Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics

Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disea...

Full description

Saved in:
Bibliographic Details
Published inInflammation Vol. 46; no. 1; pp. 1 - 17
Main Authors Thakur, Sujata, Dhapola, Rishika, Sarma, Phulen, Medhi, Bikash, Reddy, Dibbanti HariKrishna
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer’s disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer’s disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD.
AbstractList Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer’s disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer’s disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD.
AbstractAlzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer’s disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer’s disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD.
Alzheimer's disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer's disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer's disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer's disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD.Alzheimer's disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer's disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer's disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer's disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD.
Author Dhapola, Rishika
Sarma, Phulen
Medhi, Bikash
Thakur, Sujata
Reddy, Dibbanti HariKrishna
Author_xml – sequence: 1
  givenname: Sujata
  surname: Thakur
  fullname: Thakur, Sujata
  organization: Department of Pharmacology, Central University of Punjab
– sequence: 2
  givenname: Rishika
  surname: Dhapola
  fullname: Dhapola, Rishika
  organization: Department of Pharmacology, Central University of Punjab
– sequence: 3
  givenname: Phulen
  surname: Sarma
  fullname: Sarma, Phulen
  organization: Department of Pharmacology, All India Institute of Medical Sciences
– sequence: 4
  givenname: Bikash
  surname: Medhi
  fullname: Medhi, Bikash
  organization: Department of Pharmacology, Post Graduate Institute of Medical Education and Research
– sequence: 5
  givenname: Dibbanti HariKrishna
  surname: Reddy
  fullname: Reddy, Dibbanti HariKrishna
  email: harikrishnareddy0011@gmail.com, harikrishna.reddy@cup.edu.in
  organization: Department of Pharmacology, Central University of Punjab
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35986874$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS3Uik4LL8ACRWLDJtS_uQ67aviV2oJEWVuOczN15diDnSxgxWvwejwJmU4rpC66upvvOzq655gcxBSRkBeMvmGUwmlhFJSoKec1ZcBZzZ6QFVMgaq6gOSArKhpai7aFI3Jcyg2lVLdaPCVHQrW60SBXpL_EOScfh2DH0U4-xcrH6iz8ukY_Yv77-0-p3vmCtuDbaj3njHGqvua0yVjKDr1IAd0cbK6--U20wcdNZWNfXV1jtlucJ-_KM3I42FDw-d09Id8_vL9af6rPv3z8vD47r52UbKoldG2nsFOuARiUHgYErS0MoAFVw5xtdN-3lrddgz11wnEOjlrOpJBaozghr_e525x-zFgmM_riMAQbMc3FcKBSN0uaXNBXD9CbNOel_47SlEugii_Uyztq7kbszTb70eaf5v5_C6D3gMuplIyDcX66feOUrQ-GUbObyuynMstU5nYqwxaVP1Dv0x-VxF4qCxw3mP_XfsT6BwBhpt8
CitedBy_id crossref_primary_10_1016_j_neulet_2024_137895
crossref_primary_10_3390_md23030094
crossref_primary_10_1007_s10787_024_01595_9
crossref_primary_10_1016_j_bbi_2023_10_020
crossref_primary_10_1111_cns_70109
crossref_primary_10_1016_j_bbi_2024_12_022
crossref_primary_10_1016_j_arr_2023_102098
crossref_primary_10_1080_19424396_2023_2289696
crossref_primary_10_52794_hujpharm_1509048
crossref_primary_10_1021_acschemneuro_4c00338
crossref_primary_10_3390_brainsci14010041
crossref_primary_10_3390_brainsci14090876
crossref_primary_10_3390_separations11080243
crossref_primary_10_1002_advs_202410910
crossref_primary_10_1186_s40035_023_00364_y
crossref_primary_10_1136_bmjopen_2023_081635
crossref_primary_10_1016_j_brainres_2024_149422
crossref_primary_10_18632_aging_205831
crossref_primary_10_1016_j_prmcm_2024_100543
crossref_primary_10_3390_ijms25137019
crossref_primary_10_1007_s12035_024_04278_2
crossref_primary_10_1038_s41392_024_01911_3
crossref_primary_10_1016_j_biopha_2024_116388
crossref_primary_10_1016_j_nbd_2024_106426
crossref_primary_10_1016_j_envres_2023_117369
crossref_primary_10_3390_molecules29010233
crossref_primary_10_3390_biology13090719
crossref_primary_10_3390_pharmaceutics17010128
crossref_primary_10_3389_fphar_2024_1366061
crossref_primary_10_1186_s13195_024_01416_9
crossref_primary_10_1007_s11010_024_05164_0
crossref_primary_10_5812_asjsm_149446
crossref_primary_10_3389_fphar_2023_1196413
crossref_primary_10_1111_cns_14799
crossref_primary_10_1007_s40883_024_00362_0
crossref_primary_10_4103_NRR_NRR_D_24_00107
crossref_primary_10_1016_j_arr_2025_102689
crossref_primary_10_3892_mmr_2023_13139
crossref_primary_10_1016_j_arr_2025_102685
crossref_primary_10_1021_acs_jafc_4c07659
crossref_primary_10_1016_j_neuroscience_2024_11_049
crossref_primary_10_3389_fnagi_2024_1421900
crossref_primary_10_1007_s10495_023_01848_y
crossref_primary_10_1080_17425247_2024_2438188
crossref_primary_10_1080_1028415X_2024_2359868
crossref_primary_10_3390_ijms25136928
crossref_primary_10_1016_j_brainresbull_2024_111100
crossref_primary_10_1038_s41398_024_02758_6
crossref_primary_10_1021_acsptsci_4c00629
crossref_primary_10_1186_s43556_023_00151_1
crossref_primary_10_3390_biomedicines13010171
crossref_primary_10_3923_ijp_2024_1365_1380
crossref_primary_10_1186_s42826_023_00184_1
crossref_primary_10_1093_ijnp_pyae038
crossref_primary_10_3390_brainsci13040632
crossref_primary_10_1111_cns_14721
crossref_primary_10_3390_neuroglia5040029
crossref_primary_10_1039_D4SC06762B
crossref_primary_10_1016_j_pnpbp_2024_110999
crossref_primary_10_1177_25424823241307021
crossref_primary_10_1186_s12885_025_13828_3
crossref_primary_10_1016_j_envpol_2024_125031
crossref_primary_10_1016_j_cell_2023_08_042
crossref_primary_10_1080_01932691_2024_2409443
crossref_primary_10_2174_0115672050272577231120060909
crossref_primary_10_3390_ijms24065259
crossref_primary_10_1016_j_heliyon_2024_e39700
crossref_primary_10_3390_ijms26062440
crossref_primary_10_2174_0113816128281314231219113942
crossref_primary_10_3390_ijms252212311
crossref_primary_10_3390_biomedicines11072056
crossref_primary_10_3390_biom14111389
crossref_primary_10_1186_s12974_024_03040_8
crossref_primary_10_3390_cells13191624
crossref_primary_10_4103_NRR_NRR_D_23_01766
crossref_primary_10_1097_PRA_0000000000000779
crossref_primary_10_1016_j_exger_2025_112679
crossref_primary_10_1590_1414_431x2024e14094
crossref_primary_10_3390_cells13070606
crossref_primary_10_1111_cns_70091
crossref_primary_10_3390_biomedicines10123116
crossref_primary_10_1177_13872877251326286
crossref_primary_10_3389_fphar_2024_1492237
crossref_primary_10_1177_13872877241305744
crossref_primary_10_3390_biomedicines13020506
crossref_primary_10_3390_healthcare13050452
crossref_primary_10_1007_s10517_024_06157_1
crossref_primary_10_1016_j_ijbiomac_2024_133742
crossref_primary_10_1007_s12013_024_01587_0
crossref_primary_10_1080_00397911_2024_2420341
crossref_primary_10_1038_s41577_024_01104_7
crossref_primary_10_2174_0115680266322320240911194626
crossref_primary_10_1016_j_brainres_2024_148797
crossref_primary_10_1093_nar_gkae368
crossref_primary_10_2144_fsoa_2023_0255
crossref_primary_10_1016_j_jddst_2023_104721
crossref_primary_10_1177_13872877241289381
crossref_primary_10_1016_j_ygeno_2025_111033
crossref_primary_10_3390_ijms25126402
crossref_primary_10_1007_s12640_024_00723_1
crossref_primary_10_3389_fnins_2024_1480000
crossref_primary_10_1039_D4QI01945H
crossref_primary_10_1038_s41419_025_07469_4
crossref_primary_10_1016_j_psyneuen_2024_107245
crossref_primary_10_1523_ENEURO_0483_22_2022
crossref_primary_10_3390_jvd3040033
crossref_primary_10_1080_15287394_2024_2338914
crossref_primary_10_1002_med_21965
crossref_primary_10_3389_fcell_2023_1228679
crossref_primary_10_2147_DDDT_S462266
crossref_primary_10_1016_j_jconrel_2024_10_033
crossref_primary_10_1016_j_neuroscience_2024_12_027
crossref_primary_10_2174_0115672050333760241010061547
crossref_primary_10_1002_jbt_23660
crossref_primary_10_3390_biom12101386
crossref_primary_10_15407_visn2024_07_077
crossref_primary_10_3233_ADR_230130
crossref_primary_10_1007_s12035_023_03663_7
crossref_primary_10_2174_0115672050341904241111082935
crossref_primary_10_3390_ijms26031004
crossref_primary_10_1016_j_pharmthera_2024_108748
crossref_primary_10_1016_j_bbr_2025_115542
crossref_primary_10_1134_S0006297922120124
crossref_primary_10_1016_j_neulet_2024_137836
crossref_primary_10_3389_fimmu_2024_1418422
crossref_primary_10_1016_j_jep_2025_119338
crossref_primary_10_3390_brainsci14121191
crossref_primary_10_1007_s11011_022_01139_6
crossref_primary_10_3390_molecules29246046
crossref_primary_10_1007_s10787_024_01598_6
crossref_primary_10_1016_j_bbi_2024_09_033
crossref_primary_10_1002_alz_14605
crossref_primary_10_3390_molecules28145374
crossref_primary_10_1016_j_bmc_2024_118014
crossref_primary_10_3390_brainsci13091318
crossref_primary_10_1248_bpb_b23_00075
crossref_primary_10_1515_tnsci_2022_0270
crossref_primary_10_1016_j_arr_2024_102550
crossref_primary_10_14283_jpad_2023_103
crossref_primary_10_1002_advs_202307971
crossref_primary_10_1186_s13024_024_00753_5
crossref_primary_10_20517_mrr_2023_39
crossref_primary_10_1016_j_brainresbull_2025_111198
crossref_primary_10_14283_jpad_2023_109
crossref_primary_10_3390_ijms25158108
crossref_primary_10_1177_13872877241298303
crossref_primary_10_3390_cimb46070413
crossref_primary_10_1016_j_arr_2024_102548
crossref_primary_10_1016_j_clnesp_2024_02_019
crossref_primary_10_1007_s11914_023_00847_x
crossref_primary_10_3233_JAD_231010
crossref_primary_10_1177_13872877241298973
crossref_primary_10_1016_j_ejmech_2023_115817
crossref_primary_10_1016_j_mad_2024_112023
crossref_primary_10_1186_s12974_024_03277_3
crossref_primary_10_1007_s12035_024_04513_w
crossref_primary_10_1002_cbdv_202400017
crossref_primary_10_1016_j_brainres_2024_149236
crossref_primary_10_1016_j_ijbiomac_2025_141715
crossref_primary_10_1134_S002209302401023X
crossref_primary_10_3389_fphar_2024_1329895
crossref_primary_10_2174_0115680266318722240809050235
crossref_primary_10_12677_jcpm_2025_42140
crossref_primary_10_1016_j_biopha_2025_117969
crossref_primary_10_3389_fimmu_2024_1383464
crossref_primary_10_3390_antiox13091114
crossref_primary_10_3390_life13030748
crossref_primary_10_1016_j_biopha_2024_117228
crossref_primary_10_1016_j_tips_2023_11_004
crossref_primary_10_1111_ejn_16250
crossref_primary_10_1073_pnas_2309221120
crossref_primary_10_1002_ptr_8219
crossref_primary_10_1007_s12017_024_08815_z
crossref_primary_10_3390_brainsci14111101
crossref_primary_10_4103_ed_ed_16_24
crossref_primary_10_1016_j_ecoenv_2024_117372
crossref_primary_10_3389_fimmu_2024_1443464
crossref_primary_10_3390_molecules29184354
crossref_primary_10_1016_j_intimp_2024_112940
crossref_primary_10_1002_ibra_12185
crossref_primary_10_1080_19490976_2023_2282790
crossref_primary_10_1080_01616412_2023_2298137
crossref_primary_10_3390_ijms24065213
crossref_primary_10_31857_S0869813924010096
crossref_primary_10_3390_cells13060511
crossref_primary_10_3233_ADR_230146
crossref_primary_10_1186_s12883_025_04057_z
crossref_primary_10_1007_s12035_025_04812_w
crossref_primary_10_1210_endocr_bqae124
crossref_primary_10_1016_j_phymed_2024_156237
crossref_primary_10_3390_diagnostics14161831
crossref_primary_10_1007_s12035_024_04545_2
crossref_primary_10_1016_j_cellsig_2024_111210
crossref_primary_10_3892_etm_2024_12762
crossref_primary_10_1186_s12877_024_05648_0
crossref_primary_10_3389_fphar_2024_1425731
crossref_primary_10_1007_s11033_025_10284_x
crossref_primary_10_1016_j_arr_2024_102223
crossref_primary_10_1016_j_arr_2024_102342
crossref_primary_10_1186_s12877_024_05104_z
Cites_doi 10.1016/J.PNPBP.2020.110112
10.1186/S13195-021-00843-2/TABLES/3
10.1038/sigtrans.2017.23
10.1186/S13195-021-00795-7
10.1186/S40035-016-0054-4
10.1093/BRAINCOMMS/FCAA109
10.5213/INJ.1938184.092
10.1038/s41398-021-01349-z
10.1111/jnc.13152
10.1515/TNSCI-2020-0203/ASSET/GRAPHIC/J_TNSCI-2021-0203_FIG_001.JPG
10.1186/S12974-019-1453-0
10.1007/S12035-018-0983-2/FIGURES/2
10.1016/J.NEUROPHARM.2013.05.017
10.1038/s41582-020-00435-y
10.1021/acs.molpharmaceut.7b00200
10.3390/NU13010037
10.1016/j.neurobiolaging.2018.12.019
10.1001/ARCHNEUR.58.11.1790
10.1038/s41422-019-0216-x
10.3233/ADR-200171
10.1016/J.PNPBP.2020.109884
10.3389/FPHAR.2018.00548/BIBTEX
10.2217/nmt-2021-0019
10.1016/S1474-4422(15)70016-5
10.1111/JNC.13607
10.1038/s41598-019-40925-8
10.3389/FNAGI.2019.00233
10.1038/aps.2017.143
10.1212/01.wnl.0000475736.75775.25
10.1371/journal.pone.0229819
10.3389/FNMOL.2014.00104/BIBTEX
10.1523/JNEUROSCI.3688-11.2011
10.6061/CLINICS/2021/E2348
10.1002/GLIA.22930
10.3390/MOLECULES22081287
10.1002/iub.2324
10.1523/JNEUROSCI.5417-06.2007
10.1080/08923973.2021.1981374 10.1080/08923973.2021.1981374
10.1093/jnen/59.6.471
10.1212/WNL.0000000000009910
10.1007/S00343-008-0394-8
10.1002/IUB.2324
10.1007/S12035-020-02069-Z
10.1093/brain/aww330
10.1100/2012/756357
10.1515/REVNEURO-2018-0008/XML
10.1016/J.CSBJ.2019.09.008
10.3390/BIOM10071017
10.1016/J.JNS.2010.12.005
10.1007/S12264-016-0055-4
10.3978/j.issn.2305-5839.2015.03.49
10.1016/J.BBRC.2008.08.032
10.1111/CEN3.12475
10.1007/s12035-020-02116-9/Published
10.1002/GPS.4871
10.1016/BS.IRN.2020.03.022
10.1111/jnc.14687
10.1016/J.TRCI.2018.06.014
10.1378/CHEST.118.2.503
10.1001/jamaneurol.2019.3762
10.3389/FNINS.2018.01017/BIBTEX
10.14283/JPAD.2020.18
10.3389/FNINS.2020.00330/BIBTEX
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7TO
7U9
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10753-022-01721-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-2576
EndPage 17
ExternalDocumentID 35986874
10_1007_s10753_022_01721_1
Genre Journal Article
Review
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAJSJ
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACULB
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SBY
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z83
Z87
Z8O
Z8W
Z91
ZGI
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABEEZ
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFGXO
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
7XB
8FK
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c441t-47b9b5eb5c677f58ffe788a7f787e561ca68dd9a29b6ed0c3c227c0a2143488e3
IEDL.DBID U2A
ISSN 0360-3997
1573-2576
IngestDate Fri Jul 11 01:59:39 EDT 2025
Sat Jul 26 00:46:51 EDT 2025
Tue Mar 18 09:46:11 EDT 2025
Tue Jul 01 01:49:29 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 21 02:45:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords alzheimer’s disease
cytokines
neuroinflammation
microglia
gut microbiota
interleukins
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-47b9b5eb5c677f58ffe788a7f787e561ca68dd9a29b6ed0c3c227c0a2143488e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 35986874
PQID 2780247052
PQPubID 37566
PageCount 17
ParticipantIDs proquest_miscellaneous_2704867874
proquest_journals_2780247052
pubmed_primary_35986874
crossref_citationtrail_10_1007_s10753_022_01721_1
crossref_primary_10_1007_s10753_022_01721_1
springer_journals_10_1007_s10753_022_01721_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Inflammation
PublicationTitleAbbrev Inflammation
PublicationTitleAlternate Inflammation
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChangRudyKnoxJillianChangJaeDerbedrossianAramVasilevkoVitalyCribbsDavidBoadoRuben JPardridgeWilliam MSumbriaRachita KBlood-brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s diseaseMolecular Pharmaceutics201714234023491:CAS:528:DC%2BC2sXnvVyjur8%3D10.1021/acs.molpharmaceut.7b0020028514851
Dionisio-Santos, Dawling A., John A. Olschowka, and M. Kerry O’Banion. 2019. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. Journal of Neuroinflammation 2019 16:1 16. BioMed Central: 1–13. https://doi.org/10.1186/S12974-019-1453-0.
YangLijuanLiuYepeiWangYuanyuanLiJunshengLiuNaAzeliragon ameliorates Alzheimer’s disease via the janus tyrosine kinase and signal transducer and activator of transcription signaling pathwayClinics2021761810.6061/CLINICS/2021/E2348
Kheiri, Ghazaleh, Mahsa Dolatshahi, Farzaneh Rahmani, and Nima Rezaei. 2019. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy. Reviews in the Neurosciences 30. De Gruyter: 9–30. https://doi.org/10.1515/REVNEURO-2018-0008/XML.
ZhouMengshiRongXuKaelberDavid CGurneyMark ETumor necrosis factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasisPLoS ONE2020151141:CAS:528:DC%2BB3cXmsFWhs7k%3D10.1371/journal.pone.0229819
ZhangYonggangZhangJieTianCanXiaoYulingLiXiaoboHeChaoHuangJinFanHongThe -1082G/A polymorphism in IL-10 gene is associated with risk of Alzheimer’s disease: A meta-analysisJournal of the Neurological Sciences20113031331381:CAS:528:DC%2BC3MXjs1WktL4%3D10.1016/J.JNS.2010.12.00521255795
Howard, Robert, Olga Zubko, Rosie Bradley, Emma Harper, Lynn Pank, John O Brien, Chris Fox, et al. 2020. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease a randomized clinical trial 77: 164–174. https://doi.org/10.1001/jamaneurol.2019.3762.
MogiMasakiLiJian MeiTsukudaKanaIwanamiJunMinLi JuanSakataAkikoFujitaTeppeiIwaiMasaruHoriuchiMasatsuguTelmisartan prevented cognitive decline partly due to PPAR-γ activationBiochemical and Biophysical Research Communications20083754464491:CAS:528:DC%2BD1cXhtFaqs7fO10.1016/J.BBRC.2008.08.03218715543
LiuMingNieQinXinXianliangGengMeiyuIdentification of AOSC-binding proteins in neuronsChinese Journal of Oceanology and Limnology2008263943991:CAS:528:DC%2BD1MXhvVCitr8%3D10.1007/S00343-008-0394-8
Karkhah, Ahmad, Mahdiye Saadi, Fereshteh Pourabdolhossein, Kiarash Saleki, and Hamid Reza Nouri. 2021. Indomethacin attenuates neuroinflammation and memory impairment in an STZ-induced model of Alzheimer’s like disease. https://doi.org/10.1080/08923973.2021.1981374 43. Taylor & Francis: 758–766. https://doi.org/10.1080/08923973.2021.1981374.
AlvesSandroChurlaudGuillaumeAudrainMickaelMichaelsen-PreusseKristinFolRomainSouchetBenoitBraudeauJérômeKorteMartinKlatzmannDavidCartierNathalieInterleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease miceBrain201714082684210.1093/brain/aww33028003243
Lin, Li, Li Juan Zheng, and Long Jiang Zhang. 2018. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Molecular Neurobiology 55. Humana Press Inc.: 8243–8250. https://doi.org/10.1007/S12035-018-0983-2/FIGURES/2.
Jonkman, Laura E., Martijn D. Steenwijk, Nicky Boesen, Annemieke J.M. Rozemuller, Frederik Barkhof, Jeroen J.G. Geurts, Linda Douw, and Wilma D.J. van de Berg. 2020. Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology 95. American Academy of Neurology: e532. https://doi.org/10.1212/WNL.0000000000009910.
Therapeutics, Search, Therapeutics Home, Montelukast Synonyms, Chemical Name, Therapy Type, Small Molecule, Target Type, Disease U S F D A Status, Intelgenx Approved, and Aldea Perona. 2016. THERAPEUTICS Montelukast: 1–5.
Rivers-AutyJackAlzheimer’s Disease Neuroimaging Initiative, Alison E Mather, Alzheimer’s Disease Neuroimaging Initiative, Ruth Peters, Alzheimer’s Disease Neuroimaging Initiative, Catherine B Lawrence, Alzheimer’s disease neuroimaging initiative, David Brough, and Alzheimer’s disease neuroimaging initiative. Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate? Brain Communications 2Oxford Academic202010.1093/BRAINCOMMS/FCAA109
Yang, Seung Hoon. 2019. Cellular and molecular mediators of neuroinflammation in Alzheimer disease. International Neurourology Journal 23. Korean Continence Society: S54. https://doi.org/10.5213/INJ.1938184.092.
Lyra e Silva, Natalia M., Rafaella A. Gonçalves, Tharick A. Pascoal, Ricardo A.S. Lima-Filho, Elisa de Paula França Resende, Erica L.M. Vieira, Antonio L. Teixeira, et al. 2021. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Translational Psychiatry 11. Springer US. https://doi.org/10.1038/s41398-021-01349-z.
Sinyor, Benjamin, Jocelyn Mineo, and Christopher Ochner. 2020. Alzheimer’s disease, inflammation, and the role of antioxidants. Journal of Alzheimer’s Disease Reports 4. IOS Press: 175–183. https://doi.org/10.3233/ADR-200171.
Uddin, Md Sahab, Md Ataur Rahman, Md Tanvir Kabir, Tapan Behl, Bijo Mathew, Asma Perveen, George E. Barreto, May N. Bin-Jumah, Mohamed M. Abdel-Daim, and Ghulam Md Ashraf. 2020. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer’s disease. IUBMB Life 72. John Wiley & Sons, Ltd: 1843–1855. https://doi.org/10.1002/IUB.2324.
Hemonnot, Anne Laure, Jennifer Hua, Lauriane Ulmann, and Hélène Hirbec. 2019. Microglia in Alzheimer disease: well-known targets and new opportunities. Frontiers in Aging Neuroscience 11. Frontiers Media SA. https://doi.org/10.3389/FNAGI.2019.00233.
Lin, Caixiu, Shuai Zhao, Yueli Zhu, Ziqi Fan, Jing Wang, Baorong Zhang, and Yanxing Chen. 2019. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Computational and Structural Biotechnology Journal 17. Elsevier: 1309–1317. https://doi.org/10.1016/J.CSBJ.2019.09.008.
Norden, Diana M., Paige J. Trojanowski, Emmanuel Villanueva, Elisa Navarro, and Jonathan P. Godbout. 2016. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64. NIH Public Access: 300. https://doi.org/10.1002/GLIA.22930.
Choi, Hyun B., Jae K. Ryu, Seung U. Kim, and James G. McLarnon. 2007. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 27. J Neurosci: 4957–4968. https://doi.org/10.1523/JNEUROSCI.5417-06.2007.
Zheng, Cong, Xin Wen Zhou, and Jian Zhi Wang. 2016. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational Neurodegeneration 2016 5:1 5. BioMed Central: 1–15. https://doi.org/10.1186/S40035-016-0054-4.
TufanAyse NTufanFatihEtanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialNeurology2015852083208410.1212/01.wnl.0000475736.75775.2526644053
Sahab Uddin, Md, Abdullah Al Mamun, Md Tanvir Kabir, & Ghulam, Md Ashraf, May N Bin-Jumah, and Mohamed M Abdel-Daim. Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. https://doi.org/10.1007/s12035-020-02116-9/Published.
Lee, Jong Kil, and Nam Jung Kim. 2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 2017, Vol. 22, Page 1287 22. Multidisciplinary Digital Publishing Institute: 1287. https://doi.org/10.3390/MOLECULES22081287.
Porro, Chiara, Antonia Cianciulli, and Maria Antonietta Panaro. 2020. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 10. Multidisciplinary Digital Publishing Institute (MDPI): 1–15. https://doi.org/10.3390/BIOM10071017.
Li, Si tong, Qi Dai, Shu xian Zhang, Ya jun Liu, Qiu qiong Yu, Fei Tan, Shu hong Lu, et al. 2018. Ulinastatin attenuates LPS-induceds inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacologica Sinica 2018 39:8 39. Nature Publishing Group: 1294–1304. https://doi.org/10.1038/aps.2017.143.
Sun, Weiying, Jun Zhao, and Chunzhi Li. 2020. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer’s Disease by mediating the miR-129/YAP1/JAG1 axis. Molecular neurobiology 57. Mol Neurobiol: 5044–5055. https://doi.org/10.1007/S12035-020-02069-Z.
Prins, Niels D., John E. Harrison, Hui May Chu, Kelly Blackburn, John J. Alam, Philip Scheltens, Arnold, et al. 2021. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimer’s Research and Therapy 13. BioMed Central Ltd: 1–12. https://doi.org/10.1186/S13195-021-00843-2/TABLES/3.
Figueiredo-Pereira, Maria E., Patricia Rockwell, Thomas Schmidt-Glenewinkel, and Peter Serrano. 2015. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Frontiers in Molecular Neuroscience 7. Frontiers Media S.A.: 1–20. https://doi.org/10.3389/FNMOL.2014.00104/BIBTEX.
Shen, Heping, Qiaobing Guan, Xiaoling Zhang, Chao Yuan, Zhengye Tan, Liping Zhai, Yanan Hao, Yanling Gu, and Chenyang Han. 2020. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry 100. Elsevier Inc.: 109884. https://doi.org/10.1016/J.PNPBP.2020.109884.
Wang, Xinyi, Guangqiang Sun, Teng Feng, Jing Zhang, Xun Huang, Tao Wang, Zuoquan Xie, et al. 2019. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-s
1721_CR11
1721_CR55
1721_CR10
1721_CR54
1721_CR13
1721_CR12
1721_CR15
1721_CR17
1721_CR16
1721_CR2
1721_CR1
1721_CR4
1721_CR3
1721_CR6
1721_CR5
1721_CR50
1721_CR8
1721_CR53
1721_CR7
1721_CR52
1721_CR9
Wen Ying Wang (1721_CR31) 2015; 3
Ming Liu (1721_CR51) 2008; 26
Ayse N Tufan (1721_CR57) 2015; 85
1721_CR19
1721_CR18
Ricardo Taipa (1721_CR14) 2019; 76
1721_CR44
1721_CR43
1721_CR46
1721_CR45
1721_CR47
1721_CR49
Rudy Chang (1721_CR37) 2017; 14
1721_CR42
1721_CR41
Miren Ettcheto (1721_CR59) 2021; 11
Lauren L Williamson (1721_CR33) 2011; 31
Masaki Mogi (1721_CR62) 2008; 375
1721_CR35
1721_CR36
1721_CR39
1721_CR38
1721_CR30
Jack Rivers-Auty (1721_CR64) 2020
Yonggang Zhang (1721_CR40) 2011; 303
Lijuan Yang (1721_CR58) 2021; 76
1721_CR66
1721_CR21
1721_CR65
1721_CR24
Sandro Alves (1721_CR34) 2017; 140
1721_CR68
1721_CR23
Erwan Thouennon (1721_CR48) 2015; 134
1721_CR67
1721_CR26
1721_CR25
1721_CR28
1721_CR27
1721_CR60
1721_CR20
1721_CR63
Robert E Mrak (1721_CR32) 2000; 59
Simona Sestito (1721_CR61) 2019; 9
Niraj Kumar Jha (1721_CR22) 2019; 150
Mengshi Zhou (1721_CR56) 2020; 15
1721_CR29
References_xml – reference: Rivers-AutyJackAlzheimer’s Disease Neuroimaging Initiative, Alison E Mather, Alzheimer’s Disease Neuroimaging Initiative, Ruth Peters, Alzheimer’s Disease Neuroimaging Initiative, Catherine B Lawrence, Alzheimer’s disease neuroimaging initiative, David Brough, and Alzheimer’s disease neuroimaging initiative. Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate? Brain Communications 2Oxford Academic202010.1093/BRAINCOMMS/FCAA109
– reference: Wang, Xinyi, Guangqiang Sun, Teng Feng, Jing Zhang, Xun Huang, Tao Wang, Zuoquan Xie, et al. 2019. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Research 2019 29:10 29. Nature Publishing Group: 787–803. https://doi.org/10.1038/s41422-019-0216-x.
– reference: JhaNiraj KumarJhaSaurabh KumarKarRohanNandParmaSwatiKumariGoswamiVineet KumarNuclear factor-kappa β as a therapeutic target for Alzheimer’s diseaseJournal of Neurochemistry20191501131371:CAS:528:DC%2BC1MXlvFegt7w%3D10.1111/jnc.1468730802950
– reference: ThouennonErwanChengYongFalahatianVidaCawleyNiamh XLohYoke PengRosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotectionJournal of Neurochemistry20151344634701:CAS:528:DC%2BC2MXptFOqtbo%3D10.1111/jnc.13152259407854496294
– reference: MogiMasakiLiJian MeiTsukudaKanaIwanamiJunMinLi JuanSakataAkikoFujitaTeppeiIwaiMasaruHoriuchiMasatsuguTelmisartan prevented cognitive decline partly due to PPAR-γ activationBiochemical and Biophysical Research Communications20083754464491:CAS:528:DC%2BD1cXhtFaqs7fO10.1016/J.BBRC.2008.08.03218715543
– reference: Hemonnot, Anne Laure, Jennifer Hua, Lauriane Ulmann, and Hélène Hirbec. 2019. Microglia in Alzheimer disease: well-known targets and new opportunities. Frontiers in Aging Neuroscience 11. Frontiers Media SA. https://doi.org/10.3389/FNAGI.2019.00233.
– reference: AlvesSandroChurlaudGuillaumeAudrainMickaelMichaelsen-PreusseKristinFolRomainSouchetBenoitBraudeauJérômeKorteMartinKlatzmannDavidCartierNathalieInterleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease miceBrain201714082684210.1093/brain/aww33028003243
– reference: Prins, Niels D., John E. Harrison, Hui May Chu, Kelly Blackburn, John J. Alam, Philip Scheltens, Arnold, et al. 2021. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimer’s Research and Therapy 13. BioMed Central Ltd: 1–12. https://doi.org/10.1186/S13195-021-00843-2/TABLES/3.
– reference: Saito, Takashi, and Takaomi C. Saido. 2018. Neuroinflammation in mouse models of Alzheimer’s disease. Clinical and Experimental Neuroimmunology 9. John Wiley & Sons, Ltd: 211–218. https://doi.org/10.1111/CEN3.12475.
– reference: MrakRobert EGriffinWSTInterleukin-1 and the immunogenetics of Alzheimer diseaseJournal of Neuropathology and Experimental Neurology2000594714761:CAS:528:DC%2BD3cXktlWrtb0%3D10.1093/jnen/59.6.47110850859
– reference: ZhangYonggangZhangJieTianCanXiaoYulingLiXiaoboHeChaoHuangJinFanHongThe -1082G/A polymorphism in IL-10 gene is associated with risk of Alzheimer’s disease: A meta-analysisJournal of the Neurological Sciences20113031331381:CAS:528:DC%2BC3MXjs1WktL4%3D10.1016/J.JNS.2010.12.00521255795
– reference: Leng, Fangda, and Paul Edison. 2021. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology. Vol. 17. https://doi.org/10.1038/s41582-020-00435-y.
– reference: Zhao, Yang, Jianshuai He, Ning Yu, Changxin Jia, and Shilei Wang. 2020. Mechanisms of dexmedetomidine in neuropathic pain. Frontiers in Neuroscience 14. Frontiers Media S.A.: 330. https://doi.org/10.3389/FNINS.2020.00330/BIBTEX.
– reference: LiuMingNieQinXinXianliangGengMeiyuIdentification of AOSC-binding proteins in neuronsChinese Journal of Oceanology and Limnology2008263943991:CAS:528:DC%2BD1MXhvVCitr8%3D10.1007/S00343-008-0394-8
– reference: WangWen YingTanMeng ShanJin TaiYuTanLanRole of pro-inflammatory cytokines released from microglia in Alzheimer’s diseaseAnnals of Translational Medicine201531171:CAS:528:DC%2BC28XnsFequrk%3D10.3978/j.issn.2305-5839.2015.03.49
– reference: Heneka, Michael T., Monica J. Carson, Joseph El Khoury, Gary E. Landreth, Frederic Brosseron, Douglas L. Feinstein, Andreas H. Jacobs, et al. 2015. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology. Lancet Publishing Group. https://doi.org/10.1016/S1474-4422(15)70016-5.
– reference: Jonkman, Laura E., Martijn D. Steenwijk, Nicky Boesen, Annemieke J.M. Rozemuller, Frederik Barkhof, Jeroen J.G. Geurts, Linda Douw, and Wilma D.J. van de Berg. 2020. Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology 95. American Academy of Neurology: e532. https://doi.org/10.1212/WNL.0000000000009910.
– reference: Lee, Jong Kil, and Nam Jung Kim. 2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 2017, Vol. 22, Page 1287 22. Multidisciplinary Digital Publishing Institute: 1287. https://doi.org/10.3390/MOLECULES22081287.
– reference: Karkhah, Ahmad, Mahdiye Saadi, Fereshteh Pourabdolhossein, Kiarash Saleki, and Hamid Reza Nouri. 2021. Indomethacin attenuates neuroinflammation and memory impairment in an STZ-induced model of Alzheimer’s like disease. https://doi.org/10.1080/08923973.2021.1981374 43. Taylor & Francis: 758–766. https://doi.org/10.1080/08923973.2021.1981374.
– reference: Howard, Robert, Olga Zubko, Rosie Bradley, Emma Harper, Lynn Pank, John O Brien, Chris Fox, et al. 2020. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease a randomized clinical trial 77: 164–174. https://doi.org/10.1001/jamaneurol.2019.3762.
– reference: Rubio-Perez, Jose Miguel, and Juana Maria Morillas-Ruiz. 2012. A review: inflammatory process in Alzheimer’s disease, role of cytokines. The Scientific World Journal 2012. Hindawi Limited. https://doi.org/10.1100/2012/756357.
– reference: Kinney, Jefferson W., Shane M. Bemiller, Andrew S. Murtishaw, Amanda M. Leisgang, Arnold M. Salazar, and Bruce T. Lamb. 2018. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia : Translational Research & Clinical Interventions 4. Wiley-Blackwell: 575. https://doi.org/10.1016/J.TRCI.2018.06.014.
– reference: Uddin, Md Sahab, Md Ataur Rahman, Md Tanvir Kabir, Tapan Behl, Bijo Mathew, Asma Perveen, George E. Barreto, May N. Bin-Jumah, Mohamed M. Abdel-Daim, and Ghulam Md Ashraf. 2020. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer’s disease. IUBMB Life 72. John Wiley & Sons, Ltd: 1843–1855. https://doi.org/10.1002/IUB.2324.
– reference: Su, Fan, Feng Bai, and Zhijun Zhang. 2016. Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neuroscience Bulletin 32. Springer: 469. https://doi.org/10.1007/S12264-016-0055-4.
– reference: Pathak, Yashwant. Genomics-Driven Healthcare.
– reference: ChangRudyKnoxJillianChangJaeDerbedrossianAramVasilevkoVitalyCribbsDavidBoadoRuben JPardridgeWilliam MSumbriaRachita KBlood-brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s diseaseMolecular Pharmaceutics201714234023491:CAS:528:DC%2BC2sXnvVyjur8%3D10.1021/acs.molpharmaceut.7b0020028514851
– reference: Porro, Chiara, Antonia Cianciulli, and Maria Antonietta Panaro. 2020. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 10. Multidisciplinary Digital Publishing Institute (MDPI): 1–15. https://doi.org/10.3390/BIOM10071017.
– reference: Megur, Ashwinipriyadarshini, Daiva Baltriukienė, Virginija Bukelskienė, and Aurelijus Burokas. 2020. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame? Nutrients 2021, Vol. 13, Page 37 13. Multidisciplinary Digital Publishing Institute: 37. https://doi.org/10.3390/NU13010037.
– reference: Liu et al. - 2017 - NF-κB signaling in inflammation - Signal Transduction and Targeted Therapy.pdf.
– reference: Sun, Weiying, Jun Zhao, and Chunzhi Li. 2020. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer’s Disease by mediating the miR-129/YAP1/JAG1 axis. Molecular neurobiology 57. Mol Neurobiol: 5044–5055. https://doi.org/10.1007/S12035-020-02069-Z.
– reference: Yang, Seung Hoon. 2019. Cellular and molecular mediators of neuroinflammation in Alzheimer disease. International Neurourology Journal 23. Korean Continence Society: S54. https://doi.org/10.5213/INJ.1938184.092.
– reference: Therapeutics, Search, Therapeutics Home, Montelukast Synonyms, Chemical Name, Therapy Type, Small Molecule, Target Type, Disease U S F D A Status, Intelgenx Approved, and Aldea Perona. 2016. THERAPEUTICS Montelukast: 1–5.
– reference: Kheiri, Ghazaleh, Mahsa Dolatshahi, Farzaneh Rahmani, and Nima Rezaei. 2019. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy. Reviews in the Neurosciences 30. De Gruyter: 9–30. https://doi.org/10.1515/REVNEURO-2018-0008/XML.
– reference: Shal, Bushra, Wei Ding, Hussain Ali, Yeong S. Kim, and Salman Khan. 2018. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Frontiers in Pharmacology 9. Frontiers Media S.A.: 548. https://doi.org/10.3389/FPHAR.2018.00548/BIBTEX.
– reference: Dinarello, Charles A. 2000. Proinflammatory cytokines. Chest 118. Chest: 503–508. https://doi.org/10.1378/CHEST.118.2.503.
– reference: Xiao, Shifu, Piu Chan, Tao Wang, Zhen Hong, Shuzhen Wang, Weihong Kuang, Jincai He, et al. 2021. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimer’s research & therapy 13. Alzheimers Res Ther. https://doi.org/10.1186/S13195-021-00795-7.
– reference: Lyra e Silva, Natalia M., Rafaella A. Gonçalves, Tharick A. Pascoal, Ricardo A.S. Lima-Filho, Elisa de Paula França Resende, Erica L.M. Vieira, Antonio L. Teixeira, et al. 2021. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Translational Psychiatry 11. Springer US. https://doi.org/10.1038/s41398-021-01349-z.
– reference: Shen, Heping, Qiaobing Guan, Xiaoling Zhang, Chao Yuan, Zhengye Tan, Liping Zhai, Yanan Hao, Yanling Gu, and Chenyang Han. 2020. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry 100. Elsevier Inc.: 109884. https://doi.org/10.1016/J.PNPBP.2020.109884.
– reference: EttchetoMirenCanoAmandaSanchez-LópezElenaVerdaguerEsterFolchJaumeAuladellCarmeCaminsAntoniMasitinib for the treatment of Alzheimer’s diseaseNeurodegenerative Disease Management20211126327610.2217/nmt-2021-001934412534
– reference: Behl, Tapan, Bijo Mathew, Asma Perveen, George E Barreto, May N Bin-jumah, and Mohamed M Abdel-daim. 2020. 1 INTRODUCTION 2 BRIEF OUTLINE Of mTOR SIGNALING PATHWAY 72: 1843–1855.
– reference: Norden, Diana M., Paige J. Trojanowski, Emmanuel Villanueva, Elisa Navarro, and Jonathan P. Godbout. 2016. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64. NIH Public Access: 300. https://doi.org/10.1002/GLIA.22930.
– reference: Sahab Uddin, Md, Abdullah Al Mamun, Md Tanvir Kabir, & Ghulam, Md Ashraf, May N Bin-Jumah, and Mohamed M Abdel-Daim. Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. https://doi.org/10.1007/s12035-020-02116-9/Published.
– reference: Li, Si tong, Qi Dai, Shu xian Zhang, Ya jun Liu, Qiu qiong Yu, Fei Tan, Shu hong Lu, et al. 2018. Ulinastatin attenuates LPS-induceds inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacologica Sinica 2018 39:8 39. Nature Publishing Group: 1294–1304. https://doi.org/10.1038/aps.2017.143.
– reference: Lin, Li, Li Juan Zheng, and Long Jiang Zhang. 2018. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Molecular Neurobiology 55. Humana Press Inc.: 8243–8250. https://doi.org/10.1007/S12035-018-0983-2/FIGURES/2.
– reference: SestitoSimonaDanieleSimonaPietrobonoDeborahCitiValentinaBellusciLorenzaChielliniGraziaCalderoneVincenzoMartiniClaudiaRapposelliSimonaMemantine prodrug as a new agent for Alzheimer’s diseaseScientific Reports201991111:CAS:528:DC%2BC1MXotlahs78%3D10.1038/s41598-019-40925-8
– reference: Ekert, Justyna O., Rebecca L. Gould, Gemma Reynolds, and Robert J. Howard. 2018. TNF alpha inhibitors in Alzheimer’s disease: a systematic review. International Journal of Geriatric Psychiatry 33. John Wiley & Sons, Ltd: 688–694. https://doi.org/10.1002/GPS.4871.
– reference: Gottschalk, William Kirby. 2021. in Neuroscience Reassessment of Pioglitazone for Alzheimer ’ s Disease: 1–76.
– reference: Zheng, Cong, Xin Wen Zhou, and Jian Zhi Wang. 2016. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational Neurodegeneration 2016 5:1 5. BioMed Central: 1–15. https://doi.org/10.1186/S40035-016-0054-4.
– reference: Choi, Hyun B., Jae K. Ryu, Seung U. Kim, and James G. McLarnon. 2007. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 27. J Neurosci: 4957–4968. https://doi.org/10.1523/JNEUROSCI.5417-06.2007.
– reference: Mueed, Zeba, Pallavi Tandon, Sanjeev Kumar Maurya, Ravi Deval, Mohammad A. Kamal, and Nitesh Kumar Poddar. 2019. Tau and mTOR: the hotspots for multifarious diseases in Alzheimer’s development. Frontiers in Neuroscience 13. Frontiers Media S.A.: 1017. https://doi.org/10.3389/FNINS.2018.01017/BIBTEX.
– reference: McGeer, Patrick L., and Edith G. McGeer. 2001. Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Archives of Neurology 58. American Medical Association: 1790–1792. https://doi.org/10.1001/ARCHNEUR.58.11.1790.
– reference: YangLijuanLiuYepeiWangYuanyuanLiJunshengLiuNaAzeliragon ameliorates Alzheimer’s disease via the janus tyrosine kinase and signal transducer and activator of transcription signaling pathwayClinics2021761810.6061/CLINICS/2021/E2348
– reference: Gauthier, Serge, P. S. Aisen, J. Cummings, M. J. Detke, F. M. Longo, R. Raman, M. Sabbagh, et al. 2020. Non-amyloid approaches to disease modification for Alzheimer’s disease: an EU/US CTAD task force report. The Journal of Prevention of Alzheimer’s Disease 2020 7:3 7. Springer: 152–157. https://doi.org/10.14283/JPAD.2020.18.
– reference: Goyal, Divya, Syed Afroz Ali, and Rakesh Kumar Singh. 2021. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry 106. Elsevier Inc.: 110112. https://doi.org/10.1016/J.PNPBP.2020.110112.
– reference: TaipaRicardoSofiaPdas Neves, Ana L. Sousa, Joana Fernandes, Claudia Pinto, Ana P. Correia, Ernestina Santos, Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive declineNeurobiology of Aging2019761251321:CAS:528:DC%2BC1MXhvFentLg%3D10.1016/j.neurobiolaging.2018.12.01930711675
– reference: Sinyor, Benjamin, Jocelyn Mineo, and Christopher Ochner. 2020. Alzheimer’s disease, inflammation, and the role of antioxidants. Journal of Alzheimer’s Disease Reports 4. IOS Press: 175–183. https://doi.org/10.3233/ADR-200171.
– reference: Liu, Ting, Lingyun Zhang, Donghyun Joo, and Shao Cong Sun. 2017. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2017 2:1 2. Nature Publishing Group: 1–9. https://doi.org/10.1038/sigtrans.2017.23.
– reference: DiSabato, Damon J., Ning Quan, and Jonathan P. Godbout. 2016. Neuroinflammation: the devil is in the details. Journal of neurochemistry 139. NIH Public Access: 136. https://doi.org/10.1111/JNC.13607.
– reference: Pharmaceuticals, Biohaven. COVID-19 Information Try the modernized ClinicalTrials . gov beta website . Learn more about the modernization effort . Trial record 1 of 1 for : Study of BHV-4157 in Alzheimer ’ s Disease ( T2 Protect AD ): 1–7.
– reference: Lin, Caixiu, Shuai Zhao, Yueli Zhu, Ziqi Fan, Jing Wang, Baorong Zhang, and Yanxing Chen. 2019. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Computational and Structural Biotechnology Journal 17. Elsevier: 1309–1317. https://doi.org/10.1016/J.CSBJ.2019.09.008.
– reference: Messemer, Nanette, Christin Kunert, Marcus Grohmann, Helga Sobottka, Karen Nieber, Herbert Zimmermann, Heike Franke, et al. 2013. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology 73. Neuropharmacology: 122–137. https://doi.org/10.1016/J.NEUROPHARM.2013.05.017.
– reference: WilliamsonLauren LSholarPaige WMistryRishi SSmithSusan HBilboStaci DMicroglia and memory: Modulation by early-life infectionJournal of Neuroscience20113115511155211:CAS:528:DC%2BC3MXhsVWiu7rI10.1523/JNEUROSCI.3688-11.201122031897
– reference: Guo, Libing, Jiaxin Xu, Yunhua Du, Weibo Wu, Wenjing Nie, Dongliang Zhang, Yuling Luo, et al. 2021. Effects of gut microbiota and probiotics on Alzheimer’s disease. Translational Neuroscience 12. De Gruyter Open Ltd: 573–580. https://doi.org/10.1515/TNSCI-2020-0203/ASSET/GRAPHIC/J_TNSCI-2021-0203_FIG_001.JPG.
– reference: Dionisio-Santos, Dawling A., John A. Olschowka, and M. Kerry O’Banion. 2019. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. Journal of Neuroinflammation 2019 16:1 16. BioMed Central: 1–13. https://doi.org/10.1186/S12974-019-1453-0.
– reference: Plascencia-Villa, Germán, and George Perry. 2020. Status and future directions of clinical trials in Alzheimer’s disease. International Review of Neurobiology 154. Academic Press: 3–50. https://doi.org/10.1016/BS.IRN.2020.03.022.
– reference: ZhouMengshiRongXuKaelberDavid CGurneyMark ETumor necrosis factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasisPLoS ONE2020151141:CAS:528:DC%2BB3cXmsFWhs7k%3D10.1371/journal.pone.0229819
– reference: Figueiredo-Pereira, Maria E., Patricia Rockwell, Thomas Schmidt-Glenewinkel, and Peter Serrano. 2015. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Frontiers in Molecular Neuroscience 7. Frontiers Media S.A.: 1–20. https://doi.org/10.3389/FNMOL.2014.00104/BIBTEX.
– reference: TufanAyse NTufanFatihEtanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialNeurology2015852083208410.1212/01.wnl.0000475736.75775.2526644053
– ident: 1721_CR45
  doi: 10.1016/J.PNPBP.2020.110112
– ident: 1721_CR65
  doi: 10.1186/S13195-021-00843-2/TABLES/3
– ident: 1721_CR20
  doi: 10.1038/sigtrans.2017.23
– ident: 1721_CR50
  doi: 10.1186/S13195-021-00795-7
– ident: 1721_CR5
  doi: 10.1186/S40035-016-0054-4
– year: 2020
  ident: 1721_CR64
  publication-title: Oxford Academic
  doi: 10.1093/BRAINCOMMS/FCAA109
– ident: 1721_CR17
  doi: 10.5213/INJ.1938184.092
– ident: 1721_CR35
  doi: 10.1038/s41398-021-01349-z
– volume: 134
  start-page: 463
  year: 2015
  ident: 1721_CR48
  publication-title: Journal of Neurochemistry
  doi: 10.1111/jnc.13152
– ident: 1721_CR68
  doi: 10.1515/TNSCI-2020-0203/ASSET/GRAPHIC/J_TNSCI-2021-0203_FIG_001.JPG
– ident: 1721_CR8
  doi: 10.1186/S12974-019-1453-0
– ident: 1721_CR21
  doi: 10.1038/sigtrans.2017.23
– ident: 1721_CR44
  doi: 10.1007/S12035-018-0983-2/FIGURES/2
– ident: 1721_CR23
  doi: 10.1016/J.NEUROPHARM.2013.05.017
– ident: 1721_CR16
  doi: 10.1038/s41582-020-00435-y
– volume: 14
  start-page: 2340
  year: 2017
  ident: 1721_CR37
  publication-title: Molecular Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.7b00200
– ident: 1721_CR46
  doi: 10.3390/NU13010037
– volume: 76
  start-page: 125
  year: 2019
  ident: 1721_CR14
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2018.12.019
– ident: 1721_CR39
  doi: 10.1001/ARCHNEUR.58.11.1790
– ident: 1721_CR66
  doi: 10.1038/s41422-019-0216-x
– ident: 1721_CR7
  doi: 10.3233/ADR-200171
– ident: 1721_CR43
  doi: 10.1016/J.PNPBP.2020.109884
– ident: 1721_CR2
  doi: 10.3389/FPHAR.2018.00548/BIBTEX
– ident: 1721_CR49
– volume: 11
  start-page: 263
  year: 2021
  ident: 1721_CR59
  publication-title: Neurodegenerative Disease Management
  doi: 10.2217/nmt-2021-0019
– ident: 1721_CR4
– ident: 1721_CR15
  doi: 10.1016/S1474-4422(15)70016-5
– ident: 1721_CR9
  doi: 10.1111/JNC.13607
– volume: 9
  start-page: 1
  year: 2019
  ident: 1721_CR61
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-40925-8
– ident: 1721_CR19
  doi: 10.3389/FNAGI.2019.00233
– ident: 1721_CR55
– ident: 1721_CR18
  doi: 10.1038/aps.2017.143
– volume: 85
  start-page: 2083
  year: 2015
  ident: 1721_CR57
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000475736.75775.25
– volume: 15
  start-page: 1
  year: 2020
  ident: 1721_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0229819
– ident: 1721_CR13
  doi: 10.3389/FNMOL.2014.00104/BIBTEX
– volume: 31
  start-page: 15511
  year: 2011
  ident: 1721_CR33
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3688-11.2011
– volume: 76
  start-page: 1
  year: 2021
  ident: 1721_CR58
  publication-title: Clinics
  doi: 10.6061/CLINICS/2021/E2348
– ident: 1721_CR10
  doi: 10.1002/GLIA.22930
– ident: 1721_CR29
  doi: 10.3390/MOLECULES22081287
– ident: 1721_CR25
  doi: 10.1002/iub.2324
– ident: 1721_CR24
  doi: 10.1523/JNEUROSCI.5417-06.2007
– ident: 1721_CR63
  doi: 10.1080/08923973.2021.1981374 10.1080/08923973.2021.1981374
– volume: 59
  start-page: 471
  year: 2000
  ident: 1721_CR32
  publication-title: Journal of Neuropathology and Experimental Neurology
  doi: 10.1093/jnen/59.6.471
– ident: 1721_CR3
  doi: 10.1212/WNL.0000000000009910
– volume: 26
  start-page: 394
  year: 2008
  ident: 1721_CR51
  publication-title: Chinese Journal of Oceanology and Limnology
  doi: 10.1007/S00343-008-0394-8
– ident: 1721_CR27
  doi: 10.1002/IUB.2324
– ident: 1721_CR52
  doi: 10.1007/S12035-020-02069-Z
– volume: 140
  start-page: 826
  year: 2017
  ident: 1721_CR34
  publication-title: Brain
  doi: 10.1093/brain/aww330
– ident: 1721_CR42
  doi: 10.1100/2012/756357
– ident: 1721_CR28
  doi: 10.1515/REVNEURO-2018-0008/XML
– ident: 1721_CR47
  doi: 10.1016/J.CSBJ.2019.09.008
– ident: 1721_CR41
  doi: 10.3390/BIOM10071017
– volume: 303
  start-page: 133
  year: 2011
  ident: 1721_CR40
  publication-title: Journal of the Neurological Sciences
  doi: 10.1016/J.JNS.2010.12.005
– ident: 1721_CR36
  doi: 10.1007/S12264-016-0055-4
– volume: 3
  start-page: 1
  year: 2015
  ident: 1721_CR31
  publication-title: Annals of Translational Medicine
  doi: 10.3978/j.issn.2305-5839.2015.03.49
– volume: 375
  start-page: 446
  year: 2008
  ident: 1721_CR62
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/J.BBRC.2008.08.032
– ident: 1721_CR12
  doi: 10.1111/CEN3.12475
– ident: 1721_CR1
  doi: 10.1007/s12035-020-02116-9/Published
– ident: 1721_CR38
  doi: 10.1002/GPS.4871
– ident: 1721_CR67
  doi: 10.1016/BS.IRN.2020.03.022
– volume: 150
  start-page: 113
  year: 2019
  ident: 1721_CR22
  publication-title: Journal of Neurochemistry
  doi: 10.1111/jnc.14687
– ident: 1721_CR11
  doi: 10.1016/J.TRCI.2018.06.014
– ident: 1721_CR30
  doi: 10.1378/CHEST.118.2.503
– ident: 1721_CR54
  doi: 10.1001/jamaneurol.2019.3762
– ident: 1721_CR60
– ident: 1721_CR26
  doi: 10.3389/FNINS.2018.01017/BIBTEX
– ident: 1721_CR6
  doi: 10.14283/JPAD.2020.18
– ident: 1721_CR53
  doi: 10.3389/FNINS.2020.00330/BIBTEX
SSID ssj0008983
Score 2.6739874
SecondaryResourceType review_article
Snippet Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack...
Alzheimer's disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack...
AbstractAlzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms AKT protein
Alzheimer Disease - metabolism
Alzheimer's disease
Amyloid beta-Peptides
Anti-Inflammatory Agents - metabolism
Anti-Inflammatory Agents - pharmacology
Anti-Inflammatory Agents - therapeutic use
Astrocytes
Biomedical and Life Sciences
Biomedicine
Caspase
Cell death
Chemokines
Cytokines
Cytokines - metabolism
Dementia disorders
Humans
Immunology
Internal Medicine
Intestinal microflora
MAP kinase
Microglia
Microglia - metabolism
Neurodegenerative diseases
Neurodegenerative Diseases - drug therapy
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Neuroinflammatory Diseases
Neuroprotection
NF-κB protein
Nitric oxide
Pathology
Phagocytosis
Pharmacology/Toxicology
Phosphorylation
Public health
Review
Rheumatology
Signal transduction
Tau protein
TOR protein
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46QQQR71anRPBNi2vWNq0vIl4QYSK4wd5KmsscaKe7vPjk3_Dv-Us8p0k3RPS5aRtycnK-nMt3CDmSYGJMrIQP2D5AbxXoXCC4r4NENk0emiTEauTWfXzbCe-6Udc53EYurbI6E8uDWg0k-shPGU_AnPBGxM5f33zsGoXRVddCY54sIHUZ7mrenV64GklqaTibMZw1acpd0YwrnQOg7mMue3kL8oOfhukX2vwVKS0N0M0qWXHIkV5YUa-ROV2sk8WWi42vk2XrgaO2sGiDqJJ3AzYQyNzWJ9J-QS-e3590_0UPvz4-R_TKhmfOqKNpog-YrgWHHw5tVZ1z6WO_h3i96FFRKNqelWyNNknn5rp9eeu7ngq-BOAz9kOep3mk80jGnJsoMUbDJVhwA4qrAUtJESdKpYKleaxVQzYlY1w2BANcBbqum1ukVgwKvYPV3rCSImZCGYR9iWDInRcpADwRM7n2SFAtaCYd4Tj2vXjOZlTJKIQMhJCVQsgCjxxP33m1dBv_jq5Xcsqc6o2y2UbxyOH0MSgNRkJEoQcTHFMyDSY89Mi2le_0d0hpGJdPTiqBzz7-91x2_5_LHlnCRvU237tOauPhRO8DnBnnB-We_QZK1u7P
  priority: 102
  providerName: ProQuest
Title Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics
URI https://link.springer.com/article/10.1007/s10753-022-01721-1
https://www.ncbi.nlm.nih.gov/pubmed/35986874
https://www.proquest.com/docview/2780247052
https://www.proquest.com/docview/2704867874
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA-6gfgi_rc6RwTftLBmbdL6NuemKBtDN5hPJU2TOZidrNuLT34Nv56fxEv_bMpU8KnQpGm5yyW_6939gtCpgC1G0ZCbgO0t_bcKbM7izJSWK6oqsJVr62rkVpve9OzbvtPPisLiPNs9D0kmK_WXYjeA1qbOPk_8FhN8nqIDvrtO5OqR2nz9db2UfLNKYYXxPJaVyvw8xvftaAljLsVHk22nuYk2MryIa6mCt9CKjLbRWiuLiO-gMGHXgGkCmk2rEPEwwrXR65McPsvJx9t7jK_SIMwFzsiYcEcnZcESp7u28vNx8cNwoFF5NMA8CnF3UZgV76Jes9Gt35jZyQmmAHgzNW0WeIEjA0dQxpTjKiXB1eVMgXlKQEyCUzcMPU68gMqwIqqCECYqnAB6AouW1T1UiMaRPNA13SA5TgkPlQZ3LieaIc8JAdY4RAXSQFYuQF9ktOL6dIuRvyBE1kL3Qeh-InTfMtDZ_JmXlFTjz96lXC9-ZmCxT5gL6IJVHGKgk3kzmIaOd_BIjme6T8In6DLbQPupPuev08SFNGk5zxW8GPz3bzn8X_cjtK6Pp0-zvEuoMJ3M5DGAmGlQRqusz8qoWLt-vGvA9bLR7tzD3Tqtl5P5_Akkkuuj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED91TNomTWhjYysw5knb0xaRuEmcIKGpgqEyKJq0IvUtOP7DKnVpoUXTeOJr8CX4UHwS7uKk1YTGG892HMt39v3O5_sdwEeFJsbGWnqI7QO6rcI9F0jhmSBRLZuHNgkpG7l7GHeOwu_9qN-A6zoXhp5V1mdieVDrkaI78g0uEjQnwo_41_GpR1WjKLpal9BwarFv_v5Bl22ytbeD8v3E-e633nbHq6oKeApN_9QLRZ7mkckjFQtho8Rag26gFBZV1yCaUDJOtE4lT_PYaF-1FOdC-ZIjskBtNy0c9xE8RsPrk7Mn-jMHz09SR_vZivFsS1NRJelUqXroGHj0dr70urzgX0N4B93eicyWBm_3BSxWSJW1nWq9hIYpluBJt4rFL8Fzd-PHXCLTK9AlzwcqLOqYy4dkg4K1hxe_zOC3Obu5vJqwHRcO2mQVLRT7Qc_D8LClrt26Ui_7OTgh_6A4YbLQrDdPEZu8hqMHWe1lWChGhXlL2eW4kjLmUluCmYnkxNUXaQRYEbe5aUJQL2imKoJzqrMxzObUzCSEDIWQlULIgiZ8nn0zdvQe9_Zeq-WUVVt9ks0VswkfZs24SSnyIgszOqc-JbNhIsImvHHynf2OKBTjsuVLLfD54P-fy8r9c3kPTzu97kF2sHe4vwrPOEIz99Z8DRamZ-fmHUKpab5e6i-D44feMLfl6Swj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bTttAEB3RIKFKVUXpLS20i1SeWot4Y3ttpKqChohboqgFiTd3vRcaiTqUBFXlid_or_Rz-BJmvOtEFSpvPHvjWDszO2d2Zs4AvFPoYmyiZYDYPqTbKrS5UIrAhKlq2yKyaUTdyL1-snMU7R3Hx3Pwt-6FobLK-kysDmo9UnRHvs5Fiu5EtGK-bn1ZxKDT_XT2M6AJUpRprcdpOBXZN79_Yfg2_rjbQVmvcd7dPvy8E_gJA4FCGDAJIlFkRWyKWCVC2Di11mBIKIVFNTaILJRMUq0zybMiMbql2opzoVqSI8pAzTdtfO8DmBcUFTVgfmu7P_gy9QNp5khA2wmedFkmfMuOb9zDMCGgSvoqBgvCf93iLax7K09bub_uIjz2uJVtOkV7AnOmXIKFns_ML8Ejd__HXFvTU9AV6weqL2qc645kw5Jtnl5-N8Mf5vz66s-YdVxyaIN5kig2oGIxPHppaa-e28u-Dk8oWihPmCw1O5w1jI2fwdG97PdzaJSj0rykXnPcSZlwqS2BzlRyYu6LNcKtmNvCNCGsNzRXnu6cpm6c5jOiZhJCjkLIKyHkYRPeT39z5sg-7ly9XMsp94Y_zmdq2oTV6WM0WcrDyNKMLmhNxXOYiqgJL5x8p39HhIpJ9eRDLfDZy___La_u_pa3sIDGkh_s9vdfw0OOOM0Vni9DY3J-YVYQV02KN16BGXy7b5u5ATK3Mb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroinflammation+in+Alzheimer%E2%80%99s+Disease%3A+Current+Progress+in+Molecular+Signaling+and+Therapeutics&rft.jtitle=Inflammation&rft.au=Thakur%2C+Sujata&rft.au=Dhapola%2C+Rishika&rft.au=Sarma%2C+Phulen&rft.au=Medhi%2C+Bikash&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0360-3997&rft.eissn=1573-2576&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs10753-022-01721-1&rft.externalDocID=10_1007_s10753_022_01721_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3997&client=summon