Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics
Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disea...
Saved in:
Published in | Inflammation Vol. 46; no. 1; pp. 1 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer’s disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer’s disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD. |
---|---|
AbstractList | Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer’s disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer’s disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD. AbstractAlzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer’s disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer’s disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer’s disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD. Alzheimer's disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer's disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer's disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer's disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD.Alzheimer's disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack of clear understanding of the causative agent. It is a major cause of dementia which is increasing exponentially with age. Alzheimer's disease is marked by tau hyperphosphorylation and amyloid beta accumulation that robs people of their memories. Amyloid beta deposition initiated a spectrum of microglia-activated neuroinflammation, and microglia and astrocyte activation elicited expressions of various inflammatory and anti-inflammatory cytokines. Neuroinflammation is one of the cardinal features of Alzheimer's disease. Pro-inflammatory cytokine signaling plays multifarious roles in neurodegeneration and neuroprotection. Induction of proinflammatory signaling leads to discharge of immune mediators which affect functions of neurons and cause cell death. Sluggish anti-inflammatory system also contributes to neuroinflammation. Numerous pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor, interleukins, and chemokines and participate in Alzheimer's disease pathology. PPAR-γ agonists tend to boost the phagocytosis of amyloid beta and decrease the inflammatory cytokine IL-1β. Recent findings suggest the cross-link between gut microbiota and neuroinflammation contributing in AD which has been explained in this study. The role of cellular, molecular pathways and involvement of inflammatory mediators in neuroinflammation has also been described; targeting them could be a potential therapeutic strategy for treatment of AD. |
Author | Dhapola, Rishika Sarma, Phulen Medhi, Bikash Thakur, Sujata Reddy, Dibbanti HariKrishna |
Author_xml | – sequence: 1 givenname: Sujata surname: Thakur fullname: Thakur, Sujata organization: Department of Pharmacology, Central University of Punjab – sequence: 2 givenname: Rishika surname: Dhapola fullname: Dhapola, Rishika organization: Department of Pharmacology, Central University of Punjab – sequence: 3 givenname: Phulen surname: Sarma fullname: Sarma, Phulen organization: Department of Pharmacology, All India Institute of Medical Sciences – sequence: 4 givenname: Bikash surname: Medhi fullname: Medhi, Bikash organization: Department of Pharmacology, Post Graduate Institute of Medical Education and Research – sequence: 5 givenname: Dibbanti HariKrishna surname: Reddy fullname: Reddy, Dibbanti HariKrishna email: harikrishnareddy0011@gmail.com, harikrishna.reddy@cup.edu.in organization: Department of Pharmacology, Central University of Punjab |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35986874$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS3Uik4LL8ACRWLDJtS_uQ67aviV2oJEWVuOczN15diDnSxgxWvwejwJmU4rpC66upvvOzq655gcxBSRkBeMvmGUwmlhFJSoKec1ZcBZzZ6QFVMgaq6gOSArKhpai7aFI3Jcyg2lVLdaPCVHQrW60SBXpL_EOScfh2DH0U4-xcrH6iz8ukY_Yv77-0-p3vmCtuDbaj3njHGqvua0yVjKDr1IAd0cbK6--U20wcdNZWNfXV1jtlucJ-_KM3I42FDw-d09Id8_vL9af6rPv3z8vD47r52UbKoldG2nsFOuARiUHgYErS0MoAFVw5xtdN-3lrddgz11wnEOjlrOpJBaozghr_e525x-zFgmM_riMAQbMc3FcKBSN0uaXNBXD9CbNOel_47SlEugii_Uyztq7kbszTb70eaf5v5_C6D3gMuplIyDcX66feOUrQ-GUbObyuynMstU5nYqwxaVP1Dv0x-VxF4qCxw3mP_XfsT6BwBhpt8 |
CitedBy_id | crossref_primary_10_1016_j_neulet_2024_137895 crossref_primary_10_3390_md23030094 crossref_primary_10_1007_s10787_024_01595_9 crossref_primary_10_1016_j_bbi_2023_10_020 crossref_primary_10_1111_cns_70109 crossref_primary_10_1016_j_bbi_2024_12_022 crossref_primary_10_1016_j_arr_2023_102098 crossref_primary_10_1080_19424396_2023_2289696 crossref_primary_10_52794_hujpharm_1509048 crossref_primary_10_1021_acschemneuro_4c00338 crossref_primary_10_3390_brainsci14010041 crossref_primary_10_3390_brainsci14090876 crossref_primary_10_3390_separations11080243 crossref_primary_10_1002_advs_202410910 crossref_primary_10_1186_s40035_023_00364_y crossref_primary_10_1136_bmjopen_2023_081635 crossref_primary_10_1016_j_brainres_2024_149422 crossref_primary_10_18632_aging_205831 crossref_primary_10_1016_j_prmcm_2024_100543 crossref_primary_10_3390_ijms25137019 crossref_primary_10_1007_s12035_024_04278_2 crossref_primary_10_1038_s41392_024_01911_3 crossref_primary_10_1016_j_biopha_2024_116388 crossref_primary_10_1016_j_nbd_2024_106426 crossref_primary_10_1016_j_envres_2023_117369 crossref_primary_10_3390_molecules29010233 crossref_primary_10_3390_biology13090719 crossref_primary_10_3390_pharmaceutics17010128 crossref_primary_10_3389_fphar_2024_1366061 crossref_primary_10_1186_s13195_024_01416_9 crossref_primary_10_1007_s11010_024_05164_0 crossref_primary_10_5812_asjsm_149446 crossref_primary_10_3389_fphar_2023_1196413 crossref_primary_10_1111_cns_14799 crossref_primary_10_1007_s40883_024_00362_0 crossref_primary_10_4103_NRR_NRR_D_24_00107 crossref_primary_10_1016_j_arr_2025_102689 crossref_primary_10_3892_mmr_2023_13139 crossref_primary_10_1016_j_arr_2025_102685 crossref_primary_10_1021_acs_jafc_4c07659 crossref_primary_10_1016_j_neuroscience_2024_11_049 crossref_primary_10_3389_fnagi_2024_1421900 crossref_primary_10_1007_s10495_023_01848_y crossref_primary_10_1080_17425247_2024_2438188 crossref_primary_10_1080_1028415X_2024_2359868 crossref_primary_10_3390_ijms25136928 crossref_primary_10_1016_j_brainresbull_2024_111100 crossref_primary_10_1038_s41398_024_02758_6 crossref_primary_10_1021_acsptsci_4c00629 crossref_primary_10_1186_s43556_023_00151_1 crossref_primary_10_3390_biomedicines13010171 crossref_primary_10_3923_ijp_2024_1365_1380 crossref_primary_10_1186_s42826_023_00184_1 crossref_primary_10_1093_ijnp_pyae038 crossref_primary_10_3390_brainsci13040632 crossref_primary_10_1111_cns_14721 crossref_primary_10_3390_neuroglia5040029 crossref_primary_10_1039_D4SC06762B crossref_primary_10_1016_j_pnpbp_2024_110999 crossref_primary_10_1177_25424823241307021 crossref_primary_10_1186_s12885_025_13828_3 crossref_primary_10_1016_j_envpol_2024_125031 crossref_primary_10_1016_j_cell_2023_08_042 crossref_primary_10_1080_01932691_2024_2409443 crossref_primary_10_2174_0115672050272577231120060909 crossref_primary_10_3390_ijms24065259 crossref_primary_10_1016_j_heliyon_2024_e39700 crossref_primary_10_3390_ijms26062440 crossref_primary_10_2174_0113816128281314231219113942 crossref_primary_10_3390_ijms252212311 crossref_primary_10_3390_biomedicines11072056 crossref_primary_10_3390_biom14111389 crossref_primary_10_1186_s12974_024_03040_8 crossref_primary_10_3390_cells13191624 crossref_primary_10_4103_NRR_NRR_D_23_01766 crossref_primary_10_1097_PRA_0000000000000779 crossref_primary_10_1016_j_exger_2025_112679 crossref_primary_10_1590_1414_431x2024e14094 crossref_primary_10_3390_cells13070606 crossref_primary_10_1111_cns_70091 crossref_primary_10_3390_biomedicines10123116 crossref_primary_10_1177_13872877251326286 crossref_primary_10_3389_fphar_2024_1492237 crossref_primary_10_1177_13872877241305744 crossref_primary_10_3390_biomedicines13020506 crossref_primary_10_3390_healthcare13050452 crossref_primary_10_1007_s10517_024_06157_1 crossref_primary_10_1016_j_ijbiomac_2024_133742 crossref_primary_10_1007_s12013_024_01587_0 crossref_primary_10_1080_00397911_2024_2420341 crossref_primary_10_1038_s41577_024_01104_7 crossref_primary_10_2174_0115680266322320240911194626 crossref_primary_10_1016_j_brainres_2024_148797 crossref_primary_10_1093_nar_gkae368 crossref_primary_10_2144_fsoa_2023_0255 crossref_primary_10_1016_j_jddst_2023_104721 crossref_primary_10_1177_13872877241289381 crossref_primary_10_1016_j_ygeno_2025_111033 crossref_primary_10_3390_ijms25126402 crossref_primary_10_1007_s12640_024_00723_1 crossref_primary_10_3389_fnins_2024_1480000 crossref_primary_10_1039_D4QI01945H crossref_primary_10_1038_s41419_025_07469_4 crossref_primary_10_1016_j_psyneuen_2024_107245 crossref_primary_10_1523_ENEURO_0483_22_2022 crossref_primary_10_3390_jvd3040033 crossref_primary_10_1080_15287394_2024_2338914 crossref_primary_10_1002_med_21965 crossref_primary_10_3389_fcell_2023_1228679 crossref_primary_10_2147_DDDT_S462266 crossref_primary_10_1016_j_jconrel_2024_10_033 crossref_primary_10_1016_j_neuroscience_2024_12_027 crossref_primary_10_2174_0115672050333760241010061547 crossref_primary_10_1002_jbt_23660 crossref_primary_10_3390_biom12101386 crossref_primary_10_15407_visn2024_07_077 crossref_primary_10_3233_ADR_230130 crossref_primary_10_1007_s12035_023_03663_7 crossref_primary_10_2174_0115672050341904241111082935 crossref_primary_10_3390_ijms26031004 crossref_primary_10_1016_j_pharmthera_2024_108748 crossref_primary_10_1016_j_bbr_2025_115542 crossref_primary_10_1134_S0006297922120124 crossref_primary_10_1016_j_neulet_2024_137836 crossref_primary_10_3389_fimmu_2024_1418422 crossref_primary_10_1016_j_jep_2025_119338 crossref_primary_10_3390_brainsci14121191 crossref_primary_10_1007_s11011_022_01139_6 crossref_primary_10_3390_molecules29246046 crossref_primary_10_1007_s10787_024_01598_6 crossref_primary_10_1016_j_bbi_2024_09_033 crossref_primary_10_1002_alz_14605 crossref_primary_10_3390_molecules28145374 crossref_primary_10_1016_j_bmc_2024_118014 crossref_primary_10_3390_brainsci13091318 crossref_primary_10_1248_bpb_b23_00075 crossref_primary_10_1515_tnsci_2022_0270 crossref_primary_10_1016_j_arr_2024_102550 crossref_primary_10_14283_jpad_2023_103 crossref_primary_10_1002_advs_202307971 crossref_primary_10_1186_s13024_024_00753_5 crossref_primary_10_20517_mrr_2023_39 crossref_primary_10_1016_j_brainresbull_2025_111198 crossref_primary_10_14283_jpad_2023_109 crossref_primary_10_3390_ijms25158108 crossref_primary_10_1177_13872877241298303 crossref_primary_10_3390_cimb46070413 crossref_primary_10_1016_j_arr_2024_102548 crossref_primary_10_1016_j_clnesp_2024_02_019 crossref_primary_10_1007_s11914_023_00847_x crossref_primary_10_3233_JAD_231010 crossref_primary_10_1177_13872877241298973 crossref_primary_10_1016_j_ejmech_2023_115817 crossref_primary_10_1016_j_mad_2024_112023 crossref_primary_10_1186_s12974_024_03277_3 crossref_primary_10_1007_s12035_024_04513_w crossref_primary_10_1002_cbdv_202400017 crossref_primary_10_1016_j_brainres_2024_149236 crossref_primary_10_1016_j_ijbiomac_2025_141715 crossref_primary_10_1134_S002209302401023X crossref_primary_10_3389_fphar_2024_1329895 crossref_primary_10_2174_0115680266318722240809050235 crossref_primary_10_12677_jcpm_2025_42140 crossref_primary_10_1016_j_biopha_2025_117969 crossref_primary_10_3389_fimmu_2024_1383464 crossref_primary_10_3390_antiox13091114 crossref_primary_10_3390_life13030748 crossref_primary_10_1016_j_biopha_2024_117228 crossref_primary_10_1016_j_tips_2023_11_004 crossref_primary_10_1111_ejn_16250 crossref_primary_10_1073_pnas_2309221120 crossref_primary_10_1002_ptr_8219 crossref_primary_10_1007_s12017_024_08815_z crossref_primary_10_3390_brainsci14111101 crossref_primary_10_4103_ed_ed_16_24 crossref_primary_10_1016_j_ecoenv_2024_117372 crossref_primary_10_3389_fimmu_2024_1443464 crossref_primary_10_3390_molecules29184354 crossref_primary_10_1016_j_intimp_2024_112940 crossref_primary_10_1002_ibra_12185 crossref_primary_10_1080_19490976_2023_2282790 crossref_primary_10_1080_01616412_2023_2298137 crossref_primary_10_3390_ijms24065213 crossref_primary_10_31857_S0869813924010096 crossref_primary_10_3390_cells13060511 crossref_primary_10_3233_ADR_230146 crossref_primary_10_1186_s12883_025_04057_z crossref_primary_10_1007_s12035_025_04812_w crossref_primary_10_1210_endocr_bqae124 crossref_primary_10_1016_j_phymed_2024_156237 crossref_primary_10_3390_diagnostics14161831 crossref_primary_10_1007_s12035_024_04545_2 crossref_primary_10_1016_j_cellsig_2024_111210 crossref_primary_10_3892_etm_2024_12762 crossref_primary_10_1186_s12877_024_05648_0 crossref_primary_10_3389_fphar_2024_1425731 crossref_primary_10_1007_s11033_025_10284_x crossref_primary_10_1016_j_arr_2024_102223 crossref_primary_10_1016_j_arr_2024_102342 crossref_primary_10_1186_s12877_024_05104_z |
Cites_doi | 10.1016/J.PNPBP.2020.110112 10.1186/S13195-021-00843-2/TABLES/3 10.1038/sigtrans.2017.23 10.1186/S13195-021-00795-7 10.1186/S40035-016-0054-4 10.1093/BRAINCOMMS/FCAA109 10.5213/INJ.1938184.092 10.1038/s41398-021-01349-z 10.1111/jnc.13152 10.1515/TNSCI-2020-0203/ASSET/GRAPHIC/J_TNSCI-2021-0203_FIG_001.JPG 10.1186/S12974-019-1453-0 10.1007/S12035-018-0983-2/FIGURES/2 10.1016/J.NEUROPHARM.2013.05.017 10.1038/s41582-020-00435-y 10.1021/acs.molpharmaceut.7b00200 10.3390/NU13010037 10.1016/j.neurobiolaging.2018.12.019 10.1001/ARCHNEUR.58.11.1790 10.1038/s41422-019-0216-x 10.3233/ADR-200171 10.1016/J.PNPBP.2020.109884 10.3389/FPHAR.2018.00548/BIBTEX 10.2217/nmt-2021-0019 10.1016/S1474-4422(15)70016-5 10.1111/JNC.13607 10.1038/s41598-019-40925-8 10.3389/FNAGI.2019.00233 10.1038/aps.2017.143 10.1212/01.wnl.0000475736.75775.25 10.1371/journal.pone.0229819 10.3389/FNMOL.2014.00104/BIBTEX 10.1523/JNEUROSCI.3688-11.2011 10.6061/CLINICS/2021/E2348 10.1002/GLIA.22930 10.3390/MOLECULES22081287 10.1002/iub.2324 10.1523/JNEUROSCI.5417-06.2007 10.1080/08923973.2021.1981374 10.1080/08923973.2021.1981374 10.1093/jnen/59.6.471 10.1212/WNL.0000000000009910 10.1007/S00343-008-0394-8 10.1002/IUB.2324 10.1007/S12035-020-02069-Z 10.1093/brain/aww330 10.1100/2012/756357 10.1515/REVNEURO-2018-0008/XML 10.1016/J.CSBJ.2019.09.008 10.3390/BIOM10071017 10.1016/J.JNS.2010.12.005 10.1007/S12264-016-0055-4 10.3978/j.issn.2305-5839.2015.03.49 10.1016/J.BBRC.2008.08.032 10.1111/CEN3.12475 10.1007/s12035-020-02116-9/Published 10.1002/GPS.4871 10.1016/BS.IRN.2020.03.022 10.1111/jnc.14687 10.1016/J.TRCI.2018.06.014 10.1378/CHEST.118.2.503 10.1001/jamaneurol.2019.3762 10.3389/FNINS.2018.01017/BIBTEX 10.14283/JPAD.2020.18 10.3389/FNINS.2020.00330/BIBTEX |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7TO 7U9 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s10753-022-01721-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1573-2576 |
EndPage | 17 |
ExternalDocumentID | 35986874 10_1007_s10753_022_01721_1 |
Genre | Journal Article Review |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAJSJ AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACULB ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LLZTM M1P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S37 S3B SAP SBY SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z83 Z87 Z8O Z8W Z91 ZGI ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABEEZ ABFSG ACSTC ADHKG AEZWR AFDZB AFGXO AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 7XB 8FK H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c441t-47b9b5eb5c677f58ffe788a7f787e561ca68dd9a29b6ed0c3c227c0a2143488e3 |
IEDL.DBID | U2A |
ISSN | 0360-3997 1573-2576 |
IngestDate | Fri Jul 11 01:59:39 EDT 2025 Sat Jul 26 00:46:51 EDT 2025 Tue Mar 18 09:46:11 EDT 2025 Tue Jul 01 01:49:29 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 21 02:45:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | alzheimer’s disease cytokines neuroinflammation microglia gut microbiota interleukins |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-47b9b5eb5c677f58ffe788a7f787e561ca68dd9a29b6ed0c3c227c0a2143488e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 35986874 |
PQID | 2780247052 |
PQPubID | 37566 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2704867874 proquest_journals_2780247052 pubmed_primary_35986874 crossref_citationtrail_10_1007_s10753_022_01721_1 crossref_primary_10_1007_s10753_022_01721_1 springer_journals_10_1007_s10753_022_01721_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Inflammation |
PublicationTitleAbbrev | Inflammation |
PublicationTitleAlternate | Inflammation |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ChangRudyKnoxJillianChangJaeDerbedrossianAramVasilevkoVitalyCribbsDavidBoadoRuben JPardridgeWilliam MSumbriaRachita KBlood-brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s diseaseMolecular Pharmaceutics201714234023491:CAS:528:DC%2BC2sXnvVyjur8%3D10.1021/acs.molpharmaceut.7b0020028514851 Dionisio-Santos, Dawling A., John A. Olschowka, and M. Kerry O’Banion. 2019. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. Journal of Neuroinflammation 2019 16:1 16. BioMed Central: 1–13. https://doi.org/10.1186/S12974-019-1453-0. YangLijuanLiuYepeiWangYuanyuanLiJunshengLiuNaAzeliragon ameliorates Alzheimer’s disease via the janus tyrosine kinase and signal transducer and activator of transcription signaling pathwayClinics2021761810.6061/CLINICS/2021/E2348 Kheiri, Ghazaleh, Mahsa Dolatshahi, Farzaneh Rahmani, and Nima Rezaei. 2019. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy. Reviews in the Neurosciences 30. De Gruyter: 9–30. https://doi.org/10.1515/REVNEURO-2018-0008/XML. ZhouMengshiRongXuKaelberDavid CGurneyMark ETumor necrosis factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasisPLoS ONE2020151141:CAS:528:DC%2BB3cXmsFWhs7k%3D10.1371/journal.pone.0229819 ZhangYonggangZhangJieTianCanXiaoYulingLiXiaoboHeChaoHuangJinFanHongThe -1082G/A polymorphism in IL-10 gene is associated with risk of Alzheimer’s disease: A meta-analysisJournal of the Neurological Sciences20113031331381:CAS:528:DC%2BC3MXjs1WktL4%3D10.1016/J.JNS.2010.12.00521255795 Howard, Robert, Olga Zubko, Rosie Bradley, Emma Harper, Lynn Pank, John O Brien, Chris Fox, et al. 2020. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease a randomized clinical trial 77: 164–174. https://doi.org/10.1001/jamaneurol.2019.3762. MogiMasakiLiJian MeiTsukudaKanaIwanamiJunMinLi JuanSakataAkikoFujitaTeppeiIwaiMasaruHoriuchiMasatsuguTelmisartan prevented cognitive decline partly due to PPAR-γ activationBiochemical and Biophysical Research Communications20083754464491:CAS:528:DC%2BD1cXhtFaqs7fO10.1016/J.BBRC.2008.08.03218715543 LiuMingNieQinXinXianliangGengMeiyuIdentification of AOSC-binding proteins in neuronsChinese Journal of Oceanology and Limnology2008263943991:CAS:528:DC%2BD1MXhvVCitr8%3D10.1007/S00343-008-0394-8 Karkhah, Ahmad, Mahdiye Saadi, Fereshteh Pourabdolhossein, Kiarash Saleki, and Hamid Reza Nouri. 2021. Indomethacin attenuates neuroinflammation and memory impairment in an STZ-induced model of Alzheimer’s like disease. https://doi.org/10.1080/08923973.2021.1981374 43. Taylor & Francis: 758–766. https://doi.org/10.1080/08923973.2021.1981374. AlvesSandroChurlaudGuillaumeAudrainMickaelMichaelsen-PreusseKristinFolRomainSouchetBenoitBraudeauJérômeKorteMartinKlatzmannDavidCartierNathalieInterleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease miceBrain201714082684210.1093/brain/aww33028003243 Lin, Li, Li Juan Zheng, and Long Jiang Zhang. 2018. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Molecular Neurobiology 55. Humana Press Inc.: 8243–8250. https://doi.org/10.1007/S12035-018-0983-2/FIGURES/2. Jonkman, Laura E., Martijn D. Steenwijk, Nicky Boesen, Annemieke J.M. Rozemuller, Frederik Barkhof, Jeroen J.G. Geurts, Linda Douw, and Wilma D.J. van de Berg. 2020. Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology 95. American Academy of Neurology: e532. https://doi.org/10.1212/WNL.0000000000009910. Therapeutics, Search, Therapeutics Home, Montelukast Synonyms, Chemical Name, Therapy Type, Small Molecule, Target Type, Disease U S F D A Status, Intelgenx Approved, and Aldea Perona. 2016. THERAPEUTICS Montelukast: 1–5. Rivers-AutyJackAlzheimer’s Disease Neuroimaging Initiative, Alison E Mather, Alzheimer’s Disease Neuroimaging Initiative, Ruth Peters, Alzheimer’s Disease Neuroimaging Initiative, Catherine B Lawrence, Alzheimer’s disease neuroimaging initiative, David Brough, and Alzheimer’s disease neuroimaging initiative. Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate? Brain Communications 2Oxford Academic202010.1093/BRAINCOMMS/FCAA109 Yang, Seung Hoon. 2019. Cellular and molecular mediators of neuroinflammation in Alzheimer disease. International Neurourology Journal 23. Korean Continence Society: S54. https://doi.org/10.5213/INJ.1938184.092. Lyra e Silva, Natalia M., Rafaella A. Gonçalves, Tharick A. Pascoal, Ricardo A.S. Lima-Filho, Elisa de Paula França Resende, Erica L.M. Vieira, Antonio L. Teixeira, et al. 2021. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Translational Psychiatry 11. Springer US. https://doi.org/10.1038/s41398-021-01349-z. Sinyor, Benjamin, Jocelyn Mineo, and Christopher Ochner. 2020. Alzheimer’s disease, inflammation, and the role of antioxidants. Journal of Alzheimer’s Disease Reports 4. IOS Press: 175–183. https://doi.org/10.3233/ADR-200171. Uddin, Md Sahab, Md Ataur Rahman, Md Tanvir Kabir, Tapan Behl, Bijo Mathew, Asma Perveen, George E. Barreto, May N. Bin-Jumah, Mohamed M. Abdel-Daim, and Ghulam Md Ashraf. 2020. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer’s disease. IUBMB Life 72. John Wiley & Sons, Ltd: 1843–1855. https://doi.org/10.1002/IUB.2324. Hemonnot, Anne Laure, Jennifer Hua, Lauriane Ulmann, and Hélène Hirbec. 2019. Microglia in Alzheimer disease: well-known targets and new opportunities. Frontiers in Aging Neuroscience 11. Frontiers Media SA. https://doi.org/10.3389/FNAGI.2019.00233. Lin, Caixiu, Shuai Zhao, Yueli Zhu, Ziqi Fan, Jing Wang, Baorong Zhang, and Yanxing Chen. 2019. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Computational and Structural Biotechnology Journal 17. Elsevier: 1309–1317. https://doi.org/10.1016/J.CSBJ.2019.09.008. Norden, Diana M., Paige J. Trojanowski, Emmanuel Villanueva, Elisa Navarro, and Jonathan P. Godbout. 2016. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64. NIH Public Access: 300. https://doi.org/10.1002/GLIA.22930. Choi, Hyun B., Jae K. Ryu, Seung U. Kim, and James G. McLarnon. 2007. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 27. J Neurosci: 4957–4968. https://doi.org/10.1523/JNEUROSCI.5417-06.2007. Zheng, Cong, Xin Wen Zhou, and Jian Zhi Wang. 2016. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational Neurodegeneration 2016 5:1 5. BioMed Central: 1–15. https://doi.org/10.1186/S40035-016-0054-4. TufanAyse NTufanFatihEtanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialNeurology2015852083208410.1212/01.wnl.0000475736.75775.2526644053 Sahab Uddin, Md, Abdullah Al Mamun, Md Tanvir Kabir, & Ghulam, Md Ashraf, May N Bin-Jumah, and Mohamed M Abdel-Daim. Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. https://doi.org/10.1007/s12035-020-02116-9/Published. Lee, Jong Kil, and Nam Jung Kim. 2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 2017, Vol. 22, Page 1287 22. Multidisciplinary Digital Publishing Institute: 1287. https://doi.org/10.3390/MOLECULES22081287. Porro, Chiara, Antonia Cianciulli, and Maria Antonietta Panaro. 2020. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 10. Multidisciplinary Digital Publishing Institute (MDPI): 1–15. https://doi.org/10.3390/BIOM10071017. Li, Si tong, Qi Dai, Shu xian Zhang, Ya jun Liu, Qiu qiong Yu, Fei Tan, Shu hong Lu, et al. 2018. Ulinastatin attenuates LPS-induceds inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacologica Sinica 2018 39:8 39. Nature Publishing Group: 1294–1304. https://doi.org/10.1038/aps.2017.143. Sun, Weiying, Jun Zhao, and Chunzhi Li. 2020. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer’s Disease by mediating the miR-129/YAP1/JAG1 axis. Molecular neurobiology 57. Mol Neurobiol: 5044–5055. https://doi.org/10.1007/S12035-020-02069-Z. Prins, Niels D., John E. Harrison, Hui May Chu, Kelly Blackburn, John J. Alam, Philip Scheltens, Arnold, et al. 2021. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimer’s Research and Therapy 13. BioMed Central Ltd: 1–12. https://doi.org/10.1186/S13195-021-00843-2/TABLES/3. Figueiredo-Pereira, Maria E., Patricia Rockwell, Thomas Schmidt-Glenewinkel, and Peter Serrano. 2015. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Frontiers in Molecular Neuroscience 7. Frontiers Media S.A.: 1–20. https://doi.org/10.3389/FNMOL.2014.00104/BIBTEX. Shen, Heping, Qiaobing Guan, Xiaoling Zhang, Chao Yuan, Zhengye Tan, Liping Zhai, Yanan Hao, Yanling Gu, and Chenyang Han. 2020. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry 100. Elsevier Inc.: 109884. https://doi.org/10.1016/J.PNPBP.2020.109884. Wang, Xinyi, Guangqiang Sun, Teng Feng, Jing Zhang, Xun Huang, Tao Wang, Zuoquan Xie, et al. 2019. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-s 1721_CR11 1721_CR55 1721_CR10 1721_CR54 1721_CR13 1721_CR12 1721_CR15 1721_CR17 1721_CR16 1721_CR2 1721_CR1 1721_CR4 1721_CR3 1721_CR6 1721_CR5 1721_CR50 1721_CR8 1721_CR53 1721_CR7 1721_CR52 1721_CR9 Wen Ying Wang (1721_CR31) 2015; 3 Ming Liu (1721_CR51) 2008; 26 Ayse N Tufan (1721_CR57) 2015; 85 1721_CR19 1721_CR18 Ricardo Taipa (1721_CR14) 2019; 76 1721_CR44 1721_CR43 1721_CR46 1721_CR45 1721_CR47 1721_CR49 Rudy Chang (1721_CR37) 2017; 14 1721_CR42 1721_CR41 Miren Ettcheto (1721_CR59) 2021; 11 Lauren L Williamson (1721_CR33) 2011; 31 Masaki Mogi (1721_CR62) 2008; 375 1721_CR35 1721_CR36 1721_CR39 1721_CR38 1721_CR30 Jack Rivers-Auty (1721_CR64) 2020 Yonggang Zhang (1721_CR40) 2011; 303 Lijuan Yang (1721_CR58) 2021; 76 1721_CR66 1721_CR21 1721_CR65 1721_CR24 Sandro Alves (1721_CR34) 2017; 140 1721_CR68 1721_CR23 Erwan Thouennon (1721_CR48) 2015; 134 1721_CR67 1721_CR26 1721_CR25 1721_CR28 1721_CR27 1721_CR60 1721_CR20 1721_CR63 Robert E Mrak (1721_CR32) 2000; 59 Simona Sestito (1721_CR61) 2019; 9 Niraj Kumar Jha (1721_CR22) 2019; 150 Mengshi Zhou (1721_CR56) 2020; 15 1721_CR29 |
References_xml | – reference: Rivers-AutyJackAlzheimer’s Disease Neuroimaging Initiative, Alison E Mather, Alzheimer’s Disease Neuroimaging Initiative, Ruth Peters, Alzheimer’s Disease Neuroimaging Initiative, Catherine B Lawrence, Alzheimer’s disease neuroimaging initiative, David Brough, and Alzheimer’s disease neuroimaging initiative. Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate? Brain Communications 2Oxford Academic202010.1093/BRAINCOMMS/FCAA109 – reference: Wang, Xinyi, Guangqiang Sun, Teng Feng, Jing Zhang, Xun Huang, Tao Wang, Zuoquan Xie, et al. 2019. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Research 2019 29:10 29. Nature Publishing Group: 787–803. https://doi.org/10.1038/s41422-019-0216-x. – reference: JhaNiraj KumarJhaSaurabh KumarKarRohanNandParmaSwatiKumariGoswamiVineet KumarNuclear factor-kappa β as a therapeutic target for Alzheimer’s diseaseJournal of Neurochemistry20191501131371:CAS:528:DC%2BC1MXlvFegt7w%3D10.1111/jnc.1468730802950 – reference: ThouennonErwanChengYongFalahatianVidaCawleyNiamh XLohYoke PengRosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotectionJournal of Neurochemistry20151344634701:CAS:528:DC%2BC2MXptFOqtbo%3D10.1111/jnc.13152259407854496294 – reference: MogiMasakiLiJian MeiTsukudaKanaIwanamiJunMinLi JuanSakataAkikoFujitaTeppeiIwaiMasaruHoriuchiMasatsuguTelmisartan prevented cognitive decline partly due to PPAR-γ activationBiochemical and Biophysical Research Communications20083754464491:CAS:528:DC%2BD1cXhtFaqs7fO10.1016/J.BBRC.2008.08.03218715543 – reference: Hemonnot, Anne Laure, Jennifer Hua, Lauriane Ulmann, and Hélène Hirbec. 2019. Microglia in Alzheimer disease: well-known targets and new opportunities. Frontiers in Aging Neuroscience 11. Frontiers Media SA. https://doi.org/10.3389/FNAGI.2019.00233. – reference: AlvesSandroChurlaudGuillaumeAudrainMickaelMichaelsen-PreusseKristinFolRomainSouchetBenoitBraudeauJérômeKorteMartinKlatzmannDavidCartierNathalieInterleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease miceBrain201714082684210.1093/brain/aww33028003243 – reference: Prins, Niels D., John E. Harrison, Hui May Chu, Kelly Blackburn, John J. Alam, Philip Scheltens, Arnold, et al. 2021. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimer’s Research and Therapy 13. BioMed Central Ltd: 1–12. https://doi.org/10.1186/S13195-021-00843-2/TABLES/3. – reference: Saito, Takashi, and Takaomi C. Saido. 2018. Neuroinflammation in mouse models of Alzheimer’s disease. Clinical and Experimental Neuroimmunology 9. John Wiley & Sons, Ltd: 211–218. https://doi.org/10.1111/CEN3.12475. – reference: MrakRobert EGriffinWSTInterleukin-1 and the immunogenetics of Alzheimer diseaseJournal of Neuropathology and Experimental Neurology2000594714761:CAS:528:DC%2BD3cXktlWrtb0%3D10.1093/jnen/59.6.47110850859 – reference: ZhangYonggangZhangJieTianCanXiaoYulingLiXiaoboHeChaoHuangJinFanHongThe -1082G/A polymorphism in IL-10 gene is associated with risk of Alzheimer’s disease: A meta-analysisJournal of the Neurological Sciences20113031331381:CAS:528:DC%2BC3MXjs1WktL4%3D10.1016/J.JNS.2010.12.00521255795 – reference: Leng, Fangda, and Paul Edison. 2021. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology. Vol. 17. https://doi.org/10.1038/s41582-020-00435-y. – reference: Zhao, Yang, Jianshuai He, Ning Yu, Changxin Jia, and Shilei Wang. 2020. Mechanisms of dexmedetomidine in neuropathic pain. Frontiers in Neuroscience 14. Frontiers Media S.A.: 330. https://doi.org/10.3389/FNINS.2020.00330/BIBTEX. – reference: LiuMingNieQinXinXianliangGengMeiyuIdentification of AOSC-binding proteins in neuronsChinese Journal of Oceanology and Limnology2008263943991:CAS:528:DC%2BD1MXhvVCitr8%3D10.1007/S00343-008-0394-8 – reference: WangWen YingTanMeng ShanJin TaiYuTanLanRole of pro-inflammatory cytokines released from microglia in Alzheimer’s diseaseAnnals of Translational Medicine201531171:CAS:528:DC%2BC28XnsFequrk%3D10.3978/j.issn.2305-5839.2015.03.49 – reference: Heneka, Michael T., Monica J. Carson, Joseph El Khoury, Gary E. Landreth, Frederic Brosseron, Douglas L. Feinstein, Andreas H. Jacobs, et al. 2015. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology. Lancet Publishing Group. https://doi.org/10.1016/S1474-4422(15)70016-5. – reference: Jonkman, Laura E., Martijn D. Steenwijk, Nicky Boesen, Annemieke J.M. Rozemuller, Frederik Barkhof, Jeroen J.G. Geurts, Linda Douw, and Wilma D.J. van de Berg. 2020. Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology 95. American Academy of Neurology: e532. https://doi.org/10.1212/WNL.0000000000009910. – reference: Lee, Jong Kil, and Nam Jung Kim. 2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 2017, Vol. 22, Page 1287 22. Multidisciplinary Digital Publishing Institute: 1287. https://doi.org/10.3390/MOLECULES22081287. – reference: Karkhah, Ahmad, Mahdiye Saadi, Fereshteh Pourabdolhossein, Kiarash Saleki, and Hamid Reza Nouri. 2021. Indomethacin attenuates neuroinflammation and memory impairment in an STZ-induced model of Alzheimer’s like disease. https://doi.org/10.1080/08923973.2021.1981374 43. Taylor & Francis: 758–766. https://doi.org/10.1080/08923973.2021.1981374. – reference: Howard, Robert, Olga Zubko, Rosie Bradley, Emma Harper, Lynn Pank, John O Brien, Chris Fox, et al. 2020. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease a randomized clinical trial 77: 164–174. https://doi.org/10.1001/jamaneurol.2019.3762. – reference: Rubio-Perez, Jose Miguel, and Juana Maria Morillas-Ruiz. 2012. A review: inflammatory process in Alzheimer’s disease, role of cytokines. The Scientific World Journal 2012. Hindawi Limited. https://doi.org/10.1100/2012/756357. – reference: Kinney, Jefferson W., Shane M. Bemiller, Andrew S. Murtishaw, Amanda M. Leisgang, Arnold M. Salazar, and Bruce T. Lamb. 2018. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia : Translational Research & Clinical Interventions 4. Wiley-Blackwell: 575. https://doi.org/10.1016/J.TRCI.2018.06.014. – reference: Uddin, Md Sahab, Md Ataur Rahman, Md Tanvir Kabir, Tapan Behl, Bijo Mathew, Asma Perveen, George E. Barreto, May N. Bin-Jumah, Mohamed M. Abdel-Daim, and Ghulam Md Ashraf. 2020. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer’s disease. IUBMB Life 72. John Wiley & Sons, Ltd: 1843–1855. https://doi.org/10.1002/IUB.2324. – reference: Su, Fan, Feng Bai, and Zhijun Zhang. 2016. Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neuroscience Bulletin 32. Springer: 469. https://doi.org/10.1007/S12264-016-0055-4. – reference: Pathak, Yashwant. Genomics-Driven Healthcare. – reference: ChangRudyKnoxJillianChangJaeDerbedrossianAramVasilevkoVitalyCribbsDavidBoadoRuben JPardridgeWilliam MSumbriaRachita KBlood-brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s diseaseMolecular Pharmaceutics201714234023491:CAS:528:DC%2BC2sXnvVyjur8%3D10.1021/acs.molpharmaceut.7b0020028514851 – reference: Porro, Chiara, Antonia Cianciulli, and Maria Antonietta Panaro. 2020. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 10. Multidisciplinary Digital Publishing Institute (MDPI): 1–15. https://doi.org/10.3390/BIOM10071017. – reference: Megur, Ashwinipriyadarshini, Daiva Baltriukienė, Virginija Bukelskienė, and Aurelijus Burokas. 2020. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame? Nutrients 2021, Vol. 13, Page 37 13. Multidisciplinary Digital Publishing Institute: 37. https://doi.org/10.3390/NU13010037. – reference: Liu et al. - 2017 - NF-κB signaling in inflammation - Signal Transduction and Targeted Therapy.pdf. – reference: Sun, Weiying, Jun Zhao, and Chunzhi Li. 2020. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer’s Disease by mediating the miR-129/YAP1/JAG1 axis. Molecular neurobiology 57. Mol Neurobiol: 5044–5055. https://doi.org/10.1007/S12035-020-02069-Z. – reference: Yang, Seung Hoon. 2019. Cellular and molecular mediators of neuroinflammation in Alzheimer disease. International Neurourology Journal 23. Korean Continence Society: S54. https://doi.org/10.5213/INJ.1938184.092. – reference: Therapeutics, Search, Therapeutics Home, Montelukast Synonyms, Chemical Name, Therapy Type, Small Molecule, Target Type, Disease U S F D A Status, Intelgenx Approved, and Aldea Perona. 2016. THERAPEUTICS Montelukast: 1–5. – reference: Kheiri, Ghazaleh, Mahsa Dolatshahi, Farzaneh Rahmani, and Nima Rezaei. 2019. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy. Reviews in the Neurosciences 30. De Gruyter: 9–30. https://doi.org/10.1515/REVNEURO-2018-0008/XML. – reference: Shal, Bushra, Wei Ding, Hussain Ali, Yeong S. Kim, and Salman Khan. 2018. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Frontiers in Pharmacology 9. Frontiers Media S.A.: 548. https://doi.org/10.3389/FPHAR.2018.00548/BIBTEX. – reference: Dinarello, Charles A. 2000. Proinflammatory cytokines. Chest 118. Chest: 503–508. https://doi.org/10.1378/CHEST.118.2.503. – reference: Xiao, Shifu, Piu Chan, Tao Wang, Zhen Hong, Shuzhen Wang, Weihong Kuang, Jincai He, et al. 2021. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimer’s research & therapy 13. Alzheimers Res Ther. https://doi.org/10.1186/S13195-021-00795-7. – reference: Lyra e Silva, Natalia M., Rafaella A. Gonçalves, Tharick A. Pascoal, Ricardo A.S. Lima-Filho, Elisa de Paula França Resende, Erica L.M. Vieira, Antonio L. Teixeira, et al. 2021. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Translational Psychiatry 11. Springer US. https://doi.org/10.1038/s41398-021-01349-z. – reference: Shen, Heping, Qiaobing Guan, Xiaoling Zhang, Chao Yuan, Zhengye Tan, Liping Zhai, Yanan Hao, Yanling Gu, and Chenyang Han. 2020. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry 100. Elsevier Inc.: 109884. https://doi.org/10.1016/J.PNPBP.2020.109884. – reference: EttchetoMirenCanoAmandaSanchez-LópezElenaVerdaguerEsterFolchJaumeAuladellCarmeCaminsAntoniMasitinib for the treatment of Alzheimer’s diseaseNeurodegenerative Disease Management20211126327610.2217/nmt-2021-001934412534 – reference: Behl, Tapan, Bijo Mathew, Asma Perveen, George E Barreto, May N Bin-jumah, and Mohamed M Abdel-daim. 2020. 1 INTRODUCTION 2 BRIEF OUTLINE Of mTOR SIGNALING PATHWAY 72: 1843–1855. – reference: Norden, Diana M., Paige J. Trojanowski, Emmanuel Villanueva, Elisa Navarro, and Jonathan P. Godbout. 2016. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64. NIH Public Access: 300. https://doi.org/10.1002/GLIA.22930. – reference: Sahab Uddin, Md, Abdullah Al Mamun, Md Tanvir Kabir, & Ghulam, Md Ashraf, May N Bin-Jumah, and Mohamed M Abdel-Daim. Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. https://doi.org/10.1007/s12035-020-02116-9/Published. – reference: Li, Si tong, Qi Dai, Shu xian Zhang, Ya jun Liu, Qiu qiong Yu, Fei Tan, Shu hong Lu, et al. 2018. Ulinastatin attenuates LPS-induceds inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacologica Sinica 2018 39:8 39. Nature Publishing Group: 1294–1304. https://doi.org/10.1038/aps.2017.143. – reference: Lin, Li, Li Juan Zheng, and Long Jiang Zhang. 2018. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Molecular Neurobiology 55. Humana Press Inc.: 8243–8250. https://doi.org/10.1007/S12035-018-0983-2/FIGURES/2. – reference: SestitoSimonaDanieleSimonaPietrobonoDeborahCitiValentinaBellusciLorenzaChielliniGraziaCalderoneVincenzoMartiniClaudiaRapposelliSimonaMemantine prodrug as a new agent for Alzheimer’s diseaseScientific Reports201991111:CAS:528:DC%2BC1MXotlahs78%3D10.1038/s41598-019-40925-8 – reference: Ekert, Justyna O., Rebecca L. Gould, Gemma Reynolds, and Robert J. Howard. 2018. TNF alpha inhibitors in Alzheimer’s disease: a systematic review. International Journal of Geriatric Psychiatry 33. John Wiley & Sons, Ltd: 688–694. https://doi.org/10.1002/GPS.4871. – reference: Gottschalk, William Kirby. 2021. in Neuroscience Reassessment of Pioglitazone for Alzheimer ’ s Disease: 1–76. – reference: Zheng, Cong, Xin Wen Zhou, and Jian Zhi Wang. 2016. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational Neurodegeneration 2016 5:1 5. BioMed Central: 1–15. https://doi.org/10.1186/S40035-016-0054-4. – reference: Choi, Hyun B., Jae K. Ryu, Seung U. Kim, and James G. McLarnon. 2007. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 27. J Neurosci: 4957–4968. https://doi.org/10.1523/JNEUROSCI.5417-06.2007. – reference: Mueed, Zeba, Pallavi Tandon, Sanjeev Kumar Maurya, Ravi Deval, Mohammad A. Kamal, and Nitesh Kumar Poddar. 2019. Tau and mTOR: the hotspots for multifarious diseases in Alzheimer’s development. Frontiers in Neuroscience 13. Frontiers Media S.A.: 1017. https://doi.org/10.3389/FNINS.2018.01017/BIBTEX. – reference: McGeer, Patrick L., and Edith G. McGeer. 2001. Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Archives of Neurology 58. American Medical Association: 1790–1792. https://doi.org/10.1001/ARCHNEUR.58.11.1790. – reference: YangLijuanLiuYepeiWangYuanyuanLiJunshengLiuNaAzeliragon ameliorates Alzheimer’s disease via the janus tyrosine kinase and signal transducer and activator of transcription signaling pathwayClinics2021761810.6061/CLINICS/2021/E2348 – reference: Gauthier, Serge, P. S. Aisen, J. Cummings, M. J. Detke, F. M. Longo, R. Raman, M. Sabbagh, et al. 2020. Non-amyloid approaches to disease modification for Alzheimer’s disease: an EU/US CTAD task force report. The Journal of Prevention of Alzheimer’s Disease 2020 7:3 7. Springer: 152–157. https://doi.org/10.14283/JPAD.2020.18. – reference: Goyal, Divya, Syed Afroz Ali, and Rakesh Kumar Singh. 2021. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry 106. Elsevier Inc.: 110112. https://doi.org/10.1016/J.PNPBP.2020.110112. – reference: TaipaRicardoSofiaPdas Neves, Ana L. Sousa, Joana Fernandes, Claudia Pinto, Ana P. Correia, Ernestina Santos, Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive declineNeurobiology of Aging2019761251321:CAS:528:DC%2BC1MXhvFentLg%3D10.1016/j.neurobiolaging.2018.12.01930711675 – reference: Sinyor, Benjamin, Jocelyn Mineo, and Christopher Ochner. 2020. Alzheimer’s disease, inflammation, and the role of antioxidants. Journal of Alzheimer’s Disease Reports 4. IOS Press: 175–183. https://doi.org/10.3233/ADR-200171. – reference: Liu, Ting, Lingyun Zhang, Donghyun Joo, and Shao Cong Sun. 2017. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2017 2:1 2. Nature Publishing Group: 1–9. https://doi.org/10.1038/sigtrans.2017.23. – reference: DiSabato, Damon J., Ning Quan, and Jonathan P. Godbout. 2016. Neuroinflammation: the devil is in the details. Journal of neurochemistry 139. NIH Public Access: 136. https://doi.org/10.1111/JNC.13607. – reference: Pharmaceuticals, Biohaven. COVID-19 Information Try the modernized ClinicalTrials . gov beta website . Learn more about the modernization effort . Trial record 1 of 1 for : Study of BHV-4157 in Alzheimer ’ s Disease ( T2 Protect AD ): 1–7. – reference: Lin, Caixiu, Shuai Zhao, Yueli Zhu, Ziqi Fan, Jing Wang, Baorong Zhang, and Yanxing Chen. 2019. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Computational and Structural Biotechnology Journal 17. Elsevier: 1309–1317. https://doi.org/10.1016/J.CSBJ.2019.09.008. – reference: Messemer, Nanette, Christin Kunert, Marcus Grohmann, Helga Sobottka, Karen Nieber, Herbert Zimmermann, Heike Franke, et al. 2013. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology 73. Neuropharmacology: 122–137. https://doi.org/10.1016/J.NEUROPHARM.2013.05.017. – reference: WilliamsonLauren LSholarPaige WMistryRishi SSmithSusan HBilboStaci DMicroglia and memory: Modulation by early-life infectionJournal of Neuroscience20113115511155211:CAS:528:DC%2BC3MXhsVWiu7rI10.1523/JNEUROSCI.3688-11.201122031897 – reference: Guo, Libing, Jiaxin Xu, Yunhua Du, Weibo Wu, Wenjing Nie, Dongliang Zhang, Yuling Luo, et al. 2021. Effects of gut microbiota and probiotics on Alzheimer’s disease. Translational Neuroscience 12. De Gruyter Open Ltd: 573–580. https://doi.org/10.1515/TNSCI-2020-0203/ASSET/GRAPHIC/J_TNSCI-2021-0203_FIG_001.JPG. – reference: Dionisio-Santos, Dawling A., John A. Olschowka, and M. Kerry O’Banion. 2019. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. Journal of Neuroinflammation 2019 16:1 16. BioMed Central: 1–13. https://doi.org/10.1186/S12974-019-1453-0. – reference: Plascencia-Villa, Germán, and George Perry. 2020. Status and future directions of clinical trials in Alzheimer’s disease. International Review of Neurobiology 154. Academic Press: 3–50. https://doi.org/10.1016/BS.IRN.2020.03.022. – reference: ZhouMengshiRongXuKaelberDavid CGurneyMark ETumor necrosis factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasisPLoS ONE2020151141:CAS:528:DC%2BB3cXmsFWhs7k%3D10.1371/journal.pone.0229819 – reference: Figueiredo-Pereira, Maria E., Patricia Rockwell, Thomas Schmidt-Glenewinkel, and Peter Serrano. 2015. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Frontiers in Molecular Neuroscience 7. Frontiers Media S.A.: 1–20. https://doi.org/10.3389/FNMOL.2014.00104/BIBTEX. – reference: TufanAyse NTufanFatihEtanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialNeurology2015852083208410.1212/01.wnl.0000475736.75775.2526644053 – ident: 1721_CR45 doi: 10.1016/J.PNPBP.2020.110112 – ident: 1721_CR65 doi: 10.1186/S13195-021-00843-2/TABLES/3 – ident: 1721_CR20 doi: 10.1038/sigtrans.2017.23 – ident: 1721_CR50 doi: 10.1186/S13195-021-00795-7 – ident: 1721_CR5 doi: 10.1186/S40035-016-0054-4 – year: 2020 ident: 1721_CR64 publication-title: Oxford Academic doi: 10.1093/BRAINCOMMS/FCAA109 – ident: 1721_CR17 doi: 10.5213/INJ.1938184.092 – ident: 1721_CR35 doi: 10.1038/s41398-021-01349-z – volume: 134 start-page: 463 year: 2015 ident: 1721_CR48 publication-title: Journal of Neurochemistry doi: 10.1111/jnc.13152 – ident: 1721_CR68 doi: 10.1515/TNSCI-2020-0203/ASSET/GRAPHIC/J_TNSCI-2021-0203_FIG_001.JPG – ident: 1721_CR8 doi: 10.1186/S12974-019-1453-0 – ident: 1721_CR21 doi: 10.1038/sigtrans.2017.23 – ident: 1721_CR44 doi: 10.1007/S12035-018-0983-2/FIGURES/2 – ident: 1721_CR23 doi: 10.1016/J.NEUROPHARM.2013.05.017 – ident: 1721_CR16 doi: 10.1038/s41582-020-00435-y – volume: 14 start-page: 2340 year: 2017 ident: 1721_CR37 publication-title: Molecular Pharmaceutics doi: 10.1021/acs.molpharmaceut.7b00200 – ident: 1721_CR46 doi: 10.3390/NU13010037 – volume: 76 start-page: 125 year: 2019 ident: 1721_CR14 publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2018.12.019 – ident: 1721_CR39 doi: 10.1001/ARCHNEUR.58.11.1790 – ident: 1721_CR66 doi: 10.1038/s41422-019-0216-x – ident: 1721_CR7 doi: 10.3233/ADR-200171 – ident: 1721_CR43 doi: 10.1016/J.PNPBP.2020.109884 – ident: 1721_CR2 doi: 10.3389/FPHAR.2018.00548/BIBTEX – ident: 1721_CR49 – volume: 11 start-page: 263 year: 2021 ident: 1721_CR59 publication-title: Neurodegenerative Disease Management doi: 10.2217/nmt-2021-0019 – ident: 1721_CR4 – ident: 1721_CR15 doi: 10.1016/S1474-4422(15)70016-5 – ident: 1721_CR9 doi: 10.1111/JNC.13607 – volume: 9 start-page: 1 year: 2019 ident: 1721_CR61 publication-title: Scientific Reports doi: 10.1038/s41598-019-40925-8 – ident: 1721_CR19 doi: 10.3389/FNAGI.2019.00233 – ident: 1721_CR55 – ident: 1721_CR18 doi: 10.1038/aps.2017.143 – volume: 85 start-page: 2083 year: 2015 ident: 1721_CR57 publication-title: Neurology doi: 10.1212/01.wnl.0000475736.75775.25 – volume: 15 start-page: 1 year: 2020 ident: 1721_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0229819 – ident: 1721_CR13 doi: 10.3389/FNMOL.2014.00104/BIBTEX – volume: 31 start-page: 15511 year: 2011 ident: 1721_CR33 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3688-11.2011 – volume: 76 start-page: 1 year: 2021 ident: 1721_CR58 publication-title: Clinics doi: 10.6061/CLINICS/2021/E2348 – ident: 1721_CR10 doi: 10.1002/GLIA.22930 – ident: 1721_CR29 doi: 10.3390/MOLECULES22081287 – ident: 1721_CR25 doi: 10.1002/iub.2324 – ident: 1721_CR24 doi: 10.1523/JNEUROSCI.5417-06.2007 – ident: 1721_CR63 doi: 10.1080/08923973.2021.1981374 10.1080/08923973.2021.1981374 – volume: 59 start-page: 471 year: 2000 ident: 1721_CR32 publication-title: Journal of Neuropathology and Experimental Neurology doi: 10.1093/jnen/59.6.471 – ident: 1721_CR3 doi: 10.1212/WNL.0000000000009910 – volume: 26 start-page: 394 year: 2008 ident: 1721_CR51 publication-title: Chinese Journal of Oceanology and Limnology doi: 10.1007/S00343-008-0394-8 – ident: 1721_CR27 doi: 10.1002/IUB.2324 – ident: 1721_CR52 doi: 10.1007/S12035-020-02069-Z – volume: 140 start-page: 826 year: 2017 ident: 1721_CR34 publication-title: Brain doi: 10.1093/brain/aww330 – ident: 1721_CR42 doi: 10.1100/2012/756357 – ident: 1721_CR28 doi: 10.1515/REVNEURO-2018-0008/XML – ident: 1721_CR47 doi: 10.1016/J.CSBJ.2019.09.008 – ident: 1721_CR41 doi: 10.3390/BIOM10071017 – volume: 303 start-page: 133 year: 2011 ident: 1721_CR40 publication-title: Journal of the Neurological Sciences doi: 10.1016/J.JNS.2010.12.005 – ident: 1721_CR36 doi: 10.1007/S12264-016-0055-4 – volume: 3 start-page: 1 year: 2015 ident: 1721_CR31 publication-title: Annals of Translational Medicine doi: 10.3978/j.issn.2305-5839.2015.03.49 – volume: 375 start-page: 446 year: 2008 ident: 1721_CR62 publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/J.BBRC.2008.08.032 – ident: 1721_CR12 doi: 10.1111/CEN3.12475 – ident: 1721_CR1 doi: 10.1007/s12035-020-02116-9/Published – ident: 1721_CR38 doi: 10.1002/GPS.4871 – ident: 1721_CR67 doi: 10.1016/BS.IRN.2020.03.022 – volume: 150 start-page: 113 year: 2019 ident: 1721_CR22 publication-title: Journal of Neurochemistry doi: 10.1111/jnc.14687 – ident: 1721_CR11 doi: 10.1016/J.TRCI.2018.06.014 – ident: 1721_CR30 doi: 10.1378/CHEST.118.2.503 – ident: 1721_CR54 doi: 10.1001/jamaneurol.2019.3762 – ident: 1721_CR60 – ident: 1721_CR26 doi: 10.3389/FNINS.2018.01017/BIBTEX – ident: 1721_CR6 doi: 10.14283/JPAD.2020.18 – ident: 1721_CR53 doi: 10.3389/FNINS.2020.00330/BIBTEX |
SSID | ssj0008983 |
Score | 2.6739874 |
SecondaryResourceType | review_article |
Snippet | Alzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack... Alzheimer's disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there is a lack... AbstractAlzheimer’s disease, a neurodegenerative disease with amyloid beta accumulation as a major hallmark, has become a dire global health concern as there... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | AKT protein Alzheimer Disease - metabolism Alzheimer's disease Amyloid beta-Peptides Anti-Inflammatory Agents - metabolism Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use Astrocytes Biomedical and Life Sciences Biomedicine Caspase Cell death Chemokines Cytokines Cytokines - metabolism Dementia disorders Humans Immunology Internal Medicine Intestinal microflora MAP kinase Microglia Microglia - metabolism Neurodegenerative diseases Neurodegenerative Diseases - drug therapy Neurodegenerative Diseases - metabolism Neurodegenerative Diseases - pathology Neuroinflammatory Diseases Neuroprotection NF-κB protein Nitric oxide Pathology Phagocytosis Pharmacology/Toxicology Phosphorylation Public health Review Rheumatology Signal transduction Tau protein TOR protein |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46QQQR71anRPBNi2vWNq0vIl4QYSK4wd5KmsscaKe7vPjk3_Dv-Us8p0k3RPS5aRtycnK-nMt3CDmSYGJMrIQP2D5AbxXoXCC4r4NENk0emiTEauTWfXzbCe-6Udc53EYurbI6E8uDWg0k-shPGU_AnPBGxM5f33zsGoXRVddCY54sIHUZ7mrenV64GklqaTibMZw1acpd0YwrnQOg7mMue3kL8oOfhukX2vwVKS0N0M0qWXHIkV5YUa-ROV2sk8WWi42vk2XrgaO2sGiDqJJ3AzYQyNzWJ9J-QS-e3590_0UPvz4-R_TKhmfOqKNpog-YrgWHHw5tVZ1z6WO_h3i96FFRKNqelWyNNknn5rp9eeu7ngq-BOAz9kOep3mk80jGnJsoMUbDJVhwA4qrAUtJESdKpYKleaxVQzYlY1w2BANcBbqum1ukVgwKvYPV3rCSImZCGYR9iWDInRcpADwRM7n2SFAtaCYd4Tj2vXjOZlTJKIQMhJCVQsgCjxxP33m1dBv_jq5Xcsqc6o2y2UbxyOH0MSgNRkJEoQcTHFMyDSY89Mi2le_0d0hpGJdPTiqBzz7-91x2_5_LHlnCRvU237tOauPhRO8DnBnnB-We_QZK1u7P priority: 102 providerName: ProQuest |
Title | Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics |
URI | https://link.springer.com/article/10.1007/s10753-022-01721-1 https://www.ncbi.nlm.nih.gov/pubmed/35986874 https://www.proquest.com/docview/2780247052 https://www.proquest.com/docview/2704867874 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA-6gfgi_rc6RwTftLBmbdL6NuemKBtDN5hPJU2TOZidrNuLT34Nv56fxEv_bMpU8KnQpGm5yyW_6939gtCpgC1G0ZCbgO0t_bcKbM7izJSWK6oqsJVr62rkVpve9OzbvtPPisLiPNs9D0kmK_WXYjeA1qbOPk_8FhN8nqIDvrtO5OqR2nz9db2UfLNKYYXxPJaVyvw8xvftaAljLsVHk22nuYk2MryIa6mCt9CKjLbRWiuLiO-gMGHXgGkCmk2rEPEwwrXR65McPsvJx9t7jK_SIMwFzsiYcEcnZcESp7u28vNx8cNwoFF5NMA8CnF3UZgV76Jes9Gt35jZyQmmAHgzNW0WeIEjA0dQxpTjKiXB1eVMgXlKQEyCUzcMPU68gMqwIqqCECYqnAB6AouW1T1UiMaRPNA13SA5TgkPlQZ3LieaIc8JAdY4RAXSQFYuQF9ktOL6dIuRvyBE1kL3Qeh-InTfMtDZ_JmXlFTjz96lXC9-ZmCxT5gL6IJVHGKgk3kzmIaOd_BIjme6T8In6DLbQPupPuev08SFNGk5zxW8GPz3bzn8X_cjtK6Pp0-zvEuoMJ3M5DGAmGlQRqusz8qoWLt-vGvA9bLR7tzD3Tqtl5P5_Akkkuuj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED91TNomTWhjYysw5knb0xaRuEmcIKGpgqEyKJq0IvUtOP7DKnVpoUXTeOJr8CX4UHwS7uKk1YTGG892HMt39v3O5_sdwEeFJsbGWnqI7QO6rcI9F0jhmSBRLZuHNgkpG7l7GHeOwu_9qN-A6zoXhp5V1mdieVDrkaI78g0uEjQnwo_41_GpR1WjKLpal9BwarFv_v5Bl22ytbeD8v3E-e633nbHq6oKeApN_9QLRZ7mkckjFQtho8Rag26gFBZV1yCaUDJOtE4lT_PYaF-1FOdC-ZIjskBtNy0c9xE8RsPrk7Mn-jMHz09SR_vZivFsS1NRJelUqXroGHj0dr70urzgX0N4B93eicyWBm_3BSxWSJW1nWq9hIYpluBJt4rFL8Fzd-PHXCLTK9AlzwcqLOqYy4dkg4K1hxe_zOC3Obu5vJqwHRcO2mQVLRT7Qc_D8LClrt26Ui_7OTgh_6A4YbLQrDdPEZu8hqMHWe1lWChGhXlL2eW4kjLmUluCmYnkxNUXaQRYEbe5aUJQL2imKoJzqrMxzObUzCSEDIWQlULIgiZ8nn0zdvQe9_Zeq-WUVVt9ks0VswkfZs24SSnyIgszOqc-JbNhIsImvHHynf2OKBTjsuVLLfD54P-fy8r9c3kPTzu97kF2sHe4vwrPOEIz99Z8DRamZ-fmHUKpab5e6i-D44feMLfl6Swj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bTttAEB3RIKFKVUXpLS20i1SeWot4Y3ttpKqChohboqgFiTd3vRcaiTqUBFXlid_or_Rz-BJmvOtEFSpvPHvjWDszO2d2Zs4AvFPoYmyiZYDYPqTbKrS5UIrAhKlq2yKyaUTdyL1-snMU7R3Hx3Pwt-6FobLK-kysDmo9UnRHvs5Fiu5EtGK-bn1ZxKDT_XT2M6AJUpRprcdpOBXZN79_Yfg2_rjbQVmvcd7dPvy8E_gJA4FCGDAJIlFkRWyKWCVC2Di11mBIKIVFNTaILJRMUq0zybMiMbql2opzoVqSI8pAzTdtfO8DmBcUFTVgfmu7P_gy9QNp5khA2wmedFkmfMuOb9zDMCGgSvoqBgvCf93iLax7K09bub_uIjz2uJVtOkV7AnOmXIKFns_ML8Ejd__HXFvTU9AV6weqL2qc645kw5Jtnl5-N8Mf5vz66s-YdVxyaIN5kig2oGIxPHppaa-e28u-Dk8oWihPmCw1O5w1jI2fwdG97PdzaJSj0rykXnPcSZlwqS2BzlRyYu6LNcKtmNvCNCGsNzRXnu6cpm6c5jOiZhJCjkLIKyHkYRPeT39z5sg-7ly9XMsp94Y_zmdq2oTV6WM0WcrDyNKMLmhNxXOYiqgJL5x8p39HhIpJ9eRDLfDZy___La_u_pa3sIDGkh_s9vdfw0OOOM0Vni9DY3J-YVYQV02KN16BGXy7b5u5ATK3Mb4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroinflammation+in+Alzheimer%E2%80%99s+Disease%3A+Current+Progress+in+Molecular+Signaling+and+Therapeutics&rft.jtitle=Inflammation&rft.au=Thakur%2C+Sujata&rft.au=Dhapola%2C+Rishika&rft.au=Sarma%2C+Phulen&rft.au=Medhi%2C+Bikash&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0360-3997&rft.eissn=1573-2576&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs10753-022-01721-1&rft.externalDocID=10_1007_s10753_022_01721_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3997&client=summon |