A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration

Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 29; no. 5; pp. 1073 - 1087
Main Authors Zhang, Tian-Qi, Lian, Heng, Zhou, Chuan-Miao, Xu, Lin, Jiao, Yuling, Wang, Jia-Wei
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.05.2017
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
1532-298X
DOI10.1105/tpc.16.00863

Cover

Loading…
Abstract Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in We found that WUS-positive (WUS ) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of .
AbstractList The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and HD-ZIP III transcription factors. Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana. We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.
The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and HD-ZIP III transcription factors. Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana . We found that WUS-positive (WUS + ) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS .
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in We found that WUS-positive (WUS ) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of .
Author Zhang, Tian-Qi
Lian, Heng
Wang, Jia-Wei
Zhou, Chuan-Miao
Xu, Lin
Jiao, Yuling
Author_xml – sequence: 1
  givenname: Tian-Qi
  orcidid: 0000-0001-8000-4770
  surname: Zhang
  fullname: Zhang, Tian-Qi
  organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China, University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
– sequence: 2
  givenname: Heng
  orcidid: 0000-0003-0522-7290
  surname: Lian
  fullname: Lian, Heng
  organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
– sequence: 3
  givenname: Chuan-Miao
  surname: Zhou
  fullname: Zhou, Chuan-Miao
  organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
– sequence: 4
  givenname: Lin
  orcidid: 0000-0003-4718-1286
  surname: Xu
  fullname: Xu, Lin
  organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
– sequence: 5
  givenname: Yuling
  orcidid: 0000-0002-1189-1676
  surname: Jiao
  fullname: Jiao, Yuling
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China, National Center for Plant Gene Research, Beijing 100101, P.R. China
– sequence: 6
  givenname: Jia-Wei
  orcidid: 0000-0003-3885-6296
  surname: Wang
  fullname: Wang, Jia-Wei
  organization: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China, ShanghaiTech University, Shanghai 200031, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28389585$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYO02A9981kCvvjgrDczkzR5EZal2sK2SrdF38JMcrNNmU3WTGbF_97pbi1aBJ9u4P5yOOeeI7IXYkBCXjGYMAb8fV6bCRMTACmqZ-SQ8aosSiW_7Y1vqKGoBWcH5Kjv7wCAnTD1nByUspKKS35Irqb0-kcsFhnX9CJa7KiLiVqkl3ET6dRkv2myj4FGR7_eLGZnp3Nqh-TDkn7pmpDp4jbGTK9wiQHTFn1B9l3T9fjyYR6Tm4-n17OzYv750_lsOi9MXbNc1NIpCdY1XLnKojACTeOMAWytVbYFi5WCilfMnTjZ4pirVaxsDFohlODVMfmw010P7QqtwZBT0-l18qsm_dSx8frvTfC3ehk3mtdCQClGgbcPAil-H7DPeuV7g92YC-PQa6YYE6zmAP9HpeSKMyXvbb15gt7FIYXxEroEEArETvD1n-YfXf9uZgTe7QCTYt8ndI8IA31fvB6L10zobfEjXj7Bjc_bOsbovvv3p192krDA
CitedBy_id crossref_primary_10_1016_j_pbi_2022_102265
crossref_primary_10_1007_s42994_022_00093_2
crossref_primary_10_1016_j_scienta_2024_113897
crossref_primary_10_1111_jse_13144
crossref_primary_10_1007_s00018_018_2980_z
crossref_primary_10_1016_j_pbi_2022_102262
crossref_primary_10_3390_biom10091222
crossref_primary_10_1016_j_devcel_2024_11_009
crossref_primary_10_1016_j_scienta_2021_110664
crossref_primary_10_3390_ijms241311190
crossref_primary_10_1038_s41598_019_50962_y
crossref_primary_10_1146_annurev_arplant_042817_040549
crossref_primary_10_3390_ijms20164065
crossref_primary_10_1016_j_plantsci_2019_110323
crossref_primary_10_1093_jxb_ery132
crossref_primary_10_1186_s13619_022_00140_9
crossref_primary_10_1007_s00299_022_02932_4
crossref_primary_10_1093_pcp_pcx187
crossref_primary_10_1186_s12870_023_04617_w
crossref_primary_10_3390_agriculture15010029
crossref_primary_10_1093_plphys_kiae474
crossref_primary_10_1093_jxb_erac281
crossref_primary_10_3390_ijms21155309
crossref_primary_10_1007_s11103_018_0786_x
crossref_primary_10_1007_s00344_023_11025_9
crossref_primary_10_1016_j_devcel_2022_07_017
crossref_primary_10_1016_j_tplants_2018_10_012
crossref_primary_10_1111_tpj_13823
crossref_primary_10_3390_ijms231810595
crossref_primary_10_1016_j_tplants_2022_03_009
crossref_primary_10_1093_hr_uhad198
crossref_primary_10_1016_j_devcel_2021_02_021
crossref_primary_10_1093_pcp_pcx172
crossref_primary_10_1111_nph_19637
crossref_primary_10_3390_ijms21228451
crossref_primary_10_1093_jxb_erab421
crossref_primary_10_1007_s00299_020_02508_0
crossref_primary_10_1126_sciadv_abg8466
crossref_primary_10_1186_s13007_025_01352_1
crossref_primary_10_1038_s41477_022_01110_4
crossref_primary_10_1038_s41467_019_09386_5
crossref_primary_10_3389_fgene_2020_00766
crossref_primary_10_1016_j_plantsci_2017_10_009
crossref_primary_10_1093_plphys_kiab510
crossref_primary_10_3390_ijms23052632
crossref_primary_10_1093_plcell_koad255
crossref_primary_10_1016_j_indcrop_2021_113817
crossref_primary_10_1093_plcell_koad257
crossref_primary_10_1016_j_pbi_2023_102415
crossref_primary_10_1038_s41477_021_01016_7
crossref_primary_10_1186_s12870_022_03756_w
crossref_primary_10_1371_journal_pbio_3002878
crossref_primary_10_1093_hr_uhad291
crossref_primary_10_3390_ijms23158786
crossref_primary_10_34133_2021_9890319
crossref_primary_10_1038_s41437_024_00721_1
crossref_primary_10_1016_j_devcel_2020_07_003
crossref_primary_10_1038_s41477_023_01536_4
crossref_primary_10_1134_S002689332002017X
crossref_primary_10_1093_plphys_kiad125
crossref_primary_10_1016_j_molp_2023_12_014
crossref_primary_10_1093_plphys_kiae042
crossref_primary_10_1111_ppl_70023
crossref_primary_10_1146_annurev_genet_071719_020439
crossref_primary_10_1016_j_tplants_2017_08_007
crossref_primary_10_48130_opr_0024_0024
crossref_primary_10_3390_plants9070897
crossref_primary_10_1007_s00497_024_00510_0
crossref_primary_10_1186_s42397_020_0045_y
crossref_primary_10_1111_pce_13898
crossref_primary_10_3390_genes10121034
crossref_primary_10_1016_j_plaphy_2023_107983
crossref_primary_10_1093_pcp_pcz202
crossref_primary_10_3389_fpls_2021_641257
crossref_primary_10_1016_j_molp_2024_03_008
crossref_primary_10_1016_j_pbi_2018_12_002
crossref_primary_10_1016_j_plaphy_2021_01_034
crossref_primary_10_1093_jxb_erz026
crossref_primary_10_1111_nph_19679
crossref_primary_10_3389_fgene_2022_943025
crossref_primary_10_3390_f11121367
crossref_primary_10_1007_s00425_022_03933_z
crossref_primary_10_1007_s11103_023_01360_6
crossref_primary_10_3389_fpls_2019_00077
crossref_primary_10_1093_jxb_erae264
crossref_primary_10_1126_sciadv_adg6983
crossref_primary_10_1016_j_bbagen_2024_130749
crossref_primary_10_1093_hr_uhab014
crossref_primary_10_1093_jxb_erz395
crossref_primary_10_1111_nph_17139
crossref_primary_10_1093_hr_uhab018
crossref_primary_10_1093_pcp_pcy248
crossref_primary_10_1146_annurev_arplant_050718_100434
crossref_primary_10_3389_fgeed_2022_823486
crossref_primary_10_1007_s00344_025_11647_1
crossref_primary_10_1093_pcp_pcaa083
crossref_primary_10_3390_ijms19124047
crossref_primary_10_1093_jxb_erae054
crossref_primary_10_1111_jipb_13197
crossref_primary_10_1016_j_cpb_2025_100471
crossref_primary_10_3389_fpls_2022_894208
crossref_primary_10_3390_genes14081638
crossref_primary_10_3390_plants10071458
crossref_primary_10_1093_pcp_pcy010
crossref_primary_10_3390_genes12030438
crossref_primary_10_1093_pcp_pcy013
crossref_primary_10_1111_tpj_17002
crossref_primary_10_1016_j_scienta_2024_113885
crossref_primary_10_1111_nph_17594
crossref_primary_10_1242_dev_163907
crossref_primary_10_3390_ijms22168554
crossref_primary_10_1016_j_celrep_2021_109980
crossref_primary_10_1016_j_devcel_2021_12_019
crossref_primary_10_1111_nph_19412
crossref_primary_10_1134_S1021443721010106
crossref_primary_10_1007_s11240_020_01973_5
crossref_primary_10_1038_s41438_021_00558_3
crossref_primary_10_1111_nph_20409
crossref_primary_10_1016_j_tplants_2018_05_008
crossref_primary_10_1016_j_jplph_2021_153405
crossref_primary_10_1016_j_plantsci_2018_02_018
crossref_primary_10_1038_s41477_017_0095_4
crossref_primary_10_3390_ijms24054392
crossref_primary_10_1093_plphys_kiae016
crossref_primary_10_1038_s41598_021_88834_z
crossref_primary_10_1111_tpj_16487
crossref_primary_10_1007_s00497_018_00359_0
crossref_primary_10_1038_s41477_022_01295_8
crossref_primary_10_1093_pnasnexus_pgad002
crossref_primary_10_1007_s00018_019_03407_8
crossref_primary_10_1242_dev_202870
crossref_primary_10_1111_tpj_13895
crossref_primary_10_1134_S002689332102031X
crossref_primary_10_3389_fpls_2022_926752
crossref_primary_10_1038_s41598_022_25684_3
crossref_primary_10_1093_pcp_pcx207
crossref_primary_10_1038_s41467_018_03921_6
crossref_primary_10_3389_fpls_2020_01084
crossref_primary_10_1242_dev_195347
crossref_primary_10_3389_fpls_2022_970342
crossref_primary_10_1093_plphys_kiad309
crossref_primary_10_1016_j_indcrop_2020_112653
crossref_primary_10_1016_j_plantsci_2024_112133
crossref_primary_10_1093_plcell_koac218
crossref_primary_10_1093_plphys_kiac212
crossref_primary_10_3389_fpls_2020_00317
crossref_primary_10_1093_pcp_pcx117
crossref_primary_10_1016_j_molp_2019_04_008
crossref_primary_10_3390_genes12020265
crossref_primary_10_3390_plants9101261
crossref_primary_10_1101_gad_314096_118
crossref_primary_10_1242_dev_184895
crossref_primary_10_1016_j_molp_2019_04_004
crossref_primary_10_1016_j_pbi_2017_09_001
crossref_primary_10_1007_s11240_019_01648_w
crossref_primary_10_1007_s12374_020_09259_1
crossref_primary_10_3389_fpls_2018_01443
crossref_primary_10_1038_s41467_021_22352_4
crossref_primary_10_3390_ijms232415950
crossref_primary_10_3390_f15010004
crossref_primary_10_3390_ijms25115657
crossref_primary_10_1093_plphys_kiad652
crossref_primary_10_3390_ijms20092079
crossref_primary_10_3390_plants9101378
crossref_primary_10_1073_pnas_2026806118
crossref_primary_10_1007_s13353_023_00800_9
crossref_primary_10_1016_j_pbi_2023_102377
crossref_primary_10_1016_j_pbi_2023_102378
crossref_primary_10_1016_j_pbi_2021_102111
crossref_primary_10_1016_j_pbi_2018_06_005
crossref_primary_10_3390_biom14030381
crossref_primary_10_1016_j_plaphy_2024_109071
crossref_primary_10_1111_tpj_15703
crossref_primary_10_1016_j_plaphy_2022_06_026
crossref_primary_10_1080_15592324_2019_1618180
crossref_primary_10_1038_s42003_020_01274_9
crossref_primary_10_3389_fpls_2024_1259925
crossref_primary_10_1016_j_envexpbot_2024_106025
crossref_primary_10_1186_s12870_024_05389_7
crossref_primary_10_1016_j_xplc_2024_100941
crossref_primary_10_1038_s42003_019_0646_5
crossref_primary_10_1093_plcell_koae312
crossref_primary_10_14348_molcells_2021_0160
crossref_primary_10_1007_s42994_020_00026_x
crossref_primary_10_1016_j_pbi_2019_04_006
crossref_primary_10_1111_pce_14906
crossref_primary_10_1371_journal_pone_0279627
crossref_primary_10_1111_nph_18196
crossref_primary_10_1007_s11427_024_2581_2
crossref_primary_10_1242_dev_196618
crossref_primary_10_1007_s00299_023_03071_0
crossref_primary_10_1016_j_sajb_2020_03_010
crossref_primary_10_1038_s41477_018_0104_2
crossref_primary_10_1007_s00299_020_02511_5
crossref_primary_10_1080_15592294_2021_1872927
crossref_primary_10_1038_s41477_021_01015_8
crossref_primary_10_1242_dev_191734
crossref_primary_10_1038_s41477_018_0290_y
crossref_primary_10_3390_plants11020178
crossref_primary_10_1016_j_molp_2024_01_009
crossref_primary_10_3389_fpls_2024_1474431
crossref_primary_10_1186_s12864_024_11144_x
crossref_primary_10_3389_fpls_2023_1239133
crossref_primary_10_1007_s11240_019_01680_w
crossref_primary_10_1093_pcp_pcy066
crossref_primary_10_1016_j_pbi_2019_10_004
crossref_primary_10_1093_plphys_kiad345
crossref_primary_10_1093_plphys_kiae300
crossref_primary_10_1093_plcell_koad327
crossref_primary_10_1111_nph_18291
crossref_primary_10_1073_pnas_2310163120
crossref_primary_10_1016_j_devcel_2024_10_023
crossref_primary_10_1007_s00299_020_02633_w
crossref_primary_10_48130_mpb_0024_0026
crossref_primary_10_1111_nph_15106
crossref_primary_10_1007_s00709_024_01984_5
crossref_primary_10_1111_nph_14814
crossref_primary_10_1016_j_csbj_2022_06_033
crossref_primary_10_2139_ssrn_3917165
crossref_primary_10_3389_fpls_2022_1018559
crossref_primary_10_1093_pcp_pcab101
crossref_primary_10_1038_s42003_019_0368_8
crossref_primary_10_1038_s42003_022_03308_w
crossref_primary_10_3389_fpls_2022_898786
crossref_primary_10_1111_jipb_12818
crossref_primary_10_3389_fpls_2022_891228
crossref_primary_10_1080_11263504_2020_1762793
crossref_primary_10_1007_s10142_019_00701_3
crossref_primary_10_1111_pce_13494
crossref_primary_10_1242_dev_149344
crossref_primary_10_1093_hr_uhac047
crossref_primary_10_3390_horticulturae10111138
ContentType Journal Article
Copyright 2017 American Society of Plant Biologists. All rights reserved.
Copyright American Society of Plant Biologists May 2017
2017 American Society of Plant Biologists. All rights reserved. 2017
Copyright_xml – notice: 2017 American Society of Plant Biologists. All rights reserved.
– notice: Copyright American Society of Plant Biologists May 2017
– notice: 2017 American Society of Plant Biologists. All rights reserved. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7QO
7TM
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1105/tpc.16.00863
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
Genetics Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 1087
ExternalDocumentID PMC5466026
28389585
10_1105_tpc_16_00863
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
AAYXX
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGCDD
AGMDO
AGORE
AGUYK
AHGBF
AHMBA
AHXOZ
AICQM
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CITATION
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HGD
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
4T-
7QO
7TM
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c441t-48f980dfa59f3de6c6ecafcc0ebdd9db0de3903531f7f8be532b912aced669653
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 13:55:37 EDT 2025
Thu Jul 10 19:27:21 EDT 2025
Thu Jul 10 23:18:53 EDT 2025
Sat Aug 16 08:00:53 EDT 2025
Mon Jul 21 06:02:34 EDT 2025
Tue Jul 01 03:49:46 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2017 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-48f980dfa59f3de6c6ecafcc0ebdd9db0de3903531f7f8be532b912aced669653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Jia-Wei Wang (jwwang@sibs.ac.cn).
www.plantcell.org/cgi/doi/10.1105/tpc.16.00863
ORCID 0000-0001-8000-4770
0000-0003-4718-1286
0000-0003-0522-7290
0000-0002-1189-1676
0000-0003-3885-6296
OpenAccessLink http://www.plantcell.org/content/plantcell/29/5/1073.full.pdf
PMID 28389585
PQID 2006906500
PQPubID 37014
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5466026
proquest_miscellaneous_1911614500
proquest_miscellaneous_1885951985
proquest_journals_2006906500
pubmed_primary_28389585
crossref_primary_10_1105_tpc_16_00863
crossref_citationtrail_10_1105_tpc_16_00863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Rockville
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2017
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References 25449722 - Curr Opin Plant Biol. 2015 Feb;23:15-24
18502977 - Plant Physiol. 2008 Jul;147(3):1380-95
20410882 - Nature. 2010 May 20;465(7296):316-21
10761929 - Cell. 2000 Mar 17;100(6):635-44
24507500 - Curr Opin Plant Biol. 2014 Feb;17:96-102
18037673 - Plant Cell Physiol. 2008 Jan;49(1):47-57
19703399 - Cell. 2009 Aug 21;138(4):738-49
10069079 - Plant J. 1998 Dec;16(6):735-43
17585298 - Nat Protoc. 2007;2(7):1565-72
23124326 - Plant Physiol. 2013 Jan;161(1):240-51
22345559 - Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7
24850849 - Plant Cell. 2014 May 21;26(5):2055-2067
23549482 - Mol Syst Biol. 2013;9:654
21642989 - Nat Genet. 2011 Jun 05;43(7):715-9
8538741 - Nature. 1996 Jan 4;379(6560):66-9
15980263 - Plant Cell. 2005 Aug;17(8):2271-80
27212234 - Cell. 2016 Jun 16;165(7):1721-33
23181633 - Plant J. 2013 Mar;73(5):798-813
24576426 - Dev Cell. 2014 Feb 24;28(4):438-49
24755933 - Nat Rev Mol Cell Biol. 2014 May;15(5):301-12
27143753 - Development. 2016 May 1;143(9):1442-51
17581762 - Planta. 2007 Oct;226(5):1183-94
21876682 - PLoS Genet. 2011 Aug;7(8):e1002243
26130755 - Development. 2015 Jul 1;142(13):2237-49
25246576 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14619-24
20705180 - Curr Top Dev Biol. 2010;91:103-40
21907610 - Trends Plant Sci. 2011 Nov;16(11):597-606
27111035 - Nat Genet. 2016 Jun;48(6):694-9
24512705 - Curr Top Dev Biol. 2014;108:35-69
12070095 - Development. 2002 Jul;129(13):3207-17
23918970 - J Exp Bot. 2013 Aug;64(11):3397-410
20018401 - Eur J Cell Biol. 2010 Feb-Mar;89(2-3):279-84
26375006 - Nature. 2015 Nov 12;527(7577):192-7
25449732 - Curr Opin Plant Biol. 2015 Feb;23:91-7
12417700 - Plant Cell. 2002 Nov;14(11):2771-85
17287810 - Nature. 2007 Feb 8;445(7128):652-5
16372013 - Nature. 2005 Dec 22;438(7071):1172-5
19717465 - Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16529-34
18980654 - Plant J. 2009 Feb;57(4):626-44
14561401 - Curr Biol. 2003 Oct 14;13(20):1768-74
13486467 - Symp Soc Exp Biol. 1957;11:118-30
24482483 - Science. 2014 Jan 31;343(6170):1248559
26956505 - J Exp Bot. 2016 Mar;67(6):1639-48
22927830 - PLoS Genet. 2012 Aug;8(8):e1002911
23355633 - Plant Physiol. 2013 Mar;161(3):1066-75
18539115 - Dev Cell. 2008 Jun;14(6):867-76
21979915 - Genes Dev. 2011 Oct 1;25(19):2025-30
18295584 - Cell. 2008 Feb 22;132(4):697-710
21487097 - Plant Cell. 2011 Apr;23(4):1512-22
18262459 - Trends Plant Sci. 2008 Feb;13(2):85-92
20190735 - Nature. 2010 Mar 18;464(7287):423-6
22404469 - Annu Rev Plant Biol. 2012;63:615-36
17122068 - Plant Cell. 2006 Nov;18(11):2946-57
26872130 - PLoS One. 2016 Feb 12;11(2):e0147830
24850851 - Plant Cell. 2014 May 21;26(5):2068-2079
25605778 - Development. 2015 Feb 1;142(3):420-30
25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30
22578006 - Plant J. 2012 Oct;72(1):31-42
22028461 - Plant Cell. 2011 Oct;23(10):3654-70
9052779 - Nature. 1997 Mar 6;386(6620):44-51
23543845 - Elife. 2013 Mar 26;2:e00269
23473600 - Mol Cell. 2013 Mar 7;49(5):808-24
25219852 - Nature. 2014 Nov 27;515(7528):587-90
11159318 - Bioinformatics. 2000 Nov;16(11):1046-7
17827180 - Development. 2007 Oct;134(19):3539-48
15598805 - Plant Cell. 2005 Jan;17(1):61-76
21236679 - Trends Cell Biol. 2011 Apr;21(4):212-8
10878255 - FEBS Lett. 2000 Jun 30;476(1-2):78-83
19961843 - Dev Biol. 2010 May 1;341(1):95-113
16227453 - Plant Cell. 2005 Nov;17(11):3007-18
12857820 - Plant Physiol. 2003 Jul;132(3):1382-90
27398935 - PLoS Genet. 2016 Jul 11;12 (7):e1006168
21074716 - Dev Cell. 2010 Nov 16;19(5):651-61
11069700 - Plant J. 2000 Oct;24(2):265-73
11169198 - Plant J. 2001 Jan;25(2):223-36
15456723 - Development. 2004 Nov;131(21):5263-76
18463635 - Nature. 2008 Jun 19;453(7198):1094-7
16916944 - Mol Biol Evol. 2006 Nov;23(11):2142-60
27111034 - Nat Genet. 2016 Jun;48(6):687-93
25649435 - Plant Cell. 2015 Feb;27(2):349-60
26011610 - PLoS One. 2015 May 26;10(5):e0126006
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – reference: 23473600 - Mol Cell. 2013 Mar 7;49(5):808-24
– reference: 14561401 - Curr Biol. 2003 Oct 14;13(20):1768-74
– reference: 22028461 - Plant Cell. 2011 Oct;23(10):3654-70
– reference: 25649435 - Plant Cell. 2015 Feb;27(2):349-60
– reference: 25219852 - Nature. 2014 Nov 27;515(7528):587-90
– reference: 11169198 - Plant J. 2001 Jan;25(2):223-36
– reference: 23355633 - Plant Physiol. 2013 Mar;161(3):1066-75
– reference: 26130755 - Development. 2015 Jul 1;142(13):2237-49
– reference: 17585298 - Nat Protoc. 2007;2(7):1565-72
– reference: 25605778 - Development. 2015 Feb 1;142(3):420-30
– reference: 24512705 - Curr Top Dev Biol. 2014;108:35-69
– reference: 26011610 - PLoS One. 2015 May 26;10(5):e0126006
– reference: 23543845 - Elife. 2013 Mar 26;2:e00269
– reference: 25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30
– reference: 20018401 - Eur J Cell Biol. 2010 Feb-Mar;89(2-3):279-84
– reference: 16916944 - Mol Biol Evol. 2006 Nov;23(11):2142-60
– reference: 22404469 - Annu Rev Plant Biol. 2012;63:615-36
– reference: 18037673 - Plant Cell Physiol. 2008 Jan;49(1):47-57
– reference: 21074716 - Dev Cell. 2010 Nov 16;19(5):651-61
– reference: 25449722 - Curr Opin Plant Biol. 2015 Feb;23:15-24
– reference: 12417700 - Plant Cell. 2002 Nov;14(11):2771-85
– reference: 27212234 - Cell. 2016 Jun 16;165(7):1721-33
– reference: 23124326 - Plant Physiol. 2013 Jan;161(1):240-51
– reference: 19703399 - Cell. 2009 Aug 21;138(4):738-49
– reference: 19961843 - Dev Biol. 2010 May 1;341(1):95-113
– reference: 24850851 - Plant Cell. 2014 May 21;26(5):2068-2079
– reference: 20705180 - Curr Top Dev Biol. 2010;91:103-40
– reference: 15598805 - Plant Cell. 2005 Jan;17(1):61-76
– reference: 16227453 - Plant Cell. 2005 Nov;17(11):3007-18
– reference: 17287810 - Nature. 2007 Feb 8;445(7128):652-5
– reference: 25246576 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14619-24
– reference: 23918970 - J Exp Bot. 2013 Aug;64(11):3397-410
– reference: 27398935 - PLoS Genet. 2016 Jul 11;12 (7):e1006168
– reference: 26956505 - J Exp Bot. 2016 Mar;67(6):1639-48
– reference: 24755933 - Nat Rev Mol Cell Biol. 2014 May;15(5):301-12
– reference: 24576426 - Dev Cell. 2014 Feb 24;28(4):438-49
– reference: 21876682 - PLoS Genet. 2011 Aug;7(8):e1002243
– reference: 24507500 - Curr Opin Plant Biol. 2014 Feb;17:96-102
– reference: 27111034 - Nat Genet. 2016 Jun;48(6):687-93
– reference: 17827180 - Development. 2007 Oct;134(19):3539-48
– reference: 13486467 - Symp Soc Exp Biol. 1957;11:118-30
– reference: 21487097 - Plant Cell. 2011 Apr;23(4):1512-22
– reference: 15980263 - Plant Cell. 2005 Aug;17(8):2271-80
– reference: 11159318 - Bioinformatics. 2000 Nov;16(11):1046-7
– reference: 23549482 - Mol Syst Biol. 2013;9:654
– reference: 10878255 - FEBS Lett. 2000 Jun 30;476(1-2):78-83
– reference: 17581762 - Planta. 2007 Oct;226(5):1183-94
– reference: 27143753 - Development. 2016 May 1;143(9):1442-51
– reference: 18262459 - Trends Plant Sci. 2008 Feb;13(2):85-92
– reference: 25449732 - Curr Opin Plant Biol. 2015 Feb;23:91-7
– reference: 17122068 - Plant Cell. 2006 Nov;18(11):2946-57
– reference: 26375006 - Nature. 2015 Nov 12;527(7577):192-7
– reference: 11069700 - Plant J. 2000 Oct;24(2):265-73
– reference: 26872130 - PLoS One. 2016 Feb 12;11(2):e0147830
– reference: 22345559 - Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7
– reference: 19717465 - Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16529-34
– reference: 18463635 - Nature. 2008 Jun 19;453(7198):1094-7
– reference: 21907610 - Trends Plant Sci. 2011 Nov;16(11):597-606
– reference: 24482483 - Science. 2014 Jan 31;343(6170):1248559
– reference: 9052779 - Nature. 1997 Mar 6;386(6620):44-51
– reference: 12857820 - Plant Physiol. 2003 Jul;132(3):1382-90
– reference: 18502977 - Plant Physiol. 2008 Jul;147(3):1380-95
– reference: 12070095 - Development. 2002 Jul;129(13):3207-17
– reference: 8538741 - Nature. 1996 Jan 4;379(6560):66-9
– reference: 18980654 - Plant J. 2009 Feb;57(4):626-44
– reference: 20410882 - Nature. 2010 May 20;465(7296):316-21
– reference: 27111035 - Nat Genet. 2016 Jun;48(6):694-9
– reference: 21642989 - Nat Genet. 2011 Jun 05;43(7):715-9
– reference: 21236679 - Trends Cell Biol. 2011 Apr;21(4):212-8
– reference: 16372013 - Nature. 2005 Dec 22;438(7071):1172-5
– reference: 22927830 - PLoS Genet. 2012 Aug;8(8):e1002911
– reference: 23181633 - Plant J. 2013 Mar;73(5):798-813
– reference: 24850849 - Plant Cell. 2014 May 21;26(5):2055-2067
– reference: 15456723 - Development. 2004 Nov;131(21):5263-76
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 10761929 - Cell. 2000 Mar 17;100(6):635-44
– reference: 20190735 - Nature. 2010 Mar 18;464(7287):423-6
– reference: 18295584 - Cell. 2008 Feb 22;132(4):697-710
– reference: 18539115 - Dev Cell. 2008 Jun;14(6):867-76
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
– reference: 21979915 - Genes Dev. 2011 Oct 1;25(19):2025-30
– reference: 22578006 - Plant J. 2012 Oct;72(1):31-42
SSID ssj0001719
Score 2.625635
Snippet Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot...
The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and...
The removal of repressive histone marks in a cytokinin-rich environment primes de novo activation of WUSCHEL by B-type ARABIDOPSIS RESPONSE REGULATORs and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1073
SubjectTerms Activation
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Callus
Cell cycle
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
Homeobox
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
miRNA
Organs
Plant cells
Plant Shoots - genetics
Plant Shoots - metabolism
Plant Shoots - physiology
Regeneration
Regulators
Signal transduction
Signaling
Stem cells
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Title A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/28389585
https://www.proquest.com/docview/2006906500
https://www.proquest.com/docview/1885951985
https://www.proquest.com/docview/1911614500
https://pubmed.ncbi.nlm.nih.gov/PMC5466026
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgILEXBOOywkBGgqcqxbnHj6UaqoBNGrSib1HiywiCuGIJCH495zi3dhcEvERVfJJUPp_t42P7-wh5HiPHOox8DmNZ7ARKBE6iBXd0FEgJzySuzXccHUfzZfBmFa4GlU57uqTKJ-LXpedK_sercA_8iqdk_8Gz_UvhBvwG_8IVPAzXv_LxdLz4YRzcqGU1zexRxLFU42Pz3YynolMuw4Dw4_LDbH74rjuWiFpFyNZsDO5KPrXc072LPg8Iauwwu38hw7wAYDknRb-jp2hSqXPVjoXW1tTNmn4NtkdFZrqSVd0mBDazDjCS9Xv8JqrrKT3H41YXuO9K2-RFsblYvW6lbf3LO2yG3BbVWkxcXBVKoi0zqO71V-s8iIISHjbqPucIsrui6-SGB3MFlLF4ezJQxruxy_sTD-HLzU8hE3T78HZYcmGucX7L7EYMsrhDbreTBzptkHCXXFPlHrn5ykCA_3OP3Jp14n33yPsp7aBBLTQoQINKRREadIAGNZq20KANNKh1ObXQoJvQuE-Wrw8Xs7nTymc4AmLcygkSzRMmdRZy7UsViUiJTAvBVC4llzmTyufMh05YxzrJFTg0566XCSWjiEeh_4DslKZU-4TGErptngeBRlkrLvI8QNp-7as4coUXjMi4q71UtNzyKHHyJbVzTBamUO2pizsoodpH5EVvvW44Va6wO-gckbat7gxlU5FbO2RsRJ71xVC72BSyUpn6LHUTZO1zeRL-wQZGeQhN7XseNr7t_0wHihGJt7zeGyAn-3ZJWXyy3OzY8zEvenTlOx-T3aE9HZCd6lutnkBcW-VPLW5_A_KLoQs
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Step+Model+for+de+Novo+Activation+of+WUSCHEL+during+Plant+Shoot+Regeneration&rft.jtitle=The+Plant+cell&rft.au=Zhang%2C+Tian-Qi&rft.au=Lian%2C+Heng&rft.au=Zhou%2C+Chuan-Miao&rft.au=Xu%2C+Lin&rft.date=2017-05-01&rft.eissn=1532-298X&rft.volume=29&rft.issue=5&rft.spage=1073&rft_id=info:doi/10.1105%2Ftpc.16.00863&rft_id=info%3Apmid%2F28389585&rft.externalDocID=28389585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon