A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis
Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes...
Saved in:
Published in | Nature cell biology Vol. 24; no. 5; pp. 766 - 782 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING–PKR-like endoplasmic reticulum kinase (PERK)–eIF2α pathway, a previously unknown cGAS–STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1–IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING–PERK–eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS–STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING–PERK pathway in treating fibrotic diseases.
Zhang et al. report that a non-canonical cGAS–STING pathway activates PERK–eIF2α to elaborate cap-dependent mRNA translation and contributes to senescence and fibrosis. |
---|---|
AbstractList | Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases. Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING–PKR-like endoplasmic reticulum kinase (PERK)–eIF2α pathway, a previously unknown cGAS–STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1–IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING–PERK–eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS–STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING–PERK pathway in treating fibrotic diseases.Zhang et al. report that a non-canonical cGAS–STING pathway activates PERK–eIF2α to elaborate cap-dependent mRNA translation and contributes to senescence and fibrosis. Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING–PKR-like endoplasmic reticulum kinase (PERK)–eIF2α pathway, a previously unknown cGAS–STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1–IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING–PERK–eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS–STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING–PERK pathway in treating fibrotic diseases. Zhang et al. report that a non-canonical cGAS–STING pathway activates PERK–eIF2α to elaborate cap-dependent mRNA translation and contributes to senescence and fibrosis. Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases. |
Author | Ouyang, Songying Feng, Xin-Hua Mei, Chen Liang, Tingbo Zhu, Yezhang Zhang, Qian Shen, Li Zhang, Dan Chen, Shasha Liu, Yutong Chen, Chen Liu, Shengduo Xi, Ying Xu, Pinglong Guan, Hongxing Liao, Zhiyong |
Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0002-9594-4818 surname: Zhang fullname: Zhang, Dan organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine – sequence: 2 givenname: Yutong surname: Liu fullname: Liu, Yutong organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University – sequence: 3 givenname: Yezhang surname: Zhu fullname: Zhu, Yezhang organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University – sequence: 4 givenname: Qian surname: Zhang fullname: Zhang, Qian organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Cancer Center, Zhejiang University – sequence: 5 givenname: Hongxing surname: Guan fullname: Guan, Hongxing organization: The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University – sequence: 6 givenname: Shengduo surname: Liu fullname: Liu, Shengduo organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Cancer Center, Zhejiang University – sequence: 7 givenname: Shasha surname: Chen fullname: Chen, Shasha organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University – sequence: 8 givenname: Chen surname: Mei fullname: Mei, Chen organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University – sequence: 9 givenname: Chen surname: Chen fullname: Chen, Chen organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University – sequence: 10 givenname: Zhiyong surname: Liao fullname: Liao, Zhiyong organization: Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University – sequence: 11 givenname: Ying surname: Xi fullname: Xi, Ying organization: School of Life Science and Technology, ShanghaiTech University – sequence: 12 givenname: Songying orcidid: 0000-0002-1120-1524 surname: Ouyang fullname: Ouyang, Songying organization: The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University – sequence: 13 givenname: Xin-Hua surname: Feng fullname: Feng, Xin-Hua organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Cancer Center, Zhejiang University – sequence: 14 givenname: Tingbo orcidid: 0000-0003-0143-3353 surname: Liang fullname: Liang, Tingbo email: liangtingbo@zju.edu.cn organization: Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University – sequence: 15 givenname: Li orcidid: 0000-0002-5696-2191 surname: Shen fullname: Shen, Li email: li_shen@zju.edu.cn organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University – sequence: 16 givenname: Pinglong orcidid: 0000-0001-7726-5443 surname: Xu fullname: Xu, Pinglong email: xupl@zju.edu.cn organization: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Cancer Center, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35501370$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9OVDEYxRuDkT_6Ai5MEzduqv3f3uWE4EgkSgTWzTed3qHkTu_YdkIgLnwH39AnscOAJCzYtF38zun3nbOPdtKYAkJvGf3IqLCfimRKaUI5J5TaTpLbF2iPSaOJ1Kbb2by1IkZ0fBftl3JFKZOSmldoVyhFmTB0D_2a4OZKPLQzehiwn07O_v7-c3Z-_G3a7tOjH1_xCurlNdzgHnwcYoUaCq6XAdcMqQxQ45iacpXHRYYl9jnWO6t-zLiEFIoPyQcMaY7HvICE-zjLY4nlNXrZw1DCm_v7AF18Pjo__EJOvk-PDycnxEvJKpFMeJgDpUorFoz1lnKrGVCATitjOuGVDGpGrTX9XPcGRBMGC9SqWQAuDtCHrW8b8ec6lOqWsQ01DJDCuC6Oa9VxbptVQ98_Qa_GdW7rbSgtrDC6s416d0-tZ8swd6scl5Bv3EOuDeBbwLdFSw79f4RRtynPbctzrTx3V567bSL7ROQ3Ybd0W9BxeF4qttLS_kmLkB_Hfkb1D4J6sGg |
CitedBy_id | crossref_primary_10_1016_j_nantod_2024_102481 crossref_primary_10_1038_s41423_024_01131_3 crossref_primary_10_1002_eji_202350386 crossref_primary_10_1016_j_imbio_2023_152345 crossref_primary_10_1016_j_jep_2023_116327 crossref_primary_10_3390_ijms25031828 crossref_primary_10_1038_s42003_024_06271_w crossref_primary_10_1016_j_ecoenv_2024_116357 crossref_primary_10_3389_fphar_2022_1033982 crossref_primary_10_1371_journal_pone_0284061 crossref_primary_10_1007_s10753_024_02081_8 crossref_primary_10_1016_j_cytogfr_2025_03_001 crossref_primary_10_1016_j_canlet_2024_217183 crossref_primary_10_1016_j_ejcb_2023_151338 crossref_primary_10_1038_s41556_022_00905_z crossref_primary_10_1016_j_colsurfb_2025_114573 crossref_primary_10_1016_j_csbj_2024_11_021 crossref_primary_10_3390_ph15101241 crossref_primary_10_1016_j_xcrm_2023_101333 crossref_primary_10_1093_jleuko_qiad102 crossref_primary_10_1016_j_kint_2024_10_021 crossref_primary_10_1038_s41401_023_01225_0 crossref_primary_10_1186_s12964_024_01731_6 crossref_primary_10_1007_s11427_024_2808_3 crossref_primary_10_1016_j_ccr_2023_215316 crossref_primary_10_3390_biom12071005 crossref_primary_10_1016_j_cbpa_2022_102170 crossref_primary_10_1016_j_biopha_2024_116698 crossref_primary_10_1016_j_molcel_2022_10_026 crossref_primary_10_3390_ijms242417423 crossref_primary_10_3389_fphys_2023_1220450 crossref_primary_10_1111_cns_14095 crossref_primary_10_1002_ctm2_1690 crossref_primary_10_1002_jcsm_13336 crossref_primary_10_1016_j_cell_2024_05_031 crossref_primary_10_1016_j_tcb_2024_02_006 crossref_primary_10_1073_pnas_2409493121 crossref_primary_10_1038_s41581_022_00589_6 crossref_primary_10_1096_fj_202400808RR crossref_primary_10_4251_wjgo_v15_i9_1567 crossref_primary_10_1360_SSV_2022_0302 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_1016_j_bioactmat_2025_02_010 crossref_primary_10_1007_s12274_024_6714_x crossref_primary_10_1038_s41423_023_01086_x crossref_primary_10_1186_s12964_023_01466_w crossref_primary_10_1126_sciadv_adj2102 crossref_primary_10_1038_s43587_023_00480_4 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_3389_fimmu_2023_1166214 crossref_primary_10_1016_j_phrs_2022_106577 crossref_primary_10_2147_DDDT_S393816 crossref_primary_10_34133_research_0378 crossref_primary_10_1016_j_jtcvs_2023_03_011 crossref_primary_10_1016_j_apsb_2023_08_015 crossref_primary_10_1513_AnnalsATS_202406_651ST crossref_primary_10_1186_s12951_024_02423_6 crossref_primary_10_1016_j_ejmech_2022_114791 crossref_primary_10_3389_fimmu_2023_1117760 crossref_primary_10_3389_fimmu_2024_1482738 crossref_primary_10_1038_s41577_023_00838_0 crossref_primary_10_1002_advs_202410416 crossref_primary_10_1016_j_nbd_2024_106710 crossref_primary_10_3389_fmolb_2024_1391046 crossref_primary_10_1016_j_neurot_2024_e00519 crossref_primary_10_1016_j_biopha_2023_114869 crossref_primary_10_1111_cns_14671 crossref_primary_10_2147_DDDT_S388920 crossref_primary_10_1038_s41467_024_55745_2 crossref_primary_10_3389_fimmu_2022_1095577 crossref_primary_10_1134_S199074782307005X crossref_primary_10_4155_fmc_2022_0301 crossref_primary_10_1084_jem_20220990 crossref_primary_10_1111_sji_13210 crossref_primary_10_3390_ijms242216410 crossref_primary_10_3724_zdxbyxb_2023_0482 crossref_primary_10_1016_j_canlet_2024_216846 crossref_primary_10_1080_17568919_2024_2383164 crossref_primary_10_3724_zdxbyxb_2023_0485 crossref_primary_10_1007_s11064_024_04151_7 crossref_primary_10_1016_j_jep_2023_117295 crossref_primary_10_3724_zdxbyxb_2023_0480 crossref_primary_10_1002_sstr_202200336 crossref_primary_10_1016_j_jbc_2022_102779 crossref_primary_10_1016_j_virol_2024_110338 crossref_primary_10_1038_s41590_024_01966_y crossref_primary_10_1097_CM9_0000000000003022 crossref_primary_10_1152_physiol_00031_2022 crossref_primary_10_1016_j_bcp_2023_115938 crossref_primary_10_3390_ph16121675 crossref_primary_10_1016_j_intimp_2024_112271 crossref_primary_10_1016_j_jep_2025_119364 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_3389_fneur_2024_1471287 crossref_primary_10_1007_s12026_024_09587_1 crossref_primary_10_1016_j_canlet_2024_217410 crossref_primary_10_1016_j_kint_2024_11_023 crossref_primary_10_3390_molecules28073127 crossref_primary_10_1002_jmv_29403 crossref_primary_10_1016_j_ejphar_2022_175241 crossref_primary_10_3389_fimmu_2022_917998 crossref_primary_10_3389_fcell_2023_1271141 crossref_primary_10_12677_hjbm_2024_143056 crossref_primary_10_1080_19336918_2024_2430561 crossref_primary_10_1038_s41401_023_01210_7 crossref_primary_10_1016_j_ecoenv_2024_117306 crossref_primary_10_1016_j_scr_2022_102974 crossref_primary_10_3389_fimmu_2023_1273248 crossref_primary_10_1038_s41556_023_01138_4 crossref_primary_10_1038_s41421_024_00763_z crossref_primary_10_1021_acs_nanolett_3c03689 crossref_primary_10_1186_s12967_023_04554_0 crossref_primary_10_1016_j_bbrc_2024_149979 crossref_primary_10_1016_j_freeradbiomed_2024_09_031 crossref_primary_10_1002_advs_202308508 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1161_CIRCRESAHA_122_321587 crossref_primary_10_1016_j_ajpath_2023_06_006 crossref_primary_10_1111_liv_70063 crossref_primary_10_1038_s44318_024_00244_9 crossref_primary_10_1021_acsptsci_4c00310 crossref_primary_10_1016_j_biopha_2023_115883 crossref_primary_10_1002_advs_202407222 crossref_primary_10_1016_j_immuni_2024_02_019 crossref_primary_10_3389_fcell_2022_999600 crossref_primary_10_1186_s13619_024_00194_x crossref_primary_10_1016_j_devcel_2024_10_008 crossref_primary_10_1016_j_addr_2024_115204 crossref_primary_10_1186_s10020_023_00754_y crossref_primary_10_1038_s41556_023_01339_x crossref_primary_10_31857_S0233475524010015 crossref_primary_10_1007_s00018_023_04826_4 crossref_primary_10_1016_j_jinorgbio_2025_112871 crossref_primary_10_1002_cmdc_202300405 |
Cites_doi | 10.1016/j.immuni.2014.10.019 10.1016/j.cell.2010.01.022 10.1016/j.cell.2013.04.046 10.1038/ncb3586 10.1016/j.immuni.2020.03.004 10.1146/annurev.micro.59.031805.133833 10.1016/S1097-2765(03)00105-9 10.1053/j.gastro.2018.09.010 10.1016/j.cell.2009.01.042 10.1016/j.neuroscience.2010.05.076 10.1126/science.aaa2630 10.1016/j.coi.2013.09.011 10.1164/rccm.200802-313OC 10.1126/science.1084677 10.1038/nrm3025 10.1084/jem.20061845 10.1126/science.aat5314 10.1073/pnas.1016132108 10.1158/0008-5472.CAN-15-1885 10.1038/nrm2672 10.1038/s41586-019-1000-2 10.1126/science.1081315 10.1016/j.immuni.2016.04.002 10.1097/00001756-200212200-00011 10.1038/ncb3496 10.1084/jem.20182192 10.1016/j.coviro.2015.01.004 10.1073/pnas.1512832112 10.1016/j.toxlet.2017.02.023 10.1038/nrm3588 10.1016/j.molcel.2014.11.027 10.1016/j.jaci.2016.10.031 10.1016/j.cmet.2019.08.003 10.1038/s41586-019-1006-9 10.1126/science.1205405 10.1038/78085 10.1074/jbc.RA117.001294 10.1073/pnas.0900850106 10.3390/cells8121471 10.3892/mmr.2021.12164 10.1038/nmeth.1314 10.1016/j.immuni.2011.11.018 10.1038/35014014 10.1128/JVI.01806-18 10.1080/2162402X.2017.1346765 10.1038/16729 10.1016/j.molcel.2021.07.040 10.1128/MCB.18.12.7499 10.1038/nature10429 10.3390/ijms20030613 10.1038/nrm2838 10.1038/ng.2844 10.1073/pnas.1308331110 10.1128/MCB.22.11.3864-3874.2002 10.1016/j.cell.2012.06.040 10.1016/j.cell.2008.06.032 10.1056/NEJMoa1312625 10.1073/pnas.1217611110 10.1016/j.jaci.2019.01.044 10.1016/j.celrep.2015.04.031 10.1073/pnas.0911267106 10.1016/j.molcel.2020.10.018 10.1038/s41556-019-0352-z 10.1038/nprot.2013.143 10.1126/science.1232458 10.1007/s00018-012-1252-6 10.1084/jem.20161674 10.1038/nature07317 10.1126/science.1229963 10.1038/ni921 10.1101/cshperspect.a032896 10.1016/j.it.2017.07.013 10.1038/ncb1996 10.1126/scisignal.2002521 10.1039/C7MO00114B 10.1038/ki.2009.86 10.1016/j.cell.2006.09.014 10.1146/annurev-immunol-070119-115052 10.1152/ajprenal.00225.2016 10.1038/nprot.2014.006 10.1073/pnas.1818281116 10.1038/nature24050 10.1523/JNEUROSCI.0718-19.2019 10.1101/cshperspect.a032870 10.1016/j.cell.2005.06.041 10.1146/annurev-biochem-060713-035802 10.1016/j.cell.2017.09.034 10.1073/pnas.1611113114 10.1016/j.cell.2015.04.002 10.1016/j.ebiom.2018.10.006 10.1073/pnas.1215006109 10.1016/j.chom.2015.07.001 10.1016/S0092-8674(02)00642-6 10.1016/j.celrep.2018.05.029 10.1073/pnas.1716937115 10.1073/pnas.1813352116 10.1523/JNEUROSCI.0628-17.2017 10.1016/j.intimp.2019.05.050 10.1038/s41586-019-0998-5 10.1038/s41586-019-0928-6 10.1038/nature08476 10.1165/rcmb.2014-0019TR 10.1038/ni.3558 10.1016/j.virol.2019.01.006 10.1016/j.molcel.2019.02.010 10.1016/j.immuni.2008.09.003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 |
DOI | 10.1038/s41556-022-00894-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 782 |
ExternalDocumentID | 35501370 10_1038_s41556_022_00894_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 31830052; 31725017 funderid: https://doi.org/10.13039/501100011002 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 31830052 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 31725017 |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 |
ID | FETCH-LOGICAL-c441t-413cada005651e78c802861a0aa9657793c54e5b0887fd6f7a3c44e8a085bea23 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Fri Jul 11 03:14:47 EDT 2025 Sat Aug 23 12:53:24 EDT 2025 Thu Apr 03 06:58:15 EDT 2025 Tue Jul 01 00:31:17 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Fri Feb 21 02:40:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-413cada005651e78c802861a0aa9657793c54e5b0887fd6f7a3c44e8a085bea23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5696-2191 0000-0002-9594-4818 0000-0002-1120-1524 0000-0001-7726-5443 0000-0003-0143-3353 |
PMID | 35501370 |
PQID | 2663837698 |
PQPubID | 45779 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2659228577 proquest_journals_2663837698 pubmed_primary_35501370 crossref_primary_10_1038_s41556_022_00894_z crossref_citationtrail_10_1038_s41556_022_00894_z springer_journals_10_1038_s41556_022_00894_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Roberts (CR66) 2007; 204 Moretti (CR35) 2017; 171 Takeuchi, Akira (CR4) 2010; 140 Wu (CR30) 2019; 21 Xu (CR27) 2014; 56 Vargas (CR92) 2019; 74 Delépine (CR83) 2000; 25 Costa-Mattioli, Walter (CR81) 2020; 368 Lipton (CR51) 2015; 161 Crampton, Bolland (CR18) 2013; 25 Wu (CR7) 2013; 339 Luo (CR80) 2018; 155 Ishikawa, Ma, Barber (CR103) 2009; 461 Roers, Hiller, Hornung (CR5) 2016; 44 Sonenberg, Hinnebusch (CR40) 2009; 136 Saitoh (CR104) 2009; 106 Hinnebusch (CR53) 2014; 83 Sharma (CR13) 2003; 300 Liu (CR37) 2014; 371 Gall (CR78) 2012; 36 Brandizzi, Barlowe (CR69) 2013; 14 Lee, Yoon, Lee (CR58) 2019; 20 Sanderson (CR65) 2010; 169 Zhang (CR107) 2017; 19 Tanaka, Chen (CR106) 2012; 5 Woo (CR90) 2009; 11 Bertolotti, Zhang, Hendershot, Harding, Ron (CR64) 2000; 2 Cerboni (CR32) 2017; 214 Bennion (CR73) 2019; 93 Burdette (CR94) 2011; 478 Wu, Chen, Dobbs, Sakai, Liou (CR36) 2019; 216 Motwani (CR39) 2019; 116 Dobbs (CR105) 2015; 18 Sutton, Schuman (CR85) 2006; 127 Mohamed (CR49) 2020; 52 Inglis, Masson (CR55) 2019; 116 Glück, Guey (CR29) 2017; 19 Schmidt, Clavarino, Ceppi, Pierre (CR52) 2009; 6 Chevalier, Forbes, Thornhill (CR74) 2009; 75 Xie (CR93) 2011; 108 Volmer, van der Ploeg, Ron (CR99) 2013; 110 Ahn, Gutman, Saijo, Barber (CR79) 2012; 109 Meng (CR97) 2021; 24 Sun, Wu, Du, Chen, Chen (CR2) 2013; 339 Deng (CR22) 2014; 41 Hasan (CR34) 2017; 114 Gao (CR17) 2015; 112 Yang, Wang, Ren, Chen, Chen (CR76) 2017; 114 Liu (CR11) 2015; 347 Gao (CR1) 2013; 153 Petrasek (CR31) 2013; 110 Hinnebusch (CR47) 2005; 59 Eyries (CR88) 2014; 46 Meng (CR91) 2021; 81 Zheng (CR62) 2016; 311 Zeng (CR63) 2017; 271 Zoncu, Efeyan, Sabatini (CR43) 2011; 12 Hu, Shu (CR6) 2020; 38 Zhong (CR9) 2008; 29 Zhang (CR12) 2019; 567 Kaur (CR61) 2018; 14 Dey (CR57) 2005; 122 Gui (CR25) 2019; 567 Girardin (CR100) 2003; 300 Dou (CR28) 2017; 550 Stetson, Ko, Heidmann, Medzhitov (CR77) 2008; 134 Robichaud, Sonenberg, Ruggero, Schneider (CR82) 2019; 11 Shi (CR98) 1998; 18 Ran (CR109) 2013; 8 Li (CR59) 2019; 74 Ma, Blenis (CR42) 2009; 10 Melki (CR33) 2017; 140 Kusaczuk (CR60) 2019; 8 Franz, Neidermyer, Tan, Whelan, Kagan (CR48) 2018; 115 Cerón, North, Taylor, Leib (CR67) 2019; 529 Korfei (CR95) 2008; 178 Martin, Hiroyasu, Guzman, Roberts, Goodman (CR71) 2018; 23 Demaria (CR21) 2015; 112 Eaglesham, Pan, Kupper, Kranzusch (CR101) 2019; 566 Chen (CR16) 2020; 80 Sun (CR10) 2009; 106 Picelli (CR108) 2014; 9 Wild (CR26) 2011; 333 Luksch (CR38) 2019; 144 Fitzgerald (CR14) 2003; 4 Dever (CR46) 2002; 108 Shang, Zhang, Chen, Bai, Zhang (CR70) 2019; 567 Wek (CR54) 2018; 10 Corrales (CR24) 2015; 11 Harding, Zhang, Ron (CR56) 1999; 397 Ishikawa, Barber (CR8) 2008; 455 Harding (CR44) 2003; 11 Sharma, Ounallah-Saad, Chakraborty (CR86) 2018; 38 Watson, Manzanillo, Cox (CR72) 2012; 150 Chan, Gack (CR15) 2015; 12 Chang, Wong, Ng, Hugon (CR87) 2002; 13 Chen, Sun, Chen (CR3) 2016; 17 Fu (CR19) 2015; 7 Donnelly, Gorman, Gupta, Samali (CR45) 2013; 70 Weiss (CR68) 2017; 6 Shu (CR96) 2018; 37 Jackson, Hellen, Pestova (CR41) 2010; 11 Sen, Saha (CR50) 2020; 40 Chung (CR75) 2019; 30 Wang, Li, Tao, Sha (CR102) 2018; 293 Zhang (CR84) 2002; 22 Ng, Marshall, Bell, Lam (CR20) 2018; 39 van ‘t Wout, Hiemstra, Marciniak (CR89) 2014; 50 Tang (CR23) 2016; 76 X Gui (894_CR25) 2019; 567 HP Harding (894_CR44) 2003; 11 Q Zhang (894_CR107) 2017; 19 D Gao (894_CR17) 2015; 112 M Martin (894_CR71) 2018; 23 MM Hu (894_CR6) 2020; 38 P Zheng (894_CR62) 2016; 311 M Eyries (894_CR88) 2014; 46 JNS Vargas (894_CR92) 2019; 74 TH Sanderson (894_CR65) 2010; 169 M Motwani (894_CR39) 2019; 116 N Robichaud (894_CR82) 2019; 11 F Brandizzi (894_CR69) 2013; 14 Y Shi (894_CR98) 1998; 18 S Shu (894_CR96) 2018; 37 TE Dever (894_CR46) 2002; 108 P Li (894_CR59) 2019; 74 X Xie (894_CR93) 2011; 108 J Wu (894_CR7) 2013; 339 X Meng (894_CR97) 2021; 24 S Glück (894_CR29) 2017; 19 M Kusaczuk (894_CR60) 2019; 8 T Sen (894_CR50) 2020; 40 M Korfei (894_CR95) 2008; 178 SE Girardin (894_CR100) 2003; 300 EK Schmidt (894_CR52) 2009; 6 L Sun (894_CR2) 2013; 339 M Dey (894_CR57) 2005; 122 N Dobbs (894_CR105) 2015; 18 B Zhong (894_CR9) 2008; 29 W Sun (894_CR10) 2009; 106 KW Ng (894_CR20) 2018; 39 KM Franz (894_CR48) 2018; 115 H Yang (894_CR76) 2017; 114 V Sharma (894_CR86) 2018; 38 C Zhang (894_CR12) 2019; 567 T Saitoh (894_CR104) 2009; 106 KW Chung (894_CR75) 2019; 30 M Costa-Mattioli (894_CR81) 2020; 368 MA Sutton (894_CR85) 2006; 127 XM Ma (894_CR42) 2009; 10 ZJ Roberts (894_CR66) 2007; 204 S Wu (894_CR30) 2019; 21 J Fu (894_CR19) 2015; 7 AJ Inglis (894_CR55) 2019; 116 M Delépine (894_CR83) 2000; 25 JM Weiss (894_CR68) 2017; 6 S Picelli (894_CR108) 2014; 9 G Shang (894_CR70) 2019; 567 P Zhang (894_CR84) 2002; 22 AG Hinnebusch (894_CR53) 2014; 83 RC Chang (894_CR87) 2002; 13 EF van ‘t Wout (894_CR89) 2014; 50 Z Dou (894_CR28) 2017; 550 Y Liu (894_CR37) 2014; 371 RO Watson (894_CR72) 2012; 150 P Gao (894_CR1) 2013; 153 E Mohamed (894_CR49) 2020; 52 B Kaur (894_CR61) 2018; 14 M Hasan (894_CR34) 2017; 114 JB Eaglesham (894_CR101) 2019; 566 S Chen (894_CR16) 2020; 80 F Meng (894_CR91) 2021; 81 H Ishikawa (894_CR8) 2008; 455 KA Fitzgerald (894_CR14) 2003; 4 L Deng (894_CR22) 2014; 41 YK Chan (894_CR15) 2015; 12 N Donnelly (894_CR45) 2013; 70 RC Wek (894_CR54) 2018; 10 N Sonenberg (894_CR40) 2009; 136 R Volmer (894_CR99) 2013; 110 H Ishikawa (894_CR103) 2009; 461 J Petrasek (894_CR31) 2013; 110 Y Tanaka (894_CR106) 2012; 5 JH Lee (894_CR58) 2019; 20 DL Burdette (894_CR94) 2011; 478 I Melki (894_CR33) 2017; 140 FA Ran (894_CR109) 2013; 8 S Liu (894_CR11) 2015; 347 P Wang (894_CR102) 2018; 293 P Wild (894_CR26) 2011; 333 L Corrales (894_CR24) 2015; 11 JO Lipton (894_CR51) 2015; 161 S Cerboni (894_CR32) 2017; 214 J Wu (894_CR36) 2019; 216 X Luo (894_CR80) 2018; 155 H Luksch (894_CR38) 2019; 144 R Zoncu (894_CR43) 2011; 12 A Roers (894_CR5) 2016; 44 RL Chevalier (894_CR74) 2009; 75 J Ahn (894_CR79) 2012; 109 S Sharma (894_CR13) 2003; 300 CW Woo (894_CR90) 2009; 11 BG Bennion (894_CR73) 2019; 93 CH Tang (894_CR23) 2016; 76 J Moretti (894_CR35) 2017; 171 HP Harding (894_CR56) 1999; 397 SP Crampton (894_CR18) 2013; 25 DB Stetson (894_CR77) 2008; 134 P Xu (894_CR27) 2014; 56 O Demaria (894_CR21) 2015; 112 AG Hinnebusch (894_CR47) 2005; 59 S Cerón (894_CR67) 2019; 529 Q Chen (894_CR3) 2016; 17 A Gall (894_CR78) 2012; 36 M Zeng (894_CR63) 2017; 271 O Takeuchi (894_CR4) 2010; 140 RJ Jackson (894_CR41) 2010; 11 A Bertolotti (894_CR64) 2000; 2 |
References_xml | – volume: 41 start-page: 843 year: 2014 end-page: 852 ident: CR22 article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors publication-title: Immunity doi: 10.1016/j.immuni.2014.10.019 – volume: 140 start-page: 805 year: 2010 end-page: 820 ident: CR4 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: CR1 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 19 start-page: 1061 year: 2017 end-page: 1070 ident: CR29 article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence publication-title: Nat. Cell Biol. doi: 10.1038/ncb3586 – volume: 52 start-page: 668 year: 2020 end-page: 682 ident: CR49 article-title: The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling publication-title: Immunity doi: 10.1016/j.immuni.2020.03.004 – volume: 59 start-page: 407 year: 2005 end-page: 450 ident: CR47 article-title: Translational regulation of GCN4 and the general amino acid control of yeast publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.031805.133833 – volume: 11 start-page: 619 year: 2003 end-page: 633 ident: CR44 article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00105-9 – volume: 155 start-page: 1971 year: 2018 end-page: 1984 ident: CR80 article-title: Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.09.010 – volume: 136 start-page: 731 year: 2009 end-page: 745 ident: CR40 article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets publication-title: Cell doi: 10.1016/j.cell.2009.01.042 – volume: 169 start-page: 1307 year: 2010 end-page: 1314 ident: CR65 article-title: PKR-like endoplasmic reticulum kinase (PERK) activation following brain ischemia is independent of unfolded nascent proteins publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.05.076 – volume: 347 start-page: aaa2630 year: 2015 ident: CR11 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 25 start-page: 712 year: 2013 end-page: 719 ident: CR18 article-title: Spontaneous activation of RNA-sensing pathways in autoimmune disease publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2013.09.011 – volume: 178 start-page: 838 year: 2008 end-page: 846 ident: CR95 article-title: Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200802-313OC – volume: 300 start-page: 1584 year: 2003 end-page: 1587 ident: CR100 article-title: Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan publication-title: Science doi: 10.1126/science.1084677 – volume: 12 start-page: 21 year: 2011 end-page: 35 ident: CR43 article-title: mTOR: from growth signal integration to cancer, diabetes and ageing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3025 – volume: 204 start-page: 1559 year: 2007 end-page: 1569 ident: CR66 article-title: The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis publication-title: J. Exp. Med. doi: 10.1084/jem.20061845 – volume: 368 start-page: eaat5314 year: 2020 ident: CR81 article-title: The integrated stress response: from mechanism to disease publication-title: Science doi: 10.1126/science.aat5314 – volume: 108 start-page: 6474 year: 2011 end-page: 6479 ident: CR93 article-title: IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016132108 – volume: 76 start-page: 2137 year: 2016 end-page: 2152 ident: CR23 article-title: Agonist-mediated activation of STING induces apoptosis in malignant B cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1885 – volume: 10 start-page: 307 year: 2009 end-page: 318 ident: CR42 article-title: Molecular mechanisms of mTOR-mediated translational control publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2672 – volume: 567 start-page: 394 year: 2019 end-page: 398 ident: CR12 article-title: Structural basis of STING binding with and phosphorylation by TBK1 publication-title: Nature doi: 10.1038/s41586-019-1000-2 – volume: 300 start-page: 1148 year: 2003 end-page: 1151 ident: CR13 article-title: Triggering the interferon antiviral response through an IKK-related pathway publication-title: Science doi: 10.1126/science.1081315 – volume: 44 start-page: 739 year: 2016 end-page: 754 ident: CR5 article-title: Recognition of endogenous nucleic acids by the innate immune system publication-title: Immunity doi: 10.1016/j.immuni.2016.04.002 – volume: 13 start-page: 2429 year: 2002 end-page: 2432 ident: CR87 article-title: Phosphorylation of eukaryotic initiation factor-2α (eIF2α) is associated with neuronal degeneration in Alzheimer’s disease publication-title: Neuroreport doi: 10.1097/00001756-200212200-00011 – volume: 19 start-page: 362 year: 2017 end-page: 374 ident: CR107 article-title: Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade publication-title: Nat. Cell Biol. doi: 10.1038/ncb3496 – volume: 216 start-page: 867 year: 2019 end-page: 883 ident: CR36 article-title: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death publication-title: J. Exp. Med. doi: 10.1084/jem.20182192 – volume: 12 start-page: 7 year: 2015 end-page: 14 ident: CR15 article-title: RIG-I-like receptor regulation in virus infection and immunity publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2015.01.004 – volume: 112 start-page: 15408 year: 2015 end-page: 15413 ident: CR21 article-title: STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1512832112 – volume: 271 start-page: 26 year: 2017 end-page: 37 ident: CR63 article-title: 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.02.023 – volume: 14 start-page: 382 year: 2013 end-page: 392 ident: CR69 article-title: Organization of the ER–Golgi interface for membrane traffic control publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3588 – volume: 56 start-page: 723 year: 2014 end-page: 737 ident: CR27 article-title: Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.11.027 – volume: 140 start-page: 543 year: 2017 end-page: 552 ident: CR33 article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.10.031 – volume: 30 start-page: 784 year: 2019 end-page: 799 ident: CR75 article-title: Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.003 – volume: 567 start-page: 262 year: 2019 end-page: 266 ident: CR25 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature doi: 10.1038/s41586-019-1006-9 – volume: 333 start-page: 228 year: 2011 end-page: 233 ident: CR26 article-title: Phosphorylation of the autophagy receptor optineurin restricts growth publication-title: Science doi: 10.1126/science.1205405 – volume: 112 start-page: E5699 year: 2015 end-page: E5705 ident: CR17 article-title: Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases publication-title: Proc. Natl Acad. Sci. USA – volume: 25 start-page: 406 year: 2000 end-page: 409 ident: CR83 article-title: , encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome publication-title: Nat. Genet. doi: 10.1038/78085 – volume: 293 start-page: 4110 year: 2018 end-page: 4121 ident: CR102 article-title: The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001294 – volume: 106 start-page: 8653 year: 2009 end-page: 8658 ident: CR10 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 8 start-page: 1471 year: 2019 ident: CR60 article-title: Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives publication-title: Cells doi: 10.3390/cells8121471 – volume: 24 start-page: 525 year: 2021 ident: CR97 article-title: Endoplasmic reticulum stress promotes epithelial-mesenchymal transition via the PERK signaling pathway in paraquat-induced pulmonary fibrosis publication-title: Mol. Med. Rep doi: 10.3892/mmr.2021.12164 – volume: 6 start-page: 275 year: 2009 end-page: 277 ident: CR52 article-title: SUnSET, a nonradioactive method to monitor protein synthesis publication-title: Nat. Methods doi: 10.1038/nmeth.1314 – volume: 36 start-page: 120 year: 2012 end-page: 131 ident: CR78 article-title: Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease publication-title: Immunity doi: 10.1016/j.immuni.2011.11.018 – volume: 2 start-page: 326 year: 2000 end-page: 332 ident: CR64 article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response publication-title: Nat. Cell Biol. doi: 10.1038/35014014 – volume: 93 start-page: e01806-18 year: 2019 ident: CR73 article-title: A human gain-of-function STING mutation causes immunodeficiency and gammaherpesvirus-induced pulmonary fibrosis in mice publication-title: J. Virol. doi: 10.1128/JVI.01806-18 – volume: 6 start-page: e1346765 year: 2017 ident: CR68 article-title: The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1346765 – volume: 397 start-page: 271 year: 1999 end-page: 274 ident: CR56 article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase publication-title: Nature doi: 10.1038/16729 – volume: 81 start-page: 4147 year: 2021 end-page: 4164 ident: CR91 article-title: Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.040 – volume: 18 start-page: 7499 year: 1998 end-page: 7509 ident: CR98 article-title: Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.12.7499 – volume: 478 start-page: 515 year: 2011 end-page: 518 ident: CR94 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature doi: 10.1038/nature10429 – volume: 20 start-page: 613 year: 2019 ident: CR58 article-title: TUDCA-treated mesenchymal stem cells protect against ER stress in the hippocampus of a murine chronic kidney disease model publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20030613 – volume: 11 start-page: 113 year: 2010 end-page: 127 ident: CR41 article-title: The mechanism of eukaryotic translation initiation and principles of its regulation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2838 – volume: 46 start-page: 65 year: 2014 end-page: 69 ident: CR88 article-title: EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension publication-title: Nat. Genet. doi: 10.1038/ng.2844 – volume: 110 start-page: 16544 year: 2013 end-page: 16549 ident: CR31 article-title: STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1308331110 – volume: 22 start-page: 3864 year: 2002 end-page: 3874 ident: CR84 article-title: The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.11.3864-3874.2002 – volume: 150 start-page: 803 year: 2012 end-page: 815 ident: CR72 article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA-sensing pathway publication-title: Cell doi: 10.1016/j.cell.2012.06.040 – volume: 134 start-page: 587 year: 2008 end-page: 598 ident: CR77 article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity publication-title: Cell doi: 10.1016/j.cell.2008.06.032 – volume: 371 start-page: 507 year: 2014 end-page: 518 ident: CR37 article-title: Activated STING in a vascular and pulmonary syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1312625 – volume: 110 start-page: 4628 year: 2013 end-page: 4633 ident: CR99 article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1217611110 – volume: 144 start-page: 254 year: 2019 end-page: 266 ident: CR38 article-title: STING-associated lung disease in mice relies on T cells but not type I interferon publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.01.044 – volume: 11 start-page: 1018 year: 2015 end-page: 1030 ident: CR24 article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.031 – volume: 106 start-page: 20842 year: 2009 end-page: 20846 ident: CR104 article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0911267106 – volume: 80 start-page: 810 year: 2020 end-page: 827 ident: CR16 article-title: TBK1-mediated DRP1 targeting confers nucleic acid sensing to reprogram mitochondrial dynamics and physiology publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.10.018 – volume: 21 start-page: 1027 year: 2019 end-page: 1040 ident: CR30 article-title: HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0352-z – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: CR109 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR2 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 70 start-page: 3493 year: 2013 end-page: 3511 ident: CR45 article-title: The eIF2α kinases: their structures and functions publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-1252-6 – volume: 214 start-page: 1769 year: 2017 end-page: 1785 ident: CR32 article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes publication-title: J. Exp. Med. doi: 10.1084/jem.20161674 – volume: 455 start-page: 674 year: 2008 end-page: 678 ident: CR8 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 339 start-page: 826 year: 2013 end-page: 830 ident: CR7 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 4 start-page: 491 year: 2003 end-page: 496 ident: CR14 article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway publication-title: Nat. Immunol. doi: 10.1038/ni921 – volume: 11 start-page: a032896 year: 2019 ident: CR82 article-title: Translational control in cancer publication-title: Cold Spring Harbor Perspect. Biol doi: 10.1101/cshperspect.a032896 – volume: 39 start-page: 44 year: 2018 end-page: 54 ident: CR20 article-title: cGAS–STING and cancer: dichotomous roles in tumor immunity and development publication-title: Trends Immunol. doi: 10.1016/j.it.2017.07.013 – volume: 11 start-page: 1473 year: 2009 end-page: 1480 ident: CR90 article-title: Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling publication-title: Nat. Cell Biol. doi: 10.1038/ncb1996 – volume: 5 start-page: ra20 year: 2012 ident: CR106 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal doi: 10.1126/scisignal.2002521 – volume: 14 start-page: 53 year: 2018 end-page: 63 ident: CR61 article-title: Proteomic profile of 4-PBA treated human neuronal cells during ER stress publication-title: Mol. Omics doi: 10.1039/C7MO00114B – volume: 75 start-page: 1145 year: 2009 end-page: 1152 ident: CR74 article-title: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy publication-title: Kidney Int. doi: 10.1038/ki.2009.86 – volume: 127 start-page: 49 year: 2006 end-page: 58 ident: CR85 article-title: Dendritic protein synthesis, synaptic plasticity and memory publication-title: Cell doi: 10.1016/j.cell.2006.09.014 – volume: 38 start-page: 79 year: 2020 end-page: 98 ident: CR6 article-title: Innate immune response to cytoplasmic DNA: mechanisms and diseases publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-070119-115052 – volume: 311 start-page: F763 year: 2016 end-page: F776 ident: CR62 article-title: 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00225.2016 – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: CR108 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 116 start-page: 7941 year: 2019 end-page: 7950 ident: CR39 article-title: Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1818281116 – volume: 550 start-page: 402 year: 2017 end-page: 406 ident: CR28 article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer publication-title: Nature doi: 10.1038/nature24050 – volume: 7 start-page: 283ra252 year: 2015 ident: CR19 article-title: STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade publication-title: Sci. Transl. Med. – volume: 40 start-page: 424 year: 2020 end-page: 446 ident: CR50 article-title: Aberrant ER stress induced neuronal-IFNβ elicits white matter injury due to microglial activation and T-cell infiltration after TBI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0718-19.2019 – volume: 10 start-page: a032870 year: 2018 ident: CR54 article-title: Role of eIF2α kinases in translational control and adaptation to cellular stress publication-title: Cold Spring Harb. Perspect. Biol doi: 10.1101/cshperspect.a032870 – volume: 122 start-page: 901 year: 2005 end-page: 913 ident: CR57 article-title: Mechanistic link between PKR dimerization, autophosphorylation and eIF2α substrate recognition publication-title: Cell doi: 10.1016/j.cell.2005.06.041 – volume: 83 start-page: 779 year: 2014 end-page: 812 ident: CR53 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035802 – volume: 171 start-page: 809 year: 2017 end-page: 823 ident: CR35 article-title: STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum publication-title: Cell doi: 10.1016/j.cell.2017.09.034 – volume: 114 start-page: 746 year: 2017 end-page: 751 ident: CR34 article-title: Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1611113114 – volume: 161 start-page: 1138 year: 2015 end-page: 1151 ident: CR51 article-title: The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation publication-title: Cell doi: 10.1016/j.cell.2015.04.002 – volume: 37 start-page: 269 year: 2018 end-page: 280 ident: CR96 article-title: Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.10.006 – volume: 109 start-page: 19386 year: 2012 end-page: 19391 ident: CR79 article-title: STING manifests self DNA-dependent inflammatory disease publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215006109 – volume: 18 start-page: 157 year: 2015 end-page: 168 ident: CR105 article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.001 – volume: 108 start-page: 545 year: 2002 end-page: 556 ident: CR46 article-title: Gene-specific regulation by general translation factors publication-title: Cell doi: 10.1016/S0092-8674(02)00642-6 – volume: 114 start-page: E4612 year: 2017 end-page: E4620 ident: CR76 article-title: cGAS is essential for cellular senescence publication-title: Proc. Natl Acad. Sci. USA – volume: 23 start-page: 3537 year: 2018 end-page: 3550 ident: CR71 article-title: Analysis of STING reveals an evolutionarily conserved antimicrobial function publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.029 – volume: 115 start-page: E2058 year: 2018 end-page: E2067 ident: CR48 article-title: STING-dependent translation inhibition restricts RNA virus replication publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1716937115 – volume: 116 start-page: 4946 year: 2019 end-page: 4954 ident: CR55 article-title: Activation of GCN2 by the ribosomal P-stalk publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1813352116 – volume: 38 start-page: 648 year: 2018 end-page: 658 ident: CR86 article-title: Local Inhibition of PERK enhances memory and reverses age-related deterioration of cognitive and neuronal properties publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0628-17.2017 – volume: 74 start-page: 105665 year: 2019 ident: CR59 article-title: TUDCA attenuates intestinal injury and inhibits endoplasmic reticulum stress-mediated intestinal cell apoptosis in necrotizing enterocolitis publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2019.05.050 – volume: 567 start-page: 389 year: 2019 end-page: 393 ident: CR70 article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 566 start-page: 259 year: 2019 end-page: 263 ident: CR101 article-title: Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS–STING signalling publication-title: Nature doi: 10.1038/s41586-019-0928-6 – volume: 461 start-page: 788 year: 2009 end-page: 792 ident: CR103 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 50 start-page: 1005 year: 2014 end-page: 1009 ident: CR89 article-title: The integrated stress response in lung disease publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2014-0019TR – volume: 17 start-page: 1142 year: 2016 end-page: 1149 ident: CR3 article-title: Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 529 start-page: 23 year: 2019 end-page: 28 ident: CR67 article-title: The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease publication-title: Virology doi: 10.1016/j.virol.2019.01.006 – volume: 74 start-page: 347 year: 2019 end-page: 362 ident: CR92 article-title: Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.010 – volume: 29 start-page: 538 year: 2008 end-page: 550 ident: CR9 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 271 start-page: 26 year: 2017 ident: 894_CR63 publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.02.023 – volume: 136 start-page: 731 year: 2009 ident: 894_CR40 publication-title: Cell doi: 10.1016/j.cell.2009.01.042 – volume: 59 start-page: 407 year: 2005 ident: 894_CR47 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.031805.133833 – volume: 106 start-page: 8653 year: 2009 ident: 894_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 161 start-page: 1138 year: 2015 ident: 894_CR51 publication-title: Cell doi: 10.1016/j.cell.2015.04.002 – volume: 19 start-page: 1061 year: 2017 ident: 894_CR29 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3586 – volume: 46 start-page: 65 year: 2014 ident: 894_CR88 publication-title: Nat. Genet. doi: 10.1038/ng.2844 – volume: 153 start-page: 1094 year: 2013 ident: 894_CR1 publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 74 start-page: 105665 year: 2019 ident: 894_CR59 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2019.05.050 – volume: 204 start-page: 1559 year: 2007 ident: 894_CR66 publication-title: J. Exp. Med. doi: 10.1084/jem.20061845 – volume: 293 start-page: 4110 year: 2018 ident: 894_CR102 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001294 – volume: 108 start-page: 545 year: 2002 ident: 894_CR46 publication-title: Cell doi: 10.1016/S0092-8674(02)00642-6 – volume: 20 start-page: 613 year: 2019 ident: 894_CR58 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20030613 – volume: 13 start-page: 2429 year: 2002 ident: 894_CR87 publication-title: Neuroreport doi: 10.1097/00001756-200212200-00011 – volume: 567 start-page: 262 year: 2019 ident: 894_CR25 publication-title: Nature doi: 10.1038/s41586-019-1006-9 – volume: 529 start-page: 23 year: 2019 ident: 894_CR67 publication-title: Virology doi: 10.1016/j.virol.2019.01.006 – volume: 116 start-page: 7941 year: 2019 ident: 894_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1818281116 – volume: 109 start-page: 19386 year: 2012 ident: 894_CR79 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215006109 – volume: 41 start-page: 843 year: 2014 ident: 894_CR22 publication-title: Immunity doi: 10.1016/j.immuni.2014.10.019 – volume: 14 start-page: 382 year: 2013 ident: 894_CR69 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3588 – volume: 10 start-page: a032870 year: 2018 ident: 894_CR54 publication-title: Cold Spring Harb. Perspect. Biol doi: 10.1101/cshperspect.a032870 – volume: 11 start-page: a032896 year: 2019 ident: 894_CR82 publication-title: Cold Spring Harbor Perspect. Biol doi: 10.1101/cshperspect.a032896 – volume: 50 start-page: 1005 year: 2014 ident: 894_CR89 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2014-0019TR – volume: 114 start-page: E4612 year: 2017 ident: 894_CR76 publication-title: Proc. Natl Acad. Sci. USA – volume: 18 start-page: 157 year: 2015 ident: 894_CR105 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.001 – volume: 6 start-page: e1346765 year: 2017 ident: 894_CR68 publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1346765 – volume: 134 start-page: 587 year: 2008 ident: 894_CR77 publication-title: Cell doi: 10.1016/j.cell.2008.06.032 – volume: 478 start-page: 515 year: 2011 ident: 894_CR94 publication-title: Nature doi: 10.1038/nature10429 – volume: 25 start-page: 712 year: 2013 ident: 894_CR18 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2013.09.011 – volume: 76 start-page: 2137 year: 2016 ident: 894_CR23 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1885 – volume: 21 start-page: 1027 year: 2019 ident: 894_CR30 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0352-z – volume: 371 start-page: 507 year: 2014 ident: 894_CR37 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1312625 – volume: 10 start-page: 307 year: 2009 ident: 894_CR42 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2672 – volume: 116 start-page: 4946 year: 2019 ident: 894_CR55 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1813352116 – volume: 17 start-page: 1142 year: 2016 ident: 894_CR3 publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 171 start-page: 809 year: 2017 ident: 894_CR35 publication-title: Cell doi: 10.1016/j.cell.2017.09.034 – volume: 38 start-page: 79 year: 2020 ident: 894_CR6 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-070119-115052 – volume: 144 start-page: 254 year: 2019 ident: 894_CR38 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.01.044 – volume: 122 start-page: 901 year: 2005 ident: 894_CR57 publication-title: Cell doi: 10.1016/j.cell.2005.06.041 – volume: 140 start-page: 543 year: 2017 ident: 894_CR33 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.10.031 – volume: 300 start-page: 1148 year: 2003 ident: 894_CR13 publication-title: Science doi: 10.1126/science.1081315 – volume: 5 start-page: ra20 year: 2012 ident: 894_CR106 publication-title: Sci. Signal doi: 10.1126/scisignal.2002521 – volume: 36 start-page: 120 year: 2012 ident: 894_CR78 publication-title: Immunity doi: 10.1016/j.immuni.2011.11.018 – volume: 106 start-page: 20842 year: 2009 ident: 894_CR104 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0911267106 – volume: 2 start-page: 326 year: 2000 ident: 894_CR64 publication-title: Nat. Cell Biol. doi: 10.1038/35014014 – volume: 40 start-page: 424 year: 2020 ident: 894_CR50 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0718-19.2019 – volume: 30 start-page: 784 year: 2019 ident: 894_CR75 publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.003 – volume: 81 start-page: 4147 year: 2021 ident: 894_CR91 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.040 – volume: 93 start-page: e01806-18 year: 2019 ident: 894_CR73 publication-title: J. Virol. doi: 10.1128/JVI.01806-18 – volume: 80 start-page: 810 year: 2020 ident: 894_CR16 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.10.018 – volume: 169 start-page: 1307 year: 2010 ident: 894_CR65 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.05.076 – volume: 566 start-page: 259 year: 2019 ident: 894_CR101 publication-title: Nature doi: 10.1038/s41586-019-0928-6 – volume: 461 start-page: 788 year: 2009 ident: 894_CR103 publication-title: Nature doi: 10.1038/nature08476 – volume: 56 start-page: 723 year: 2014 ident: 894_CR27 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.11.027 – volume: 155 start-page: 1971 year: 2018 ident: 894_CR80 publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.09.010 – volume: 38 start-page: 648 year: 2018 ident: 894_CR86 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0628-17.2017 – volume: 339 start-page: 826 year: 2013 ident: 894_CR7 publication-title: Science doi: 10.1126/science.1229963 – volume: 368 start-page: eaat5314 year: 2020 ident: 894_CR81 publication-title: Science doi: 10.1126/science.aat5314 – volume: 11 start-page: 113 year: 2010 ident: 894_CR41 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2838 – volume: 455 start-page: 674 year: 2008 ident: 894_CR8 publication-title: Nature doi: 10.1038/nature07317 – volume: 567 start-page: 394 year: 2019 ident: 894_CR12 publication-title: Nature doi: 10.1038/s41586-019-1000-2 – volume: 397 start-page: 271 year: 1999 ident: 894_CR56 publication-title: Nature doi: 10.1038/16729 – volume: 127 start-page: 49 year: 2006 ident: 894_CR85 publication-title: Cell doi: 10.1016/j.cell.2006.09.014 – volume: 311 start-page: F763 year: 2016 ident: 894_CR62 publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00225.2016 – volume: 11 start-page: 1473 year: 2009 ident: 894_CR90 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1996 – volume: 83 start-page: 779 year: 2014 ident: 894_CR53 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035802 – volume: 300 start-page: 1584 year: 2003 ident: 894_CR100 publication-title: Science doi: 10.1126/science.1084677 – volume: 114 start-page: 746 year: 2017 ident: 894_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1611113114 – volume: 39 start-page: 44 year: 2018 ident: 894_CR20 publication-title: Trends Immunol. doi: 10.1016/j.it.2017.07.013 – volume: 9 start-page: 171 year: 2014 ident: 894_CR108 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 4 start-page: 491 year: 2003 ident: 894_CR14 publication-title: Nat. Immunol. doi: 10.1038/ni921 – volume: 550 start-page: 402 year: 2017 ident: 894_CR28 publication-title: Nature doi: 10.1038/nature24050 – volume: 29 start-page: 538 year: 2008 ident: 894_CR9 publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 339 start-page: 786 year: 2013 ident: 894_CR2 publication-title: Science doi: 10.1126/science.1232458 – volume: 115 start-page: E2058 year: 2018 ident: 894_CR48 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1716937115 – volume: 14 start-page: 53 year: 2018 ident: 894_CR61 publication-title: Mol. Omics doi: 10.1039/C7MO00114B – volume: 22 start-page: 3864 year: 2002 ident: 894_CR84 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.11.3864-3874.2002 – volume: 11 start-page: 1018 year: 2015 ident: 894_CR24 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.031 – volume: 52 start-page: 668 year: 2020 ident: 894_CR49 publication-title: Immunity doi: 10.1016/j.immuni.2020.03.004 – volume: 37 start-page: 269 year: 2018 ident: 894_CR96 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.10.006 – volume: 12 start-page: 7 year: 2015 ident: 894_CR15 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2015.01.004 – volume: 70 start-page: 3493 year: 2013 ident: 894_CR45 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-1252-6 – volume: 347 start-page: aaa2630 year: 2015 ident: 894_CR11 publication-title: Science doi: 10.1126/science.aaa2630 – volume: 112 start-page: E5699 year: 2015 ident: 894_CR17 publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: 283ra252 year: 2015 ident: 894_CR19 publication-title: Sci. Transl. Med. – volume: 6 start-page: 275 year: 2009 ident: 894_CR52 publication-title: Nat. Methods doi: 10.1038/nmeth.1314 – volume: 140 start-page: 805 year: 2010 ident: 894_CR4 publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 333 start-page: 228 year: 2011 ident: 894_CR26 publication-title: Science doi: 10.1126/science.1205405 – volume: 108 start-page: 6474 year: 2011 ident: 894_CR93 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016132108 – volume: 24 start-page: 525 year: 2021 ident: 894_CR97 publication-title: Mol. Med. Rep doi: 10.3892/mmr.2021.12164 – volume: 18 start-page: 7499 year: 1998 ident: 894_CR98 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.12.7499 – volume: 19 start-page: 362 year: 2017 ident: 894_CR107 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3496 – volume: 44 start-page: 739 year: 2016 ident: 894_CR5 publication-title: Immunity doi: 10.1016/j.immuni.2016.04.002 – volume: 23 start-page: 3537 year: 2018 ident: 894_CR71 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.029 – volume: 8 start-page: 1471 year: 2019 ident: 894_CR60 publication-title: Cells doi: 10.3390/cells8121471 – volume: 11 start-page: 619 year: 2003 ident: 894_CR44 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00105-9 – volume: 110 start-page: 16544 year: 2013 ident: 894_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1308331110 – volume: 150 start-page: 803 year: 2012 ident: 894_CR72 publication-title: Cell doi: 10.1016/j.cell.2012.06.040 – volume: 567 start-page: 389 year: 2019 ident: 894_CR70 publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 12 start-page: 21 year: 2011 ident: 894_CR43 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3025 – volume: 8 start-page: 2281 year: 2013 ident: 894_CR109 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 112 start-page: 15408 year: 2015 ident: 894_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1512832112 – volume: 75 start-page: 1145 year: 2009 ident: 894_CR74 publication-title: Kidney Int. doi: 10.1038/ki.2009.86 – volume: 216 start-page: 867 year: 2019 ident: 894_CR36 publication-title: J. Exp. Med. doi: 10.1084/jem.20182192 – volume: 25 start-page: 406 year: 2000 ident: 894_CR83 publication-title: Nat. Genet. doi: 10.1038/78085 – volume: 110 start-page: 4628 year: 2013 ident: 894_CR99 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1217611110 – volume: 178 start-page: 838 year: 2008 ident: 894_CR95 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200802-313OC – volume: 74 start-page: 347 year: 2019 ident: 894_CR92 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.010 – volume: 214 start-page: 1769 year: 2017 ident: 894_CR32 publication-title: J. Exp. Med. doi: 10.1084/jem.20161674 |
SSID | ssj0014407 |
Score | 2.6715016 |
Snippet | Innate DNA sensing via the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) mechanism surveys microbial invasion and cellular damage and... Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 766 |
SubjectTerms | 13/1 13/109 13/51 13/95 14/32 38/39 38/77 631/250/262 631/337/574 631/80/304 631/80/509 64/60 82/80 82/83 96/35 96/63 Autoimmune diseases Biomedical and Life Sciences Cancer Research Cell Biology Cellular Senescence Cyclic GMP Deoxyribonucleic acid Developmental Biology DNA DNA - metabolism eIF-2 Kinase Endoplasmic reticulum Endoplasmic Reticulum - metabolism Fibrosis Humans Immunity Immunity, Innate Infectious diseases Inflammation Innate immunity Interferon Interferon regulatory factor 3 Kinases Life Sciences Membrane Proteins - genetics Membrane Proteins - metabolism Microorganisms mRNA Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism Protein Biosynthesis Protein folding Protein Serine-Threonine Kinases Pyruvate Kinase - metabolism Senescence Signal Transduction - physiology Stem Cells Stimulators Translation |
Title | A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis |
URI | https://link.springer.com/article/10.1038/s41556-022-00894-z https://www.ncbi.nlm.nih.gov/pubmed/35501370 https://www.proquest.com/docview/2663837698 https://www.proquest.com/docview/2659228577 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB61IKReEBTahlJkJG5gkT8n8QntVrtQECvEj7S3aOI4EtJql5JFCNQD78Ab9kk6k3gXIVROOSROYo89841nPB_ADuokrbQtmL3MyFiZRKINrCxijdrXPsYF73ecDpKjq_h4qIZuw612aZUzndgo6nJieI98nwwJO1OJzg5ufktmjeLoqqPQ-AiLXLqMU7rS4dzh4rhl2p4uUjIlIOAOzfhRtl-zIeX021CSFdSxfHxtmN6gzTeR0sYA9Vdg2SFH0WlFvQof7PgzLLVckg9r8KcjyJOXNFKT5qijMIedi79PzxeXvwaHdD3rnZ8I5h--xwdRoWmrc9taEAIUU7ZYI7cvKFzOljCOBkEQsBU1K0XDekDguBQNG5SoyNme1Nf1Olz1e5c_j6SjVpCG8M9UkukyWCIXAlWBTTOTEc5IAvSRhKdSWrRGxVYVrIOqMqlSjKihzZAQWmExjL7AAnXHfgNhdIGBj5GKbBIzmXpQGfKrY-1XpaH17UEwG9fcuLrjTH8xypv4d5TlrSxykkXeyCJ_9GB33uamrbrx7tObM3HlbgXW-ct88WB7fpvWDgdEcGwnd_yM0mGYUX89-NqKef45wmFcjdH3YG8m95eX__9fNt7_l-_wKWzmHGdMbsLC9PbO_iBUMy22mqm7BYudfrc7oGu3Nzg7_weUy_bm |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4EChgJTmA1DzuJDwgtsO0u266qdiv1ZhzHkZCqpJCtqq048B_4H_wofgkzeWyFKnrrKYfYie0Zz8Mzng_glVFxUiiXEXqZ5ULamBsXOJ4JZZSvfCMyOu_YncXjQ_H5SB6twe_-LgylVfYysRHUeWXpjHwTFQk5U7FK359844QaRdHVHkKjZYupW56hy1a_m3xC-r4Ow63R_OOYd6gC3KLqX3CU2tbkhmpgysAlqU1RxcaB8Q2OWybIr1YKJzPafkUeF4mJsKNLDRonmTNU6ABF_rqI0JUZwPqH0WxvfxW3EKK5oI3iR_IETY_umo4fpZs1qW5K-A056l0l-Pm_qvCSfXspNtuovK07cLuzVdmwZa67sObKe3CjRa9c3ocfQ1ZWJUfaVM3lSma3hwd_fv46mE9m2_jcG-1PGSEen5klK4xt64G7mqHNyRakI4-7k0jWZYkx2wEvMDSlWU1i2JLkYabMWYM_xQp076v6a_0ADq9l2R_CAKfjHgOzKjOBbyIZuVgQfHtQWPTkhfKL3KJE8SDo11XbrtI5AW4c6ybiHqW6pYVGWuiGFvrcgzerPidtnY8rW2_05NLdnq_1BYd68HL1GncrhWBM6apTaiNVGKY4Xw8etWRe_Q4tP6r_6Hvwtqf7xcf_P5YnV4_lBdwcz3d39M5kNn0Kt8KG_yhfcwMGi--n7hnaVIvsecfIDL5c9975C6CHMRo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VRSAuFf-4lLJIcIJV_Le294BQ1DZtCEQVbaXclvV6LVWq7BanqlJx4B14Gx6HJ2HGXqdCFb31lEPsxOv5-2Zndj6AN1omaSltTuxlhsfCJFzbwPI8llr60tdxTvsdX6bJ3lH8aSZmK_C7PwtDbZW9T2wddVEb2iMfYCChZCqR2aB0bRH726OPp2ecGKSo0trTaXQqMrGLC0zfmg_jbZT12zAc7Rxu7XHHMMANwoA5Rw9udKFpHqYIbJqZDMNtEmhf4xpEirprRGxFTqZYFkmZ6ghvtJlGoJJbTUMP0P3fSSMRkI2ls2WyRzXTtDvZJHiKIMQd2PGjbNBQEKfW35BjBJYxv_w3KF5DuteqtG3wGz2ANYda2bBTs4ewYqtHcLfjsVw8hh9DVtUVRynV7TFLZnaHB39-_jo4HE938XN_5-uEEffxhV6wUptuMrhtGKJPNqdoeeL2JJnrF2PGUTAwBNWsIYdsyAcxXRWsZaJiJSb6dXPcPIGjW3npT2EVl2OfAzMy14GvIxHZJCYi96A0mNPH0i8Lg77Fg6B_r8q4medEvXGi2tp7lKlOFgploVpZqEsP3i3vOe0mftx49UYvLuWsv1FXuurB6-XXaLdUjNGVrc_pGiHDMMP1evCsE_Py7xAD0iRI34P3vdyvfvz_z7J-87O8gntoMerzeDp5AffDVv2ocXMDVuffz-1LBFfzfLPVYgbfbtts_gKkCzPq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-canonical+cGAS-STING-PERK+pathway+facilitates+the+translational+program+critical+for+senescence+and+organ+fibrosis&rft.jtitle=Nature+cell+biology&rft.au=Zhang%2C+Dan&rft.au=Liu%2C+Yutong&rft.au=Zhu%2C+Yezhang&rft.au=Zhang%2C+Qian&rft.date=2022-05-01&rft.issn=1476-4679&rft.eissn=1476-4679&rft.volume=24&rft.issue=5&rft.spage=766&rft_id=info:doi/10.1038%2Fs41556-022-00894-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |