_s41477_017_0095_4 crossref_primary_10_3390_ijms24054392 crossref_primary_10_1093_plphys_kiae016 crossref_primary_10_1038_s41598_021_88834_z crossref_primary_10_1111_tpj_16487 crossref_primary_10_1007_s00497_018_00359_0 crossref_primary_10_1038_s41477_022_01295_8 crossref_primary_10_1093_pnasnexus_pgad002 crossref_primary_10_1007_s00018_019_03407_8 crossref_primary_10_1242_dev_202870 crossref_primary_10_1111_tpj_13895 crossref_primary_10_1134_S002689332102031X crossref_primary_10_3389_fpls_2022_926752 crossref_primary_10_1038_s41598_022_25684_3 crossref_primary_10_1093_pcp_pcx207 crossref_primary_10_1038_s41467_018_03921_6 crossref_primary_10_3389_fpls_2020_01084 crossref_primary_10_1242_dev_195347 crossref_primary_10_3389_fpls_2022_970342 crossref_primary_10_1093_plphys_kiad309 crossref_primary_10_1016_j_indcrop_2020_112653 crossref_primary_10_1016_j_plantsci_2024_112133 crossref_primary_10_1093_plcell_koac218 crossref_primary_10_1093_plphys_kiac212 crossref_primary_10_3389_fpls_2020_00317 crossref_primary_10_1093_pcp_pcx117 crossref_primary_10_1016_j_molp_2019_04_008 crossref_primary_10_3390_genes12020265 crossref_primary_10_3390_plants9101261 crossref_primary_10_1101_gad_314096_118 crossref_primary_10_1242_dev_184895 crossref_primary_10_1016_j_molp_2019_04_004 crossref_primary_10_1016_j_pbi_2017_09_001 crossref_primary_10_1007_s11240_019_01648_w crossref_primary_10_1007_s12374_020_09259_1 crossref_primary_10_3389_fpls_2018_01443 crossref_primary_10_1038_s41467_021_22352_4 crossref_primary_10_3390_ijms232415950 crossref_primary_10_3390_f15010004 crossref_primary_10_3390_ijms25115657 crossref_primary_10_1093_plphys_kiad652 crossref_primary_10_3390_ijms20092079 crossref_primary_10_3390_plants9101378 crossref_primary_10_1073_pnas_2026806118 crossref_primary_10_1007_s13353_023_00800_9 crossref_primary_10_1016_j_pbi_2023_102377 crossref_primary_10_1016_j_pbi_2023_102378 crossref_primary_10_1016_j_pbi_2021_102111 crossref_primary_10_1016_j_pbi_2018_06_005 crossref_primary_10_3390_biom14030381 crossref_primary_10_1016_j_plaphy_2024_109071 crossref_primary_10_1111_tpj_15703 crossref_primary_10_1016_j_plaphy_2022_06_026 crossref_primary_10_1080_15592324_2019_1618180 crossref_primary_10_1038_s42003_020_01274_9 crossref_primary_10_3389_fpls_2024_1259925 crossref_primary_10_1016_j_envexpbot_2024_106025 crossref_primary_10_1186_s12870_024_05389_7 crossref_primary_10_1016_j_xplc_2024_100941 crossref_primary_10_1038_s42003_019_0646_5 crossref_primary_10_1093_plcell_koae312 crossref_primary_10_14348_molcells_2021_0160 crossref_primary_10_1007_s42994_020_00026_x crossref_primary_10_1016_j_pbi_2019_04_006 crossref_primary_10_1111_pce_14906 crossref_primary_10_1371_journal_pone_0279627 crossref_primary_10_1111_nph_18196 crossref_primary_10_1007_s11427_024_2581_2 crossref_primary_10_1242_dev_196618 crossref_primary_10_1007_s00299_023_03071_0 crossref_primary_10_1016_j_sajb_2020_03_010 crossref_primary_10_1038_s41477_018_0104_2 crossref_primary_10_1007_s00299_020_02511_5 crossref_primary_10_1080_15592294_2021_1872927 crossref_primary_10_1038_s41477_021_01015_8 crossref_primary_10_1242_dev_191734 crossref_primary_10_1038_s41477_018_0290_y crossref_primary_10_3390_plants11020178 crossref_primary_10_1016_j_molp_2024_01_009 crossref_primary_10_3389_fpls_2024_1474431 crossref_primary_10_1186_s12864_024_11144_x crossref_primary_10_3389_fpls_2023_1239133 crossref_primary_10_1007_s11240_019_01680_w crossref_primary_10_1093_pcp_pcy066 crossref_primary_10_1016_j_pbi_2019_10_004 crossref_primary_10_1093_plphys_kiad345 crossref_primary_10_1093_plphys_kiae300 crossref_primary_10_1093_plcell_koad327 crossref_primary_10_1111_nph_18291 crossref_primary_10_1073_pnas_2310163120 crossref_primary_10_1016_j_devcel_2024_10_023 crossref_primary_10_1007_s00299_020_02633_w crossref_primary_10_48130_mpb_0024_0026 crossref_primary_10_1111_nph_15106 crossref_primary_10_1007_s00709_024_01984_5 crossref_primary_10_1111_nph_14814 crossref_primary_10_1016_j_csbj_2022_06_033 crossref_primary_10_2139_ssrn_3917165 crossref_primary_10_3389_fpls_2022_1018559 crossref_primary_10_1093_pcp_pcab101 crossref_primary_10_1038_s42003_019_0368_8 crossref_primary_10_1038_s42003_022_03308_w crossref_primary_10_3389_fpls_2022_898786 crossref_primary_10_1111_jipb_12818 crossref_primary_10_3389_fpls_2022_891228 crossref_primary_10_1080_11263504_2020_1762793 crossref_primary_10_1007_s10142_019_00701_3 crossref_primary_10_1111_pce_13494 crossref_primary_10_1242_dev_149344 crossref_primary_10_1093_hr_uhac047 crossref_primary_10_3390_horticulturae10111138 |
ContentType | Journal Article |
Copyright | 2017 American Society of Plant Biologists. All rights reserved. Copyright American Society of Plant Biologists May 2017 2017 American Society of Plant Biologists. All rights reserved. 2017 |
Copyright_xml | – notice: 2017 American Society of Plant Biologists. All rights reserved. – notice: Copyright American Society of Plant Biologists May 2017 – notice: 2017 American Society of Plant Biologists. All rights reserved. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7QO 7TM 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1105/tpc.16.00863 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1087 |
ExternalDocumentID | PMC5466026 28389585 10_1105_tpc_16_00863 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAWDT AAXTN AAYJJ AAYXX ABBHK ABDFA ABEJV ABGNP ABIME ABJNI ABMNT ABPIB ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ABZEO ACBTR ACFRR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ACVCV ACZBC ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AEUYN AFAZZ AFFNX AFFZL AFGWE AFKRA AFRAH AFYAG AGCDD AGMDO AGORE AGUYK AHGBF AHMBA AHXOZ AICQM AJBYB AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD APJGH AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CITATION CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM FYUFA GNUQQ GTFYD GX1 H13 HCIFZ HGD HMCUK HTVGU H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2P M2Q M7P MV1 MVM N9A NEJ NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TCN TN5 TR2 U5U UBC UKHRP UKR W8F WH7 WHG WOQ XOL XSW Y6R YBU YR2 YSK ZCA ZCG ZCN ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 4T- 7QO 7TM 8FD FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c441t-48f980dfa59f3de6c6ecafcc0ebdd9db0de3903531f7f8be532b912aced669653 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 13:55:37 EDT 2025 Thu Jul 10 19:27:21 EDT 2025 Thu Jul 10 23:18:53 EDT 2025 Sat Aug 16 08:00:53 EDT 2025 Mon Jul 21 06:02:34 EDT 2025 Tue Jul 01 03:49:46 EDT 2025 Thu Apr 24 23:04:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2017 American Society of Plant Biologists. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-48f980dfa59f3de6c6ecafcc0ebdd9db0de3903531f7f8be532b912aced669653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Jia-Wei Wang (jwwang@sibs.ac.cn). www.plantcell.org/cgi/doi/10.1105/tpc.16.00863 |
ORCID | 0000-0001-8000-4770 0000-0003-4718-1286 0000-0003-0522-7290 0000-0002-1189-1676 0000-0003-3885-6296 |
OpenAccessLink | http://www.plantcell.org/content/plantcell/29/5/1073.full.pdf |
PMID | 28389585 |
PQID | 2006906500 |
PQPubID | 37014 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5466026 proquest_miscellaneous_1911614500 proquest_miscellaneous_1885951985 proquest_journals_2006906500 pubmed_primary_28389585 crossref_primary_10_1105_tpc_16_00863 crossref_citationtrail_10_1105_tpc_16_00863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Rockville |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2017 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | 25449722 - Curr Opin Plant Biol. 2015 Feb;23:15-24 18502977 - Plant Physiol. 2008 Jul;147(3):1380-95 20410882 - Nature. 2010 May 20;465(7296):316-21 10761929 - Cell. 2000 Mar 17;100(6):635-44 24507500 - Curr Opin Plant Biol. 2014 Feb;17:96-102 18037673 - Plant Cell Physiol. 2008 Jan;49(1):47-57 19703399 - Cell. 2009 Aug 21;138(4):738-49 10069079 - Plant J. 1998 Dec;16(6):735-43 17585298 - Nat Protoc. 2007;2(7):1565-72 23124326 - Plant Physiol. 2013 Jan;161(1):240-51 22345559 - Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7 24850849 - Plant Cell. 2014 May 21;26(5):2055-2067 23549482 - Mol Syst Biol. 2013;9:654 21642989 - Nat Genet. 2011 Jun 05;43(7):715-9 8538741 - Nature. 1996 Jan 4;379(6560):66-9 15980263 - Plant Cell. 2005 Aug;17(8):2271-80 27212234 - Cell. 2016 Jun 16;165(7):1721-33 23181633 - Plant J. 2013 Mar;73(5):798-813 24576426 - Dev Cell. 2014 Feb 24;28(4):438-49 24755933 - Nat Rev Mol Cell Biol. 2014 May;15(5):301-12 27143753 - Development. 2016 May 1;143(9):1442-51 17581762 - Planta. 2007 Oct;226(5):1183-94 21876682 - PLoS Genet. 2011 Aug;7(8):e1002243 26130755 - Development. 2015 Jul 1;142(13):2237-49 25246576 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14619-24 20705180 - Curr Top Dev Biol. 2010;91:103-40 21907610 - Trends Plant Sci. 2011 Nov;16(11):597-606 27111035 - Nat Genet. 2016 Jun;48(6):694-9 24512705 - Curr Top Dev Biol. 2014;108:35-69 12070095 - Development. 2002 Jul;129(13):3207-17 23918970 - J Exp Bot. 2013 Aug;64(11):3397-410 20018401 - Eur J Cell Biol. 2010 Feb-Mar;89(2-3):279-84 26375006 - Nature. 2015 Nov 12;527(7577):192-7 25449732 - Curr Opin Plant Biol. 2015 Feb;23:91-7 12417700 - Plant Cell. 2002 Nov;14(11):2771-85 17287810 - Nature. 2007 Feb 8;445(7128):652-5 16372013 - Nature. 2005 Dec 22;438(7071):1172-5 19717465 - Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16529-34 18980654 - Plant J. 2009 Feb;57(4):626-44 14561401 - Curr Biol. 2003 Oct 14;13(20):1768-74 13486467 - Symp Soc Exp Biol. 1957;11:118-30 24482483 - Science. 2014 Jan 31;343(6170):1248559 26956505 - J Exp Bot. 2016 Mar;67(6):1639-48 22927830 - PLoS Genet. 2012 Aug;8(8):e1002911 23355633 - Plant Physiol. 2013 Mar;161(3):1066-75 18539115 - Dev Cell. 2008 Jun;14(6):867-76 21979915 - Genes Dev. 2011 Oct 1;25(19):2025-30 18295584 - Cell. 2008 Feb 22;132(4):697-710 21487097 - Plant Cell. 2011 Apr;23(4):1512-22 18262459 - Trends Plant Sci. 2008 Feb;13(2):85-92 20190735 - Nature. 2010 Mar 18;464(7287):423-6 22404469 - Annu Rev Plant Biol. 2012;63:615-36 17122068 - Plant Cell. 2006 Nov;18(11):2946-57 26872130 - PLoS One. 2016 Feb 12;11(2):e0147830 24850851 - Plant Cell. 2014 May 21;26(5):2068-2079 25605778 - Development. 2015 Feb 1;142(3):420-30 25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30 22578006 - Plant J. 2012 Oct;72(1):31-42 22028461 - Plant Cell. 2011 Oct;23(10):3654-70 9052779 - Nature. 1997 Mar 6;386(6620):44-51 23543845 - Elife. 2013 Mar 26;2:e00269 23473600 - Mol Cell. 2013 Mar 7;49(5):808-24 25219852 - Nature. 2014 Nov 27;515(7528):587-90 11159318 - Bioinformatics. 2000 Nov;16(11):1046-7 17827180 - Development. 2007 Oct;134(19):3539-48 15598805 - Plant Cell. 2005 Jan;17(1):61-76 21236679 - Trends Cell Biol. 2011 Apr;21(4):212-8 10878255 - FEBS Lett. 2000 Jun 30;476(1-2):78-83 19961843 - Dev Biol. 2010 May 1;341(1):95-113 16227453 - Plant Cell. 2005 Nov;17(11):3007-18 12857820 - Plant Physiol. 2003 Jul;132(3):1382-90 27398935 - PLoS Genet. 2016 Jul 11;12 (7):e1006168 21074716 - Dev Cell. 2010 Nov 16;19(5):651-61 11069700 - Plant J. 2000 Oct;24(2):265-73 11169198 - Plant J. 2001 Jan;25(2):223-36 15456723 - Development. 2004 Nov;131(21):5263-76 18463635 - Nature. 2008 Jun 19;453(7198):1094-7 16916944 - Mol Biol Evol. 2006 Nov;23(11):2142-60 27111034 - Nat Genet. 2016 Jun;48(6):687-93 25649435 - Plant Cell. 2015 Feb;27(2):349-60 26011610 - PLoS One. 2015 May 26;10(5):e0126006 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – reference: 23473600 - Mol Cell. 2013 Mar 7;49(5):808-24 – reference: 14561401 - Curr Biol. 2003 Oct 14;13(20):1768-74 – reference: 22028461 - Plant Cell. 2011 Oct;23(10):3654-70 – reference: 25649435 - Plant Cell. 2015 Feb;27(2):349-60 – reference: 25219852 - Nature. 2014 Nov 27;515(7528):587-90 – reference: 11169198 - Plant J. 2001 Jan;25(2):223-36 – reference: 23355633 - Plant Physiol. 2013 Mar;161(3):1066-75 – reference: 26130755 - Development. 2015 Jul 1;142(13):2237-49 – reference: 17585298 - Nat Protoc. 2007;2(7):1565-72 – reference: 25605778 - Development. 2015 Feb 1;142(3):420-30 – reference: 24512705 - Curr Top Dev Biol. 2014;108:35-69 – reference: 26011610 - PLoS One. 2015 May 26;10(5):e0126006 – reference: 23543845 - Elife. 2013 Mar 26;2:e00269 – reference: 25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30 – reference: 20018401 - Eur J Cell Biol. 2010 Feb-Mar;89(2-3):279-84 – reference: 16916944 - Mol Biol Evol. 2006 Nov;23(11):2142-60 – reference: 22404469 - Annu Rev Plant Biol. 2012;63:615-36 – reference: 18037673 - Plant Cell Physiol. 2008 Jan;49(1):47-57 – reference: 21074716 - Dev Cell. 2010 Nov 16;19(5):651-61 – reference: 25449722 - Curr Opin Plant Biol. 2015 Feb;23:15-24 – reference: 12417700 - Plant Cell. 2002 Nov;14(11):2771-85 – reference: 27212234 - Cell. 2016 Jun 16;165(7):1721-33 – reference: 23124326 - Plant Physiol. 2013 Jan;161(1):240-51 – reference: 19703399 - Cell. 2009 Aug 21;138(4):738-49 – reference: 19961843 - Dev Biol. 2010 May 1;341(1):95-113 – reference: 24850851 - Plant Cell. 2014 May 21;26(5):2068-2079 – reference: 20705180 - Curr Top Dev Biol. 2010;91:103-40 – reference: 15598805 - Plant Cell. 2005 Jan;17(1):61-76 – reference: 16227453 - Plant Cell. 2005 Nov;17(11):3007-18 – reference: 17287810 - Nature. 2007 Feb 8;445(7128):652-5 – reference: 25246576 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14619-24 – reference: 23918970 - J Exp Bot. 2013 Aug;64(11):3397-410 – reference: 27398935 - PLoS Genet. 2016 Jul 11;12 (7):e1006168 – reference: 26956505 - J Exp Bot. 2016 Mar;67(6):1639-48 – reference: 24755933 - Nat Rev Mol Cell Biol. 2014 May;15(5):301-12 – reference: 24576426 - Dev Cell. 2014 Feb 24;28(4):438-49 – reference: 21876682 - PLoS Genet. 2011 Aug;7(8):e1002243 – reference: 24507500 - Curr Opin Plant Biol. 2014 Feb;17:96-102 – reference: 27111034 - Nat Genet. 2016 Jun;48(6):687-93 – reference: 17827180 - Development. 2007 Oct;134(19):3539-48 – reference: 13486467 - Symp Soc Exp Biol. 1957;11:118-30 – reference: 21487097 - Plant Cell. 2011 Apr;23(4):1512-22 – reference: 15980263 - Plant Cell. 2005 Aug;17(8):2271-80 – reference: 11159318 - Bioinformatics. 2000 Nov;16(11):1046-7 – reference: 23549482 - Mol Syst Biol. 2013;9:654 – reference: 10878255 - FEBS Lett. 2000 Jun 30;476(1-2):78-83 – reference: 17581762 - Planta. 2007 Oct;226(5):1183-94 – reference: 27143753 - Development. 2016 May 1;143(9):1442-51 – reference: 18262459 - Trends Plant Sci. 2008 Feb;13(2):85-92 – reference: 25449732 - Curr Opin Plant Biol. 2015 Feb;23:91-7 – reference: 17122068 - Plant Cell. 2006 Nov;18(11):2946-57 – reference: 26375006 - Nature. 2015 Nov 12;527(7577):192-7 – reference: 11069700 - Plant J. 2000 Oct;24(2):265-73 – reference: 26872130 - PLoS One. 2016 Feb 12;11(2):e0147830 – reference: 22345559 - Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7 – reference: 19717465 - Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16529-34 – reference: 18463635 - Nature. 2008 Jun 19;453(7198):1094-7 – reference: 21907610 - Trends Plant Sci. 2011 Nov;16(11):597-606 – reference: 24482483 - Science. 2014 Jan 31;343(6170):1248559 – reference: 9052779 - Nature. 1997 Mar 6;386(6620):44-51 – reference: 12857820 - Plant Physiol. 2003 Jul;132(3):1382-90 – reference: 18502977 - Plant Physiol. 2008 Jul;147(3):1380-95 – reference: 12070095 - Development. 2002 Jul;129(13):3207-17 – reference: 8538741 - Nature. 1996 Jan 4;379(6560):66-9 – reference: 18980654 - Plant J. 2009 Feb;57(4):626-44 – reference: 20410882 - Nature. 2010 May 20;465(7296):316-21 – reference: 27111035 - Nat Genet. 2016 Jun;48(6):694-9 – reference: 21642989 - Nat Genet. 2011 Jun 05;43(7):715-9 – reference: 21236679 - Trends Cell Biol. 2011 Apr;21(4):212-8 – reference: 16372013 - Nature. 2005 Dec 22;438(7071):1172-5 – reference: 22927830 - PLoS Genet. 2012 Aug;8(8):e1002911 – reference: 23181633 - Plant J. 2013 Mar;73(5):798-813 – reference: 24850849 - Plant Cell. 2014 May 21;26(5):2055-2067 – reference: 15456723 - Development. 2004 Nov;131(21):5263-76 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 10761929 - Cell. 2000 Mar 17;100(6):635-44 – reference: 20190735 - Nature. 2010 Mar 18;464(7287):423-6 – reference: 18295584 - Cell. 2008 Feb 22;132(4):697-710 – reference: 18539115 - Dev Cell. 2008 Jun;14(6):867-76 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 – reference: 21979915 - Genes Dev. 2011 Oct 1;25(19):2025-30 – reference: 22578006 - Plant J. 2012 Oct;72(1):31-42 |
SSID | ssj0001719 |
Score | 2.625635 |
Snippet | Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot... The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and... The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1073 |
SubjectTerms | Activation Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Callus Cell cycle DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology Homeobox Homeodomain Proteins - genetics Homeodomain Proteins - metabolism miRNA Organs Plant cells Plant Shoots - genetics Plant Shoots - metabolism Plant Shoots - physiology Regeneration Regulators Signal transduction Signaling Stem cells Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
Title | A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28389585 https://www.proquest.com/docview/2006906500 https://www.proquest.com/docview/1885951985 https://www.proquest.com/docview/1911614500 https://pubmed.ncbi.nlm.nih.gov/PMC5466026 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgILEXBOOywkBGgqcqxbnHj6UaqoBNGrSib1HiywiCuGIJCH495zi3dhcEvERVfJJUPp_t42P7-wh5HiPHOox8DmNZ7ARKBE6iBXd0FEgJzySuzXccHUfzZfBmFa4GlU57uqTKJ-LXpedK_sercA_8iqdk_8Gz_UvhBvwG_8IVPAzXv_LxdLz4YRzcqGU1zexRxLFU42Pz3YynolMuw4Dw4_LDbH74rjuWiFpFyNZsDO5KPrXc072LPg8Iauwwu38hw7wAYDknRb-jp2hSqXPVjoXW1tTNmn4NtkdFZrqSVd0mBDazDjCS9Xv8JqrrKT3H41YXuO9K2-RFsblYvW6lbf3LO2yG3BbVWkxcXBVKoi0zqO71V-s8iIISHjbqPucIsrui6-SGB3MFlLF4ezJQxruxy_sTD-HLzU8hE3T78HZYcmGucX7L7EYMsrhDbreTBzptkHCXXFPlHrn5ykCA_3OP3Jp14n33yPsp7aBBLTQoQINKRREadIAGNZq20KANNKh1ObXQoJvQuE-Wrw8Xs7nTymc4AmLcygkSzRMmdRZy7UsViUiJTAvBVC4llzmTyufMh05YxzrJFTg0566XCSWjiEeh_4DslKZU-4TGErptngeBRlkrLvI8QNp-7as4coUXjMi4q71UtNzyKHHyJbVzTBamUO2pizsoodpH5EVvvW44Va6wO-gckbat7gxlU5FbO2RsRJ71xVC72BSyUpn6LHUTZO1zeRL-wQZGeQhN7XseNr7t_0wHihGJt7zeGyAn-3ZJWXyy3OzY8zEvenTlOx-T3aE9HZCd6lutnkBcW-VPLW5_A_KLoQs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Step+Model+for+de+Novo+Activation+of+WUSCHEL+during+Plant+Shoot+Regeneration&rft.jtitle=The+Plant+cell&rft.au=Zhang%2C+Tian-Qi&rft.au=Lian%2C+Heng&rft.au=Zhou%2C+Chuan-Miao&rft.au=Xu%2C+Lin&rft.date=2017-05-01&rft.eissn=1532-298X&rft.volume=29&rft.issue=5&rft.spage=1073&rft_id=info:doi/10.1105%2Ftpc.16.00863&rft_id=info%3Apmid%2F28389585&rft.externalDocID=28389585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |