Automated Parameter Extraction Of ScAlN MEMS Devices Using An Extended Euler–Bernoulli Beam Theory

Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Sca...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 4; p. 1001
Main Authors Krey, Maximilian, Hähnlein, Bernd, Tonisch, Katja, Krischok, Stefan, Töpfer, Hannes
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 13.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young’s modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler–Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young‘s modulus of the magnetostrictive layer.
AbstractList Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler−Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer.
Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer.
Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer.Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer.
Author Hähnlein, Bernd
Krey, Maximilian
Töpfer, Hannes
Tonisch, Katja
Krischok, Stefan
AuthorAffiliation 1 Advanced Electromagnetics Group, Department of Electrical Engineering and Information Technology, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; hannes.toepfer@tu-ilmenau.de
2 Technical Physics 1 Group, Institute of Micro- and Nanotechnologies (IMN MacroNano ® ), Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; bernd.haehnlein@tu-ilmenau.de (B.H.); katja.tonisch@tu-ilmenau.de (K.T.); stefan.krischok@tu-ilmenau.de (S.K.)
AuthorAffiliation_xml – name: 2 Technical Physics 1 Group, Institute of Micro- and Nanotechnologies (IMN MacroNano ® ), Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; bernd.haehnlein@tu-ilmenau.de (B.H.); katja.tonisch@tu-ilmenau.de (K.T.); stefan.krischok@tu-ilmenau.de (S.K.)
– name: 1 Advanced Electromagnetics Group, Department of Electrical Engineering and Information Technology, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; hannes.toepfer@tu-ilmenau.de
Author_xml – sequence: 1
  givenname: Maximilian
  orcidid: 0000-0003-4735-0510
  surname: Krey
  fullname: Krey, Maximilian
– sequence: 2
  givenname: Bernd
  surname: Hähnlein
  fullname: Hähnlein, Bernd
– sequence: 3
  givenname: Katja
  surname: Tonisch
  fullname: Tonisch, Katja
– sequence: 4
  givenname: Stefan
  orcidid: 0000-0002-8458-4001
  surname: Krischok
  fullname: Krischok, Stefan
– sequence: 5
  givenname: Hannes
  orcidid: 0000-0001-9665-7661
  surname: Töpfer
  fullname: Töpfer, Hannes
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32069884$$D View this record in MEDLINE/PubMed
BookMark eNptks1OFTEUgBuDkR9d-AKmS11c6d90OhuTC16UBMQEWDed9sylpDOFdobIznfgDX0Se714A8ZV29PvfKfpObtoa4gDIPSWko-cN2Q_M0IEJYS-QDtUMDFTjJGtJ_tttJvzNSGMc65eoW3OiGyUEjvIzacx9mYEh7-bZHoYIeHFjzEZO_o44LMOn9t5-IZPF6fn-DPceQsZX2Y_LPF8WJEwuJK8mAKkXz8fDiANcQrB4wMwPb64gpjuX6OXnQkZ3jyue-jyaHFx-HV2cvbl-HB-MrNC0HEmqlooCdwwK9tWCqM6Bo2oJSeuAi5BWWko4cyxqhVda7oWHGWV7ZrGOGP4Hjpee1001_om-d6kex2N138CMS21SaO3ATRvjXVStU2RCC6c4gCshrqT5VwKFtentetmantwFobyJ-GZ9PnN4K_0Mt7pmtSUUFYE7x8FKd5OkEfd-2whBDNAnLJmvFKVbBoqC_ruaa1Nkb9tKsCHNWBTzDlBt0Eo0asR0JsRKOz-P6z1o1k1szzTh_9k_AYcTLPS
CitedBy_id crossref_primary_10_3390_s22134958
crossref_primary_10_1016_j_sna_2022_113784
crossref_primary_10_1002_adem_202300940
crossref_primary_10_1109_JSEN_2021_3101219
crossref_primary_10_1002_pssa_202200839
crossref_primary_10_1007_s42417_021_00394_8
crossref_primary_10_1038_s41598_021_84415_2
crossref_primary_10_3390_s21062022
Cites_doi 10.1103/PhysRevB.68.132408
10.1016/0924-4247(92)80194-8
10.1016/j.ijsolstr.2013.06.022
10.1088/0960-1317/17/10/013
10.1016/j.tafmec.2019.102289
10.1063/1.5096001
10.1063/1.2213950
10.1109/TUFFC.2018.2862240
10.1016/j.measurement.2017.09.047
10.1088/0022-3727/40/20/S19
10.1016/j.sna.2009.04.001
10.1063/1.4896496
10.1063/1.2988183
10.3390/mi7010014
10.1007/978-3-319-34070-8
10.1063/1.4860664
10.1002/pssa.201600390
10.1109/ULTSYM.2012.0481
10.3390/s19214769
10.1063/1.4800231
10.1063/1.3313919
10.1109/TMAG.1987.1065329
10.1088/0960-1317/19/9/094005
10.1115/1.4033790
10.1063/1.4788728
10.1016/j.sna.2006.03.001
10.4028/www.scientific.net/KEM.865.13
10.1016/S1386-2766(00)80023-7
10.1063/1.4811369
10.1063/1.365379
10.1109/TMAG.2010.2081356
10.1109/ESIME.2009.4938498
10.1006/jsvi.1999.2257
10.1016/j.sna.2019.111560
10.1088/1361-665X/aabca4
10.1016/0022-460X(71)90627-4
10.1016/j.surfcoat.2016.11.083
10.1109/EMBC.2017.8037294
10.1016/j.apsusc.2013.12.099
10.1063/1.3664135
10.1007/s10832-006-6287-3
10.1063/1.3251072
10.1063/1.5040190
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s20041001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3bacd68b9afb434d83ee27e7f6fb4630
PMC7071012
32069884
10_3390_s20041001
Genre Journal Article
GrantInformation_xml – fundername: European Social Fund
  grantid: 2017 FGR 0060
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c441t-457486e3a2c6bb64a8f2e947630d5e36e8c6a1032d25b4fbafbed125cf99adaa3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:19 EDT 2025
Thu Aug 21 14:09:45 EDT 2025
Fri Jul 11 15:33:27 EDT 2025
Wed Feb 19 02:05:35 EST 2025
Thu Apr 24 23:06:40 EDT 2025
Tue Jul 01 00:42:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Young’s modulus
magnetoelectric sensor
scandium aluminium nitride
MEMS
automation
algorithm
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-457486e3a2c6bb64a8f2e947630d5e36e8c6a1032d25b4fbafbed125cf99adaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-9665-7661
0000-0002-8458-4001
0000-0003-4735-0510
OpenAccessLink https://doaj.org/article/3bacd68b9afb434d83ee27e7f6fb4630
PMID 32069884
PQID 2358569916
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3bacd68b9afb434d83ee27e7f6fb4630
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071012
proquest_miscellaneous_2358569916
pubmed_primary_32069884
crossref_primary_10_3390_s20041001
crossref_citationtrail_10_3390_s20041001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200213
PublicationDateYYYYMMDD 2020-02-13
PublicationDate_xml – month: 2
  year: 2020
  text: 20200213
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Tilmans (ref_19) 1992; 30
ref_12
ref_10
Akiyama (ref_3) 2013; 102
Zywitzki (ref_49) 2017; 309
Tonisch (ref_30) 2006; 132
ref_18
Wang (ref_50) 2017; 26
Han (ref_37) 1999; 225
Reermann (ref_11) 2018; 116
Spetzler (ref_34) 2019; 114
Moridi (ref_44) 2013; 50
Bichurin (ref_14) 2010; 107
ref_25
ref_24
Cimalla (ref_2) 2007; 40
Blackburn (ref_22) 2008; 104
Niekiel (ref_9) 2019; 297
ref_28
Matloub (ref_4) 2013; 102
ref_26
Watson (ref_6) 2009; 152
Lozano (ref_5) 2018; 27
ref_33
ref_31
Zagorac (ref_46) 2013; 103
Haehnlein (ref_43) 2017; 214
Bichurin (ref_15) 2003; 68
Cimalla (ref_35) 2006; 88
ref_39
ref_38
Schaaf (ref_27) 2014; 116
Petyt (ref_29) 1971; 18
Bao (ref_20) 2000; Volume 8
Nguyen (ref_21) 2011; 47
Gerken (ref_32) 2013; 3
Akiyama (ref_23) 2009; 95
Elmer (ref_41) 2012; 81
Gojdka (ref_16) 2011; 99
Kulkarni (ref_17) 2014; 104
Cimalla (ref_36) 2007; 221
Yamada (ref_13) 1987; 23
Grieseler (ref_40) 2014; 292
Lu (ref_45) 2018; 6
ref_8
Elfrink (ref_1) 2009; 19
Choi (ref_7) 2006; 17
Cimalla (ref_42) 2007; 17
Wu (ref_48) 2018; 65
Datye (ref_47) 2016; 83
References_xml – volume: 68
  start-page: 132408
  year: 2003
  ident: ref_15
  article-title: Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites
  publication-title: Phys. Rev. B Rapid Commun.
  doi: 10.1103/PhysRevB.68.132408
– volume: 26
  start-page: 1132
  year: 2017
  ident: ref_50
  article-title: Design, Fabrication, and Characterization of Scandium Aluminum Nitride-Based Piezoelectric Micromachined Ultrasonic Transducers
  publication-title: Surf. Coat. Technol.
– volume: 30
  start-page: 35
  year: 1992
  ident: ref_19
  article-title: Micro resonant force gauges
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(92)80194-8
– volume: 50
  start-page: 3562
  year: 2013
  ident: ref_44
  article-title: Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.06.022
– ident: ref_26
– volume: 17
  start-page: 2016
  year: 2007
  ident: ref_42
  article-title: Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/10/013
– volume: 103
  start-page: 102289
  year: 2013
  ident: ref_46
  article-title: Theoretical study of AlN mechanical behaviour under high pressure regime
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102289
– volume: 114
  start-page: 183504
  year: 2019
  ident: ref_34
  article-title: Influence of the quality factor on the signal to noise ratio of magnetoelectric sensors based on the delta-E effect
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5096001
– volume: 88
  start-page: 253501
  year: 2006
  ident: ref_35
  article-title: Pulsed mode operation of strained microelectromechanical resonators in air
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2213950
– volume: 65
  start-page: 2167
  year: 2018
  ident: ref_48
  article-title: Characterization of Elastic Modulus Across the (Al1–xScx)N System Using DFT and Substrate-Effect-Corrected Nanoindentation
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2018.2862240
– ident: ref_39
– volume: 116
  start-page: 230
  year: 2018
  ident: ref_11
  article-title: Evaluation of magnetoelectric sensor systems for cardiological applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.09.047
– volume: 221
  start-page: 59
  year: 2007
  ident: ref_36
  article-title: Sensing applications of micro- and nanoelectromechanical resonators
  publication-title: Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst.
– volume: 40
  start-page: 6386
  year: 2007
  ident: ref_2
  article-title: Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/40/20/S19
– volume: 152
  start-page: 219
  year: 2009
  ident: ref_6
  article-title: Piezoelectric ultrasonic micro/milli-scale actuators
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2009.04.001
– volume: 116
  start-page: 124306
  year: 2014
  ident: ref_27
  article-title: Size effect of Young’s modulus in AlN thin layers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4896496
– volume: 104
  start-page: 074104
  year: 2008
  ident: ref_22
  article-title: Verified finite element simulation of multiferroic structures: Solutions for conducting and insulating systems
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2988183
– ident: ref_24
  doi: 10.3390/mi7010014
– ident: ref_10
  doi: 10.1007/978-3-319-34070-8
– volume: 104
  start-page: 022904
  year: 2014
  ident: ref_17
  article-title: Giant magnetoelectric effect at low frequencies in polymer-based thin film composites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4860664
– volume: 214
  start-page: 1600390
  year: 2017
  ident: ref_43
  article-title: Size effect of the silicon carbide Young’s modulus
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201600390
– ident: ref_38
– ident: ref_25
  doi: 10.1109/ULTSYM.2012.0481
– ident: ref_18
  doi: 10.3390/s19214769
– volume: 102
  start-page: 152903
  year: 2013
  ident: ref_4
  article-title: Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4800231
– volume: 107
  start-page: 053904
  year: 2010
  ident: ref_14
  article-title: Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency and electromechanical resonance ranges
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3313919
– volume: 23
  start-page: 2422
  year: 1987
  ident: ref_13
  article-title: Noncontact measurement of bending stress using a magnetic anisotropy sensor
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1987.1065329
– volume: 19
  start-page: 094005
  year: 2009
  ident: ref_1
  article-title: Vibration energy harvesting with aluminum nitride-based piezoelectric devices
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/9/094005
– ident: ref_28
– volume: 83
  start-page: 091003
  year: 2016
  ident: ref_47
  article-title: Extraction of Anisotropic Mechanical Properties from Nanoindentation of SiC-6H Single Crystals
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4033790
– volume: 102
  start-page: 021915
  year: 2013
  ident: ref_3
  article-title: Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788728
– volume: 132
  start-page: 658
  year: 2006
  ident: ref_30
  article-title: Piezoelectric properties of polycrystalline AlN thin films for MEMS application
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2006.03.001
– ident: ref_8
  doi: 10.4028/www.scientific.net/KEM.865.13
– volume: Volume 8
  start-page: 353
  year: 2000
  ident: ref_20
  article-title: Chapter 9—Resonant sensors and vibratory gyroscopes
  publication-title: Handbook of Sensors and Actuators
  doi: 10.1016/S1386-2766(00)80023-7
– volume: 3
  start-page: 062115
  year: 2013
  ident: ref_32
  article-title: Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors
  publication-title: AIP Adv.
  doi: 10.1063/1.4811369
– volume: 81
  start-page: 7709
  year: 2012
  ident: ref_41
  article-title: Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365379
– volume: 47
  start-page: 1142
  year: 2011
  ident: ref_21
  article-title: Finite Element Harmonic Modeling of Magnetoelectric Effect
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2010.2081356
– ident: ref_33
– ident: ref_31
  doi: 10.1109/ESIME.2009.4938498
– volume: 225
  start-page: 935
  year: 1999
  ident: ref_37
  article-title: Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1999.2257
– volume: 297
  start-page: 111560
  year: 2019
  ident: ref_9
  article-title: Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111560
– volume: 27
  start-page: 075015
  year: 2018
  ident: ref_5
  article-title: Temperature characteristics of SAW resonators on Sc0.26Al0.74N/ polycrystalline diamond heterostructures
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aabca4
– volume: 18
  start-page: 17
  year: 1971
  ident: ref_29
  article-title: Free vibration of a curved beam
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(71)90627-4
– volume: 309
  start-page: 417
  year: 2017
  ident: ref_49
  article-title: Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.11.083
– ident: ref_12
  doi: 10.1109/EMBC.2017.8037294
– volume: 292
  start-page: 997
  year: 2014
  ident: ref_40
  article-title: Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.12.099
– volume: 99
  start-page: 223502
  year: 2011
  ident: ref_16
  article-title: Fully integrable magnetic field sensor based on delta-E effect
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3664135
– volume: 17
  start-page: 543
  year: 2006
  ident: ref_7
  article-title: Energy harvesting MEMS device based on thin film piezoelectric cantilevers
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-006-6287-3
– volume: 95
  start-page: 162107
  year: 2009
  ident: ref_23
  article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3251072
– volume: 6
  start-page: 076105
  year: 2018
  ident: ref_45
  article-title: Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−xScxN (up to x = 0.41) thin films
  publication-title: APL Mater.
  doi: 10.1063/1.5040190
SSID ssj0023338
Score 2.33519
Snippet Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1001
SubjectTerms algorithm
automation
magnetoelectric sensor
mems
scandium aluminium nitride
young’s modulus
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp_RQ-l-3aVFLD72Y7FqyLB130w2hsGkhDeRmRtKIFjbesvFCj32HvmGfJDO2d9ktgV56tD1gMTPWfGPNfCPEe42JPAVC7myKuaYEIIdyhDmBC-USjvXYcXPy_NycXepPV-XVzqgvrgnr6YF7xR0rDyEa6x0kr5WOViEWFVbJ0LVRXbZOMW-TTA2plqLMq-cRUpTUH9-wLzDb0F706Uj670KWfxdI7kSc04fiwQAV5aRf4iNxD5vH4v4OgeATESfrdkmYE6P8AlxmRVqSs5_tqm9XkJ-TvAiTxbmcz-YX8iN224LsygTkpGHJ7g-4nK0XuPrz6_cUV82Sj4fkFOFa9o37T8Xl6ezryVk-zE3IA4GbNtdlpa1BBUUw3hsNNhXoNO0ko1iiMmiDASbSi0XpdfKkWYwEdEJyDiKAeiYOmmWDL4SsilhZE0oNvtQIADE440dJORM5tGXiw0afdRhIxXm2xaKm5IJVX29Vn4l3W9EfPZPGXUJTNspWgMmvuxvkEvXgEvW_XCITbzcmrelj4RMQaHC5vqm5L7g0DIkz8bw38fZVqhgZZ63ORLVn_L217D9pvn_rCLkrxmnj4uX_WPwrcVhwSs8zZ9SROGhXa3xNuKf1bzoXvwUzUgSH
  priority: 102
  providerName: Directory of Open Access Journals
Title Automated Parameter Extraction Of ScAlN MEMS Devices Using An Extended Euler–Bernoulli Beam Theory
URI https://www.ncbi.nlm.nih.gov/pubmed/32069884
https://www.proquest.com/docview/2358569916
https://pubmed.ncbi.nlm.nih.gov/PMC7071012
https://doaj.org/article/3bacd68b9afb434d83ee27e7f6fb4630
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELb25wIHxP9mgcogDlwCaew49gGhFlJWSC0rlkq9RU48BqSSsGkqLTfegTfkSfAkabRBPXCJlMRR7Bnb843t-YaQ5xys6yk695W0xufOAfB1FIDvwAVTFsZ8rDA4eb4QZ0v-YRWtDsgux2YnwM1e1w7zSS2r9cury59v3IB_jR6nc9lfbVDTyCV0SI6dQYpxfM55v5kQMtYktMaYLt_Zw6AlGBp-OjBLDXv_Psj578nJa6Zodpvc6jAknbRKv0MOoLhLbl5jFrxHzGRblw6MgqHnGs9fOfHR5Kqu2jgG-tHSi3yyXtB5Mr-g76CZL2hzfoBOCizZLI3TZLuG6s-v31OoihL3jegU9HfaRvTfJ8tZ8vntmd8lVPBzh3pqn0cxlwKYDnORZYJraUNQ3E0xgYmACZC50MiwZ8Io4zbTNgPjEFBuldJGa_aAHBVlASeExqGJpcgjrrOIg9ba5EpkgWVKGLR5Hnmxk2ead2zjmPRinTqvA0Wf9qL3yLO-6I-WYmNfoSkqpS-ArNjNg7L6knaDLGWZzo2QmXIV54wbyQDCGGIr3L1rpEee7lSaulGEWyO6gHK7STFgOBKIlT3ysFVx_ysWBkJJyT0SD5Q_qMvwTfHta8PUHSOAG4en_9PCR-RGiL48Jpthj8lRXW3hiQM8dTYih_Eqdlc5ez8ix9Nkcf5p1CwejJqO_hdZ2wOj
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Parameter+Extraction+Of+ScAlN+MEMS+Devices+Using+An+Extended+Euler%E2%80%93Bernoulli+Beam+Theory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Krey%2C+Maximilian&rft.au=H%C3%A4hnlein%2C+Bernd&rft.au=Tonisch%2C+Katja&rft.au=Krischok%2C+Stefan&rft.date=2020-02-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=4&rft.spage=1001&rft_id=info:doi/10.3390%2Fs20041001&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20041001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon