The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features
Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in “affective computing.” This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (G...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 43; no. 1; pp. 119 - 134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in “affective computing.” This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals’ irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively. |
---|---|
AbstractList | Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively. Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively.Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively. |
Author | Goshvarpour, Atefeh Goshvarpour, Ateke |
Author_xml | – sequence: 1 givenname: Atefeh surname: Goshvarpour fullname: Goshvarpour, Atefeh organization: Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology – sequence: 2 givenname: Ateke orcidid: 0000-0002-5185-5645 surname: Goshvarpour fullname: Goshvarpour, Ateke email: ateke.goshvarpour@gmail.com, ak_goshvarpour@imamreza.ac.ir organization: Department of Biomedical Engineering, Imam Reza International University, Imam Reza International University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31776972$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv3CAUhVE1UfP8A11USN1044aXwV5WUdtEitTNZI0Y5tpDaoMLuNL8-zCPpFIWs-KAvgOHey7RwgcPCH2i5BslRN0mypmQFaFtRUjD6kp9QBdMSlYJxdXiTbP2HN2k9EwIYTWlStYf0TmnSslWsQvklxvAU8jgszMDDh2eNiGHaYC82aYx9NGM2Pg17s3wz3hncfrjPI6QpuAT4KJhDNmF3ZkNvXd7PSfne1wiD86DibgDk-diukZnnRkS3BzXK_T088fy7r56_P3r4e77Y2WFoLninbJdbVbWtERRaAkzFBQwsIRKUa8YW8uufMZ2ZWcl4wIaSWvbSs7tak34Ffp6uHeK4e8MKevRJQvDYDyEOWnGaStawZod-uUd-hzm6Eu6QtWNoqIhTaE-H6l5NcJaT9GNJm716yQLwA6AjSGlCN0bQoneNaYPjenSmN43plUxNe9M1mWzm2COxg2nrfxgTeUd30P8H_uE6wW30asj |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107089 crossref_primary_10_1007_s40846_022_00762_z crossref_primary_10_1142_S1469026821500231 crossref_primary_10_3390_brainsci13050759 crossref_primary_10_3389_fnbeh_2021_720451 crossref_primary_10_1007_s11571_023_09968_6 crossref_primary_10_3390_s21248336 crossref_primary_10_1016_j_bios_2022_114923 crossref_primary_10_3390_s20144037 crossref_primary_10_3390_electronics13163333 crossref_primary_10_1016_j_measurement_2021_109966 crossref_primary_10_1007_s11760_022_02248_6 crossref_primary_10_4103_jmss_jmss_59_22 crossref_primary_10_5057_ijae_TJSKE_D_20_00073 crossref_primary_10_5057_ijae_IJAE_D_20_00011 crossref_primary_10_1007_s11571_021_09735_5 crossref_primary_10_1007_s12559_024_10361_6 crossref_primary_10_32438_WPE_302021 crossref_primary_10_3389_fnbot_2022_834952 crossref_primary_10_35508_jme_v12i2_11809 crossref_primary_10_1088_1741_2552_ac1982 crossref_primary_10_1007_s11042_021_11304_1 crossref_primary_10_1016_j_bspc_2021_103290 crossref_primary_10_1007_s13246_022_01117_3 crossref_primary_10_1007_s40846_020_00526_7 crossref_primary_10_32438_WPE_312021 crossref_primary_10_2139_ssrn_4999642 crossref_primary_10_1016_j_bspc_2025_107749 crossref_primary_10_1007_s00500_023_08253_2 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1016_j_measurement_2020_108747 crossref_primary_10_1007_s11760_021_01928_z crossref_primary_10_1080_09544828_2024_2362589 |
Cites_doi | 10.1016/j.jelectrocard.2017.08.020 10.1016/j.asoc.2015.04.008 10.1109/JBHI.2016.2625271 10.1007/978-3-319-32703-7_248 10.1016/j.bspc.2017.05.006 10.1016/j.compbiomed.2016.12.005 10.1109/SMARTCOMP.2014.7043860 10.1016/j.cogsys.2018.11.010 10.1109/T-AFFC.2011.15 10.1073/pnas.88.6.2297 10.1016/j.dsp.2017.10.016 10.1109/TPAMI.2008.26 10.1007/s11760-015-0822-0 10.1007/BF02344719 10.1142/S0218127400001407 10.1016/j.bj.2017.11.001 10.1016/j.ijleo.2017.10.116 10.1016/j.chaos.2018.07.035 10.1016/j.bspc.2016.12.005 10.1016/j.yebeh.2003.12.003 10.1109/TBME.2017.2676243 10.1016/j.ijpsycho.2017.11.008 10.1109/FG.2011.5771352 10.1016/j.autcon.2016.08.029 10.3390/s19081874 10.1016/j.bspc.2017.05.010 10.1007/s11760-017-1092-9 10.1016/j.compbiomed.2014.03.005 10.4015/S101623721650040X 10.1016/j.eswa.2017.01.040 10.1109/LSP.2015.2509868 10.1109/TBME.2013.2270083 10.1016/j.physbeh.2012.01.020 10.1016/j.jocn.2008.09.022 10.1016/j.clinph.2014.03.024 10.1016/S1297-9562(00)90030-5 10.1007/s10044-016-0567-6 10.1109/TBCAS.2015.2477437 10.1007/s11760-019-01460-1 10.1016/j.asoc.2015.07.032 10.1111/j.1469-8986.1993.tb03352.x 10.1007/s11571-018-9516-y 10.1016/S0304-3940(02)00462-7 10.1016/j.procs.2016.04.062 10.1109/WCSE.2013.34 10.1016/j.procs.2017.09.090 10.1016/j.bspc.2019.101646 10.1016/j.neucom.2016.08.153 10.1142/S0218127492000318 10.1007/s11280-012-0181-5 10.1016/0167-2789(93)90009-P 10.1007/s11760-018-1379-5 10.1016/j.cmpb.2017.06.010 10.1016/j.chaos.2015.05.005 10.1007/s13246-017-0530-x 10.1007/s13246-017-0571-1 10.1016/j.compbiomed.2016.12.016 10.3390/electronics8020192 |
ContentType | Journal Article |
Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2019 Australasian Physical Engineering Sciences in Medicine is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2019 – notice: Australasian Physical Engineering Sciences in Medicine is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s13246-019-00825-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2662-4737 1879-5447 |
EndPage | 134 |
ExternalDocumentID | 31776972 10_1007_s13246_019_00825_7 |
Genre | Journal Article |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AANZL AASML AATNV AAUYE AAYZH ABAKF ABDZT ABECU ABJNI ABMQK ABSXP ABTEG ABTKH ACAOD ACDTI ACHSB ACMDZ ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEVLU AFBBN AFLOW AFQWF AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG BGNMA DDRTE DNIVK DPUIP EBLON EBS EMB EMOBN FERAY FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SV3 UOJIU UTJUX ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION -EM ..I 06D 0VY 1N0 203 23N 29~ 2KG 30V 36B 4.4 408 40D 53G 5GY 67N 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8WZ 96X A6W AAIAL AAJKR AARTL AATVU AAWCG AAYIU AAYQN AAZMS ABFTV ABJOX ABKCH ABPLI ABQBU ABTHY ABTMW ABUWG ABXPI ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADINQ ADKPE ADRFC ADURQ ADZKW AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AETCA AEXYK AFKRA AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIIXL AITGF AJRNO AJZVZ AKMHD ALFXC ALIPV AMKLP AMYQR ANMIH ARAPS AXYYD AZQEC BENPR BGLVJ BPHCQ BVXVI CCPQU CSCUP DWQXO EIOEI EN4 ESBYG FRRFC FYJPI FYUFA GGRSB GJIRD GNUQQ GQ6 GQ7 HCIFZ HMCUK HMJXF HRMNR HZ~ I0C ITM J0Z JBSCW KOV KTM M1P M2P NPM O9- O93 O9I O9J P2P P62 PQQKQ PROAC PSQYO R9I RLLFE S27 S3A S3B SBL SHX SISQX SPISZ SSXJD STPWE T13 TSG U2A U9L UG4 UKHRP UZXMN VC2 VFIZW W48 WK8 WOQ Z45 ZOVNA ~A9 3V. 7XB 8FK K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c441t-3f7cf5abca9071e902a1e7e2ec01645b22d6f117cf645c6234e8615c9633cbd03 |
IEDL.DBID | 7X7 |
ISSN | 2662-4729 0158-9938 1879-5447 |
IngestDate | Fri Jul 11 11:38:20 EDT 2025 Fri Jul 25 04:04:37 EDT 2025 Thu Jan 02 22:35:08 EST 2025 Tue Jul 01 02:52:54 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Fri Feb 21 02:33:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Emotion recognition Nonlinear dynamics Galvanic skin response Fusion Photoplethysmogram |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-3f7cf5abca9071e902a1e7e2ec01645b22d6f117cf645c6234e8615c9633cbd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5185-5645 |
PMID | 31776972 |
PQID | 2358714808 |
PQPubID | 33672 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2319494280 proquest_journals_2358714808 pubmed_primary_31776972 crossref_primary_10_1007_s13246_019_00825_7 crossref_citationtrail_10_1007_s13246_019_00825_7 springer_journals_10_1007_s13246_019_00825_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine |
PublicationTitle | Australasian physical & engineering sciences in medicine |
PublicationTitleAbbrev | Phys Eng Sci Med |
PublicationTitleAlternate | Australas Phys Eng Sci Med |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Verhoef, Lisetti, Barreto, Ortega, van der Zant, Cnossen, Jacko (CR35) 2009 Salazar-Ramirez, Irigoyen, Martinez, Zalabarria (CR31) 2018; 271 Goshvarpour, Abbasi, Goshvarpour, Daneshvar (CR41) 2017; 11 Mert, Akan (CR63) 2018; 21 CR38 Temko (CR8) 2017; 64 CR37 CR36 Jing, Mao, Chen (CR2) 2018; 72 Zhao, Sun, Wan, Wang (CR11) 2017; 33 Kim, Andre (CR24) 2008; 30 van Dooren, de Vries, Janssen (CR26) 2012; 106 Gil, Laguna, Martinez, Barquero-Perez, Garcia-Alberola, Sornmo (CR3) 2013; 60 Goshvarpour, Goshvarpour (CR52) 2019; 54 Khalfa, Isabelle, Jean-Pierre, Manon (CR23) 2002; 328 Martinez, Irigoyen, Arruti, Martin, Muguerza (CR30) 2017; 148 Thomas, Crutch, Camic (CR33) 2018; 123 Guo, Naik, Huang, Abraham, Nguyen (CR51) 2015; 36 Khan, Lawo (CR40) 2016 Solosenko, Petrenas, Marozas (CR4) 2015; 9 Cheng, Liu, Lai (CR39) 2014; 10 Zhang, Hu, Chen, Moore (CR61) 2013; 16 Sariahmetoglu, Soysal, Sen, Yuksel, Celiker, Ciftci-Kavaklioglu, Arpaci (CR28) 2014; 125 Chen, Zhao, Ye, Zhang, Zou (CR32) 2017; 85 Longmore, Lui, Naik, Breen, Jalaludin, Gargiulo (CR16) 2019; 19 Demuth, Beale (CR59) 2000 Fusar-Poli, Landi, O’Connor (CR22) 2009; 16 Hwang, Seo, Jebelli, Lee (CR6) 2016; 71 Kavsaoglua, Polat, Hariharan (CR19) 2015; 37 Goshvarpour, Abbasi, Goshvarpour, Daneshvar (CR42) 2016; 28 Sumida, Arimitu (CR47) 2000; 10 Firoozabadi, Helfenbein, Babaeizadeh (CR9) 2017; 50 Resit Kavsaoglu, Polat, Recep Bozkurt (CR12) 2014; 49 Kim, Bang, Kim (CR34) 2004; 42 Goshvarpour, Goshvarpour (CR44) 2018; 114 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR49) 2012; 3 Lang, Greenwald, Bradely, Hamm (CR25) 1993; 30 Kumar, Khaund, Hazarika (CR50) 2016; 84 Goshvarpour, Goshvarpour (CR53) 2019; 13 Lee, Lee, Shin (CR17) 2019; 8 Zhalehpour, Akhtar, Erdem (CR1) 2005; 10 Zha, Liu, Shang, Wang, Cai, Wei (CR18) 2018; 156 Rosenstein, Collins, De Luca (CR57) 1993; 65 Goshvarpour, Abbasi, Goshvarpour (CR54) 2017; 40 Solosenko, Petrenas, Marozas, Sornmo (CR5) 2017; 81 Hassani, Foruzan (CR15) 2019; 13 Sviridova, Sakai (CR48) 2015; 77 Domínguez-Jiménez, Campo-Landines, Martínez-Santos, Delahoz, Contreras-Ortiz (CR45) 2019; 55 Goshvarpour, Abbasi, Goshvarpour (CR43) 2017; 40 Papapanagiotou, Diou, Zhou, van den Boer, Mars, Delopoulos (CR13) 2017; 21 Sriramprakash, Prasanna Vadana, Ramana Murthy (CR29) 2017; 115 Tsuda (CR46) 1992; 2 Nagai, Goldstein, Fenwick, Trimble (CR21) 2004; 5 Pincus (CR58) 1991; 88 Boloursaz Mashhadi, Asadi, Eskandari, Kiani, Marvasti (CR7) 2016; 23 Liu, Sourina, Gavrilova, Tan, Mao, Hong (CR62) 2014 Orphanidou (CR14) 2017; 81 Goshvarpour, Abbasi, Goshvarpour (CR56) 2017; 38 Goshvarpour, Goshvarpour (CR64) 2019; 13 Islam, Rabbi, Dobaie, Hasan (CR10) 2017; 38 Younessi Heravi, Khalilzadeh, Sarafan, Azarnoosh (CR27) 2013; 2 CR60 Sudheesh, Joseph (CR20) 2000; 21 Goshvarpour, Abbasi, Goshvarpour (CR55) 2017; 40 M Boloursaz Mashhadi (825_CR7) 2016; 23 S Khalfa (825_CR23) 2002; 328 MA Younessi Heravi (825_CR27) 2013; 2 A Goshvarpour (825_CR43) 2017; 40 H Sariahmetoglu (825_CR28) 2014; 125 Y Liu (825_CR62) 2014 A Goshvarpour (825_CR54) 2017; 40 A Goshvarpour (825_CR42) 2016; 28 R Martinez (825_CR30) 2017; 148 A Solosenko (825_CR4) 2015; 9 A Mert (825_CR63) 2018; 21 A Hassani (825_CR15) 2019; 13 D Zhao (825_CR11) 2017; 33 P Fusar-Poli (825_CR22) 2009; 16 X Zhang (825_CR61) 2013; 16 A Resit Kavsaoglu (825_CR12) 2014; 49 KH Kim (825_CR34) 2004; 42 AR Kavsaoglua (825_CR19) 2015; 37 MS Islam (825_CR10) 2017; 38 A Goshvarpour (825_CR44) 2018; 114 JA Domínguez-Jiménez (825_CR45) 2019; 55 N Sviridova (825_CR48) 2015; 77 825_CR60 S Zhalehpour (825_CR1) 2005; 10 T Verhoef (825_CR35) 2009 E Gil (825_CR3) 2013; 60 MT Rosenstein (825_CR57) 1993; 65 S Jing (825_CR2) 2018; 72 GEC Thomas (825_CR33) 2018; 123 T Sumida (825_CR47) 2000; 10 J Cheng (825_CR39) 2014; 10 A Temko (825_CR8) 2017; 64 C Orphanidou (825_CR14) 2017; 81 SK Longmore (825_CR16) 2019; 19 A Goshvarpour (825_CR64) 2019; 13 M van Dooren (825_CR26) 2012; 106 H Demuth (825_CR59) 2000 A Goshvarpour (825_CR53) 2019; 13 825_CR36 825_CR37 N Kumar (825_CR50) 2016; 84 A Goshvarpour (825_CR56) 2017; 38 YT Zha (825_CR18) 2018; 156 S Sriramprakash (825_CR29) 2017; 115 825_CR38 Ali Mehmood Khan (825_CR40) 2016 SM Pincus (825_CR58) 1991; 88 J Kim (825_CR24) 2008; 30 A Salazar-Ramirez (825_CR31) 2018; 271 A Goshvarpour (825_CR55) 2017; 40 NN Sudheesh (825_CR20) 2000; 21 S Hwang (825_CR6) 2016; 71 P Lang (825_CR25) 1993; 30 H Lee (825_CR17) 2019; 8 A Goshvarpour (825_CR52) 2019; 54 A Goshvarpour (825_CR41) 2017; 11 Y Nagai (825_CR21) 2004; 5 V Papapanagiotou (825_CR13) 2017; 21 S Koelstra (825_CR49) 2012; 3 Y Guo (825_CR51) 2015; 36 I Tsuda (825_CR46) 1992; 2 R Firoozabadi (825_CR9) 2017; 50 A Solosenko (825_CR5) 2017; 81 LI Chen (825_CR32) 2017; 85 |
References_xml | – volume: 30 start-page: 261 year: 1993 end-page: 273 ident: CR25 article-title: Looking at pictures—affective, facial, visceral, and behavioral reactions publication-title: Psychophysiol – volume: 40 start-page: 355 year: 2017 end-page: 368 ident: CR43 article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method publication-title: Biomed J – volume: 115 start-page: 359 year: 2017 end-page: 366 ident: CR29 article-title: Stress detection in working people publication-title: Procedia Comput Sci – volume: 81 start-page: 130 year: 2017 end-page: 138 ident: CR5 article-title: Modeling of the photoplethysmogram during atrial fibrillation publication-title: Comput Biol Med – volume: 106 start-page: 298 year: 2012 end-page: 304 ident: CR26 article-title: Emotional sweating across the body: comparing 16 different skin conductance measurement locations publication-title: Physiol Behav – start-page: 1297 year: 2016 end-page: 1303 ident: CR40 article-title: Recognizing Emotion from Blood Volume Pulse and Skin Conductance Sensor Using Machine Learning Algorithms publication-title: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016 – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: CR49 article-title: DEAP: a database for emotion analysis using physiological signals publication-title: IEEE Trans Affect Comput – volume: 10 start-page: 827 year: 2005 end-page: 834 ident: CR1 article-title: Multimodal emotion recognition based on peak frame selection from video publication-title: SIViP – volume: 21 start-page: 607 year: 2017 end-page: 618 ident: CR13 article-title: A novel chewing detection system based on PPG, audio and accelerometry publication-title: IEEE J Biomed Health Inform – volume: 38 start-page: 67 year: 2017 end-page: 73 ident: CR56 article-title: Do men and women have different ECG responses to sad pictures? publication-title: Biomed Signal Process Control – volume: 88 start-page: 2297 year: 1991 end-page: 2301 ident: CR58 article-title: Approximate entropy as a measure of system complexity publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 2331 year: 2014 end-page: 2339 ident: CR39 article-title: Calculation of nonlinear features of SC for emotion recognition publication-title: J Comput Inform Syst – volume: 84 start-page: 31 year: 2016 end-page: 35 ident: CR50 article-title: Bispectral analysis of EEG for emotion recognition publication-title: Procedia Comput Sci – volume: 16 start-page: 981 year: 2009 end-page: 982 ident: CR22 article-title: Neurophysiological response to emotional faces with increasing intensity of fear: a skin conductance response study publication-title: J Clin Neurosci – volume: 64 start-page: 2016 year: 2017 end-page: 2024 ident: CR8 article-title: Accurate heart rate monitoring during physical exercises using PPG publication-title: IEEE Trans Biomed Eng – volume: 19 start-page: 1874 year: 2019 ident: CR16 article-title: A comparison of reflective photoplethysmography for detection of heart rate, blood oxygen saturation, and respiration rate at various anatomical locations publication-title: Sensors – volume: 148 start-page: 81 year: 2017 end-page: 90 ident: CR30 article-title: A real-time stress classification system based on arousal analysis of the nervous system by an F-state machine publication-title: Comput Methods Programs Biomed – volume: 60 start-page: 3149 year: 2013 end-page: 3155 ident: CR3 article-title: Heart rate turbulence analysis based on photoplethysmography publication-title: IEEE Trans Biomed Eng – volume: 10 start-page: 2245 year: 2000 end-page: 2255 ident: CR47 article-title: Mental conditions reflected by chaos of pulsation in the capillary vessels publication-title: Int J Bifurcat Chaos – volume: 114 start-page: 400 year: 2018 end-page: 407 ident: CR44 article-title: Poincaré's section analysis for PPG-based automatic emotion recognition publication-title: Chaos Soliton Fract – volume: 13 start-page: 531 year: 2019 end-page: 539 ident: CR53 article-title: Gender and age classification using a new poincare section-based feature set of ECG publication-title: SIViP – volume: 55 start-page: 101646 year: 2019 ident: CR45 article-title: A machine learning model for emotion recognition from physiological signals publication-title: Biomed Signal Process Control – volume: 40 start-page: 617 year: 2017 end-page: 629 ident: CR55 article-title: Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged poincare plots publication-title: Australas Phys Eng Sci Med – volume: 8 start-page: 192 year: 2019 ident: CR17 article-title: Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots publication-title: Electronics – year: 2009 ident: CR35 article-title: Bio-sensing for emotional characterization without word labels publication-title: Human-computer interaction ambient, ubiquitous and intelligent interaction HCI 2009 lecture notes in computer science – ident: CR60 – ident: CR36 – volume: 11 start-page: 1347 year: 2017 end-page: 1355 ident: CR41 article-title: Discrimination between different emotional states based on the chaotic behavior of galvanic skin responses publication-title: SIViP – volume: 33 start-page: 316 year: 2017 end-page: 324 ident: CR11 article-title: SFST: a robust framework for heart rate monitoring from photoplethysmography signals during physical activities publication-title: Biomed Signal Process Control – volume: 40 start-page: 277 year: 2017 end-page: 287 ident: CR54 article-title: Indices from lagged poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination publication-title: Australas Phys Eng Sci Med – volume: 16 start-page: 497 year: 2013 end-page: 513 ident: CR61 article-title: Ontology-based context modeling for emotion recognition in an intelligent web publication-title: World Wide Web – volume: 9 start-page: 662 year: 2015 end-page: 669 ident: CR4 article-title: Photoplethysmography-based method for automatic detection of premature ventricular contractions publication-title: IEEE Trans Biomed Circuits Syst – volume: 13 start-page: 1141 year: 2019 ident: CR15 article-title: Improved PPG-based estimation of the blood pressure using latent space features publication-title: SIViP – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: CR57 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D – volume: 72 start-page: 216 year: 2018 end-page: 231 ident: CR2 article-title: Prominence features: effective emotional features for speech emotion recognition publication-title: Digit Signal Process – volume: 54 start-page: 21 year: 2019 end-page: 36 ident: CR52 article-title: Do meditators and non-meditators have different HRV dynamics? publication-title: Cogn Syst Res – volume: 50 start-page: 841 year: 2017 end-page: 846 ident: CR9 article-title: Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography publication-title: J Electrocardiol – volume: 5 start-page: 216 year: 2004 end-page: 223 ident: CR21 article-title: Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: a preliminary randomized controlled study publication-title: Epilepsy Behav – year: 2000 ident: CR59 publication-title: Neural network toolbox – ident: CR37 – volume: 81 start-page: 45 year: 2017 end-page: 54 ident: CR14 article-title: Derivation of respiration rate from ambulatory ECG and PPG using ensemble empirical mode decomposition: comparison and fusion publication-title: Comput Biol Med – volume: 42 start-page: 419 year: 2004 end-page: 427 ident: CR34 article-title: Emotion recognition system using short-term monitoring of physiological signals publication-title: Med Biol Eng Comput – volume: 49 start-page: 1 year: 2014 end-page: 14 ident: CR12 article-title: A novel feature ranking algorithm for biometric recognition with PPG signals publication-title: Comput Biol Med – volume: 2 start-page: 313 year: 1992 end-page: 324 ident: CR46 article-title: Chaotic pulsation in human capillary vessels and its dependence on mental and physical conditions publication-title: Int J Bifurcat Chaos – volume: 38 start-page: 212 year: 2017 end-page: 223 ident: CR10 article-title: PREHEAT: precision heart rate monitoring from intense motion artifact corrupted PPG signals using constrained RLS and wavelets publication-title: Biomed Signal Process Control – volume: 156 start-page: 22 year: 2018 end-page: 30 ident: CR18 article-title: Non-invasive assessment of cerebral hemodynamics with CWNIRS-ICG and application of EEMD-SSE in PPG signal extraction publication-title: Optik – volume: 37 start-page: 983 year: 2015 end-page: 991 ident: CR19 article-title: Non-invasive prediction of hemoglobin level using machine learning techniques with the PPG signal’s characteristics features publication-title: Appl Soft Comput – volume: 21 start-page: 81 year: 2018 end-page: 89 ident: CR63 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal Appl – volume: 36 start-page: 633 year: 2015 end-page: 640 ident: CR51 article-title: Nonlinear multiscale maximal Lyapunov exponent for accurate myoelectric signal classification publication-title: Appl Soft Comput – volume: 30 start-page: 2067 year: 2008 end-page: 2083 ident: CR24 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 28 start-page: 1650040 year: 2016 ident: CR42 article-title: A novel signal-based fusion approach for accurate music emotion recognition publication-title: Biomed Eng Appl Basis Commun – volume: 71 start-page: 372 year: 2016 end-page: 381 ident: CR6 article-title: Feasibility analysis of heart rate monitoring of construction workers using a photoplethysmography (PPG) sensor embedded in a wristband-type activity tracker publication-title: Automat Constr – start-page: 199 year: 2014 end-page: 223 ident: CR62 article-title: Real-time subject-dependent EEG-based emotion recognition algorithm publication-title: Transactions on Computer Science – ident: CR38 – volume: 77 start-page: 53 year: 2015 end-page: 63 ident: CR48 article-title: Human photoplethysmogram: new insight into chaotic characteristics publication-title: Chaos Solitons Fractals – volume: 271 start-page: 48 year: 2018 end-page: 57 ident: CR31 article-title: An enhanced fuzzy algorithm based on advanced signal processing for identification of stress publication-title: Neurocomput – volume: 23 start-page: 227 year: 2016 end-page: 231 ident: CR7 article-title: Heart rate tracking using wrist-type photoplethysmographic (PPG) signals during physical exercise with simultaneous accelerometry publication-title: IEEE Signal Process Lett – volume: 13 start-page: 161 year: 2019 end-page: 173 ident: CR64 article-title: EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences publication-title: Cognitive Neurodyn – volume: 123 start-page: 64 year: 2018 end-page: 73 ident: CR33 article-title: Measuring physiological responses to the arts in people with a dementia publication-title: Int J Psychophysiol – volume: 21 start-page: 158 year: 2000 end-page: 163 ident: CR20 article-title: Investigation into the effects of music and meditation on galvanic skin response publication-title: ITBM-RBM – volume: 328 start-page: 145 year: 2002 end-page: 149 ident: CR23 article-title: Event-related skin conductance responses to musical emotions in humans publication-title: Neurosci Lett – volume: 85 start-page: 279 year: 2017 end-page: 291 ident: CR32 article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers publication-title: Expert Syst Appl – volume: 125 start-page: 2436 year: 2014 end-page: 2440 ident: CR28 article-title: Forehead sympathetic skin responses in determining autonomic involvement in Parkinson’s disease publication-title: Clin Neurophysiol – volume: 2 start-page: 49 year: 2013 end-page: 60 ident: CR27 article-title: Lie detector system based on PhotoPlethysmoGraph (PPG) and galvanic skin response (GSR) signals by means of neural network publication-title: Signal Data Process – volume: 2 start-page: 49 year: 2013 ident: 825_CR27 publication-title: Signal Data Process – volume: 50 start-page: 841 year: 2017 ident: 825_CR9 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2017.08.020 – volume: 37 start-page: 983 year: 2015 ident: 825_CR19 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.04.008 – volume: 21 start-page: 607 year: 2017 ident: 825_CR13 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2016.2625271 – start-page: 1297 volume-title: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016 year: 2016 ident: 825_CR40 doi: 10.1007/978-3-319-32703-7_248 – volume: 38 start-page: 67 year: 2017 ident: 825_CR56 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.05.006 – volume: 81 start-page: 45 year: 2017 ident: 825_CR14 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.12.005 – ident: 825_CR38 doi: 10.1109/SMARTCOMP.2014.7043860 – volume: 54 start-page: 21 year: 2019 ident: 825_CR52 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.11.010 – volume-title: Human-computer interaction ambient, ubiquitous and intelligent interaction HCI 2009 lecture notes in computer science year: 2009 ident: 825_CR35 – volume: 3 start-page: 18 year: 2012 ident: 825_CR49 publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 – volume: 88 start-page: 2297 year: 1991 ident: 825_CR58 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.88.6.2297 – volume: 72 start-page: 216 year: 2018 ident: 825_CR2 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.016 – volume: 30 start-page: 2067 year: 2008 ident: 825_CR24 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.26 – volume: 10 start-page: 827 year: 2005 ident: 825_CR1 publication-title: SIViP doi: 10.1007/s11760-015-0822-0 – volume: 42 start-page: 419 year: 2004 ident: 825_CR34 publication-title: Med Biol Eng Comput doi: 10.1007/BF02344719 – volume: 10 start-page: 2245 year: 2000 ident: 825_CR47 publication-title: Int J Bifurcat Chaos doi: 10.1142/S0218127400001407 – volume: 40 start-page: 355 year: 2017 ident: 825_CR43 publication-title: Biomed J doi: 10.1016/j.bj.2017.11.001 – volume: 156 start-page: 22 year: 2018 ident: 825_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2017.10.116 – volume: 114 start-page: 400 year: 2018 ident: 825_CR44 publication-title: Chaos Soliton Fract doi: 10.1016/j.chaos.2018.07.035 – volume: 33 start-page: 316 year: 2017 ident: 825_CR11 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.12.005 – volume: 5 start-page: 216 year: 2004 ident: 825_CR21 publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2003.12.003 – volume: 64 start-page: 2016 year: 2017 ident: 825_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2676243 – volume: 10 start-page: 2331 year: 2014 ident: 825_CR39 publication-title: J Comput Inform Syst – volume: 123 start-page: 64 year: 2018 ident: 825_CR33 publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2017.11.008 – ident: 825_CR36 doi: 10.1109/FG.2011.5771352 – volume: 71 start-page: 372 year: 2016 ident: 825_CR6 publication-title: Automat Constr doi: 10.1016/j.autcon.2016.08.029 – volume: 19 start-page: 1874 year: 2019 ident: 825_CR16 publication-title: Sensors doi: 10.3390/s19081874 – volume: 38 start-page: 212 year: 2017 ident: 825_CR10 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.05.010 – ident: 825_CR60 – volume: 11 start-page: 1347 year: 2017 ident: 825_CR41 publication-title: SIViP doi: 10.1007/s11760-017-1092-9 – volume: 49 start-page: 1 year: 2014 ident: 825_CR12 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2014.03.005 – volume: 28 start-page: 1650040 year: 2016 ident: 825_CR42 publication-title: Biomed Eng Appl Basis Commun doi: 10.4015/S101623721650040X – volume: 85 start-page: 279 year: 2017 ident: 825_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.01.040 – volume: 23 start-page: 227 year: 2016 ident: 825_CR7 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2015.2509868 – volume: 60 start-page: 3149 year: 2013 ident: 825_CR3 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2270083 – volume: 106 start-page: 298 year: 2012 ident: 825_CR26 publication-title: Physiol Behav doi: 10.1016/j.physbeh.2012.01.020 – volume: 16 start-page: 981 year: 2009 ident: 825_CR22 publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2008.09.022 – volume: 125 start-page: 2436 year: 2014 ident: 825_CR28 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.03.024 – volume: 21 start-page: 158 year: 2000 ident: 825_CR20 publication-title: ITBM-RBM doi: 10.1016/S1297-9562(00)90030-5 – volume: 21 start-page: 81 year: 2018 ident: 825_CR63 publication-title: Pattern Anal Appl doi: 10.1007/s10044-016-0567-6 – volume-title: Neural network toolbox year: 2000 ident: 825_CR59 – volume: 9 start-page: 662 year: 2015 ident: 825_CR4 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2015.2477437 – volume: 13 start-page: 1141 year: 2019 ident: 825_CR15 publication-title: SIViP doi: 10.1007/s11760-019-01460-1 – volume: 36 start-page: 633 year: 2015 ident: 825_CR51 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.07.032 – volume: 30 start-page: 261 year: 1993 ident: 825_CR25 publication-title: Psychophysiol doi: 10.1111/j.1469-8986.1993.tb03352.x – volume: 13 start-page: 161 year: 2019 ident: 825_CR64 publication-title: Cognitive Neurodyn doi: 10.1007/s11571-018-9516-y – volume: 328 start-page: 145 year: 2002 ident: 825_CR23 publication-title: Neurosci Lett doi: 10.1016/S0304-3940(02)00462-7 – volume: 84 start-page: 31 year: 2016 ident: 825_CR50 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.062 – ident: 825_CR37 doi: 10.1109/WCSE.2013.34 – volume: 115 start-page: 359 year: 2017 ident: 825_CR29 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.09.090 – volume: 55 start-page: 101646 year: 2019 ident: 825_CR45 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101646 – volume: 271 start-page: 48 year: 2018 ident: 825_CR31 publication-title: Neurocomput doi: 10.1016/j.neucom.2016.08.153 – volume: 2 start-page: 313 year: 1992 ident: 825_CR46 publication-title: Int J Bifurcat Chaos doi: 10.1142/S0218127492000318 – volume: 16 start-page: 497 year: 2013 ident: 825_CR61 publication-title: World Wide Web doi: 10.1007/s11280-012-0181-5 – volume: 65 start-page: 117 year: 1993 ident: 825_CR57 publication-title: Physica D doi: 10.1016/0167-2789(93)90009-P – volume: 13 start-page: 531 year: 2019 ident: 825_CR53 publication-title: SIViP doi: 10.1007/s11760-018-1379-5 – volume: 148 start-page: 81 year: 2017 ident: 825_CR30 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.06.010 – volume: 77 start-page: 53 year: 2015 ident: 825_CR48 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2015.05.005 – start-page: 199 volume-title: Transactions on Computer Science year: 2014 ident: 825_CR62 – volume: 40 start-page: 277 year: 2017 ident: 825_CR54 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-017-0530-x – volume: 40 start-page: 617 year: 2017 ident: 825_CR55 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-017-0571-1 – volume: 81 start-page: 130 year: 2017 ident: 825_CR5 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.12.016 – volume: 8 start-page: 192 year: 2019 ident: 825_CR17 publication-title: Electronics doi: 10.3390/electronics8020192 |
SSID | ssj0002511765 ssj0024368 |
Score | 2.3393564 |
Snippet | Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in “affective... Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | Affective computing Arousal Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Dynamical systems Emotion recognition Feature recognition Galvanic skin response Irregularities Liapunov exponents Medical and Radiation Physics Neural networks Nonlinear dynamics Scientific Paper |
Title | The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features |
URI | https://link.springer.com/article/10.1007/s13246-019-00825-7 https://www.ncbi.nlm.nih.gov/pubmed/31776972 https://www.proquest.com/docview/2358714808 https://www.proquest.com/docview/2319494280 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB61cKEH1AelBhptJW6wqr2Ovd5TlVSkqIeoQo2Um7VejwuitdPE_H9m1s6jQuXiOPH6oXz7-Mb77TcA5xhiocsokUT9KwpQQpRWYyhtkVaxSrKwRK_ynabXs-H3eTLvX7itelnluk_0HXXZOH5H_pmXdGri7mH2ZfFXctYonl3tU2i8hH22LuNared6x2vPL4WjEY8atYmzftFMt3SOmATH0kb6KEnqfwemJ2zzyUypH4Amr-GwZ45i1EH9Bl5g_RZe7fgJvoOaQBeLpmUFEBVtKrG4bVqWiDMcf7wSS9i6FDQsEIO-c2J1f1eLZaeTRUH72KX1ERthEe2zNv6XqDtTDbsUFXo30NURzCZXP79eyz6hgnTEeloZV9pViS2cpZA4QhMqG6FGhY6NtpJCqTKtoogK0TdHxGiIGTEeR400dkUZxu9hj26GH0CoWJukIPaRqXKonDE2QaTuIY4ws3FaBhCt_83c9W7jnPTid771SWYEckIg9wjkOoCLzTmLzmvj2dJna5Dyvt2t8m0tCeDT5jC1GJ4GsTU2D1wmMkNDYVcYwHEH7uZ2xKZ0arQK4HKN9vbi_3-Wk-ef5RQOFIfpXrp2Bnvt8gE_Epdpi4GvsLTNJt8GsD-ajMdT-hxfTX_c0K8zNXoE-e_0Cg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQ9VKWfAUpdqT21FomdxPGhqqrCdimUE0jcUseZtKhtsuwGVfwpfiNjJ9mlQnDjliiOHWXGnjf2mxmAtxhiocoo4QT9K3JQQuRGYchNkVZSJFlYomf5HqTjo_jbcXK8BBdDLIyjVQ5rol-oy8a6PfItF9KpCLuH2afJKXdVo9zp6lBCo1OLPTz_Ry7b7OPuNsn3nRCjncMvY95XFeCWTH_LZaVslZjCGvILI9ShMBEqFGhdtqmkEKJMqyiiRnRnCR3EmJHZt6Sp0hZlKKnfe7ASS7LkLjJ99PVKbj8fekcWlhYRLbM-SKcL1SPk4nx3zb1XxtX_hvAaur12MusN3ugxPOqRKvvcqdYqLGH9BB5eyV_4FGpSMjZpWsc4oqZNxSa_mtZR0p34_3rmFzN1ycgMEWI_sWz2-6Rm046Xi4yusSsjxOZEJrp2XPyfrO6SeJgpq9BnH509g6M7-dXPYZkGw5fAhFQ6KQjtZKKMhdXaJIi0HMkIMyPTMoBo-Ju57bObuyIbf_JFXmYngZwkkHsJ5CqA9_N3Jl1uj1tbbwxCyvt5PssXWhnAm_ljmqHu2MXU2Jy5NpGONbl5YQAvOuHOhyP0plKtRAAfBmkvOr_5W9Zu_5bXcH98-H0_39892FuHB8JtEXja3AYst9MzfEU4qi02vfIy-HHXs-US4GkruA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYToAfHZBgoYCU5gNXE2cXxACGhXLUWrClGpt-A4E6iAZNlNhfhr_DpmnGS3qKK33hLFsS3P2H5jv5kBeIYhFrqMEknQvyIDJURpNYbSFmkVqyQLS_Qs32m6fzx-f5KcrMGfwReGaZXDmugX6rJxfEa-wy6dmrB7mO1UPS3iaHfyevZTcgYpvmkd0ml0KnKIv3-R-bZ4dbBLsn6u1GTv07t92WcYkI5gQCvjSrsqsYWzZCNGaEJlI9So0HHkqaRQqkyrKKJC9OYIKYwxIwjgSGtjV5RhTPVeg3XNVtEI1t_uTY8-nov05x3xaL-lJcXEWe-y0znuEY5hS95Ib6NJ_e-2eAHrXrin9dvf5Bbc7HGreNMp2m1Yw_oObJyLZngXalI5MWta5h9R0aYSs69NywR1VoYfngcmbF0K2pQIv586sfh2Wot5x9JFQc_YJRUSS1oTPTMz_4uou5Aedi4q9LFIF_fg-EoG-z6MqDHcAqFibZKCsE-myrFyxtgEkRanOMLMxmkZQDSMZu76WOeccuN7vorSzBLISQK5l0CuA3ix_GfWRfq4tPT2IKS8n_WLfKWjATxdfqb5ypcwtsbmjMtEZmzI6AsD2OyEu2yOsJxOjVYBvBykvar8_315cHlfnsB1min5h4Pp4UO4ofi8wHPotmHUzs_wEYGqtnjca6-Az1c9Yf4CAskxSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+photoplethysmogram+and+galvanic+skin+response+in+emotion+recognition+using+nonlinear+features&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Goshvarpour%2C+Atefeh&rft.au=Goshvarpour%2C+Ateke&rft.date=2020-03-01&rft.pub=Springer+International+Publishing&rft.issn=2662-4729&rft.eissn=2662-4737&rft.volume=43&rft.issue=1&rft.spage=119&rft.epage=134&rft_id=info:doi/10.1007%2Fs13246-019-00825-7&rft.externalDocID=10_1007_s13246_019_00825_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon |