Personalized automatic sleep staging with single-night data: a pilot study with Kullback-Leibler divergence regularization

Objective: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. Approach: As data from a single night are v...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 41; no. 6; pp. 64004 - 64014
Main Authors Phan, Huy, Mikkelsen, Kaare, Chén, Oliver Y, Koch, Philipp, Mertins, Alfred, Kidmose, Preben, De Vos, Maarten
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. Approach: As data from a single night are very small, thereby making model training difficult, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. Main results: Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. Significance: We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization.
AbstractList Objective : Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. Approach : As data from a single night are very small, thereby making model training difficult, we propose a Kullback–Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. Main results : Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen’s kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. Significance : We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization.
Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night.OBJECTIVEBrain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night.As data from a single night are very small, thereby making model training difficult, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model.APPROACHAs data from a single night are very small, thereby making model training difficult, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model.Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%.MAIN RESULTSExperimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%.We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization.SIGNIFICANCEWe find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization.
Objective: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. Approach: As data from a single night are very small, thereby making model training difficult, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. Main results: Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. Significance: We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization.
Author Mikkelsen, Kaare
De Vos, Maarten
Mertins, Alfred
Phan, Huy
Kidmose, Preben
Chén, Oliver Y
Koch, Philipp
Author_xml – sequence: 1
  givenname: Huy
  surname: Phan
  fullname: Phan, Huy
  email: h.phan@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary, University of London , United Kingdom
– sequence: 2
  givenname: Kaare
  surname: Mikkelsen
  fullname: Mikkelsen, Kaare
  organization: Aarhus University Department of Engineering, Denmark
– sequence: 3
  givenname: Oliver Y
  surname: Chén
  fullname: Chén, Oliver Y
  organization: Institute of Biomedical Engineering, University of Oxford , United Kingdom
– sequence: 4
  givenname: Philipp
  surname: Koch
  fullname: Koch, Philipp
  organization: Institute for Signal Processing, University of Lübeck , Germany
– sequence: 5
  givenname: Alfred
  surname: Mertins
  fullname: Mertins, Alfred
  organization: Institute for Signal Processing, University of Lübeck , Germany
– sequence: 6
  givenname: Preben
  orcidid: 0000-0001-8628-8057
  surname: Kidmose
  fullname: Kidmose, Preben
  organization: Aarhus University Department of Engineering, Denmark
– sequence: 7
  givenname: Maarten
  surname: De Vos
  fullname: De Vos, Maarten
  organization: Department of Electrical Engineering, KU Leuven, Belgium
BookMark eNp9kctP3DAQh60KpC6Pe48-cmiKX8km3BDqA7FSOcDZmjiTYOqNU9sB7f719bKIQ1V6Gmv0_cajb47IwehHJOQTZ184q-tzLiteVOWyOYe2ERw_kMVb64AsWFMtCyml-kiOYnxkjPNalAuyvcUQ_QjObrGjMCe_hmQNjQ5xojHBYMeBPtv0QGN-OSxGOzwk2kGCCwp0ss6nzM3dZk_dzM61YH4VK7Stw0A7-4RhwNEgDTjMDoLd5i_8eEIOe3ART1_rMbn_9vXu6kex-vn9-upyVRileCqUVAwR2wbYsm9QYNmLXhnGm1qY3O07IVqJdZtrWQpuhALRLgW0nZLISnlMzvZzp-B_zxiTXtto0DkY0c9RC8V4LbMrmdFqj5rgYwzYa2PTy7IpgHWaM72TrXdm9c6s3svOQfZXcAp2DWHzv8jrWtZP-tHPIR8h6mmNoFUmNasUY0pPXZ_Rz_9A3538Byvzons
CODEN PMEAE3
CitedBy_id crossref_primary_10_1109_TBME_2020_3020381
crossref_primary_10_1088_1361_6579_ac6049
crossref_primary_10_1109_TNSRE_2021_3098968
crossref_primary_10_1109_TPAMI_2024_3366170
crossref_primary_10_1016_j_smrv_2023_101874
crossref_primary_10_1109_TETCI_2022_3189695
crossref_primary_10_1016_j_bspc_2022_104009
crossref_primary_10_1016_j_bspc_2022_104501
crossref_primary_10_1109_JSEN_2022_3155345
crossref_primary_10_1016_j_cmpb_2024_108405
crossref_primary_10_1109_JBHI_2020_3037693
crossref_primary_10_3389_fphys_2023_1287342
crossref_primary_10_1371_journal_pdig_0000014
crossref_primary_10_3390_analytics2030039
crossref_primary_10_1109_TNSRE_2022_3144169
crossref_primary_10_3389_fnins_2023_1143495
crossref_primary_10_1007_s11042_022_12551_6
crossref_primary_10_1109_TPAMI_2021_3070057
crossref_primary_10_3389_fsysb_2024_1284668
crossref_primary_10_1016_j_jsmc_2023_05_002
crossref_primary_10_1109_JBHI_2023_3337261
crossref_primary_10_1109_TITS_2022_3230259
crossref_primary_10_1109_TNSRE_2021_3110665
crossref_primary_10_1088_1741_2552_ac6ca8
crossref_primary_10_1109_ACCESS_2024_3428435
crossref_primary_10_3390_diagnostics14090909
crossref_primary_10_1109_TBME_2022_3147187
crossref_primary_10_1109_JBHI_2024_3409165
crossref_primary_10_1016_j_measurement_2020_108601
crossref_primary_10_1016_j_compbiomed_2022_106044
crossref_primary_10_1088_1361_6579_abbb6d
crossref_primary_10_1016_j_jsmc_2021_07_003
Cites_doi 10.1109/TNSRE.2019.2896659
10.3389/fnhum.2018.00452
10.1145/312624.312647
10.1109/TNSRE.2017.2721116
10.1162/neco.1997.9.8.1735
10.1161/01.CIR.101.23.e215
10.1038/s41598-019-53115-3
10.1109/TBME.2018.2872652
10.1109/TNSRE.2019.2926965
10.1109/10.867928
10.1371/journal.pone.0216456
10.1111/jsr.12169
10.1016/0013-4694(69)90021-2
10.1007/s10439-015-1444-y
10.1111/jsr.12786
10.1109/MTS.2015.2425551
10.1186/s12938-017-0400-5
10.1038/s41467-018-07229-3
10.1038/nature04285
ContentType Journal Article
Copyright 2020 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2020 Institute of Physics and Engineering in Medicine
DBID O3W
TSCCA
AAYXX
CITATION
7X8
DOI 10.1088/1361-6579/ab921e
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
DocumentTitleAlternate Personalized automatic sleep staging with single-night data: a pilot study with Kullback-Leibler divergence regularization
EISSN 1361-6579
ExternalDocumentID 10_1088_1361_6579_ab921e
pmeaab921e
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TSCCA
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
7X8
ID FETCH-LOGICAL-c441t-4340eeeb9a07f9e2e5f2f4c01982cb9afd22b3e8bd225521c24a2b72abd43e053
IEDL.DBID IOP
ISSN 0967-3334
1361-6579
IngestDate Fri Jul 11 00:52:16 EDT 2025
Tue Jul 01 04:29:54 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Thu Jan 07 15:20:50 EST 2021
Wed Aug 21 03:34:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-4340eeeb9a07f9e2e5f2f4c01982cb9afd22b3e8bd225521c24a2b72abd43e053
Notes PMEA-103472.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8628-8057
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6579/ab921e
PQID 2401833613
PQPubID 23479
PageCount 11
ParticipantIDs crossref_citationtrail_10_1088_1361_6579_ab921e
crossref_primary_10_1088_1361_6579_ab921e
proquest_miscellaneous_2401833613
iop_journals_10_1088_1361_6579_ab921e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Physiological measurement
PublicationTitleAbbrev PM
PublicationTitleAlternate Physiol. Meas
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Supratak (pmeaab921ebib33) 2017; 25
Phan (pmeaab921ebib25) 2018b
Sterr (pmeaab921ebib32) 2018; 12
Phan (pmeaab921ebib24) 2018a
Imtiaz (pmeaab921ebib10) 2014
Phan (pmeaab921ebib27) 2019b; 66
Mikkelsen (pmeaab921ebib19) 2019a; 28
Phan (pmeaab921ebib26) 2019a; 27
Imtiaz (pmeaab921ebib11) 2015
Yang (pmeaab921ebib36) 1999; 99
Hobson (pmeaab921ebib7) 1969; 26
Kemp (pmeaab921ebib12) 2000; 47
Mikkelsen (pmeaab921ebib18) 2018
pmeaab921ebib22
Goldberger (pmeaab921ebib6) 2000; 101
Cooijmans (pmeaab921ebib5) 2016
McHugh (pmeaab921ebib16) 2012
Mikkelsen (pmeaab921ebib17) 2017; 16
Mikkelsen (pmeaab921ebib20) 2019b; 9
Bonaci (pmeaab921ebib4) 2015; 34
Abadi (pmeaab921ebib1) 2016
Martinovic (pmeaab921ebib15) 2012
Phan (pmeaab921ebib29) 2019d
Phan (pmeaab921ebib28) 2019c
Stephansen (pmeaab921ebib31) 2018; 9
Andreotti (pmeaab921ebib3) 2018
Tsinalis (pmeaab921ebib35) 2016b; 44
Kingma (pmeaab921ebib13) 2015
O’Reilly (pmeaab921ebib23) 2014; 23
Luong (pmeaab921ebib14) 2015
Yu (pmeaab921ebib37) 2013
Iber (pmeaab921ebib9) 2007
Siegel (pmeaab921ebib30) 2005; 437
Tsinalis (pmeaab921ebib34) 2016a
Mousavi (pmeaab921ebib21) 2019; 14
Agarwal (pmeaab921ebib2) 2019; 27
Hochreiter (pmeaab921ebib8) 1997; 9
References_xml – volume: 27
  start-page: 400
  year: 2019a
  ident: pmeaab921ebib26
  article-title: SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE)
  doi: 10.1109/TNSRE.2019.2896659
– volume: 12
  start-page: 452
  year: 2018
  ident: pmeaab921ebib32
  article-title: Sleep EEG derived from behind-the-ear electrodes (ceegrid) compared to standard polysomnography: a proof of concept study
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2018.00452
– volume: 99
  start-page: 42
  year: 1999
  ident: pmeaab921ebib36
  article-title: A re-examination of text categorization methods
  publication-title: Proc. SIGIR
  doi: 10.1145/312624.312647
– volume: 25
  start-page: 1998
  year: 2017
  ident: pmeaab921ebib33
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 9
  start-page: 1735
  year: 1997
  ident: pmeaab921ebib8
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: pp 1412
  year: 2015
  ident: pmeaab921ebib14
  article-title: Effective approaches to attention-based neural machine translation
– start-page: 143
  year: 2012
  ident: pmeaab921ebib15
  article-title: On the feasibility of side-channel attacks with brain-computer interfaces
– year: 2012
  ident: pmeaab921ebib16
– volume: 101
  start-page: e215–e220
  year: 2000
  ident: pmeaab921ebib6
  article-title: Physiobank, physiotoolkit and physionet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 5044
  year: 2014
  ident: pmeaab921ebib10
  article-title: Recommendations for performance assessment of automatic sleep staging algorithms
– volume: 9
  start-page: 1
  year: 2019b
  ident: pmeaab921ebib20
  article-title: Accurate whole-night sleep monitoring with dry-contact ear-EEG
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53115-3
– start-page: 171
  year: 2018
  ident: pmeaab921ebib3
  article-title: Multichannel sleep stage classification and transfer learning using convolutional neural networks
– year: 2019c
  ident: pmeaab921ebib28
  article-title: Towards more accurate automatic sleep staging via deep transfer learning
– year: 2016
  ident: pmeaab921ebib1
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– volume: 66
  start-page: 1285
  year: 2019b
  ident: pmeaab921ebib27
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng. (TBME)
  doi: 10.1109/TBME.2018.2872652
– volume: 27
  start-page: 1546
  year: 2019
  ident: pmeaab921ebib2
  article-title: Protecting privacy of users in brain-computer interface applications
  publication-title: IEEE Trans. Neural Syst. Rahabil. Eng.
  doi: 10.1109/TNSRE.2019.2926965
– start-page: 1
  year: 2019d
  ident: pmeaab921ebib29
  article-title: Deep transfer learning for single-channel automatic sleep staging with channel mismatch
– start-page: 1452
  year: 2018b
  ident: pmeaab921ebib25
  article-title: Automatic sleep stage classification using single-channel EEG: learning sequential features with attention-based recurrent neural networks
– volume: 47
  start-page: 1185
  year: 2000
  ident: pmeaab921ebib12
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– year: 2007
  ident: pmeaab921ebib9
– year: 2018
  ident: pmeaab921ebib18
  article-title: Personalizing deep learning models for automatic sleep staging
– volume: 14
  year: 2019
  ident: pmeaab921ebib21
  article-title: SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216456
– volume: 23
  start-page: 628
  year: 2014
  ident: pmeaab921ebib23
  article-title: Montreal archive of sleep studies: An open-access resource for instrument benchmarking & exploratory research
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12169
– year: 2016a
  ident: pmeaab921ebib34
  article-title: Automatic sleep stage scoring with single-channel EEG using convolutional neural networks
– volume: 26
  start-page: 644
  year: 1969
  ident: pmeaab921ebib7
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(69)90021-2
– start-page: 1
  year: 2015
  ident: pmeaab921ebib13
  article-title: Adam: a method for stochastic optimization
– start-page: 7893
  year: 2013
  ident: pmeaab921ebib37
  article-title: Kl-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition
– ident: pmeaab921ebib22
– volume: 44
  start-page: 1587
  year: 2016b
  ident: pmeaab921ebib35
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1444-y
– volume: 28
  year: 2019a
  ident: pmeaab921ebib19
  article-title: Machine learning derived sleep–wake staging from around the ear electroencephalogram outperforms manual scoring and actigraphy
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12786
– start-page: 6014
  year: 2015
  ident: pmeaab921ebib11
  article-title: An open-source toolbox for standardized use of PhysioNet Sleep EDF Expanded Database
– volume: 34
  start-page: 32
  year: 2015
  ident: pmeaab921ebib4
  article-title: App stores for the brain: Privacy & security in brain-computer interfaces
  publication-title: IEEE Technol. Soc. Mag.
  doi: 10.1109/MTS.2015.2425551
– volume: 16
  start-page: 111
  year: 2017
  ident: pmeaab921ebib17
  article-title: Automatic sleep staging using ear-EEG
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-017-0400-5
– volume: 9
  start-page: 5229
  year: 2018
  ident: pmeaab921ebib31
  article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07229-3
– volume: 437
  start-page: 1264
  year: 2005
  ident: pmeaab921ebib30
  article-title: Clues to the functions of mammalian sleep
  publication-title: Nature
  doi: 10.1038/nature04285
– year: 2016
  ident: pmeaab921ebib5
  article-title: Recurrent batch normalization
– start-page: 453
  year: 2018a
  ident: pmeaab921ebib24
  article-title: DNN filter bank improves 1-max pooling CNN for single-channel EEG automatic sleep stage classification
SSID ssj0011825
Score 2.4697573
Snippet Objective: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of...
Objective : Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of...
Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64004
SubjectTerms automatic sleep staging
KL-divergence regularization
personalization
single-night data
transfer learning
Title Personalized automatic sleep staging with single-night data: a pilot study with Kullback-Leibler divergence regularization
URI https://iopscience.iop.org/article/10.1088/1361-6579/ab921e
https://www.proquest.com/docview/2401833613
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIhA9FFhatbxkJDhw8D5sJ3HoCSGqCijtgYoekCw_JlXVsIl2s5f99Ywd74oCqhCXJIomdjKOx589428IeYWg1xd24ph3wjCZ-4wpsBXLTGVLb8uy8GHv8MmX_PhcfrzILjbI4XovTNMm0z_Ey54ouFdhCohTo4nIJyFioxwZW_IJbJI7QuHAGXbvnZ6tXQgInGP8YomWQAghk4_ybyXcGJM2sd4_DHMcbY4ekO-r9-yDTK6Hi84O3fI3Csf__JCHZCehUPquF31ENmA6INu_cBMOyL2T5HUfkLsxTNTNH5Pl2Qq7L8FTs-iayPhK5zVASxFohpRHNKzt0rAGUQOLRCU0xKG-pYa2V3XT0Uhp20t9whmwNe6afYYrW8OM-hAnEglC6QwuQ4xs2ii6S86PPnx9f8xS9gbmEGJ1TAo5BgBbmnFRlcAhq3glHUJKxR3erTznVoCyeM4QRDguDbcFN9ZLERJW7JGtaTOFfUJdSEbsc4hUN5ApA7nKAYzgblyYShyQ0ar9tEvU5iHDRq2ji10pHVStg6p1r-oD8mb9RNvTetwi-xpbUKe-Pb9F7uUNufYHGC1RRAdv6Vjq1lcos_qxNPbj4JwxU2gWc43ICq0rFime_GN9T8l9Hib_cUnoGdnqZgt4jgipsy9iT8Djqfj2E4ccC90
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIqpyQLCA2vIyEhw4mN21nRe3qrAq9EEPVPRm-TGRKtJNtJu99NczdrwVFajilCiaOJHHnvnsGX8D8I5Ary_s1HHvpOEq9xkv0dY8M7WtvK2qwoezwyen-eG5-naRXaQ6p_EsTNsl0_-Rbgei4KELU0JcOZ7KfBoyNqqxsZWY4rjz9QbczyS5GhrQ3-XPmzACgeeYw1iRNZBSqhSn_Fcrt_zSBn37L-McPc7sMTxKUJHtDz_2BO7hfAQP_yAQHMHWSQqNj-BBzOV0y6dwfbYG2NfomVn1baRlZcsGsWOEBkNdIhY2YFnYKGiQRzYRFpJFPzHDusum7VnknR2kjmiZao37xY_x0ja4YD4kc0QWT7aItewX6TTnMziffflxcMhTiQXuCAf1XEk1QURbmUlRVygwq0WtHOG-Ujh6WnshrMTS0jUjT--EMsIWwlivZKgq8Rw25-0cd4C5UDHY5xj5aDArDeZljmikcJPC1HIXxusO1i7xj4cyGI2OcfCy1EElOqhEDyrZhQ83b3QD98Ydsu9JZzpNwOUdcm9vyXVXaLQiER1CmhOlaTCRzFrzmiZbiKCYObarpSb4QyaQmpR7__m9N7B19nmmj7-eHr2AbREW63EL5yVs9osVviJE09vXcdT-Bt-f748
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+automatic+sleep+staging+with+single-night+data%3A+a+pilot+study+with+Kullback-Leibler+divergence+regularization&rft.jtitle=Physiological+measurement&rft.au=Phan%2C+Huy&rft.au=Mikkelsen%2C+Kaare&rft.au=Ch%C3%A9n%2C+Oliver+Y&rft.au=Koch%2C+Philipp&rft.date=2020-06-01&rft.pub=IOP+Publishing&rft.issn=0967-3334&rft.eissn=1361-6579&rft.volume=41&rft.issue=6&rft_id=info:doi/10.1088%2F1361-6579%2Fab921e&rft.externalDocID=pmeaab921e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon