Automated Parameter Extraction Of ScAlN MEMS Devices Using An Extended Euler–Bernoulli Beam Theory
Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Sca...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 4; p. 1001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
13.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young’s modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler–Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young‘s modulus of the magnetostrictive layer. |
---|---|
AbstractList | Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler−Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer. Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer. Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer.Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer. |
Author | Hähnlein, Bernd Krey, Maximilian Töpfer, Hannes Tonisch, Katja Krischok, Stefan |
AuthorAffiliation | 1 Advanced Electromagnetics Group, Department of Electrical Engineering and Information Technology, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; hannes.toepfer@tu-ilmenau.de 2 Technical Physics 1 Group, Institute of Micro- and Nanotechnologies (IMN MacroNano ® ), Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; bernd.haehnlein@tu-ilmenau.de (B.H.); katja.tonisch@tu-ilmenau.de (K.T.); stefan.krischok@tu-ilmenau.de (S.K.) |
AuthorAffiliation_xml | – name: 2 Technical Physics 1 Group, Institute of Micro- and Nanotechnologies (IMN MacroNano ® ), Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; bernd.haehnlein@tu-ilmenau.de (B.H.); katja.tonisch@tu-ilmenau.de (K.T.); stefan.krischok@tu-ilmenau.de (S.K.) – name: 1 Advanced Electromagnetics Group, Department of Electrical Engineering and Information Technology, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany; hannes.toepfer@tu-ilmenau.de |
Author_xml | – sequence: 1 givenname: Maximilian orcidid: 0000-0003-4735-0510 surname: Krey fullname: Krey, Maximilian – sequence: 2 givenname: Bernd surname: Hähnlein fullname: Hähnlein, Bernd – sequence: 3 givenname: Katja surname: Tonisch fullname: Tonisch, Katja – sequence: 4 givenname: Stefan orcidid: 0000-0002-8458-4001 surname: Krischok fullname: Krischok, Stefan – sequence: 5 givenname: Hannes orcidid: 0000-0001-9665-7661 surname: Töpfer fullname: Töpfer, Hannes |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32069884$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1OFTEUgBuDkR9d-AKmS11c6d90OhuTC16UBMQEWDed9sylpDOFdobIznfgDX0Se714A8ZV29PvfKfpObtoa4gDIPSWko-cN2Q_M0IEJYS-QDtUMDFTjJGtJ_tttJvzNSGMc65eoW3OiGyUEjvIzacx9mYEh7-bZHoYIeHFjzEZO_o44LMOn9t5-IZPF6fn-DPceQsZX2Y_LPF8WJEwuJK8mAKkXz8fDiANcQrB4wMwPb64gpjuX6OXnQkZ3jyue-jyaHFx-HV2cvbl-HB-MrNC0HEmqlooCdwwK9tWCqM6Bo2oJSeuAi5BWWko4cyxqhVda7oWHGWV7ZrGOGP4Hjpee1001_om-d6kex2N138CMS21SaO3ATRvjXVStU2RCC6c4gCshrqT5VwKFtentetmantwFobyJ-GZ9PnN4K_0Mt7pmtSUUFYE7x8FKd5OkEfd-2whBDNAnLJmvFKVbBoqC_ruaa1Nkb9tKsCHNWBTzDlBt0Eo0asR0JsRKOz-P6z1o1k1szzTh_9k_AYcTLPS |
CitedBy_id | crossref_primary_10_3390_s22134958 crossref_primary_10_1016_j_sna_2022_113784 crossref_primary_10_1002_adem_202300940 crossref_primary_10_1109_JSEN_2021_3101219 crossref_primary_10_1002_pssa_202200839 crossref_primary_10_1007_s42417_021_00394_8 crossref_primary_10_1038_s41598_021_84415_2 crossref_primary_10_3390_s21062022 |
Cites_doi | 10.1103/PhysRevB.68.132408 10.1016/0924-4247(92)80194-8 10.1016/j.ijsolstr.2013.06.022 10.1088/0960-1317/17/10/013 10.1016/j.tafmec.2019.102289 10.1063/1.5096001 10.1063/1.2213950 10.1109/TUFFC.2018.2862240 10.1016/j.measurement.2017.09.047 10.1088/0022-3727/40/20/S19 10.1016/j.sna.2009.04.001 10.1063/1.4896496 10.1063/1.2988183 10.3390/mi7010014 10.1007/978-3-319-34070-8 10.1063/1.4860664 10.1002/pssa.201600390 10.1109/ULTSYM.2012.0481 10.3390/s19214769 10.1063/1.4800231 10.1063/1.3313919 10.1109/TMAG.1987.1065329 10.1088/0960-1317/19/9/094005 10.1115/1.4033790 10.1063/1.4788728 10.1016/j.sna.2006.03.001 10.4028/www.scientific.net/KEM.865.13 10.1016/S1386-2766(00)80023-7 10.1063/1.4811369 10.1063/1.365379 10.1109/TMAG.2010.2081356 10.1109/ESIME.2009.4938498 10.1006/jsvi.1999.2257 10.1016/j.sna.2019.111560 10.1088/1361-665X/aabca4 10.1016/0022-460X(71)90627-4 10.1016/j.surfcoat.2016.11.083 10.1109/EMBC.2017.8037294 10.1016/j.apsusc.2013.12.099 10.1063/1.3664135 10.1007/s10832-006-6287-3 10.1063/1.3251072 10.1063/1.5040190 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s20041001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3bacd68b9afb434d83ee27e7f6fb4630 PMC7071012 32069884 10_3390_s20041001 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Social Fund grantid: 2017 FGR 0060 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c441t-457486e3a2c6bb64a8f2e947630d5e36e8c6a1032d25b4fbafbed125cf99adaa3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:19 EDT 2025 Thu Aug 21 14:09:45 EDT 2025 Fri Jul 11 15:33:27 EDT 2025 Wed Feb 19 02:05:35 EST 2025 Thu Apr 24 23:06:40 EDT 2025 Tue Jul 01 00:42:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Young’s modulus magnetoelectric sensor scandium aluminium nitride MEMS automation algorithm |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-457486e3a2c6bb64a8f2e947630d5e36e8c6a1032d25b4fbafbed125cf99adaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-9665-7661 0000-0002-8458-4001 0000-0003-4735-0510 |
OpenAccessLink | https://doaj.org/article/3bacd68b9afb434d83ee27e7f6fb4630 |
PMID | 32069884 |
PQID | 2358569916 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bacd68b9afb434d83ee27e7f6fb4630 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071012 proquest_miscellaneous_2358569916 pubmed_primary_32069884 crossref_primary_10_3390_s20041001 crossref_citationtrail_10_3390_s20041001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200213 |
PublicationDateYYYYMMDD | 2020-02-13 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200213 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Tilmans (ref_19) 1992; 30 ref_12 ref_10 Akiyama (ref_3) 2013; 102 Zywitzki (ref_49) 2017; 309 Tonisch (ref_30) 2006; 132 ref_18 Wang (ref_50) 2017; 26 Han (ref_37) 1999; 225 Reermann (ref_11) 2018; 116 Spetzler (ref_34) 2019; 114 Moridi (ref_44) 2013; 50 Bichurin (ref_14) 2010; 107 ref_25 ref_24 Cimalla (ref_2) 2007; 40 Blackburn (ref_22) 2008; 104 Niekiel (ref_9) 2019; 297 ref_28 Matloub (ref_4) 2013; 102 ref_26 Watson (ref_6) 2009; 152 Lozano (ref_5) 2018; 27 ref_33 ref_31 Zagorac (ref_46) 2013; 103 Haehnlein (ref_43) 2017; 214 Bichurin (ref_15) 2003; 68 Cimalla (ref_35) 2006; 88 ref_39 ref_38 Schaaf (ref_27) 2014; 116 Petyt (ref_29) 1971; 18 Bao (ref_20) 2000; Volume 8 Nguyen (ref_21) 2011; 47 Gerken (ref_32) 2013; 3 Akiyama (ref_23) 2009; 95 Elmer (ref_41) 2012; 81 Gojdka (ref_16) 2011; 99 Kulkarni (ref_17) 2014; 104 Cimalla (ref_36) 2007; 221 Yamada (ref_13) 1987; 23 Grieseler (ref_40) 2014; 292 Lu (ref_45) 2018; 6 ref_8 Elfrink (ref_1) 2009; 19 Choi (ref_7) 2006; 17 Cimalla (ref_42) 2007; 17 Wu (ref_48) 2018; 65 Datye (ref_47) 2016; 83 |
References_xml | – volume: 68 start-page: 132408 year: 2003 ident: ref_15 article-title: Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites publication-title: Phys. Rev. B Rapid Commun. doi: 10.1103/PhysRevB.68.132408 – volume: 26 start-page: 1132 year: 2017 ident: ref_50 article-title: Design, Fabrication, and Characterization of Scandium Aluminum Nitride-Based Piezoelectric Micromachined Ultrasonic Transducers publication-title: Surf. Coat. Technol. – volume: 30 start-page: 35 year: 1992 ident: ref_19 article-title: Micro resonant force gauges publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(92)80194-8 – volume: 50 start-page: 3562 year: 2013 ident: ref_44 article-title: Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.06.022 – ident: ref_26 – volume: 17 start-page: 2016 year: 2007 ident: ref_42 article-title: Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/10/013 – volume: 103 start-page: 102289 year: 2013 ident: ref_46 article-title: Theoretical study of AlN mechanical behaviour under high pressure regime publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102289 – volume: 114 start-page: 183504 year: 2019 ident: ref_34 article-title: Influence of the quality factor on the signal to noise ratio of magnetoelectric sensors based on the delta-E effect publication-title: Appl. Phys. Lett. doi: 10.1063/1.5096001 – volume: 88 start-page: 253501 year: 2006 ident: ref_35 article-title: Pulsed mode operation of strained microelectromechanical resonators in air publication-title: Appl. Phys. Lett. doi: 10.1063/1.2213950 – volume: 65 start-page: 2167 year: 2018 ident: ref_48 article-title: Characterization of Elastic Modulus Across the (Al1–xScx)N System Using DFT and Substrate-Effect-Corrected Nanoindentation publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2862240 – ident: ref_39 – volume: 116 start-page: 230 year: 2018 ident: ref_11 article-title: Evaluation of magnetoelectric sensor systems for cardiological applications publication-title: Measurement doi: 10.1016/j.measurement.2017.09.047 – volume: 221 start-page: 59 year: 2007 ident: ref_36 article-title: Sensing applications of micro- and nanoelectromechanical resonators publication-title: Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. – volume: 40 start-page: 6386 year: 2007 ident: ref_2 article-title: Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/20/S19 – volume: 152 start-page: 219 year: 2009 ident: ref_6 article-title: Piezoelectric ultrasonic micro/milli-scale actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2009.04.001 – volume: 116 start-page: 124306 year: 2014 ident: ref_27 article-title: Size effect of Young’s modulus in AlN thin layers publication-title: J. Appl. Phys. doi: 10.1063/1.4896496 – volume: 104 start-page: 074104 year: 2008 ident: ref_22 article-title: Verified finite element simulation of multiferroic structures: Solutions for conducting and insulating systems publication-title: J. Appl. Phys. doi: 10.1063/1.2988183 – ident: ref_24 doi: 10.3390/mi7010014 – ident: ref_10 doi: 10.1007/978-3-319-34070-8 – volume: 104 start-page: 022904 year: 2014 ident: ref_17 article-title: Giant magnetoelectric effect at low frequencies in polymer-based thin film composites publication-title: Appl. Phys. Lett. doi: 10.1063/1.4860664 – volume: 214 start-page: 1600390 year: 2017 ident: ref_43 article-title: Size effect of the silicon carbide Young’s modulus publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201600390 – ident: ref_38 – ident: ref_25 doi: 10.1109/ULTSYM.2012.0481 – ident: ref_18 doi: 10.3390/s19214769 – volume: 102 start-page: 152903 year: 2013 ident: ref_4 article-title: Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4800231 – volume: 107 start-page: 053904 year: 2010 ident: ref_14 article-title: Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency and electromechanical resonance ranges publication-title: J. Appl. Phys. doi: 10.1063/1.3313919 – volume: 23 start-page: 2422 year: 1987 ident: ref_13 article-title: Noncontact measurement of bending stress using a magnetic anisotropy sensor publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1987.1065329 – volume: 19 start-page: 094005 year: 2009 ident: ref_1 article-title: Vibration energy harvesting with aluminum nitride-based piezoelectric devices publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/9/094005 – ident: ref_28 – volume: 83 start-page: 091003 year: 2016 ident: ref_47 article-title: Extraction of Anisotropic Mechanical Properties from Nanoindentation of SiC-6H Single Crystals publication-title: J. Appl. Mech. doi: 10.1115/1.4033790 – volume: 102 start-page: 021915 year: 2013 ident: ref_3 article-title: Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788728 – volume: 132 start-page: 658 year: 2006 ident: ref_30 article-title: Piezoelectric properties of polycrystalline AlN thin films for MEMS application publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.03.001 – ident: ref_8 doi: 10.4028/www.scientific.net/KEM.865.13 – volume: Volume 8 start-page: 353 year: 2000 ident: ref_20 article-title: Chapter 9—Resonant sensors and vibratory gyroscopes publication-title: Handbook of Sensors and Actuators doi: 10.1016/S1386-2766(00)80023-7 – volume: 3 start-page: 062115 year: 2013 ident: ref_32 article-title: Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors publication-title: AIP Adv. doi: 10.1063/1.4811369 – volume: 81 start-page: 7709 year: 2012 ident: ref_41 article-title: Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium publication-title: J. Appl. Phys. doi: 10.1063/1.365379 – volume: 47 start-page: 1142 year: 2011 ident: ref_21 article-title: Finite Element Harmonic Modeling of Magnetoelectric Effect publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2010.2081356 – ident: ref_33 – ident: ref_31 doi: 10.1109/ESIME.2009.4938498 – volume: 225 start-page: 935 year: 1999 ident: ref_37 article-title: Dynamics of Transversely Vibrating Beams Using Four Engineering Theories publication-title: J. Sound Vib. doi: 10.1006/jsvi.1999.2257 – volume: 297 start-page: 111560 year: 2019 ident: ref_9 article-title: Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111560 – volume: 27 start-page: 075015 year: 2018 ident: ref_5 article-title: Temperature characteristics of SAW resonators on Sc0.26Al0.74N/ polycrystalline diamond heterostructures publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aabca4 – volume: 18 start-page: 17 year: 1971 ident: ref_29 article-title: Free vibration of a curved beam publication-title: J. Sound Vib. doi: 10.1016/0022-460X(71)90627-4 – volume: 309 start-page: 417 year: 2017 ident: ref_49 article-title: Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.11.083 – ident: ref_12 doi: 10.1109/EMBC.2017.8037294 – volume: 292 start-page: 997 year: 2014 ident: ref_40 article-title: Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.12.099 – volume: 99 start-page: 223502 year: 2011 ident: ref_16 article-title: Fully integrable magnetic field sensor based on delta-E effect publication-title: Appl. Phys. Lett. doi: 10.1063/1.3664135 – volume: 17 start-page: 543 year: 2006 ident: ref_7 article-title: Energy harvesting MEMS device based on thin film piezoelectric cantilevers publication-title: J. Electroceram. doi: 10.1007/s10832-006-6287-3 – volume: 95 start-page: 162107 year: 2009 ident: ref_23 article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3251072 – volume: 6 start-page: 076105 year: 2018 ident: ref_45 article-title: Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−xScxN (up to x = 0.41) thin films publication-title: APL Mater. doi: 10.1063/1.5040190 |
SSID | ssj0023338 |
Score | 2.33519 |
Snippet | Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1001 |
SubjectTerms | algorithm automation magnetoelectric sensor mems scandium aluminium nitride young’s modulus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp_RQ-l-3aVFLD72Y7FqyLB130w2hsGkhDeRmRtKIFjbesvFCj32HvmGfJDO2d9ktgV56tD1gMTPWfGPNfCPEe42JPAVC7myKuaYEIIdyhDmBC-USjvXYcXPy_NycXepPV-XVzqgvrgnr6YF7xR0rDyEa6x0kr5WOViEWFVbJ0LVRXbZOMW-TTA2plqLMq-cRUpTUH9-wLzDb0F706Uj670KWfxdI7kSc04fiwQAV5aRf4iNxD5vH4v4OgeATESfrdkmYE6P8AlxmRVqSs5_tqm9XkJ-TvAiTxbmcz-YX8iN224LsygTkpGHJ7g-4nK0XuPrz6_cUV82Sj4fkFOFa9o37T8Xl6ezryVk-zE3IA4GbNtdlpa1BBUUw3hsNNhXoNO0ko1iiMmiDASbSi0XpdfKkWYwEdEJyDiKAeiYOmmWDL4SsilhZE0oNvtQIADE440dJORM5tGXiw0afdRhIxXm2xaKm5IJVX29Vn4l3W9EfPZPGXUJTNspWgMmvuxvkEvXgEvW_XCITbzcmrelj4RMQaHC5vqm5L7g0DIkz8bw38fZVqhgZZ63ORLVn_L217D9pvn_rCLkrxmnj4uX_WPwrcVhwSs8zZ9SROGhXa3xNuKf1bzoXvwUzUgSH priority: 102 providerName: Directory of Open Access Journals |
Title | Automated Parameter Extraction Of ScAlN MEMS Devices Using An Extended Euler–Bernoulli Beam Theory |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32069884 https://www.proquest.com/docview/2358569916 https://pubmed.ncbi.nlm.nih.gov/PMC7071012 https://doaj.org/article/3bacd68b9afb434d83ee27e7f6fb4630 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELb25wIHxP9mgcogDlwCaew49gGhFlJWSC0rlkq9RU48BqSSsGkqLTfegTfkSfAkabRBPXCJlMRR7Bnb843t-YaQ5xys6yk695W0xufOAfB1FIDvwAVTFsZ8rDA4eb4QZ0v-YRWtDsgux2YnwM1e1w7zSS2r9cury59v3IB_jR6nc9lfbVDTyCV0SI6dQYpxfM55v5kQMtYktMaYLt_Zw6AlGBp-OjBLDXv_Psj578nJa6Zodpvc6jAknbRKv0MOoLhLbl5jFrxHzGRblw6MgqHnGs9fOfHR5Kqu2jgG-tHSi3yyXtB5Mr-g76CZL2hzfoBOCizZLI3TZLuG6s-v31OoihL3jegU9HfaRvTfJ8tZ8vntmd8lVPBzh3pqn0cxlwKYDnORZYJraUNQ3E0xgYmACZC50MiwZ8Io4zbTNgPjEFBuldJGa_aAHBVlASeExqGJpcgjrrOIg9ba5EpkgWVKGLR5Hnmxk2ead2zjmPRinTqvA0Wf9qL3yLO-6I-WYmNfoSkqpS-ArNjNg7L6knaDLGWZzo2QmXIV54wbyQDCGGIr3L1rpEee7lSaulGEWyO6gHK7STFgOBKIlT3ysFVx_ysWBkJJyT0SD5Q_qMvwTfHta8PUHSOAG4en_9PCR-RGiL48Jpthj8lRXW3hiQM8dTYih_Eqdlc5ez8ix9Nkcf5p1CwejJqO_hdZ2wOj |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Parameter+Extraction+Of+ScAlN+MEMS+Devices+Using+An+Extended+Euler%E2%80%93Bernoulli+Beam+Theory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Krey%2C+Maximilian&rft.au=H%C3%A4hnlein%2C+Bernd&rft.au=Tonisch%2C+Katja&rft.au=Krischok%2C+Stefan&rft.date=2020-02-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=4&rft.spage=1001&rft_id=info:doi/10.3390%2Fs20041001&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20041001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |