The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features

Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in “affective computing.” This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (G...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 43; no. 1; pp. 119 - 134
Main Authors Goshvarpour, Atefeh, Goshvarpour, Ateke
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in “affective computing.” This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals’ irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively.
AbstractList Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively.
Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively.Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively.
Author Goshvarpour, Atefeh
Goshvarpour, Ateke
Author_xml – sequence: 1
  givenname: Atefeh
  surname: Goshvarpour
  fullname: Goshvarpour, Atefeh
  organization: Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology
– sequence: 2
  givenname: Ateke
  orcidid: 0000-0002-5185-5645
  surname: Goshvarpour
  fullname: Goshvarpour, Ateke
  email: ateke.goshvarpour@gmail.com, ak_goshvarpour@imamreza.ac.ir
  organization: Department of Biomedical Engineering, Imam Reza International University, Imam Reza International University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31776972$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv3CAUhVE1UfP8A11USN1044aXwV5WUdtEitTNZI0Y5tpDaoMLuNL8-zCPpFIWs-KAvgOHey7RwgcPCH2i5BslRN0mypmQFaFtRUjD6kp9QBdMSlYJxdXiTbP2HN2k9EwIYTWlStYf0TmnSslWsQvklxvAU8jgszMDDh2eNiGHaYC82aYx9NGM2Pg17s3wz3hncfrjPI6QpuAT4KJhDNmF3ZkNvXd7PSfne1wiD86DibgDk-diukZnnRkS3BzXK_T088fy7r56_P3r4e77Y2WFoLninbJdbVbWtERRaAkzFBQwsIRKUa8YW8uufMZ2ZWcl4wIaSWvbSs7tak34Ffp6uHeK4e8MKevRJQvDYDyEOWnGaStawZod-uUd-hzm6Eu6QtWNoqIhTaE-H6l5NcJaT9GNJm716yQLwA6AjSGlCN0bQoneNaYPjenSmN43plUxNe9M1mWzm2COxg2nrfxgTeUd30P8H_uE6wW30asj
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107089
crossref_primary_10_1007_s40846_022_00762_z
crossref_primary_10_1142_S1469026821500231
crossref_primary_10_3390_brainsci13050759
crossref_primary_10_3389_fnbeh_2021_720451
crossref_primary_10_1007_s11571_023_09968_6
crossref_primary_10_3390_s21248336
crossref_primary_10_1016_j_bios_2022_114923
crossref_primary_10_3390_s20144037
crossref_primary_10_3390_electronics13163333
crossref_primary_10_1016_j_measurement_2021_109966
crossref_primary_10_1007_s11760_022_02248_6
crossref_primary_10_4103_jmss_jmss_59_22
crossref_primary_10_5057_ijae_TJSKE_D_20_00073
crossref_primary_10_5057_ijae_IJAE_D_20_00011
crossref_primary_10_1007_s11571_021_09735_5
crossref_primary_10_1007_s12559_024_10361_6
crossref_primary_10_32438_WPE_302021
crossref_primary_10_3389_fnbot_2022_834952
crossref_primary_10_35508_jme_v12i2_11809
crossref_primary_10_1088_1741_2552_ac1982
crossref_primary_10_1007_s11042_021_11304_1
crossref_primary_10_1016_j_bspc_2021_103290
crossref_primary_10_1007_s13246_022_01117_3
crossref_primary_10_1007_s40846_020_00526_7
crossref_primary_10_32438_WPE_312021
crossref_primary_10_2139_ssrn_4999642
crossref_primary_10_1016_j_bspc_2025_107749
crossref_primary_10_1007_s00500_023_08253_2
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1016_j_measurement_2020_108747
crossref_primary_10_1007_s11760_021_01928_z
crossref_primary_10_1080_09544828_2024_2362589
Cites_doi 10.1016/j.jelectrocard.2017.08.020
10.1016/j.asoc.2015.04.008
10.1109/JBHI.2016.2625271
10.1007/978-3-319-32703-7_248
10.1016/j.bspc.2017.05.006
10.1016/j.compbiomed.2016.12.005
10.1109/SMARTCOMP.2014.7043860
10.1016/j.cogsys.2018.11.010
10.1109/T-AFFC.2011.15
10.1073/pnas.88.6.2297
10.1016/j.dsp.2017.10.016
10.1109/TPAMI.2008.26
10.1007/s11760-015-0822-0
10.1007/BF02344719
10.1142/S0218127400001407
10.1016/j.bj.2017.11.001
10.1016/j.ijleo.2017.10.116
10.1016/j.chaos.2018.07.035
10.1016/j.bspc.2016.12.005
10.1016/j.yebeh.2003.12.003
10.1109/TBME.2017.2676243
10.1016/j.ijpsycho.2017.11.008
10.1109/FG.2011.5771352
10.1016/j.autcon.2016.08.029
10.3390/s19081874
10.1016/j.bspc.2017.05.010
10.1007/s11760-017-1092-9
10.1016/j.compbiomed.2014.03.005
10.4015/S101623721650040X
10.1016/j.eswa.2017.01.040
10.1109/LSP.2015.2509868
10.1109/TBME.2013.2270083
10.1016/j.physbeh.2012.01.020
10.1016/j.jocn.2008.09.022
10.1016/j.clinph.2014.03.024
10.1016/S1297-9562(00)90030-5
10.1007/s10044-016-0567-6
10.1109/TBCAS.2015.2477437
10.1007/s11760-019-01460-1
10.1016/j.asoc.2015.07.032
10.1111/j.1469-8986.1993.tb03352.x
10.1007/s11571-018-9516-y
10.1016/S0304-3940(02)00462-7
10.1016/j.procs.2016.04.062
10.1109/WCSE.2013.34
10.1016/j.procs.2017.09.090
10.1016/j.bspc.2019.101646
10.1016/j.neucom.2016.08.153
10.1142/S0218127492000318
10.1007/s11280-012-0181-5
10.1016/0167-2789(93)90009-P
10.1007/s11760-018-1379-5
10.1016/j.cmpb.2017.06.010
10.1016/j.chaos.2015.05.005
10.1007/s13246-017-0530-x
10.1007/s13246-017-0571-1
10.1016/j.compbiomed.2016.12.016
10.3390/electronics8020192
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2019
Australasian Physical Engineering Sciences in Medicine is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2019
– notice: Australasian Physical Engineering Sciences in Medicine is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s13246-019-00825-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 134
ExternalDocumentID 31776972
10_1007_s13246_019_00825_7
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFLOW
AFQWF
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
-EM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
4.4
408
40D
53G
5GY
67N
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABUWG
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADINQ
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
ALIPV
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CSCUP
DWQXO
EIOEI
EN4
ESBYG
FRRFC
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
HCIFZ
HMCUK
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
KOV
KTM
M1P
M2P
NPM
O9-
O93
O9I
O9J
P2P
P62
PQQKQ
PROAC
PSQYO
R9I
RLLFE
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
3V.
7XB
8FK
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c441t-3f7cf5abca9071e902a1e7e2ec01645b22d6f117cf645c6234e8615c9633cbd03
IEDL.DBID 7X7
ISSN 2662-4729
0158-9938
1879-5447
IngestDate Fri Jul 11 11:38:20 EDT 2025
Fri Jul 25 04:04:37 EDT 2025
Thu Jan 02 22:35:08 EST 2025
Tue Jul 01 02:52:54 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Fri Feb 21 02:33:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Emotion recognition
Nonlinear dynamics
Galvanic skin response
Fusion
Photoplethysmogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-3f7cf5abca9071e902a1e7e2ec01645b22d6f117cf645c6234e8615c9633cbd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5185-5645
PMID 31776972
PQID 2358714808
PQPubID 33672
PageCount 16
ParticipantIDs proquest_miscellaneous_2319494280
proquest_journals_2358714808
pubmed_primary_31776972
crossref_primary_10_1007_s13246_019_00825_7
crossref_citationtrail_10_1007_s13246_019_00825_7
springer_journals_10_1007_s13246_019_00825_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Australas Phys Eng Sci Med
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Verhoef, Lisetti, Barreto, Ortega, van der Zant, Cnossen, Jacko (CR35) 2009
Salazar-Ramirez, Irigoyen, Martinez, Zalabarria (CR31) 2018; 271
Goshvarpour, Abbasi, Goshvarpour, Daneshvar (CR41) 2017; 11
Mert, Akan (CR63) 2018; 21
CR38
Temko (CR8) 2017; 64
CR37
CR36
Jing, Mao, Chen (CR2) 2018; 72
Zhao, Sun, Wan, Wang (CR11) 2017; 33
Kim, Andre (CR24) 2008; 30
van Dooren, de Vries, Janssen (CR26) 2012; 106
Gil, Laguna, Martinez, Barquero-Perez, Garcia-Alberola, Sornmo (CR3) 2013; 60
Goshvarpour, Goshvarpour (CR52) 2019; 54
Khalfa, Isabelle, Jean-Pierre, Manon (CR23) 2002; 328
Martinez, Irigoyen, Arruti, Martin, Muguerza (CR30) 2017; 148
Thomas, Crutch, Camic (CR33) 2018; 123
Guo, Naik, Huang, Abraham, Nguyen (CR51) 2015; 36
Khan, Lawo (CR40) 2016
Solosenko, Petrenas, Marozas (CR4) 2015; 9
Cheng, Liu, Lai (CR39) 2014; 10
Zhang, Hu, Chen, Moore (CR61) 2013; 16
Sariahmetoglu, Soysal, Sen, Yuksel, Celiker, Ciftci-Kavaklioglu, Arpaci (CR28) 2014; 125
Chen, Zhao, Ye, Zhang, Zou (CR32) 2017; 85
Longmore, Lui, Naik, Breen, Jalaludin, Gargiulo (CR16) 2019; 19
Demuth, Beale (CR59) 2000
Fusar-Poli, Landi, O’Connor (CR22) 2009; 16
Hwang, Seo, Jebelli, Lee (CR6) 2016; 71
Kavsaoglua, Polat, Hariharan (CR19) 2015; 37
Goshvarpour, Abbasi, Goshvarpour, Daneshvar (CR42) 2016; 28
Sumida, Arimitu (CR47) 2000; 10
Firoozabadi, Helfenbein, Babaeizadeh (CR9) 2017; 50
Resit Kavsaoglu, Polat, Recep Bozkurt (CR12) 2014; 49
Kim, Bang, Kim (CR34) 2004; 42
Goshvarpour, Goshvarpour (CR44) 2018; 114
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR49) 2012; 3
Lang, Greenwald, Bradely, Hamm (CR25) 1993; 30
Kumar, Khaund, Hazarika (CR50) 2016; 84
Goshvarpour, Goshvarpour (CR53) 2019; 13
Lee, Lee, Shin (CR17) 2019; 8
Zhalehpour, Akhtar, Erdem (CR1) 2005; 10
Zha, Liu, Shang, Wang, Cai, Wei (CR18) 2018; 156
Rosenstein, Collins, De Luca (CR57) 1993; 65
Goshvarpour, Abbasi, Goshvarpour (CR54) 2017; 40
Solosenko, Petrenas, Marozas, Sornmo (CR5) 2017; 81
Hassani, Foruzan (CR15) 2019; 13
Sviridova, Sakai (CR48) 2015; 77
Domínguez-Jiménez, Campo-Landines, Martínez-Santos, Delahoz, Contreras-Ortiz (CR45) 2019; 55
Goshvarpour, Abbasi, Goshvarpour (CR43) 2017; 40
Papapanagiotou, Diou, Zhou, van den Boer, Mars, Delopoulos (CR13) 2017; 21
Sriramprakash, Prasanna Vadana, Ramana Murthy (CR29) 2017; 115
Tsuda (CR46) 1992; 2
Nagai, Goldstein, Fenwick, Trimble (CR21) 2004; 5
Pincus (CR58) 1991; 88
Boloursaz Mashhadi, Asadi, Eskandari, Kiani, Marvasti (CR7) 2016; 23
Liu, Sourina, Gavrilova, Tan, Mao, Hong (CR62) 2014
Orphanidou (CR14) 2017; 81
Goshvarpour, Abbasi, Goshvarpour (CR56) 2017; 38
Goshvarpour, Goshvarpour (CR64) 2019; 13
Islam, Rabbi, Dobaie, Hasan (CR10) 2017; 38
Younessi Heravi, Khalilzadeh, Sarafan, Azarnoosh (CR27) 2013; 2
CR60
Sudheesh, Joseph (CR20) 2000; 21
Goshvarpour, Abbasi, Goshvarpour (CR55) 2017; 40
M Boloursaz Mashhadi (825_CR7) 2016; 23
S Khalfa (825_CR23) 2002; 328
MA Younessi Heravi (825_CR27) 2013; 2
A Goshvarpour (825_CR43) 2017; 40
H Sariahmetoglu (825_CR28) 2014; 125
Y Liu (825_CR62) 2014
A Goshvarpour (825_CR54) 2017; 40
A Goshvarpour (825_CR42) 2016; 28
R Martinez (825_CR30) 2017; 148
A Solosenko (825_CR4) 2015; 9
A Mert (825_CR63) 2018; 21
A Hassani (825_CR15) 2019; 13
D Zhao (825_CR11) 2017; 33
P Fusar-Poli (825_CR22) 2009; 16
X Zhang (825_CR61) 2013; 16
A Resit Kavsaoglu (825_CR12) 2014; 49
KH Kim (825_CR34) 2004; 42
AR Kavsaoglua (825_CR19) 2015; 37
MS Islam (825_CR10) 2017; 38
A Goshvarpour (825_CR44) 2018; 114
JA Domínguez-Jiménez (825_CR45) 2019; 55
N Sviridova (825_CR48) 2015; 77
825_CR60
S Zhalehpour (825_CR1) 2005; 10
T Verhoef (825_CR35) 2009
E Gil (825_CR3) 2013; 60
MT Rosenstein (825_CR57) 1993; 65
S Jing (825_CR2) 2018; 72
GEC Thomas (825_CR33) 2018; 123
T Sumida (825_CR47) 2000; 10
J Cheng (825_CR39) 2014; 10
A Temko (825_CR8) 2017; 64
C Orphanidou (825_CR14) 2017; 81
SK Longmore (825_CR16) 2019; 19
A Goshvarpour (825_CR64) 2019; 13
M van Dooren (825_CR26) 2012; 106
H Demuth (825_CR59) 2000
A Goshvarpour (825_CR53) 2019; 13
825_CR36
825_CR37
N Kumar (825_CR50) 2016; 84
A Goshvarpour (825_CR56) 2017; 38
YT Zha (825_CR18) 2018; 156
S Sriramprakash (825_CR29) 2017; 115
825_CR38
Ali Mehmood Khan (825_CR40) 2016
SM Pincus (825_CR58) 1991; 88
J Kim (825_CR24) 2008; 30
A Salazar-Ramirez (825_CR31) 2018; 271
A Goshvarpour (825_CR55) 2017; 40
NN Sudheesh (825_CR20) 2000; 21
S Hwang (825_CR6) 2016; 71
P Lang (825_CR25) 1993; 30
H Lee (825_CR17) 2019; 8
A Goshvarpour (825_CR52) 2019; 54
A Goshvarpour (825_CR41) 2017; 11
Y Nagai (825_CR21) 2004; 5
V Papapanagiotou (825_CR13) 2017; 21
S Koelstra (825_CR49) 2012; 3
Y Guo (825_CR51) 2015; 36
I Tsuda (825_CR46) 1992; 2
R Firoozabadi (825_CR9) 2017; 50
A Solosenko (825_CR5) 2017; 81
LI Chen (825_CR32) 2017; 85
References_xml – volume: 30
  start-page: 261
  year: 1993
  end-page: 273
  ident: CR25
  article-title: Looking at pictures—affective, facial, visceral, and behavioral reactions
  publication-title: Psychophysiol
– volume: 40
  start-page: 355
  year: 2017
  end-page: 368
  ident: CR43
  article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
  publication-title: Biomed J
– volume: 115
  start-page: 359
  year: 2017
  end-page: 366
  ident: CR29
  article-title: Stress detection in working people
  publication-title: Procedia Comput Sci
– volume: 81
  start-page: 130
  year: 2017
  end-page: 138
  ident: CR5
  article-title: Modeling of the photoplethysmogram during atrial fibrillation
  publication-title: Comput Biol Med
– volume: 106
  start-page: 298
  year: 2012
  end-page: 304
  ident: CR26
  article-title: Emotional sweating across the body: comparing 16 different skin conductance measurement locations
  publication-title: Physiol Behav
– start-page: 1297
  year: 2016
  end-page: 1303
  ident: CR40
  article-title: Recognizing Emotion from Blood Volume Pulse and Skin Conductance Sensor Using Machine Learning Algorithms
  publication-title: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: CR49
  article-title: DEAP: a database for emotion analysis using physiological signals
  publication-title: IEEE Trans Affect Comput
– volume: 10
  start-page: 827
  year: 2005
  end-page: 834
  ident: CR1
  article-title: Multimodal emotion recognition based on peak frame selection from video
  publication-title: SIViP
– volume: 21
  start-page: 607
  year: 2017
  end-page: 618
  ident: CR13
  article-title: A novel chewing detection system based on PPG, audio and accelerometry
  publication-title: IEEE J Biomed Health Inform
– volume: 38
  start-page: 67
  year: 2017
  end-page: 73
  ident: CR56
  article-title: Do men and women have different ECG responses to sad pictures?
  publication-title: Biomed Signal Process Control
– volume: 88
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: CR58
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 2331
  year: 2014
  end-page: 2339
  ident: CR39
  article-title: Calculation of nonlinear features of SC for emotion recognition
  publication-title: J Comput Inform Syst
– volume: 84
  start-page: 31
  year: 2016
  end-page: 35
  ident: CR50
  article-title: Bispectral analysis of EEG for emotion recognition
  publication-title: Procedia Comput Sci
– volume: 16
  start-page: 981
  year: 2009
  end-page: 982
  ident: CR22
  article-title: Neurophysiological response to emotional faces with increasing intensity of fear: a skin conductance response study
  publication-title: J Clin Neurosci
– volume: 64
  start-page: 2016
  year: 2017
  end-page: 2024
  ident: CR8
  article-title: Accurate heart rate monitoring during physical exercises using PPG
  publication-title: IEEE Trans Biomed Eng
– volume: 19
  start-page: 1874
  year: 2019
  ident: CR16
  article-title: A comparison of reflective photoplethysmography for detection of heart rate, blood oxygen saturation, and respiration rate at various anatomical locations
  publication-title: Sensors
– volume: 148
  start-page: 81
  year: 2017
  end-page: 90
  ident: CR30
  article-title: A real-time stress classification system based on arousal analysis of the nervous system by an F-state machine
  publication-title: Comput Methods Programs Biomed
– volume: 60
  start-page: 3149
  year: 2013
  end-page: 3155
  ident: CR3
  article-title: Heart rate turbulence analysis based on photoplethysmography
  publication-title: IEEE Trans Biomed Eng
– volume: 10
  start-page: 2245
  year: 2000
  end-page: 2255
  ident: CR47
  article-title: Mental conditions reflected by chaos of pulsation in the capillary vessels
  publication-title: Int J Bifurcat Chaos
– volume: 114
  start-page: 400
  year: 2018
  end-page: 407
  ident: CR44
  article-title: Poincaré's section analysis for PPG-based automatic emotion recognition
  publication-title: Chaos Soliton Fract
– volume: 13
  start-page: 531
  year: 2019
  end-page: 539
  ident: CR53
  article-title: Gender and age classification using a new poincare section-based feature set of ECG
  publication-title: SIViP
– volume: 55
  start-page: 101646
  year: 2019
  ident: CR45
  article-title: A machine learning model for emotion recognition from physiological signals
  publication-title: Biomed Signal Process Control
– volume: 40
  start-page: 617
  year: 2017
  end-page: 629
  ident: CR55
  article-title: Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged poincare plots
  publication-title: Australas Phys Eng Sci Med
– volume: 8
  start-page: 192
  year: 2019
  ident: CR17
  article-title: Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots
  publication-title: Electronics
– year: 2009
  ident: CR35
  article-title: Bio-sensing for emotional characterization without word labels
  publication-title: Human-computer interaction ambient, ubiquitous and intelligent interaction HCI 2009 lecture notes in computer science
– ident: CR60
– ident: CR36
– volume: 11
  start-page: 1347
  year: 2017
  end-page: 1355
  ident: CR41
  article-title: Discrimination between different emotional states based on the chaotic behavior of galvanic skin responses
  publication-title: SIViP
– volume: 33
  start-page: 316
  year: 2017
  end-page: 324
  ident: CR11
  article-title: SFST: a robust framework for heart rate monitoring from photoplethysmography signals during physical activities
  publication-title: Biomed Signal Process Control
– volume: 40
  start-page: 277
  year: 2017
  end-page: 287
  ident: CR54
  article-title: Indices from lagged poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination
  publication-title: Australas Phys Eng Sci Med
– volume: 16
  start-page: 497
  year: 2013
  end-page: 513
  ident: CR61
  article-title: Ontology-based context modeling for emotion recognition in an intelligent web
  publication-title: World Wide Web
– volume: 9
  start-page: 662
  year: 2015
  end-page: 669
  ident: CR4
  article-title: Photoplethysmography-based method for automatic detection of premature ventricular contractions
  publication-title: IEEE Trans Biomed Circuits Syst
– volume: 13
  start-page: 1141
  year: 2019
  ident: CR15
  article-title: Improved PPG-based estimation of the blood pressure using latent space features
  publication-title: SIViP
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: CR57
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D
– volume: 72
  start-page: 216
  year: 2018
  end-page: 231
  ident: CR2
  article-title: Prominence features: effective emotional features for speech emotion recognition
  publication-title: Digit Signal Process
– volume: 54
  start-page: 21
  year: 2019
  end-page: 36
  ident: CR52
  article-title: Do meditators and non-meditators have different HRV dynamics?
  publication-title: Cogn Syst Res
– volume: 50
  start-page: 841
  year: 2017
  end-page: 846
  ident: CR9
  article-title: Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography
  publication-title: J Electrocardiol
– volume: 5
  start-page: 216
  year: 2004
  end-page: 223
  ident: CR21
  article-title: Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: a preliminary randomized controlled study
  publication-title: Epilepsy Behav
– year: 2000
  ident: CR59
  publication-title: Neural network toolbox
– ident: CR37
– volume: 81
  start-page: 45
  year: 2017
  end-page: 54
  ident: CR14
  article-title: Derivation of respiration rate from ambulatory ECG and PPG using ensemble empirical mode decomposition: comparison and fusion
  publication-title: Comput Biol Med
– volume: 42
  start-page: 419
  year: 2004
  end-page: 427
  ident: CR34
  article-title: Emotion recognition system using short-term monitoring of physiological signals
  publication-title: Med Biol Eng Comput
– volume: 49
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR12
  article-title: A novel feature ranking algorithm for biometric recognition with PPG signals
  publication-title: Comput Biol Med
– volume: 2
  start-page: 313
  year: 1992
  end-page: 324
  ident: CR46
  article-title: Chaotic pulsation in human capillary vessels and its dependence on mental and physical conditions
  publication-title: Int J Bifurcat Chaos
– volume: 38
  start-page: 212
  year: 2017
  end-page: 223
  ident: CR10
  article-title: PREHEAT: precision heart rate monitoring from intense motion artifact corrupted PPG signals using constrained RLS and wavelets
  publication-title: Biomed Signal Process Control
– volume: 156
  start-page: 22
  year: 2018
  end-page: 30
  ident: CR18
  article-title: Non-invasive assessment of cerebral hemodynamics with CWNIRS-ICG and application of EEMD-SSE in PPG signal extraction
  publication-title: Optik
– volume: 37
  start-page: 983
  year: 2015
  end-page: 991
  ident: CR19
  article-title: Non-invasive prediction of hemoglobin level using machine learning techniques with the PPG signal’s characteristics features
  publication-title: Appl Soft Comput
– volume: 21
  start-page: 81
  year: 2018
  end-page: 89
  ident: CR63
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal Appl
– volume: 36
  start-page: 633
  year: 2015
  end-page: 640
  ident: CR51
  article-title: Nonlinear multiscale maximal Lyapunov exponent for accurate myoelectric signal classification
  publication-title: Appl Soft Comput
– volume: 30
  start-page: 2067
  year: 2008
  end-page: 2083
  ident: CR24
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 28
  start-page: 1650040
  year: 2016
  ident: CR42
  article-title: A novel signal-based fusion approach for accurate music emotion recognition
  publication-title: Biomed Eng Appl Basis Commun
– volume: 71
  start-page: 372
  year: 2016
  end-page: 381
  ident: CR6
  article-title: Feasibility analysis of heart rate monitoring of construction workers using a photoplethysmography (PPG) sensor embedded in a wristband-type activity tracker
  publication-title: Automat Constr
– start-page: 199
  year: 2014
  end-page: 223
  ident: CR62
  article-title: Real-time subject-dependent EEG-based emotion recognition algorithm
  publication-title: Transactions on Computer Science
– ident: CR38
– volume: 77
  start-page: 53
  year: 2015
  end-page: 63
  ident: CR48
  article-title: Human photoplethysmogram: new insight into chaotic characteristics
  publication-title: Chaos Solitons Fractals
– volume: 271
  start-page: 48
  year: 2018
  end-page: 57
  ident: CR31
  article-title: An enhanced fuzzy algorithm based on advanced signal processing for identification of stress
  publication-title: Neurocomput
– volume: 23
  start-page: 227
  year: 2016
  end-page: 231
  ident: CR7
  article-title: Heart rate tracking using wrist-type photoplethysmographic (PPG) signals during physical exercise with simultaneous accelerometry
  publication-title: IEEE Signal Process Lett
– volume: 13
  start-page: 161
  year: 2019
  end-page: 173
  ident: CR64
  article-title: EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences
  publication-title: Cognitive Neurodyn
– volume: 123
  start-page: 64
  year: 2018
  end-page: 73
  ident: CR33
  article-title: Measuring physiological responses to the arts in people with a dementia
  publication-title: Int J Psychophysiol
– volume: 21
  start-page: 158
  year: 2000
  end-page: 163
  ident: CR20
  article-title: Investigation into the effects of music and meditation on galvanic skin response
  publication-title: ITBM-RBM
– volume: 328
  start-page: 145
  year: 2002
  end-page: 149
  ident: CR23
  article-title: Event-related skin conductance responses to musical emotions in humans
  publication-title: Neurosci Lett
– volume: 85
  start-page: 279
  year: 2017
  end-page: 291
  ident: CR32
  article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers
  publication-title: Expert Syst Appl
– volume: 125
  start-page: 2436
  year: 2014
  end-page: 2440
  ident: CR28
  article-title: Forehead sympathetic skin responses in determining autonomic involvement in Parkinson’s disease
  publication-title: Clin Neurophysiol
– volume: 2
  start-page: 49
  year: 2013
  end-page: 60
  ident: CR27
  article-title: Lie detector system based on PhotoPlethysmoGraph (PPG) and galvanic skin response (GSR) signals by means of neural network
  publication-title: Signal Data Process
– volume: 2
  start-page: 49
  year: 2013
  ident: 825_CR27
  publication-title: Signal Data Process
– volume: 50
  start-page: 841
  year: 2017
  ident: 825_CR9
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2017.08.020
– volume: 37
  start-page: 983
  year: 2015
  ident: 825_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.04.008
– volume: 21
  start-page: 607
  year: 2017
  ident: 825_CR13
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2625271
– start-page: 1297
  volume-title: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016
  year: 2016
  ident: 825_CR40
  doi: 10.1007/978-3-319-32703-7_248
– volume: 38
  start-page: 67
  year: 2017
  ident: 825_CR56
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.05.006
– volume: 81
  start-page: 45
  year: 2017
  ident: 825_CR14
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.12.005
– ident: 825_CR38
  doi: 10.1109/SMARTCOMP.2014.7043860
– volume: 54
  start-page: 21
  year: 2019
  ident: 825_CR52
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.11.010
– volume-title: Human-computer interaction ambient, ubiquitous and intelligent interaction HCI 2009 lecture notes in computer science
  year: 2009
  ident: 825_CR35
– volume: 3
  start-page: 18
  year: 2012
  ident: 825_CR49
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– volume: 88
  start-page: 2297
  year: 1991
  ident: 825_CR58
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.88.6.2297
– volume: 72
  start-page: 216
  year: 2018
  ident: 825_CR2
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2017.10.016
– volume: 30
  start-page: 2067
  year: 2008
  ident: 825_CR24
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.26
– volume: 10
  start-page: 827
  year: 2005
  ident: 825_CR1
  publication-title: SIViP
  doi: 10.1007/s11760-015-0822-0
– volume: 42
  start-page: 419
  year: 2004
  ident: 825_CR34
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02344719
– volume: 10
  start-page: 2245
  year: 2000
  ident: 825_CR47
  publication-title: Int J Bifurcat Chaos
  doi: 10.1142/S0218127400001407
– volume: 40
  start-page: 355
  year: 2017
  ident: 825_CR43
  publication-title: Biomed J
  doi: 10.1016/j.bj.2017.11.001
– volume: 156
  start-page: 22
  year: 2018
  ident: 825_CR18
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.10.116
– volume: 114
  start-page: 400
  year: 2018
  ident: 825_CR44
  publication-title: Chaos Soliton Fract
  doi: 10.1016/j.chaos.2018.07.035
– volume: 33
  start-page: 316
  year: 2017
  ident: 825_CR11
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.12.005
– volume: 5
  start-page: 216
  year: 2004
  ident: 825_CR21
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2003.12.003
– volume: 64
  start-page: 2016
  year: 2017
  ident: 825_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2676243
– volume: 10
  start-page: 2331
  year: 2014
  ident: 825_CR39
  publication-title: J Comput Inform Syst
– volume: 123
  start-page: 64
  year: 2018
  ident: 825_CR33
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2017.11.008
– ident: 825_CR36
  doi: 10.1109/FG.2011.5771352
– volume: 71
  start-page: 372
  year: 2016
  ident: 825_CR6
  publication-title: Automat Constr
  doi: 10.1016/j.autcon.2016.08.029
– volume: 19
  start-page: 1874
  year: 2019
  ident: 825_CR16
  publication-title: Sensors
  doi: 10.3390/s19081874
– volume: 38
  start-page: 212
  year: 2017
  ident: 825_CR10
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.05.010
– ident: 825_CR60
– volume: 11
  start-page: 1347
  year: 2017
  ident: 825_CR41
  publication-title: SIViP
  doi: 10.1007/s11760-017-1092-9
– volume: 49
  start-page: 1
  year: 2014
  ident: 825_CR12
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2014.03.005
– volume: 28
  start-page: 1650040
  year: 2016
  ident: 825_CR42
  publication-title: Biomed Eng Appl Basis Commun
  doi: 10.4015/S101623721650040X
– volume: 85
  start-page: 279
  year: 2017
  ident: 825_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.01.040
– volume: 23
  start-page: 227
  year: 2016
  ident: 825_CR7
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2015.2509868
– volume: 60
  start-page: 3149
  year: 2013
  ident: 825_CR3
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2270083
– volume: 106
  start-page: 298
  year: 2012
  ident: 825_CR26
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2012.01.020
– volume: 16
  start-page: 981
  year: 2009
  ident: 825_CR22
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2008.09.022
– volume: 125
  start-page: 2436
  year: 2014
  ident: 825_CR28
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.03.024
– volume: 21
  start-page: 158
  year: 2000
  ident: 825_CR20
  publication-title: ITBM-RBM
  doi: 10.1016/S1297-9562(00)90030-5
– volume: 21
  start-page: 81
  year: 2018
  ident: 825_CR63
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-016-0567-6
– volume-title: Neural network toolbox
  year: 2000
  ident: 825_CR59
– volume: 9
  start-page: 662
  year: 2015
  ident: 825_CR4
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2015.2477437
– volume: 13
  start-page: 1141
  year: 2019
  ident: 825_CR15
  publication-title: SIViP
  doi: 10.1007/s11760-019-01460-1
– volume: 36
  start-page: 633
  year: 2015
  ident: 825_CR51
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.032
– volume: 30
  start-page: 261
  year: 1993
  ident: 825_CR25
  publication-title: Psychophysiol
  doi: 10.1111/j.1469-8986.1993.tb03352.x
– volume: 13
  start-page: 161
  year: 2019
  ident: 825_CR64
  publication-title: Cognitive Neurodyn
  doi: 10.1007/s11571-018-9516-y
– volume: 328
  start-page: 145
  year: 2002
  ident: 825_CR23
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(02)00462-7
– volume: 84
  start-page: 31
  year: 2016
  ident: 825_CR50
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.062
– ident: 825_CR37
  doi: 10.1109/WCSE.2013.34
– volume: 115
  start-page: 359
  year: 2017
  ident: 825_CR29
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.09.090
– volume: 55
  start-page: 101646
  year: 2019
  ident: 825_CR45
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101646
– volume: 271
  start-page: 48
  year: 2018
  ident: 825_CR31
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2016.08.153
– volume: 2
  start-page: 313
  year: 1992
  ident: 825_CR46
  publication-title: Int J Bifurcat Chaos
  doi: 10.1142/S0218127492000318
– volume: 16
  start-page: 497
  year: 2013
  ident: 825_CR61
  publication-title: World Wide Web
  doi: 10.1007/s11280-012-0181-5
– volume: 65
  start-page: 117
  year: 1993
  ident: 825_CR57
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90009-P
– volume: 13
  start-page: 531
  year: 2019
  ident: 825_CR53
  publication-title: SIViP
  doi: 10.1007/s11760-018-1379-5
– volume: 148
  start-page: 81
  year: 2017
  ident: 825_CR30
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.06.010
– volume: 77
  start-page: 53
  year: 2015
  ident: 825_CR48
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2015.05.005
– start-page: 199
  volume-title: Transactions on Computer Science
  year: 2014
  ident: 825_CR62
– volume: 40
  start-page: 277
  year: 2017
  ident: 825_CR54
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-017-0530-x
– volume: 40
  start-page: 617
  year: 2017
  ident: 825_CR55
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-017-0571-1
– volume: 81
  start-page: 130
  year: 2017
  ident: 825_CR5
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.12.016
– volume: 8
  start-page: 192
  year: 2019
  ident: 825_CR17
  publication-title: Electronics
  doi: 10.3390/electronics8020192
SSID ssj0002511765
ssj0024368
Score 2.3393564
Snippet Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in “affective...
Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Affective computing
Arousal
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Dynamical systems
Emotion recognition
Feature recognition
Galvanic skin response
Irregularities
Liapunov exponents
Medical and Radiation Physics
Neural networks
Nonlinear dynamics
Scientific Paper
Title The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features
URI https://link.springer.com/article/10.1007/s13246-019-00825-7
https://www.ncbi.nlm.nih.gov/pubmed/31776972
https://www.proquest.com/docview/2358714808
https://www.proquest.com/docview/2319494280
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB61cKEH1AelBhptJW6wqr2Ovd5TlVSkqIeoQo2Um7VejwuitdPE_H9m1s6jQuXiOPH6oXz7-Mb77TcA5xhiocsokUT9KwpQQpRWYyhtkVaxSrKwRK_ynabXs-H3eTLvX7itelnluk_0HXXZOH5H_pmXdGri7mH2ZfFXctYonl3tU2i8hH22LuNared6x2vPL4WjEY8atYmzftFMt3SOmATH0kb6KEnqfwemJ2zzyUypH4Amr-GwZ45i1EH9Bl5g_RZe7fgJvoOaQBeLpmUFEBVtKrG4bVqWiDMcf7wSS9i6FDQsEIO-c2J1f1eLZaeTRUH72KX1ERthEe2zNv6XqDtTDbsUFXo30NURzCZXP79eyz6hgnTEeloZV9pViS2cpZA4QhMqG6FGhY6NtpJCqTKtoogK0TdHxGiIGTEeR400dkUZxu9hj26GH0CoWJukIPaRqXKonDE2QaTuIY4ws3FaBhCt_83c9W7jnPTid771SWYEckIg9wjkOoCLzTmLzmvj2dJna5Dyvt2t8m0tCeDT5jC1GJ4GsTU2D1wmMkNDYVcYwHEH7uZ2xKZ0arQK4HKN9vbi_3-Wk-ef5RQOFIfpXrp2Bnvt8gE_Epdpi4GvsLTNJt8GsD-ajMdT-hxfTX_c0K8zNXoE-e_0Cg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQ9VKWfAUpdqT21FomdxPGhqqrCdimUE0jcUseZtKhtsuwGVfwpfiNjJ9mlQnDjliiOHWXGnjf2mxmAtxhiocoo4QT9K3JQQuRGYchNkVZSJFlYomf5HqTjo_jbcXK8BBdDLIyjVQ5rol-oy8a6PfItF9KpCLuH2afJKXdVo9zp6lBCo1OLPTz_Ry7b7OPuNsn3nRCjncMvY95XFeCWTH_LZaVslZjCGvILI9ShMBEqFGhdtqmkEKJMqyiiRnRnCR3EmJHZt6Sp0hZlKKnfe7ASS7LkLjJ99PVKbj8fekcWlhYRLbM-SKcL1SPk4nx3zb1XxtX_hvAaur12MusN3ugxPOqRKvvcqdYqLGH9BB5eyV_4FGpSMjZpWsc4oqZNxSa_mtZR0p34_3rmFzN1ycgMEWI_sWz2-6Rm046Xi4yusSsjxOZEJrp2XPyfrO6SeJgpq9BnH509g6M7-dXPYZkGw5fAhFQ6KQjtZKKMhdXaJIi0HMkIMyPTMoBo-Ju57bObuyIbf_JFXmYngZwkkHsJ5CqA9_N3Jl1uj1tbbwxCyvt5PssXWhnAm_ljmqHu2MXU2Jy5NpGONbl5YQAvOuHOhyP0plKtRAAfBmkvOr_5W9Zu_5bXcH98-H0_39892FuHB8JtEXja3AYst9MzfEU4qi02vfIy-HHXs-US4GkruA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYToAfHZBgoYCU5gNXE2cXxACGhXLUWrClGpt-A4E6iAZNlNhfhr_DpmnGS3qKK33hLFsS3P2H5jv5kBeIYhFrqMEknQvyIDJURpNYbSFmkVqyQLS_Qs32m6fzx-f5KcrMGfwReGaZXDmugX6rJxfEa-wy6dmrB7mO1UPS3iaHfyevZTcgYpvmkd0ml0KnKIv3-R-bZ4dbBLsn6u1GTv07t92WcYkI5gQCvjSrsqsYWzZCNGaEJlI9So0HHkqaRQqkyrKKJC9OYIKYwxIwjgSGtjV5RhTPVeg3XNVtEI1t_uTY8-nov05x3xaL-lJcXEWe-y0znuEY5hS95Ib6NJ_e-2eAHrXrin9dvf5Bbc7HGreNMp2m1Yw_oObJyLZngXalI5MWta5h9R0aYSs69NywR1VoYfngcmbF0K2pQIv586sfh2Wot5x9JFQc_YJRUSS1oTPTMz_4uou5Aedi4q9LFIF_fg-EoG-z6MqDHcAqFibZKCsE-myrFyxtgEkRanOMLMxmkZQDSMZu76WOeccuN7vorSzBLISQK5l0CuA3ix_GfWRfq4tPT2IKS8n_WLfKWjATxdfqb5ypcwtsbmjMtEZmzI6AsD2OyEu2yOsJxOjVYBvBykvar8_315cHlfnsB1min5h4Pp4UO4ofi8wHPotmHUzs_wEYGqtnjca6-Az1c9Yf4CAskxSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+photoplethysmogram+and+galvanic+skin+response+in+emotion+recognition+using+nonlinear+features&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Goshvarpour%2C+Atefeh&rft.au=Goshvarpour%2C+Ateke&rft.date=2020-03-01&rft.pub=Springer+International+Publishing&rft.issn=2662-4729&rft.eissn=2662-4737&rft.volume=43&rft.issue=1&rft.spage=119&rft.epage=134&rft_id=info:doi/10.1007%2Fs13246-019-00825-7&rft.externalDocID=10_1007_s13246_019_00825_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon