A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis

Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes...

Full description

Saved in:
Bibliographic Details
Published inNature cell biology Vol. 24; no. 5; pp. 766 - 782
Main Authors Zhang, Dan, Liu, Yutong, Zhu, Yezhang, Zhang, Qian, Guan, Hongxing, Liu, Shengduo, Chen, Shasha, Mei, Chen, Chen, Chen, Liao, Zhiyong, Xi, Ying, Ouyang, Songying, Feng, Xin-Hua, Liang, Tingbo, Shen, Li, Xu, Pinglong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING–PKR-like endoplasmic reticulum kinase (PERK)–eIF2α pathway, a previously unknown cGAS–STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1–IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING–PERK–eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS–STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING–PERK pathway in treating fibrotic diseases. Zhang et al. report that a non-canonical cGAS–STING pathway activates PERK–eIF2α to elaborate cap-dependent mRNA translation and contributes to senescence and fibrosis.
AbstractList Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.
Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING–PKR-like endoplasmic reticulum kinase (PERK)–eIF2α pathway, a previously unknown cGAS–STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1–IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING–PERK–eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS–STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING–PERK pathway in treating fibrotic diseases.Zhang et al. report that a non-canonical cGAS–STING pathway activates PERK–eIF2α to elaborate cap-dependent mRNA translation and contributes to senescence and fibrosis.
Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING–PKR-like endoplasmic reticulum kinase (PERK)–eIF2α pathway, a previously unknown cGAS–STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1–IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING–PERK–eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS–STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING–PERK pathway in treating fibrotic diseases. Zhang et al. report that a non-canonical cGAS–STING pathway activates PERK–eIF2α to elaborate cap-dependent mRNA translation and contributes to senescence and fibrosis.
Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.
Author Ouyang, Songying
Feng, Xin-Hua
Mei, Chen
Liang, Tingbo
Zhu, Yezhang
Zhang, Qian
Shen, Li
Zhang, Dan
Chen, Shasha
Liu, Yutong
Chen, Chen
Liu, Shengduo
Xi, Ying
Xu, Pinglong
Guan, Hongxing
Liao, Zhiyong
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-9594-4818
  surname: Zhang
  fullname: Zhang, Dan
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 2
  givenname: Yutong
  surname: Liu
  fullname: Liu, Yutong
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University
– sequence: 3
  givenname: Yezhang
  surname: Zhu
  fullname: Zhu, Yezhang
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University
– sequence: 4
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Cancer Center, Zhejiang University
– sequence: 5
  givenname: Hongxing
  surname: Guan
  fullname: Guan, Hongxing
  organization: The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University
– sequence: 6
  givenname: Shengduo
  surname: Liu
  fullname: Liu, Shengduo
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Cancer Center, Zhejiang University
– sequence: 7
  givenname: Shasha
  surname: Chen
  fullname: Chen, Shasha
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University
– sequence: 8
  givenname: Chen
  surname: Mei
  fullname: Mei, Chen
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University
– sequence: 9
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University
– sequence: 10
  givenname: Zhiyong
  surname: Liao
  fullname: Liao, Zhiyong
  organization: Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University
– sequence: 11
  givenname: Ying
  surname: Xi
  fullname: Xi, Ying
  organization: School of Life Science and Technology, ShanghaiTech University
– sequence: 12
  givenname: Songying
  orcidid: 0000-0002-1120-1524
  surname: Ouyang
  fullname: Ouyang, Songying
  organization: The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University
– sequence: 13
  givenname: Xin-Hua
  surname: Feng
  fullname: Feng, Xin-Hua
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Cancer Center, Zhejiang University
– sequence: 14
  givenname: Tingbo
  orcidid: 0000-0003-0143-3353
  surname: Liang
  fullname: Liang, Tingbo
  email: liangtingbo@zju.edu.cn
  organization: Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University
– sequence: 15
  givenname: Li
  orcidid: 0000-0002-5696-2191
  surname: Shen
  fullname: Shen, Li
  email: li_shen@zju.edu.cn
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University
– sequence: 16
  givenname: Pinglong
  orcidid: 0000-0001-7726-5443
  surname: Xu
  fullname: Xu, Pinglong
  email: xupl@zju.edu.cn
  organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Cancer Center, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35501370$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9OVDEYxRuDkT_6Ai5MEzduqv3f3uWE4EgkSgTWzTed3qHkTu_YdkIgLnwH39AnscOAJCzYtF38zun3nbOPdtKYAkJvGf3IqLCfimRKaUI5J5TaTpLbF2iPSaOJ1Kbb2by1IkZ0fBftl3JFKZOSmldoVyhFmTB0D_2a4OZKPLQzehiwn07O_v7-c3Z-_G3a7tOjH1_xCurlNdzgHnwcYoUaCq6XAdcMqQxQ45iacpXHRYYl9jnWO6t-zLiEFIoPyQcMaY7HvICE-zjLY4nlNXrZw1DCm_v7AF18Pjo__EJOvk-PDycnxEvJKpFMeJgDpUorFoz1lnKrGVCATitjOuGVDGpGrTX9XPcGRBMGC9SqWQAuDtCHrW8b8ec6lOqWsQ01DJDCuC6Oa9VxbptVQ98_Qa_GdW7rbSgtrDC6s416d0-tZ8swd6scl5Bv3EOuDeBbwLdFSw79f4RRtynPbctzrTx3V567bSL7ROQ3Ybd0W9BxeF4qttLS_kmLkB_Hfkb1D4J6sGg
CitedBy_id crossref_primary_10_1016_j_nantod_2024_102481
crossref_primary_10_1038_s41423_024_01131_3
crossref_primary_10_1002_eji_202350386
crossref_primary_10_1016_j_imbio_2023_152345
crossref_primary_10_1016_j_jep_2023_116327
crossref_primary_10_3390_ijms25031828
crossref_primary_10_1038_s42003_024_06271_w
crossref_primary_10_1016_j_ecoenv_2024_116357
crossref_primary_10_3389_fphar_2022_1033982
crossref_primary_10_1371_journal_pone_0284061
crossref_primary_10_1007_s10753_024_02081_8
crossref_primary_10_1016_j_cytogfr_2025_03_001
crossref_primary_10_1016_j_canlet_2024_217183
crossref_primary_10_1016_j_ejcb_2023_151338
crossref_primary_10_1038_s41556_022_00905_z
crossref_primary_10_1016_j_colsurfb_2025_114573
crossref_primary_10_1016_j_csbj_2024_11_021
crossref_primary_10_3390_ph15101241
crossref_primary_10_1016_j_xcrm_2023_101333
crossref_primary_10_1093_jleuko_qiad102
crossref_primary_10_1016_j_kint_2024_10_021
crossref_primary_10_1038_s41401_023_01225_0
crossref_primary_10_1186_s12964_024_01731_6
crossref_primary_10_1007_s11427_024_2808_3
crossref_primary_10_1016_j_ccr_2023_215316
crossref_primary_10_3390_biom12071005
crossref_primary_10_1016_j_cbpa_2022_102170
crossref_primary_10_1016_j_biopha_2024_116698
crossref_primary_10_1016_j_molcel_2022_10_026
crossref_primary_10_3390_ijms242417423
crossref_primary_10_3389_fphys_2023_1220450
crossref_primary_10_1111_cns_14095
crossref_primary_10_1002_ctm2_1690
crossref_primary_10_1002_jcsm_13336
crossref_primary_10_1016_j_cell_2024_05_031
crossref_primary_10_1016_j_tcb_2024_02_006
crossref_primary_10_1073_pnas_2409493121
crossref_primary_10_1038_s41581_022_00589_6
crossref_primary_10_1096_fj_202400808RR
crossref_primary_10_4251_wjgo_v15_i9_1567
crossref_primary_10_1360_SSV_2022_0302
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_1016_j_bioactmat_2025_02_010
crossref_primary_10_1007_s12274_024_6714_x
crossref_primary_10_1038_s41423_023_01086_x
crossref_primary_10_1186_s12964_023_01466_w
crossref_primary_10_1126_sciadv_adj2102
crossref_primary_10_1038_s43587_023_00480_4
crossref_primary_10_1016_j_tcb_2022_11_001
crossref_primary_10_3389_fimmu_2023_1166214
crossref_primary_10_1016_j_phrs_2022_106577
crossref_primary_10_2147_DDDT_S393816
crossref_primary_10_34133_research_0378
crossref_primary_10_1016_j_jtcvs_2023_03_011
crossref_primary_10_1016_j_apsb_2023_08_015
crossref_primary_10_1513_AnnalsATS_202406_651ST
crossref_primary_10_1186_s12951_024_02423_6
crossref_primary_10_1016_j_ejmech_2022_114791
crossref_primary_10_3389_fimmu_2023_1117760
crossref_primary_10_3389_fimmu_2024_1482738
crossref_primary_10_1038_s41577_023_00838_0
crossref_primary_10_1002_advs_202410416
crossref_primary_10_1016_j_nbd_2024_106710
crossref_primary_10_3389_fmolb_2024_1391046
crossref_primary_10_1016_j_neurot_2024_e00519
crossref_primary_10_1016_j_biopha_2023_114869
crossref_primary_10_1111_cns_14671
crossref_primary_10_2147_DDDT_S388920
crossref_primary_10_1038_s41467_024_55745_2
crossref_primary_10_3389_fimmu_2022_1095577
crossref_primary_10_1134_S199074782307005X
crossref_primary_10_4155_fmc_2022_0301
crossref_primary_10_1084_jem_20220990
crossref_primary_10_1111_sji_13210
crossref_primary_10_3390_ijms242216410
crossref_primary_10_3724_zdxbyxb_2023_0482
crossref_primary_10_1016_j_canlet_2024_216846
crossref_primary_10_1080_17568919_2024_2383164
crossref_primary_10_3724_zdxbyxb_2023_0485
crossref_primary_10_1007_s11064_024_04151_7
crossref_primary_10_1016_j_jep_2023_117295
crossref_primary_10_3724_zdxbyxb_2023_0480
crossref_primary_10_1002_sstr_202200336
crossref_primary_10_1016_j_jbc_2022_102779
crossref_primary_10_1016_j_virol_2024_110338
crossref_primary_10_1038_s41590_024_01966_y
crossref_primary_10_1097_CM9_0000000000003022
crossref_primary_10_1152_physiol_00031_2022
crossref_primary_10_1016_j_bcp_2023_115938
crossref_primary_10_3390_ph16121675
crossref_primary_10_1016_j_intimp_2024_112271
crossref_primary_10_1016_j_jep_2025_119364
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_3389_fneur_2024_1471287
crossref_primary_10_1007_s12026_024_09587_1
crossref_primary_10_1016_j_canlet_2024_217410
crossref_primary_10_1016_j_kint_2024_11_023
crossref_primary_10_3390_molecules28073127
crossref_primary_10_1002_jmv_29403
crossref_primary_10_1016_j_ejphar_2022_175241
crossref_primary_10_3389_fimmu_2022_917998
crossref_primary_10_3389_fcell_2023_1271141
crossref_primary_10_12677_hjbm_2024_143056
crossref_primary_10_1080_19336918_2024_2430561
crossref_primary_10_1038_s41401_023_01210_7
crossref_primary_10_1016_j_ecoenv_2024_117306
crossref_primary_10_1016_j_scr_2022_102974
crossref_primary_10_3389_fimmu_2023_1273248
crossref_primary_10_1038_s41556_023_01138_4
crossref_primary_10_1038_s41421_024_00763_z
crossref_primary_10_1021_acs_nanolett_3c03689
crossref_primary_10_1186_s12967_023_04554_0
crossref_primary_10_1016_j_bbrc_2024_149979
crossref_primary_10_1016_j_freeradbiomed_2024_09_031
crossref_primary_10_1002_advs_202308508
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_1161_CIRCRESAHA_122_321587
crossref_primary_10_1016_j_ajpath_2023_06_006
crossref_primary_10_1111_liv_70063
crossref_primary_10_1038_s44318_024_00244_9
crossref_primary_10_1021_acsptsci_4c00310
crossref_primary_10_1016_j_biopha_2023_115883
crossref_primary_10_1002_advs_202407222
crossref_primary_10_1016_j_immuni_2024_02_019
crossref_primary_10_3389_fcell_2022_999600
crossref_primary_10_1186_s13619_024_00194_x
crossref_primary_10_1016_j_devcel_2024_10_008
crossref_primary_10_1016_j_addr_2024_115204
crossref_primary_10_1186_s10020_023_00754_y
crossref_primary_10_1038_s41556_023_01339_x
crossref_primary_10_31857_S0233475524010015
crossref_primary_10_1007_s00018_023_04826_4
crossref_primary_10_1016_j_jinorgbio_2025_112871
crossref_primary_10_1002_cmdc_202300405
Cites_doi 10.1016/j.immuni.2014.10.019
10.1016/j.cell.2010.01.022
10.1016/j.cell.2013.04.046
10.1038/ncb3586
10.1016/j.immuni.2020.03.004
10.1146/annurev.micro.59.031805.133833
10.1016/S1097-2765(03)00105-9
10.1053/j.gastro.2018.09.010
10.1016/j.cell.2009.01.042
10.1016/j.neuroscience.2010.05.076
10.1126/science.aaa2630
10.1016/j.coi.2013.09.011
10.1164/rccm.200802-313OC
10.1126/science.1084677
10.1038/nrm3025
10.1084/jem.20061845
10.1126/science.aat5314
10.1073/pnas.1016132108
10.1158/0008-5472.CAN-15-1885
10.1038/nrm2672
10.1038/s41586-019-1000-2
10.1126/science.1081315
10.1016/j.immuni.2016.04.002
10.1097/00001756-200212200-00011
10.1038/ncb3496
10.1084/jem.20182192
10.1016/j.coviro.2015.01.004
10.1073/pnas.1512832112
10.1016/j.toxlet.2017.02.023
10.1038/nrm3588
10.1016/j.molcel.2014.11.027
10.1016/j.jaci.2016.10.031
10.1016/j.cmet.2019.08.003
10.1038/s41586-019-1006-9
10.1126/science.1205405
10.1038/78085
10.1074/jbc.RA117.001294
10.1073/pnas.0900850106
10.3390/cells8121471
10.3892/mmr.2021.12164
10.1038/nmeth.1314
10.1016/j.immuni.2011.11.018
10.1038/35014014
10.1128/JVI.01806-18
10.1080/2162402X.2017.1346765
10.1038/16729
10.1016/j.molcel.2021.07.040
10.1128/MCB.18.12.7499
10.1038/nature10429
10.3390/ijms20030613
10.1038/nrm2838
10.1038/ng.2844
10.1073/pnas.1308331110
10.1128/MCB.22.11.3864-3874.2002
10.1016/j.cell.2012.06.040
10.1016/j.cell.2008.06.032
10.1056/NEJMoa1312625
10.1073/pnas.1217611110
10.1016/j.jaci.2019.01.044
10.1016/j.celrep.2015.04.031
10.1073/pnas.0911267106
10.1016/j.molcel.2020.10.018
10.1038/s41556-019-0352-z
10.1038/nprot.2013.143
10.1126/science.1232458
10.1007/s00018-012-1252-6
10.1084/jem.20161674
10.1038/nature07317
10.1126/science.1229963
10.1038/ni921
10.1101/cshperspect.a032896
10.1016/j.it.2017.07.013
10.1038/ncb1996
10.1126/scisignal.2002521
10.1039/C7MO00114B
10.1038/ki.2009.86
10.1016/j.cell.2006.09.014
10.1146/annurev-immunol-070119-115052
10.1152/ajprenal.00225.2016
10.1038/nprot.2014.006
10.1073/pnas.1818281116
10.1038/nature24050
10.1523/JNEUROSCI.0718-19.2019
10.1101/cshperspect.a032870
10.1016/j.cell.2005.06.041
10.1146/annurev-biochem-060713-035802
10.1016/j.cell.2017.09.034
10.1073/pnas.1611113114
10.1016/j.cell.2015.04.002
10.1016/j.ebiom.2018.10.006
10.1073/pnas.1215006109
10.1016/j.chom.2015.07.001
10.1016/S0092-8674(02)00642-6
10.1016/j.celrep.2018.05.029
10.1073/pnas.1716937115
10.1073/pnas.1813352116
10.1523/JNEUROSCI.0628-17.2017
10.1016/j.intimp.2019.05.050
10.1038/s41586-019-0998-5
10.1038/s41586-019-0928-6
10.1038/nature08476
10.1165/rcmb.2014-0019TR
10.1038/ni.3558
10.1016/j.virol.2019.01.006
10.1016/j.molcel.2019.02.010
10.1016/j.immuni.2008.09.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
DOI 10.1038/s41556-022-00894-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-4679
EndPage 782
ExternalDocumentID 35501370
10_1038_s41556_022_00894_z
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 31830052; 31725017
  funderid: https://doi.org/10.13039/501100011002
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 31830052
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 31725017
GroupedDBID ---
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABEFU
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
ADQMX
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
J5H
L-9
L7B
LK8
M0L
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SKT
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
Y6R
ZGI
~02
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
ID FETCH-LOGICAL-c441t-413cada005651e78c802861a0aa9657793c54e5b0887fd6f7a3c44e8a085bea23
IEDL.DBID 7X7
ISSN 1465-7392
1476-4679
IngestDate Fri Jul 11 03:14:47 EDT 2025
Sat Aug 23 12:53:24 EDT 2025
Thu Apr 03 06:58:15 EDT 2025
Tue Jul 01 00:31:17 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Fri Feb 21 02:40:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-413cada005651e78c802861a0aa9657793c54e5b0887fd6f7a3c44e8a085bea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5696-2191
0000-0002-9594-4818
0000-0002-1120-1524
0000-0001-7726-5443
0000-0003-0143-3353
PMID 35501370
PQID 2663837698
PQPubID 45779
PageCount 17
ParticipantIDs proquest_miscellaneous_2659228577
proquest_journals_2663837698
pubmed_primary_35501370
crossref_primary_10_1038_s41556_022_00894_z
crossref_citationtrail_10_1038_s41556_022_00894_z
springer_journals_10_1038_s41556_022_00894_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature cell biology
PublicationTitleAbbrev Nat Cell Biol
PublicationTitleAlternate Nat Cell Biol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Roberts (CR66) 2007; 204
Moretti (CR35) 2017; 171
Takeuchi, Akira (CR4) 2010; 140
Wu (CR30) 2019; 21
Xu (CR27) 2014; 56
Vargas (CR92) 2019; 74
Delépine (CR83) 2000; 25
Costa-Mattioli, Walter (CR81) 2020; 368
Lipton (CR51) 2015; 161
Crampton, Bolland (CR18) 2013; 25
Wu (CR7) 2013; 339
Luo (CR80) 2018; 155
Ishikawa, Ma, Barber (CR103) 2009; 461
Roers, Hiller, Hornung (CR5) 2016; 44
Sonenberg, Hinnebusch (CR40) 2009; 136
Saitoh (CR104) 2009; 106
Hinnebusch (CR53) 2014; 83
Sharma (CR13) 2003; 300
Liu (CR37) 2014; 371
Gall (CR78) 2012; 36
Brandizzi, Barlowe (CR69) 2013; 14
Lee, Yoon, Lee (CR58) 2019; 20
Sanderson (CR65) 2010; 169
Zhang (CR107) 2017; 19
Tanaka, Chen (CR106) 2012; 5
Woo (CR90) 2009; 11
Bertolotti, Zhang, Hendershot, Harding, Ron (CR64) 2000; 2
Cerboni (CR32) 2017; 214
Bennion (CR73) 2019; 93
Burdette (CR94) 2011; 478
Wu, Chen, Dobbs, Sakai, Liou (CR36) 2019; 216
Motwani (CR39) 2019; 116
Dobbs (CR105) 2015; 18
Sutton, Schuman (CR85) 2006; 127
Mohamed (CR49) 2020; 52
Inglis, Masson (CR55) 2019; 116
Glück, Guey (CR29) 2017; 19
Schmidt, Clavarino, Ceppi, Pierre (CR52) 2009; 6
Chevalier, Forbes, Thornhill (CR74) 2009; 75
Xie (CR93) 2011; 108
Volmer, van der Ploeg, Ron (CR99) 2013; 110
Ahn, Gutman, Saijo, Barber (CR79) 2012; 109
Meng (CR97) 2021; 24
Sun, Wu, Du, Chen, Chen (CR2) 2013; 339
Deng (CR22) 2014; 41
Hasan (CR34) 2017; 114
Gao (CR17) 2015; 112
Yang, Wang, Ren, Chen, Chen (CR76) 2017; 114
Liu (CR11) 2015; 347
Gao (CR1) 2013; 153
Petrasek (CR31) 2013; 110
Hinnebusch (CR47) 2005; 59
Eyries (CR88) 2014; 46
Meng (CR91) 2021; 81
Zheng (CR62) 2016; 311
Zeng (CR63) 2017; 271
Zoncu, Efeyan, Sabatini (CR43) 2011; 12
Hu, Shu (CR6) 2020; 38
Zhong (CR9) 2008; 29
Zhang (CR12) 2019; 567
Kaur (CR61) 2018; 14
Dey (CR57) 2005; 122
Gui (CR25) 2019; 567
Girardin (CR100) 2003; 300
Dou (CR28) 2017; 550
Stetson, Ko, Heidmann, Medzhitov (CR77) 2008; 134
Robichaud, Sonenberg, Ruggero, Schneider (CR82) 2019; 11
Shi (CR98) 1998; 18
Ran (CR109) 2013; 8
Li (CR59) 2019; 74
Ma, Blenis (CR42) 2009; 10
Melki (CR33) 2017; 140
Kusaczuk (CR60) 2019; 8
Franz, Neidermyer, Tan, Whelan, Kagan (CR48) 2018; 115
Cerón, North, Taylor, Leib (CR67) 2019; 529
Korfei (CR95) 2008; 178
Martin, Hiroyasu, Guzman, Roberts, Goodman (CR71) 2018; 23
Demaria (CR21) 2015; 112
Eaglesham, Pan, Kupper, Kranzusch (CR101) 2019; 566
Chen (CR16) 2020; 80
Sun (CR10) 2009; 106
Picelli (CR108) 2014; 9
Wild (CR26) 2011; 333
Luksch (CR38) 2019; 144
Fitzgerald (CR14) 2003; 4
Dever (CR46) 2002; 108
Shang, Zhang, Chen, Bai, Zhang (CR70) 2019; 567
Wek (CR54) 2018; 10
Corrales (CR24) 2015; 11
Harding, Zhang, Ron (CR56) 1999; 397
Ishikawa, Barber (CR8) 2008; 455
Harding (CR44) 2003; 11
Sharma, Ounallah-Saad, Chakraborty (CR86) 2018; 38
Watson, Manzanillo, Cox (CR72) 2012; 150
Chan, Gack (CR15) 2015; 12
Chang, Wong, Ng, Hugon (CR87) 2002; 13
Chen, Sun, Chen (CR3) 2016; 17
Fu (CR19) 2015; 7
Donnelly, Gorman, Gupta, Samali (CR45) 2013; 70
Weiss (CR68) 2017; 6
Shu (CR96) 2018; 37
Jackson, Hellen, Pestova (CR41) 2010; 11
Sen, Saha (CR50) 2020; 40
Chung (CR75) 2019; 30
Wang, Li, Tao, Sha (CR102) 2018; 293
Zhang (CR84) 2002; 22
Ng, Marshall, Bell, Lam (CR20) 2018; 39
van ‘t Wout, Hiemstra, Marciniak (CR89) 2014; 50
Tang (CR23) 2016; 76
X Gui (894_CR25) 2019; 567
HP Harding (894_CR44) 2003; 11
Q Zhang (894_CR107) 2017; 19
D Gao (894_CR17) 2015; 112
M Martin (894_CR71) 2018; 23
MM Hu (894_CR6) 2020; 38
P Zheng (894_CR62) 2016; 311
M Eyries (894_CR88) 2014; 46
JNS Vargas (894_CR92) 2019; 74
TH Sanderson (894_CR65) 2010; 169
M Motwani (894_CR39) 2019; 116
N Robichaud (894_CR82) 2019; 11
F Brandizzi (894_CR69) 2013; 14
Y Shi (894_CR98) 1998; 18
S Shu (894_CR96) 2018; 37
TE Dever (894_CR46) 2002; 108
P Li (894_CR59) 2019; 74
X Xie (894_CR93) 2011; 108
J Wu (894_CR7) 2013; 339
X Meng (894_CR97) 2021; 24
S Glück (894_CR29) 2017; 19
M Kusaczuk (894_CR60) 2019; 8
T Sen (894_CR50) 2020; 40
M Korfei (894_CR95) 2008; 178
SE Girardin (894_CR100) 2003; 300
EK Schmidt (894_CR52) 2009; 6
L Sun (894_CR2) 2013; 339
M Dey (894_CR57) 2005; 122
N Dobbs (894_CR105) 2015; 18
B Zhong (894_CR9) 2008; 29
W Sun (894_CR10) 2009; 106
KW Ng (894_CR20) 2018; 39
KM Franz (894_CR48) 2018; 115
H Yang (894_CR76) 2017; 114
V Sharma (894_CR86) 2018; 38
C Zhang (894_CR12) 2019; 567
T Saitoh (894_CR104) 2009; 106
KW Chung (894_CR75) 2019; 30
M Costa-Mattioli (894_CR81) 2020; 368
MA Sutton (894_CR85) 2006; 127
XM Ma (894_CR42) 2009; 10
ZJ Roberts (894_CR66) 2007; 204
S Wu (894_CR30) 2019; 21
J Fu (894_CR19) 2015; 7
AJ Inglis (894_CR55) 2019; 116
M Delépine (894_CR83) 2000; 25
JM Weiss (894_CR68) 2017; 6
S Picelli (894_CR108) 2014; 9
G Shang (894_CR70) 2019; 567
P Zhang (894_CR84) 2002; 22
AG Hinnebusch (894_CR53) 2014; 83
RC Chang (894_CR87) 2002; 13
EF van ‘t Wout (894_CR89) 2014; 50
Z Dou (894_CR28) 2017; 550
Y Liu (894_CR37) 2014; 371
RO Watson (894_CR72) 2012; 150
P Gao (894_CR1) 2013; 153
E Mohamed (894_CR49) 2020; 52
B Kaur (894_CR61) 2018; 14
M Hasan (894_CR34) 2017; 114
JB Eaglesham (894_CR101) 2019; 566
S Chen (894_CR16) 2020; 80
F Meng (894_CR91) 2021; 81
H Ishikawa (894_CR8) 2008; 455
KA Fitzgerald (894_CR14) 2003; 4
L Deng (894_CR22) 2014; 41
YK Chan (894_CR15) 2015; 12
N Donnelly (894_CR45) 2013; 70
RC Wek (894_CR54) 2018; 10
N Sonenberg (894_CR40) 2009; 136
R Volmer (894_CR99) 2013; 110
H Ishikawa (894_CR103) 2009; 461
J Petrasek (894_CR31) 2013; 110
Y Tanaka (894_CR106) 2012; 5
JH Lee (894_CR58) 2019; 20
DL Burdette (894_CR94) 2011; 478
I Melki (894_CR33) 2017; 140
FA Ran (894_CR109) 2013; 8
S Liu (894_CR11) 2015; 347
P Wang (894_CR102) 2018; 293
P Wild (894_CR26) 2011; 333
L Corrales (894_CR24) 2015; 11
JO Lipton (894_CR51) 2015; 161
S Cerboni (894_CR32) 2017; 214
J Wu (894_CR36) 2019; 216
X Luo (894_CR80) 2018; 155
H Luksch (894_CR38) 2019; 144
R Zoncu (894_CR43) 2011; 12
A Roers (894_CR5) 2016; 44
RL Chevalier (894_CR74) 2009; 75
J Ahn (894_CR79) 2012; 109
S Sharma (894_CR13) 2003; 300
CW Woo (894_CR90) 2009; 11
BG Bennion (894_CR73) 2019; 93
CH Tang (894_CR23) 2016; 76
J Moretti (894_CR35) 2017; 171
HP Harding (894_CR56) 1999; 397
SP Crampton (894_CR18) 2013; 25
DB Stetson (894_CR77) 2008; 134
P Xu (894_CR27) 2014; 56
O Demaria (894_CR21) 2015; 112
AG Hinnebusch (894_CR47) 2005; 59
S Cerón (894_CR67) 2019; 529
Q Chen (894_CR3) 2016; 17
A Gall (894_CR78) 2012; 36
M Zeng (894_CR63) 2017; 271
O Takeuchi (894_CR4) 2010; 140
RJ Jackson (894_CR41) 2010; 11
A Bertolotti (894_CR64) 2000; 2
References_xml – volume: 41
  start-page: 843
  year: 2014
  end-page: 852
  ident: CR22
  article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.10.019
– volume: 140
  start-page: 805
  year: 2010
  end-page: 820
  ident: CR4
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: CR1
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 19
  start-page: 1061
  year: 2017
  end-page: 1070
  ident: CR29
  article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3586
– volume: 52
  start-page: 668
  year: 2020
  end-page: 682
  ident: CR49
  article-title: The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.004
– volume: 59
  start-page: 407
  year: 2005
  end-page: 450
  ident: CR47
  article-title: Translational regulation of GCN4 and the general amino acid control of yeast
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.031805.133833
– volume: 11
  start-page: 619
  year: 2003
  end-page: 633
  ident: CR44
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00105-9
– volume: 155
  start-page: 1971
  year: 2018
  end-page: 1984
  ident: CR80
  article-title: Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.09.010
– volume: 136
  start-page: 731
  year: 2009
  end-page: 745
  ident: CR40
  article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.042
– volume: 169
  start-page: 1307
  year: 2010
  end-page: 1314
  ident: CR65
  article-title: PKR-like endoplasmic reticulum kinase (PERK) activation following brain ischemia is independent of unfolded nascent proteins
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.05.076
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: CR11
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 25
  start-page: 712
  year: 2013
  end-page: 719
  ident: CR18
  article-title: Spontaneous activation of RNA-sensing pathways in autoimmune disease
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2013.09.011
– volume: 178
  start-page: 838
  year: 2008
  end-page: 846
  ident: CR95
  article-title: Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200802-313OC
– volume: 300
  start-page: 1584
  year: 2003
  end-page: 1587
  ident: CR100
  article-title: Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan
  publication-title: Science
  doi: 10.1126/science.1084677
– volume: 12
  start-page: 21
  year: 2011
  end-page: 35
  ident: CR43
  article-title: mTOR: from growth signal integration to cancer, diabetes and ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3025
– volume: 204
  start-page: 1559
  year: 2007
  end-page: 1569
  ident: CR66
  article-title: The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061845
– volume: 368
  start-page: eaat5314
  year: 2020
  ident: CR81
  article-title: The integrated stress response: from mechanism to disease
  publication-title: Science
  doi: 10.1126/science.aat5314
– volume: 108
  start-page: 6474
  year: 2011
  end-page: 6479
  ident: CR93
  article-title: IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1016132108
– volume: 76
  start-page: 2137
  year: 2016
  end-page: 2152
  ident: CR23
  article-title: Agonist-mediated activation of STING induces apoptosis in malignant B cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1885
– volume: 10
  start-page: 307
  year: 2009
  end-page: 318
  ident: CR42
  article-title: Molecular mechanisms of mTOR-mediated translational control
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2672
– volume: 567
  start-page: 394
  year: 2019
  end-page: 398
  ident: CR12
  article-title: Structural basis of STING binding with and phosphorylation by TBK1
  publication-title: Nature
  doi: 10.1038/s41586-019-1000-2
– volume: 300
  start-page: 1148
  year: 2003
  end-page: 1151
  ident: CR13
  article-title: Triggering the interferon antiviral response through an IKK-related pathway
  publication-title: Science
  doi: 10.1126/science.1081315
– volume: 44
  start-page: 739
  year: 2016
  end-page: 754
  ident: CR5
  article-title: Recognition of endogenous nucleic acids by the innate immune system
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.002
– volume: 13
  start-page: 2429
  year: 2002
  end-page: 2432
  ident: CR87
  article-title: Phosphorylation of eukaryotic initiation factor-2α (eIF2α) is associated with neuronal degeneration in Alzheimer’s disease
  publication-title: Neuroreport
  doi: 10.1097/00001756-200212200-00011
– volume: 19
  start-page: 362
  year: 2017
  end-page: 374
  ident: CR107
  article-title: Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3496
– volume: 216
  start-page: 867
  year: 2019
  end-page: 883
  ident: CR36
  article-title: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20182192
– volume: 12
  start-page: 7
  year: 2015
  end-page: 14
  ident: CR15
  article-title: RIG-I-like receptor regulation in virus infection and immunity
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2015.01.004
– volume: 112
  start-page: 15408
  year: 2015
  end-page: 15413
  ident: CR21
  article-title: STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1512832112
– volume: 271
  start-page: 26
  year: 2017
  end-page: 37
  ident: CR63
  article-title: 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2017.02.023
– volume: 14
  start-page: 382
  year: 2013
  end-page: 392
  ident: CR69
  article-title: Organization of the ER–Golgi interface for membrane traffic control
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3588
– volume: 56
  start-page: 723
  year: 2014
  end-page: 737
  ident: CR27
  article-title: Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.11.027
– volume: 140
  start-page: 543
  year: 2017
  end-page: 552
  ident: CR33
  article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.10.031
– volume: 30
  start-page: 784
  year: 2019
  end-page: 799
  ident: CR75
  article-title: Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.003
– volume: 567
  start-page: 262
  year: 2019
  end-page: 266
  ident: CR25
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
  doi: 10.1038/s41586-019-1006-9
– volume: 333
  start-page: 228
  year: 2011
  end-page: 233
  ident: CR26
  article-title: Phosphorylation of the autophagy receptor optineurin restricts growth
  publication-title: Science
  doi: 10.1126/science.1205405
– volume: 112
  start-page: E5699
  year: 2015
  end-page: E5705
  ident: CR17
  article-title: Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 25
  start-page: 406
  year: 2000
  end-page: 409
  ident: CR83
  article-title: , encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/78085
– volume: 293
  start-page: 4110
  year: 2018
  end-page: 4121
  ident: CR102
  article-title: The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001294
– volume: 106
  start-page: 8653
  year: 2009
  end-page: 8658
  ident: CR10
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 8
  start-page: 1471
  year: 2019
  ident: CR60
  article-title: Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives
  publication-title: Cells
  doi: 10.3390/cells8121471
– volume: 24
  start-page: 525
  year: 2021
  ident: CR97
  article-title: Endoplasmic reticulum stress promotes epithelial-mesenchymal transition via the PERK signaling pathway in paraquat-induced pulmonary fibrosis
  publication-title: Mol. Med. Rep
  doi: 10.3892/mmr.2021.12164
– volume: 6
  start-page: 275
  year: 2009
  end-page: 277
  ident: CR52
  article-title: SUnSET, a nonradioactive method to monitor protein synthesis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1314
– volume: 36
  start-page: 120
  year: 2012
  end-page: 131
  ident: CR78
  article-title: Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.018
– volume: 2
  start-page: 326
  year: 2000
  end-page: 332
  ident: CR64
  article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35014014
– volume: 93
  start-page: e01806-18
  year: 2019
  ident: CR73
  article-title: A human gain-of-function STING mutation causes immunodeficiency and gammaherpesvirus-induced pulmonary fibrosis in mice
  publication-title: J. Virol.
  doi: 10.1128/JVI.01806-18
– volume: 6
  start-page: e1346765
  year: 2017
  ident: CR68
  article-title: The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1346765
– volume: 397
  start-page: 271
  year: 1999
  end-page: 274
  ident: CR56
  article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
  publication-title: Nature
  doi: 10.1038/16729
– volume: 81
  start-page: 4147
  year: 2021
  end-page: 4164
  ident: CR91
  article-title: Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.07.040
– volume: 18
  start-page: 7499
  year: 1998
  end-page: 7509
  ident: CR98
  article-title: Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.12.7499
– volume: 478
  start-page: 515
  year: 2011
  end-page: 518
  ident: CR94
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 20
  start-page: 613
  year: 2019
  ident: CR58
  article-title: TUDCA-treated mesenchymal stem cells protect against ER stress in the hippocampus of a murine chronic kidney disease model
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20030613
– volume: 11
  start-page: 113
  year: 2010
  end-page: 127
  ident: CR41
  article-title: The mechanism of eukaryotic translation initiation and principles of its regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2838
– volume: 46
  start-page: 65
  year: 2014
  end-page: 69
  ident: CR88
  article-title: EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2844
– volume: 110
  start-page: 16544
  year: 2013
  end-page: 16549
  ident: CR31
  article-title: STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1308331110
– volume: 22
  start-page: 3864
  year: 2002
  end-page: 3874
  ident: CR84
  article-title: The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.11.3864-3874.2002
– volume: 150
  start-page: 803
  year: 2012
  end-page: 815
  ident: CR72
  article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.040
– volume: 134
  start-page: 587
  year: 2008
  end-page: 598
  ident: CR77
  article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 371
  start-page: 507
  year: 2014
  end-page: 518
  ident: CR37
  article-title: Activated STING in a vascular and pulmonary syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1312625
– volume: 110
  start-page: 4628
  year: 2013
  end-page: 4633
  ident: CR99
  article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1217611110
– volume: 144
  start-page: 254
  year: 2019
  end-page: 266
  ident: CR38
  article-title: STING-associated lung disease in mice relies on T cells but not type I interferon
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2019.01.044
– volume: 11
  start-page: 1018
  year: 2015
  end-page: 1030
  ident: CR24
  article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.04.031
– volume: 106
  start-page: 20842
  year: 2009
  end-page: 20846
  ident: CR104
  article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0911267106
– volume: 80
  start-page: 810
  year: 2020
  end-page: 827
  ident: CR16
  article-title: TBK1-mediated DRP1 targeting confers nucleic acid sensing to reprogram mitochondrial dynamics and physiology
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.018
– volume: 21
  start-page: 1027
  year: 2019
  end-page: 1040
  ident: CR30
  article-title: HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0352-z
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: CR109
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: CR2
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 70
  start-page: 3493
  year: 2013
  end-page: 3511
  ident: CR45
  article-title: The eIF2α kinases: their structures and functions
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-1252-6
– volume: 214
  start-page: 1769
  year: 2017
  end-page: 1785
  ident: CR32
  article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20161674
– volume: 455
  start-page: 674
  year: 2008
  end-page: 678
  ident: CR8
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 339
  start-page: 826
  year: 2013
  end-page: 830
  ident: CR7
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 4
  start-page: 491
  year: 2003
  end-page: 496
  ident: CR14
  article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni921
– volume: 11
  start-page: a032896
  year: 2019
  ident: CR82
  article-title: Translational control in cancer
  publication-title: Cold Spring Harbor Perspect. Biol
  doi: 10.1101/cshperspect.a032896
– volume: 39
  start-page: 44
  year: 2018
  end-page: 54
  ident: CR20
  article-title: cGAS–STING and cancer: dichotomous roles in tumor immunity and development
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.07.013
– volume: 11
  start-page: 1473
  year: 2009
  end-page: 1480
  ident: CR90
  article-title: Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1996
– volume: 5
  start-page: ra20
  year: 2012
  ident: CR106
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2002521
– volume: 14
  start-page: 53
  year: 2018
  end-page: 63
  ident: CR61
  article-title: Proteomic profile of 4-PBA treated human neuronal cells during ER stress
  publication-title: Mol. Omics
  doi: 10.1039/C7MO00114B
– volume: 75
  start-page: 1145
  year: 2009
  end-page: 1152
  ident: CR74
  article-title: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.86
– volume: 127
  start-page: 49
  year: 2006
  end-page: 58
  ident: CR85
  article-title: Dendritic protein synthesis, synaptic plasticity and memory
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.014
– volume: 38
  start-page: 79
  year: 2020
  end-page: 98
  ident: CR6
  article-title: Innate immune response to cytoplasmic DNA: mechanisms and diseases
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-070119-115052
– volume: 311
  start-page: F763
  year: 2016
  end-page: F776
  ident: CR62
  article-title: 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00225.2016
– volume: 9
  start-page: 171
  year: 2014
  end-page: 181
  ident: CR108
  article-title: Full-length RNA-seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 116
  start-page: 7941
  year: 2019
  end-page: 7950
  ident: CR39
  article-title: Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1818281116
– volume: 550
  start-page: 402
  year: 2017
  end-page: 406
  ident: CR28
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature
  doi: 10.1038/nature24050
– volume: 7
  start-page: 283ra252
  year: 2015
  ident: CR19
  article-title: STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade
  publication-title: Sci. Transl. Med.
– volume: 40
  start-page: 424
  year: 2020
  end-page: 446
  ident: CR50
  article-title: Aberrant ER stress induced neuronal-IFNβ elicits white matter injury due to microglial activation and T-cell infiltration after TBI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0718-19.2019
– volume: 10
  start-page: a032870
  year: 2018
  ident: CR54
  article-title: Role of eIF2α kinases in translational control and adaptation to cellular stress
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a032870
– volume: 122
  start-page: 901
  year: 2005
  end-page: 913
  ident: CR57
  article-title: Mechanistic link between PKR dimerization, autophosphorylation and eIF2α substrate recognition
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.041
– volume: 83
  start-page: 779
  year: 2014
  end-page: 812
  ident: CR53
  article-title: The scanning mechanism of eukaryotic translation initiation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060713-035802
– volume: 171
  start-page: 809
  year: 2017
  end-page: 823
  ident: CR35
  article-title: STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.034
– volume: 114
  start-page: 746
  year: 2017
  end-page: 751
  ident: CR34
  article-title: Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1611113114
– volume: 161
  start-page: 1138
  year: 2015
  end-page: 1151
  ident: CR51
  article-title: The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.002
– volume: 37
  start-page: 269
  year: 2018
  end-page: 280
  ident: CR96
  article-title: Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.10.006
– volume: 109
  start-page: 19386
  year: 2012
  end-page: 19391
  ident: CR79
  article-title: STING manifests self DNA-dependent inflammatory disease
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215006109
– volume: 18
  start-page: 157
  year: 2015
  end-page: 168
  ident: CR105
  article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.001
– volume: 108
  start-page: 545
  year: 2002
  end-page: 556
  ident: CR46
  article-title: Gene-specific regulation by general translation factors
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00642-6
– volume: 114
  start-page: E4612
  year: 2017
  end-page: E4620
  ident: CR76
  article-title: cGAS is essential for cellular senescence
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 23
  start-page: 3537
  year: 2018
  end-page: 3550
  ident: CR71
  article-title: Analysis of STING reveals an evolutionarily conserved antimicrobial function
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.029
– volume: 115
  start-page: E2058
  year: 2018
  end-page: E2067
  ident: CR48
  article-title: STING-dependent translation inhibition restricts RNA virus replication
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1716937115
– volume: 116
  start-page: 4946
  year: 2019
  end-page: 4954
  ident: CR55
  article-title: Activation of GCN2 by the ribosomal P-stalk
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1813352116
– volume: 38
  start-page: 648
  year: 2018
  end-page: 658
  ident: CR86
  article-title: Local Inhibition of PERK enhances memory and reverses age-related deterioration of cognitive and neuronal properties
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0628-17.2017
– volume: 74
  start-page: 105665
  year: 2019
  ident: CR59
  article-title: TUDCA attenuates intestinal injury and inhibits endoplasmic reticulum stress-mediated intestinal cell apoptosis in necrotizing enterocolitis
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2019.05.050
– volume: 567
  start-page: 389
  year: 2019
  end-page: 393
  ident: CR70
  article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 566
  start-page: 259
  year: 2019
  end-page: 263
  ident: CR101
  article-title: Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS–STING signalling
  publication-title: Nature
  doi: 10.1038/s41586-019-0928-6
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  ident: CR103
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 50
  start-page: 1005
  year: 2014
  end-page: 1009
  ident: CR89
  article-title: The integrated stress response in lung disease
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2014-0019TR
– volume: 17
  start-page: 1142
  year: 2016
  end-page: 1149
  ident: CR3
  article-title: Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 529
  start-page: 23
  year: 2019
  end-page: 28
  ident: CR67
  article-title: The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease
  publication-title: Virology
  doi: 10.1016/j.virol.2019.01.006
– volume: 74
  start-page: 347
  year: 2019
  end-page: 362
  ident: CR92
  article-title: Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.010
– volume: 29
  start-page: 538
  year: 2008
  end-page: 550
  ident: CR9
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 271
  start-page: 26
  year: 2017
  ident: 894_CR63
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2017.02.023
– volume: 136
  start-page: 731
  year: 2009
  ident: 894_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.042
– volume: 59
  start-page: 407
  year: 2005
  ident: 894_CR47
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.031805.133833
– volume: 106
  start-page: 8653
  year: 2009
  ident: 894_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 161
  start-page: 1138
  year: 2015
  ident: 894_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.002
– volume: 19
  start-page: 1061
  year: 2017
  ident: 894_CR29
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3586
– volume: 46
  start-page: 65
  year: 2014
  ident: 894_CR88
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2844
– volume: 153
  start-page: 1094
  year: 2013
  ident: 894_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 74
  start-page: 105665
  year: 2019
  ident: 894_CR59
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2019.05.050
– volume: 204
  start-page: 1559
  year: 2007
  ident: 894_CR66
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061845
– volume: 293
  start-page: 4110
  year: 2018
  ident: 894_CR102
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001294
– volume: 108
  start-page: 545
  year: 2002
  ident: 894_CR46
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00642-6
– volume: 20
  start-page: 613
  year: 2019
  ident: 894_CR58
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20030613
– volume: 13
  start-page: 2429
  year: 2002
  ident: 894_CR87
  publication-title: Neuroreport
  doi: 10.1097/00001756-200212200-00011
– volume: 567
  start-page: 262
  year: 2019
  ident: 894_CR25
  publication-title: Nature
  doi: 10.1038/s41586-019-1006-9
– volume: 529
  start-page: 23
  year: 2019
  ident: 894_CR67
  publication-title: Virology
  doi: 10.1016/j.virol.2019.01.006
– volume: 116
  start-page: 7941
  year: 2019
  ident: 894_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1818281116
– volume: 109
  start-page: 19386
  year: 2012
  ident: 894_CR79
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215006109
– volume: 41
  start-page: 843
  year: 2014
  ident: 894_CR22
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.10.019
– volume: 14
  start-page: 382
  year: 2013
  ident: 894_CR69
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3588
– volume: 10
  start-page: a032870
  year: 2018
  ident: 894_CR54
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a032870
– volume: 11
  start-page: a032896
  year: 2019
  ident: 894_CR82
  publication-title: Cold Spring Harbor Perspect. Biol
  doi: 10.1101/cshperspect.a032896
– volume: 50
  start-page: 1005
  year: 2014
  ident: 894_CR89
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2014-0019TR
– volume: 114
  start-page: E4612
  year: 2017
  ident: 894_CR76
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 18
  start-page: 157
  year: 2015
  ident: 894_CR105
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.001
– volume: 6
  start-page: e1346765
  year: 2017
  ident: 894_CR68
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1346765
– volume: 134
  start-page: 587
  year: 2008
  ident: 894_CR77
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 478
  start-page: 515
  year: 2011
  ident: 894_CR94
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 25
  start-page: 712
  year: 2013
  ident: 894_CR18
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2013.09.011
– volume: 76
  start-page: 2137
  year: 2016
  ident: 894_CR23
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1885
– volume: 21
  start-page: 1027
  year: 2019
  ident: 894_CR30
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0352-z
– volume: 371
  start-page: 507
  year: 2014
  ident: 894_CR37
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1312625
– volume: 10
  start-page: 307
  year: 2009
  ident: 894_CR42
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2672
– volume: 116
  start-page: 4946
  year: 2019
  ident: 894_CR55
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1813352116
– volume: 17
  start-page: 1142
  year: 2016
  ident: 894_CR3
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 171
  start-page: 809
  year: 2017
  ident: 894_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.034
– volume: 38
  start-page: 79
  year: 2020
  ident: 894_CR6
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-070119-115052
– volume: 144
  start-page: 254
  year: 2019
  ident: 894_CR38
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2019.01.044
– volume: 122
  start-page: 901
  year: 2005
  ident: 894_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.041
– volume: 140
  start-page: 543
  year: 2017
  ident: 894_CR33
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.10.031
– volume: 300
  start-page: 1148
  year: 2003
  ident: 894_CR13
  publication-title: Science
  doi: 10.1126/science.1081315
– volume: 5
  start-page: ra20
  year: 2012
  ident: 894_CR106
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2002521
– volume: 36
  start-page: 120
  year: 2012
  ident: 894_CR78
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.018
– volume: 106
  start-page: 20842
  year: 2009
  ident: 894_CR104
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0911267106
– volume: 2
  start-page: 326
  year: 2000
  ident: 894_CR64
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35014014
– volume: 40
  start-page: 424
  year: 2020
  ident: 894_CR50
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0718-19.2019
– volume: 30
  start-page: 784
  year: 2019
  ident: 894_CR75
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.003
– volume: 81
  start-page: 4147
  year: 2021
  ident: 894_CR91
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.07.040
– volume: 93
  start-page: e01806-18
  year: 2019
  ident: 894_CR73
  publication-title: J. Virol.
  doi: 10.1128/JVI.01806-18
– volume: 80
  start-page: 810
  year: 2020
  ident: 894_CR16
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.018
– volume: 169
  start-page: 1307
  year: 2010
  ident: 894_CR65
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.05.076
– volume: 566
  start-page: 259
  year: 2019
  ident: 894_CR101
  publication-title: Nature
  doi: 10.1038/s41586-019-0928-6
– volume: 461
  start-page: 788
  year: 2009
  ident: 894_CR103
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 56
  start-page: 723
  year: 2014
  ident: 894_CR27
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.11.027
– volume: 155
  start-page: 1971
  year: 2018
  ident: 894_CR80
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.09.010
– volume: 38
  start-page: 648
  year: 2018
  ident: 894_CR86
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0628-17.2017
– volume: 339
  start-page: 826
  year: 2013
  ident: 894_CR7
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 368
  start-page: eaat5314
  year: 2020
  ident: 894_CR81
  publication-title: Science
  doi: 10.1126/science.aat5314
– volume: 11
  start-page: 113
  year: 2010
  ident: 894_CR41
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2838
– volume: 455
  start-page: 674
  year: 2008
  ident: 894_CR8
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 567
  start-page: 394
  year: 2019
  ident: 894_CR12
  publication-title: Nature
  doi: 10.1038/s41586-019-1000-2
– volume: 397
  start-page: 271
  year: 1999
  ident: 894_CR56
  publication-title: Nature
  doi: 10.1038/16729
– volume: 127
  start-page: 49
  year: 2006
  ident: 894_CR85
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.014
– volume: 311
  start-page: F763
  year: 2016
  ident: 894_CR62
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00225.2016
– volume: 11
  start-page: 1473
  year: 2009
  ident: 894_CR90
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1996
– volume: 83
  start-page: 779
  year: 2014
  ident: 894_CR53
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060713-035802
– volume: 300
  start-page: 1584
  year: 2003
  ident: 894_CR100
  publication-title: Science
  doi: 10.1126/science.1084677
– volume: 114
  start-page: 746
  year: 2017
  ident: 894_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1611113114
– volume: 39
  start-page: 44
  year: 2018
  ident: 894_CR20
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.07.013
– volume: 9
  start-page: 171
  year: 2014
  ident: 894_CR108
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 4
  start-page: 491
  year: 2003
  ident: 894_CR14
  publication-title: Nat. Immunol.
  doi: 10.1038/ni921
– volume: 550
  start-page: 402
  year: 2017
  ident: 894_CR28
  publication-title: Nature
  doi: 10.1038/nature24050
– volume: 29
  start-page: 538
  year: 2008
  ident: 894_CR9
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 339
  start-page: 786
  year: 2013
  ident: 894_CR2
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 115
  start-page: E2058
  year: 2018
  ident: 894_CR48
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1716937115
– volume: 14
  start-page: 53
  year: 2018
  ident: 894_CR61
  publication-title: Mol. Omics
  doi: 10.1039/C7MO00114B
– volume: 22
  start-page: 3864
  year: 2002
  ident: 894_CR84
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.11.3864-3874.2002
– volume: 11
  start-page: 1018
  year: 2015
  ident: 894_CR24
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.04.031
– volume: 52
  start-page: 668
  year: 2020
  ident: 894_CR49
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.004
– volume: 37
  start-page: 269
  year: 2018
  ident: 894_CR96
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.10.006
– volume: 12
  start-page: 7
  year: 2015
  ident: 894_CR15
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2015.01.004
– volume: 70
  start-page: 3493
  year: 2013
  ident: 894_CR45
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-1252-6
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: 894_CR11
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 112
  start-page: E5699
  year: 2015
  ident: 894_CR17
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: 283ra252
  year: 2015
  ident: 894_CR19
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: 275
  year: 2009
  ident: 894_CR52
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1314
– volume: 140
  start-page: 805
  year: 2010
  ident: 894_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 333
  start-page: 228
  year: 2011
  ident: 894_CR26
  publication-title: Science
  doi: 10.1126/science.1205405
– volume: 108
  start-page: 6474
  year: 2011
  ident: 894_CR93
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1016132108
– volume: 24
  start-page: 525
  year: 2021
  ident: 894_CR97
  publication-title: Mol. Med. Rep
  doi: 10.3892/mmr.2021.12164
– volume: 18
  start-page: 7499
  year: 1998
  ident: 894_CR98
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.12.7499
– volume: 19
  start-page: 362
  year: 2017
  ident: 894_CR107
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3496
– volume: 44
  start-page: 739
  year: 2016
  ident: 894_CR5
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.002
– volume: 23
  start-page: 3537
  year: 2018
  ident: 894_CR71
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.029
– volume: 8
  start-page: 1471
  year: 2019
  ident: 894_CR60
  publication-title: Cells
  doi: 10.3390/cells8121471
– volume: 11
  start-page: 619
  year: 2003
  ident: 894_CR44
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00105-9
– volume: 110
  start-page: 16544
  year: 2013
  ident: 894_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1308331110
– volume: 150
  start-page: 803
  year: 2012
  ident: 894_CR72
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.040
– volume: 567
  start-page: 389
  year: 2019
  ident: 894_CR70
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 12
  start-page: 21
  year: 2011
  ident: 894_CR43
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3025
– volume: 8
  start-page: 2281
  year: 2013
  ident: 894_CR109
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 112
  start-page: 15408
  year: 2015
  ident: 894_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1512832112
– volume: 75
  start-page: 1145
  year: 2009
  ident: 894_CR74
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.86
– volume: 216
  start-page: 867
  year: 2019
  ident: 894_CR36
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20182192
– volume: 25
  start-page: 406
  year: 2000
  ident: 894_CR83
  publication-title: Nat. Genet.
  doi: 10.1038/78085
– volume: 110
  start-page: 4628
  year: 2013
  ident: 894_CR99
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1217611110
– volume: 178
  start-page: 838
  year: 2008
  ident: 894_CR95
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200802-313OC
– volume: 74
  start-page: 347
  year: 2019
  ident: 894_CR92
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.010
– volume: 214
  start-page: 1769
  year: 2017
  ident: 894_CR32
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20161674
SSID ssj0014407
Score 2.6715016
Snippet Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and...
Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 766
SubjectTerms 13/1
13/109
13/51
13/95
14/32
38/39
38/77
631/250/262
631/337/574
631/80/304
631/80/509
64/60
82/80
82/83
96/35
96/63
Autoimmune diseases
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cellular Senescence
Cyclic GMP
Deoxyribonucleic acid
Developmental Biology
DNA
DNA - metabolism
eIF-2 Kinase
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Fibrosis
Humans
Immunity
Immunity, Innate
Infectious diseases
Inflammation
Innate immunity
Interferon
Interferon regulatory factor 3
Kinases
Life Sciences
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microorganisms
mRNA
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Protein Biosynthesis
Protein folding
Protein Serine-Threonine Kinases
Pyruvate Kinase - metabolism
Senescence
Signal Transduction - physiology
Stem Cells
Stimulators
Translation
Title A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis
URI https://link.springer.com/article/10.1038/s41556-022-00894-z
https://www.ncbi.nlm.nih.gov/pubmed/35501370
https://www.proquest.com/docview/2663837698
https://www.proquest.com/docview/2659228577
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB61IKReEBTahlJkJG5gkT8n8QntVrtQECvEj7S3aOI4EtJql5JFCNQD78Ab9kk6k3gXIVROOSROYo89841nPB_ADuokrbQtmL3MyFiZRKINrCxijdrXPsYF73ecDpKjq_h4qIZuw612aZUzndgo6nJieI98nwwJO1OJzg5ufktmjeLoqqPQ-AiLXLqMU7rS4dzh4rhl2p4uUjIlIOAOzfhRtl-zIeX021CSFdSxfHxtmN6gzTeR0sYA9Vdg2SFH0WlFvQof7PgzLLVckg9r8KcjyJOXNFKT5qijMIedi79PzxeXvwaHdD3rnZ8I5h--xwdRoWmrc9taEAIUU7ZYI7cvKFzOljCOBkEQsBU1K0XDekDguBQNG5SoyNme1Nf1Olz1e5c_j6SjVpCG8M9UkukyWCIXAlWBTTOTEc5IAvSRhKdSWrRGxVYVrIOqMqlSjKihzZAQWmExjL7AAnXHfgNhdIGBj5GKbBIzmXpQGfKrY-1XpaH17UEwG9fcuLrjTH8xypv4d5TlrSxykkXeyCJ_9GB33uamrbrx7tObM3HlbgXW-ct88WB7fpvWDgdEcGwnd_yM0mGYUX89-NqKef45wmFcjdH3YG8m95eX__9fNt7_l-_wKWzmHGdMbsLC9PbO_iBUMy22mqm7BYudfrc7oGu3Nzg7_weUy_bm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4EChgJTmA1DzuJDwgtsO0u266qdiv1ZhzHkZCqpJCtqq048B_4H_wofgkzeWyFKnrrKYfYie0Zz8Mzng_glVFxUiiXEXqZ5ULamBsXOJ4JZZSvfCMyOu_YncXjQ_H5SB6twe_-LgylVfYysRHUeWXpjHwTFQk5U7FK359844QaRdHVHkKjZYupW56hy1a_m3xC-r4Ow63R_OOYd6gC3KLqX3CU2tbkhmpgysAlqU1RxcaB8Q2OWybIr1YKJzPafkUeF4mJsKNLDRonmTNU6ABF_rqI0JUZwPqH0WxvfxW3EKK5oI3iR_IETY_umo4fpZs1qW5K-A056l0l-Pm_qvCSfXspNtuovK07cLuzVdmwZa67sObKe3CjRa9c3ocfQ1ZWJUfaVM3lSma3hwd_fv46mE9m2_jcG-1PGSEen5klK4xt64G7mqHNyRakI4-7k0jWZYkx2wEvMDSlWU1i2JLkYabMWYM_xQp076v6a_0ADq9l2R_CAKfjHgOzKjOBbyIZuVgQfHtQWPTkhfKL3KJE8SDo11XbrtI5AW4c6ybiHqW6pYVGWuiGFvrcgzerPidtnY8rW2_05NLdnq_1BYd68HL1GncrhWBM6apTaiNVGKY4Xw8etWRe_Q4tP6r_6Hvwtqf7xcf_P5YnV4_lBdwcz3d39M5kNn0Kt8KG_yhfcwMGi--n7hnaVIvsecfIDL5c9975C6CHMRo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VRSAuFf-4lLJIcIJV_Le294BQ1DZtCEQVbaXclvV6LVWq7BanqlJx4B14Gx6HJ2HGXqdCFb31lEPsxOv5-2Zndj6AN1omaSltTuxlhsfCJFzbwPI8llr60tdxTvsdX6bJ3lH8aSZmK_C7PwtDbZW9T2wddVEb2iMfYCChZCqR2aB0bRH726OPp2ecGKSo0trTaXQqMrGLC0zfmg_jbZT12zAc7Rxu7XHHMMANwoA5Rw9udKFpHqYIbJqZDMNtEmhf4xpEirprRGxFTqZYFkmZ6ghvtJlGoJJbTUMP0P3fSSMRkI2ls2WyRzXTtDvZJHiKIMQd2PGjbNBQEKfW35BjBJYxv_w3KF5DuteqtG3wGz2ANYda2bBTs4ewYqtHcLfjsVw8hh9DVtUVRynV7TFLZnaHB39-_jo4HE938XN_5-uEEffxhV6wUptuMrhtGKJPNqdoeeL2JJnrF2PGUTAwBNWsIYdsyAcxXRWsZaJiJSb6dXPcPIGjW3npT2EVl2OfAzMy14GvIxHZJCYi96A0mNPH0i8Lg77Fg6B_r8q4medEvXGi2tp7lKlOFgploVpZqEsP3i3vOe0mftx49UYvLuWsv1FXuurB6-XXaLdUjNGVrc_pGiHDMMP1evCsE_Py7xAD0iRI34P3vdyvfvz_z7J-87O8gntoMerzeDp5AffDVv2ocXMDVuffz-1LBFfzfLPVYgbfbtts_gKkCzPq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-canonical+cGAS-STING-PERK+pathway+facilitates+the+translational+program+critical+for+senescence+and+organ+fibrosis&rft.jtitle=Nature+cell+biology&rft.au=Zhang%2C+Dan&rft.au=Liu%2C+Yutong&rft.au=Zhu%2C+Yezhang&rft.au=Zhang%2C+Qian&rft.date=2022-05-01&rft.issn=1476-4679&rft.eissn=1476-4679&rft.volume=24&rft.issue=5&rft.spage=766&rft_id=info:doi/10.1038%2Fs41556-022-00894-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon