Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease

Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified ge...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 21; no. 14; pp. 3097 - 3111
Main Authors Tang, Bin, Becanovic, Kristina, Desplats, Paula A., Spencer, Brian, Hill, Austin M., Connolly, Colum, Masliah, Eliezer, Leavitt, Blair R., Thomas, Elizabeth A.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.07.2012
Subjects
Online AccessGet full text
ISSN0964-6906
1460-2083
1460-2083
DOI10.1093/hmg/dds132

Cover

Loading…
Abstract Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication.
AbstractList Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication.
Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication.
Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication.Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication.
Author Thomas, Elizabeth A.
Becanovic, Kristina
Desplats, Paula A.
Connolly, Colum
Masliah, Eliezer
Hill, Austin M.
Tang, Bin
Spencer, Brian
Leavitt, Blair R.
AuthorAffiliation 4 Department of Pathology , University of California, San Diego , La Jolla, CA , USA
1 Department of Molecular Biology , The Scripps Research Institute , 10550 North Torrey Pines Rd., La Jolla, CA , USA
3 Department of Neuroscience and
2 Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , University of British Columbia , Vancouver , Canada V5Z 4H4
AuthorAffiliation_xml – name: 2 Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , University of British Columbia , Vancouver , Canada V5Z 4H4
– name: 1 Department of Molecular Biology , The Scripps Research Institute , 10550 North Torrey Pines Rd., La Jolla, CA , USA
– name: 3 Department of Neuroscience and
– name: 4 Department of Pathology , University of California, San Diego , La Jolla, CA , USA
Author_xml – sequence: 1
  givenname: Bin
  surname: Tang
  fullname: Tang, Bin
– sequence: 2
  givenname: Kristina
  surname: Becanovic
  fullname: Becanovic, Kristina
– sequence: 3
  givenname: Paula A.
  surname: Desplats
  fullname: Desplats, Paula A.
– sequence: 4
  givenname: Brian
  surname: Spencer
  fullname: Spencer, Brian
– sequence: 5
  givenname: Austin M.
  surname: Hill
  fullname: Hill, Austin M.
– sequence: 6
  givenname: Colum
  surname: Connolly
  fullname: Connolly, Colum
– sequence: 7
  givenname: Eliezer
  surname: Masliah
  fullname: Masliah, Eliezer
– sequence: 8
  givenname: Blair R.
  surname: Leavitt
  fullname: Leavitt, Blair R.
– sequence: 9
  givenname: Elizabeth A.
  surname: Thomas
  fullname: Thomas, Elizabeth A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26107953$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22492998$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFDQ-AvEFCSKH-GydmUQmNKEWqYEH3lmM7GUNiBztB9Fl4We50pvxULFhZ1v3O8fG99wQdxRQ9Qk8peUWJ4mfbsT9zrlDOHqAVFZJUjDT8CK2IkqKSishjdFLKZ0KoFLx-hI4ZE4op1azQj4uUv2y9cbhN3_GU0-xDxBPFoWCD52xisTlMc0jRDDj7KftSUsapw2Ecl-hxCT2UQuwxCOetx5sPn15DcRqCNTtdwR0I7lu5m5J9vwy3yE56ucQZXGa4uVC8Kf4xetiZofgnh_MUXV-8vd5cVlcf373fvLmqrBB0rrhzrFXECtV1TqqGNI6tm87z1qm14GtKPJPOWFWrVjTUkloY4aQxLVsL6fgpOt_bTks7emd9hKyDnnIYTb7RyQT9dyWGre7TN815I3hDwODFwSCnr4svsx5DsX4YTPRpKZoSBhQMg_0Pyhohay4AffZnrF957mYHwPMDYIo1QwcNtqH85iQltVpz4MieszkVaHqnbZhv2w6_CQO8qXdrpGGN9H6NQPLynuTO9R_wTx8izjY
CitedBy_id crossref_primary_10_1007_s11064_017_2382_x
crossref_primary_10_1016_j_neuroscience_2017_12_033
crossref_primary_10_1038_cdd_2013_81
crossref_primary_10_1038_s41598_023_40764_8
crossref_primary_10_1186_1471_2407_14_840
crossref_primary_10_3390_ijms20123097
crossref_primary_10_1038_nn_4133
crossref_primary_10_1371_journal_pcbi_1003884
crossref_primary_10_1016_j_arr_2024_102538
crossref_primary_10_1182_blood_2012_10_462846
crossref_primary_10_1038_leu_2013_224
crossref_primary_10_1007_s12035_016_0010_4
crossref_primary_10_1042_BSR20210158
crossref_primary_10_1186_s13229_021_00469_z
crossref_primary_10_1073_pnas_2112852119
crossref_primary_10_3390_biomedicines9091161
crossref_primary_10_1007_s12035_018_1046_4
crossref_primary_10_1038_leu_2015_299
crossref_primary_10_1007_s00439_012_1193_z
crossref_primary_10_1038_nrn3406
crossref_primary_10_2174_0929867327666200705225821
crossref_primary_10_15252_msb_20167435
crossref_primary_10_1016_j_yexmp_2015_10_003
crossref_primary_10_1038_srep05403
crossref_primary_10_1038_s41380_020_00995_x
crossref_primary_10_3109_08830185_2013_816698
crossref_primary_10_1021_acschemneuro_8b00354
crossref_primary_10_1016_j_ebiom_2018_11_066
crossref_primary_10_3389_fneur_2020_573560
crossref_primary_10_1186_s12864_015_2068_1
crossref_primary_10_3389_fgene_2020_00646
crossref_primary_10_1186_2040_2392_4_23
crossref_primary_10_1016_j_neuroscience_2020_06_032
crossref_primary_10_1101_gad_267989_115
crossref_primary_10_1007_s12035_014_8715_8
crossref_primary_10_1007_s11064_020_03151_7
crossref_primary_10_1371_journal_pone_0096575
crossref_primary_10_7554_eLife_29087
crossref_primary_10_3389_fncel_2014_00295
Cites_doi 10.1093/hmg/ddl013
10.1523/JNEUROSCI.4178-07.2008
10.1097/00005072-198511000-00003
10.1038/35097076
10.1093/nar/gng015
10.1186/gb-2008-9-9-r137
10.1016/S0168-9525(03)00074-X
10.1016/j.nbd.2008.05.005
10.1002/jnr.10638
10.1073/pnas.0911503106
10.1093/hmg/ddl392
10.1002/jnr.21046
10.1074/jbc.M100636200
10.1016/S0896-6273(00)80764-3
10.1371/journal.pone.0003329
10.1523/JNEUROSCI.4390-09.2009
10.1007/s12035-007-0036-8
10.1016/S1567-133X(03)00003-6
10.1021/pr0700753
10.1016/j.ajhg.2010.09.017
10.1093/hmg/ddq548
10.1111/j.1471-4159.2004.02909.x
10.1172/JCI200421100
10.2202/1544-6115.1027
10.1093/jnen/60.2.161
10.1038/nri953
10.1083/jcb.200508072
10.1093/bioinformatics/19.2.185
10.1006/dbio.2002.0780
10.1038/ni1358
10.1084/jem.20080178
10.1093/brain/awm044
10.1074/jbc.M104521200
10.1073/pnas.0502177102
10.1016/j.brainresbull.2006.10.029
10.1093/intimm/dxm043
10.1086/426833
10.1523/JNEUROSCI.0116-08.2008
10.1016/j.cell.2008.06.019
10.1016/0092-8674(93)90585-E
10.1523/JNEUROSCI.2675-04.2004
10.4049/jimmunol.165.5.2783
10.1186/1479-7364-4-5-345
10.1159/000097283
10.1002/glia.21006
10.1172/JCI11916
10.1093/hmg/ddq018
10.1016/S0092-8674(00)80940-X
10.1111/j.1460-9568.1995.tb01042.x
10.1038/nprot.2006.36
10.1016/j.jneuroim.2010.04.010
10.1111/j.1471-4159.2005.03588.x
10.1124/pr.55.2.4
10.1182/blood-2009-07-232694
10.1212/01.wnl.0000222734.56412.17
10.1016/j.nbd.2011.02.008
10.1034/j.1600-0463.2002.1101201.x
10.1093/hmg/9.19.2799
10.1093/hmg/ddm133
10.1002/jnr.10719
10.1002/humu.21362
10.1086/430841
10.4161/cc.6.12.4421
10.1016/j.bcp.2006.09.003
10.1242/dev.01287
10.1016/j.neuron.2008.06.025
10.1002/cne.10654
10.1146/annurev-immunol-031210-101312
10.1101/gr.1173403
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7TK
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1093/hmg/dds132
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 3111
ExternalDocumentID PMC3384380
22492998
26107953
10_1093_hmg_dds132
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG022074
– fundername: NINDS NIH HHS
  grantid: NS050041
– fundername: NINDS NIH HHS
  grantid: NS44169
– fundername: NIA NIH HHS
  grantid: AG18440
– fundername: NIA NIH HHS
  grantid: AG10435
– fundername: NINDS NIH HHS
  grantid: R01 NS044169
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
.55
.GJ
AAPGJ
AAWDT
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AGKRT
AGMDO
AGQPQ
AHGBF
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
CXTWN
DFGAJ
EIHJH
ELUNK
FEDTE
HVGLF
IQODW
MBLQV
MBTAY
NEJ
NTWIH
OBFPC
O~Y
PB-
QBD
RIG
RNI
RZF
RZO
TCN
X7M
ZCG
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7TK
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c441t-3dd2b90c49ffd69808d258fe3bd9543510e26dac979b481c074a4d6aab2546d3
ISSN 0964-6906
1460-2083
IngestDate Thu Aug 21 14:08:10 EDT 2025
Fri Jul 11 15:37:33 EDT 2025
Fri Jul 11 06:08:48 EDT 2025
Mon Jul 21 05:17:04 EDT 2025
Mon Jul 21 09:16:23 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Tue Jul 01 00:24:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Nervous system diseases
Huntingtin
Transcription
Huntington disease
Transcription repressor
Protein A
Genetic disease
Cerebral disorder
Signal transduction
Central nervous system disease
Genetics
Degenerative disease
Extrapyramidal syndrome
Transcription factor FOXP1
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-3dd2b90c49ffd69808d258fe3bd9543510e26dac979b481c074a4d6aab2546d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/hmg/article-pdf/21/14/3097/17255612/dds132.pdf
PMID 22492998
PQID 1022846734
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3384380
proquest_miscellaneous_1028030962
proquest_miscellaneous_1022846734
pubmed_primary_22492998
pascalfrancis_primary_26107953
crossref_citationtrail_10_1093_hmg_dds132
crossref_primary_10_1093_hmg_dds132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-15
PublicationDateYYYYMMDD 2012-07-15
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Memet ( key 20170522143232_DDS132C39) 2006; 72
Cahoy ( key 20170522143232_DDS132C28) 2008; 28
Schubert ( key 20170522143232_DDS132C38) 2001; 276
Fattori ( key 20170522143232_DDS132C56) 1995; 7
Gahring ( key 20170522143232_DDS132C58) 1996; 3
Bolstad ( key 20170522143232_DDS132C64) 2003; 19
Hodges ( key 20170522143232_DDS132C23) 2006; 15
Spencer ( key 20170522143232_DDS132C55) 2009; 29
Li ( key 20170522143232_DDS132C32) 2007; 19
Rousso ( key 20170522143232_DDS132C8) 2008; 59
Smyth ( key 20170522143232_DDS132C66) 2004; 3
Lauw ( key 20170522143232_DDS132C53) 2000; 165
Nguyen ( key 20170522143232_DDS132C70) 2005; 102
Desplats ( key 20170522143232_DDS132C16) 2006; 96
Bjorkqvist ( key 20170522143232_DDS132C43) 2008; 205
Ouyang ( key 20170522143232_DDS132C51) 2011; 29
Shaffer ( key 20170522143232_DDS132C34) 2002; 2
Dalrymple ( key 20170522143232_DDS132C42) 2007; 6
Jakobsson ( key 20170522143232_DDS132C54) 2003; 73
Hodgson ( key 20170522143232_DDS132C26) 1999; 23
Kuhn ( key 20170522143232_DDS132C24) 2007; 16
de Chaldee ( key 20170522143232_DDS132C27) 2003; 13
Tang ( key 20170522143232_DDS132C30) 2011; 42
Thomas ( key 20170522143232_DDS132C31) 2011; 20
Vonsattel ( key 20170522143232_DDS132C48) 1985; 44
Loerch ( key 20170522143232_DDS132C29) 2008; 3
Feng ( key 20170522143232_DDS132C35) 2010; 115
Chou ( key 20170522143232_DDS132C47) 2008; 28
Liu ( key 20170522143232_DDS132C57) 2005; 92
Kleinjan ( key 20170522143232_DDS132C22) 2005; 76
Carlsson ( key 20170522143232_DDS132C1) 2002; 250
Tamura ( key 20170522143232_DDS132C15) 2003; 3
Jackson ( key 20170522143232_DDS132C2) 2010; 4
Sapp ( key 20170522143232_DDS132C45) 2001; 60
Luo ( key 20170522143232_DDS132C67) 1998; 92
Asadullah ( key 20170522143232_DDS132C52) 2003; 55
Horn ( key 20170522143232_DDS132C13) 2010; 31
de Haas ( key 20170522143232_DDS132C59) 2007; 36
Shu ( key 20170522143232_DDS132C3) 2001; 276
Khoshnan ( key 20170522143232_DDS132C41) 2004; 24
Lai ( key 20170522143232_DDS132C9) 2001; 413
Shi ( key 20170522143232_DDS132C6) 2004; 114
Trettel ( key 20170522143232_DDS132C21) 2000; 9
Ferland ( key 20170522143232_DDS132C14) 2003; 460
Dasen ( key 20170522143232_DDS132C7) 2008; 134
Thomas ( key 20170522143232_DDS132C20) 2006; 84
Mattson ( key 20170522143232_DDS132C40) 2001; 107
MacDermot ( key 20170522143232_DDS132C10) 2005; 76
Irizarry ( key 20170522143232_DDS132C65) 2003; 31
Sugars ( key 20170522143232_DDS132C19) 2003; 19
The Huntington's Disease Collaborative Research Group ( key 20170522143232_DDS132C18) 1993; 72
Tiscornia ( key 20170522143232_DDS132C63) 2006; 1
Tai ( key 20170522143232_DDS132C49) 2007; 130
Becanovic ( key 20170522143232_DDS132C25) 2011; 19
Wang ( key 20170522143232_DDS132C4) 2004; 131
Vernes ( key 20170522143232_DDS132C11) 2006; 15
Chung ( key 20170522143232_DDS132C36) 2010; 58
Hu ( key 20170522143232_DDS132C5) 2006; 7
Takahashi ( key 20170522143232_DDS132C17) 2003; 73
Banham ( key 20170522143232_DDS132C33) 2001; 61
Tai ( key 20170522143232_DDS132C50) 2007; 72
Xing ( key 20170522143232_DDS132C61) 2011; 225
Pavese ( key 20170522143232_DDS132C44) 2006; 66
Shin ( key 20170522143232_DDS132C46) 2005; 171
Bradford ( key 20170522143232_DDS132C69) 2009; 106
Larsen ( key 20170522143232_DDS132C60) 2002; 110
Zhang ( key 20170522143232_DDS132C68) 2008; 9
Li ( key 20170522143232_DDS132C37) 2007; 6
Hamdan ( key 20170522143232_DDS132C12) 2010; 87
Desplats ( key 20170522143232_DDS132C62) 2008; 31
References_xml – volume: 15
  start-page: 965
  year: 2006
  ident: key 20170522143232_DDS132C23
  article-title: Regional and cellular gene expression changes in human Huntington's disease brain
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl013
– volume: 28
  start-page: 264
  year: 2008
  ident: key 20170522143232_DDS132C28
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 44
  start-page: 559
  year: 1985
  ident: key 20170522143232_DDS132C48
  article-title: Neuropathological classification of Huntington's disease
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-198511000-00003
– volume: 413
  start-page: 519
  year: 2001
  ident: key 20170522143232_DDS132C9
  article-title: A forkhead-domain gene is mutated in a severe speech and language disorder
  publication-title: Nature
  doi: 10.1038/35097076
– volume: 31
  start-page: e15
  year: 2003
  ident: key 20170522143232_DDS132C65
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gng015
– volume: 9
  start-page: R137
  year: 2008
  ident: key 20170522143232_DDS132C68
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 19
  start-page: 233
  year: 2003
  ident: key 20170522143232_DDS132C19
  article-title: Transcriptional abnormalities in Huntington disease
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(03)00074-X
– volume: 31
  start-page: 298
  year: 2008
  ident: key 20170522143232_DDS132C62
  article-title: Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.05.005
– volume: 73
  start-page: 61
  year: 2003
  ident: key 20170522143232_DDS132C17
  article-title: Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10638
– volume: 106
  start-page: 22480
  year: 2009
  ident: key 20170522143232_DDS132C69
  article-title: Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0911503106
– volume: 15
  start-page: 3154
  year: 2006
  ident: key 20170522143232_DDS132C11
  article-title: Functional genetic analysis of mutations implicated in a human speech and language disorder
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl392
– volume: 84
  start-page: 1151
  year: 2006
  ident: key 20170522143232_DDS132C20
  article-title: Striatal specificity of gene expression dysregulation in Huntington's disease
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21046
– volume: 276
  start-page: 27488
  year: 2001
  ident: key 20170522143232_DDS132C3
  article-title: Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100636200
– volume: 23
  start-page: 181
  year: 1999
  ident: key 20170522143232_DDS132C26
  article-title: A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80764-3
– volume: 3
  start-page: e3329
  year: 2008
  ident: key 20170522143232_DDS132C29
  article-title: Evolution of the aging brain transcriptome and synaptic regulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003329
– volume: 29
  start-page: 13578
  year: 2009
  ident: key 20170522143232_DDS132C55
  article-title: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4390-09.2009
– volume: 36
  start-page: 137
  year: 2007
  ident: key 20170522143232_DDS132C59
  article-title: Neuronal chemokines: versatile messengers in central nervous system cell interaction
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-007-0036-8
– volume: 3
  start-page: 193
  year: 2003
  ident: key 20170522143232_DDS132C15
  article-title: Expression pattern of the winged-helix/forkhead transcription factor Foxp1 in the developing central nervous system
  publication-title: Gene Expr. Patterns
  doi: 10.1016/S1567-133X(03)00003-6
– volume: 6
  start-page: 2833
  year: 2007
  ident: key 20170522143232_DDS132C42
  article-title: Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0700753
– volume: 87
  start-page: 671
  year: 2010
  ident: key 20170522143232_DDS132C12
  article-title: De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.09.017
– volume: 20
  start-page: 1049
  year: 2011
  ident: key 20170522143232_DDS132C31
  article-title: In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq548
– volume: 92
  start-page: 546
  year: 2005
  ident: key 20170522143232_DDS132C57
  article-title: S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2004.02909.x
– volume: 114
  start-page: 408
  year: 2004
  ident: key 20170522143232_DDS132C6
  article-title: Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200421100
– volume: 3
  year: 2004
  ident: key 20170522143232_DDS132C66
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol. Biol.
  doi: 10.2202/1544-6115.1027
– volume: 60
  start-page: 161
  year: 2001
  ident: key 20170522143232_DDS132C45
  article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/60.2.161
– volume: 2
  start-page: 920
  year: 2002
  ident: key 20170522143232_DDS132C34
  article-title: Lymphoid malignancies: the dark side of B-cell differentiation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri953
– volume: 171
  start-page: 1001
  year: 2005
  ident: key 20170522143232_DDS132C46
  article-title: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200508072
– volume: 19
  start-page: 185
  year: 2003
  ident: key 20170522143232_DDS132C64
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 250
  start-page: 1
  year: 2002
  ident: key 20170522143232_DDS132C1
  article-title: Forkhead transcription factors: key players in development and metabolism
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2002.0780
– volume: 7
  start-page: 819
  year: 2006
  ident: key 20170522143232_DDS132C5
  article-title: Foxp1 is an essential transcriptional regulator of B cell development
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1358
– volume: 205
  start-page: 1869
  year: 2008
  ident: key 20170522143232_DDS132C43
  article-title: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080178
– volume: 130
  start-page: 1759
  year: 2007
  ident: key 20170522143232_DDS132C49
  article-title: Microglial activation in presymptomatic Huntington's disease gene carriers
  publication-title: Brain
  doi: 10.1093/brain/awm044
– volume: 276
  start-page: 37672
  year: 2001
  ident: key 20170522143232_DDS132C38
  article-title: Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M104521200
– volume: 102
  start-page: 11840
  year: 2005
  ident: key 20170522143232_DDS132C70
  article-title: Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington's disease mouse model
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502177102
– volume: 72
  start-page: 148
  year: 2007
  ident: key 20170522143232_DDS132C50
  article-title: Imaging microglial activation in Huntington's disease
  publication-title: Brain Res. Bull
  doi: 10.1016/j.brainresbull.2006.10.029
– volume: 19
  start-page: 825
  year: 2007
  ident: key 20170522143232_DDS132C32
  article-title: FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxm043
– volume: 76
  start-page: 8
  year: 2005
  ident: key 20170522143232_DDS132C22
  article-title: Long-range control of gene expression: emerging mechanisms and disruption in disease
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/426833
– volume: 28
  start-page: 3277
  year: 2008
  ident: key 20170522143232_DDS132C47
  article-title: Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0116-08.2008
– volume: 134
  start-page: 304
  year: 2008
  ident: key 20170522143232_DDS132C7
  article-title: Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.019
– volume: 72
  start-page: 971
  year: 1993
  ident: key 20170522143232_DDS132C18
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 24
  start-page: 7999
  year: 2004
  ident: key 20170522143232_DDS132C41
  article-title: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2675-04.2004
– volume: 165
  start-page: 2783
  year: 2000
  ident: key 20170522143232_DDS132C53
  article-title: Proinflammatory effects of IL-10 during human endotoxemia
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.5.2783
– volume: 4
  start-page: 345
  year: 2010
  ident: key 20170522143232_DDS132C2
  article-title: Update of human and mouse forkhead box (FOX) gene families
  publication-title: Hum. Genomics
  doi: 10.1186/1479-7364-4-5-345
– volume: 3
  start-page: 289
  year: 1996
  ident: key 20170522143232_DDS132C58
  article-title: Neuronal expression of tumor necrosis factor alpha in the murine brain
  publication-title: Neuroimmunomodulation
  doi: 10.1159/000097283
– volume: 58
  start-page: 1247
  year: 2010
  ident: key 20170522143232_DDS132C36
  article-title: Foxp3 is a novel repressor of microglia activation
  publication-title: Glia
  doi: 10.1002/glia.21006
– volume: 107
  start-page: 247
  year: 2001
  ident: key 20170522143232_DDS132C40
  article-title: NF-kappaB in neuronal plasticity and neurodegenerative disorders
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI11916
– volume: 19
  start-page: 1438
  year: 2011
  ident: key 20170522143232_DDS132C25
  article-title: Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq018
– volume: 92
  start-page: 463
  year: 1998
  ident: key 20170522143232_DDS132C67
  article-title: Rb interacts with histone deacetylase to repress transcription
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80940-X
– volume: 7
  start-page: 2441
  year: 1995
  ident: key 20170522143232_DDS132C56
  article-title: IL-6 expression in neurons of transgenic mice causes reactive astrocytosis and increase in ramified microglial cells but no neuronal damage
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.1995.tb01042.x
– volume: 1
  start-page: 234
  year: 2006
  ident: key 20170522143232_DDS132C63
  article-title: Design and cloning of lentiviral vectors expressing small interfering RNAs
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.36
– volume: 225
  start-page: 43
  year: 2011
  ident: key 20170522143232_DDS132C61
  article-title: Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity
  publication-title: J. Neuroimmunol.
  doi: 10.1016/j.jneuroim.2010.04.010
– volume: 96
  start-page: 743
  year: 2006
  ident: key 20170522143232_DDS132C16
  article-title: Selective deficits in the expression of striatal-enriched mRNAs in Huntington's disease
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2005.03588.x
– volume: 55
  start-page: 241
  year: 2003
  ident: key 20170522143232_DDS132C52
  article-title: Interleukin-10 therapy–review of a new approach
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.55.2.4
– volume: 115
  start-page: 510
  year: 2010
  ident: key 20170522143232_DDS132C35
  article-title: Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development
  publication-title: Blood
  doi: 10.1182/blood-2009-07-232694
– volume: 66
  start-page: 1638
  year: 2006
  ident: key 20170522143232_DDS132C44
  article-title: Microglial activation correlates with severity in Huntington disease: a clinical and PET study
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000222734.56412.17
– volume: 42
  start-page: 459
  year: 2011
  ident: key 20170522143232_DDS132C30
  article-title: Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease
  publication-title: Neurobiol Dis.
  doi: 10.1016/j.nbd.2011.02.008
– volume: 110
  start-page: 833
  year: 2002
  ident: key 20170522143232_DDS132C60
  article-title: Suppressors of cytokine signalling: SOCS
  publication-title: APMIS
  doi: 10.1034/j.1600-0463.2002.1101201.x
– volume: 9
  start-page: 2799
  year: 2000
  ident: key 20170522143232_DDS132C21
  article-title: Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.19.2799
– volume: 16
  start-page: 1845
  year: 2007
  ident: key 20170522143232_DDS132C24
  article-title: Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm133
– volume: 61
  start-page: 8820
  year: 2001
  ident: key 20170522143232_DDS132C33
  article-title: The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p
  publication-title: Cancer Res.
– volume: 73
  start-page: 876
  year: 2003
  ident: key 20170522143232_DDS132C54
  article-title: Targeted transgene expression in rat brain using lentiviral vectors
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10719
– volume: 31
  start-page: E1851
  year: 2010
  ident: key 20170522143232_DDS132C13
  article-title: Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.21362
– volume: 76
  start-page: 1074
  year: 2005
  ident: key 20170522143232_DDS132C10
  article-title: Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/430841
– volume: 6
  start-page: 1432
  year: 2007
  ident: key 20170522143232_DDS132C37
  article-title: FOXP3 actively represses transcription by recruiting the HAT/HDAC complex
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.12.4421
– volume: 72
  start-page: 1180
  year: 2006
  ident: key 20170522143232_DDS132C39
  article-title: NF-kappaB functions in the nervous system: from development to disease
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.09.003
– volume: 131
  start-page: 4477
  year: 2004
  ident: key 20170522143232_DDS132C4
  article-title: Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation
  publication-title: Development
  doi: 10.1242/dev.01287
– volume: 59
  start-page: 226
  year: 2008
  ident: key 20170522143232_DDS132C8
  article-title: Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.06.025
– volume: 460
  start-page: 266
  year: 2003
  ident: key 20170522143232_DDS132C14
  article-title: Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10654
– volume: 29
  start-page: 71
  year: 2011
  ident: key 20170522143232_DDS132C51
  article-title: Regulation and functions of the IL-10 family of cytokines in inflammation and disease
  publication-title: Annu Rev. Immunol.
  doi: 10.1146/annurev-immunol-031210-101312
– volume: 13
  start-page: 1646
  year: 2003
  ident: key 20170522143232_DDS132C27
  article-title: Quantitative assessment of transcriptome differences between brain territories
  publication-title: Genome Res.
  doi: 10.1101/gr.1173403
SSID ssj0016437
Score 2.2594051
Snippet Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS)...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3097
SubjectTerms Animal models
Animals
Biological and medical sciences
Brain
Brain - metabolism
Cell interactions
Cell physiology
Central nervous system
Central Nervous System - immunology
Chemokines
Cytokines
Data processing
Development
Disease Models, Animal
DNA microarrays
Down-Regulation
Forkhead protein
Forkhead Transcription Factors - genetics
Forkhead Transcription Factors - metabolism
Foxp1 protein
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Gene regulation
Genetics of eukaryotes. Biological and molecular evolution
Humans
Huntingtin
Huntington Disease - genetics
Huntington Disease - immunology
Huntington Disease - metabolism
Huntington's disease
Mice
Mice, Transgenic
Molecular and cellular biology
Molecular genetics
Neostriatum
Repressor Proteins - genetics
Repressor Proteins - metabolism
Repressors
Signal Transduction
Transcription factors
Transcription, Genetic
Transcription. Transcription factor. Splicing. Rna processing
Transgenic mice
Title Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease
URI https://www.ncbi.nlm.nih.gov/pubmed/22492998
https://www.proquest.com/docview/1022846734
https://www.proquest.com/docview/1028030962
https://pubmed.ncbi.nlm.nih.gov/PMC3384380
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WiiIU0Xrpeikj-iIlbZLJbXyzpesi7frQFPYtTDITu9Amy17A-lfE_-o5mUk22S5SfQlLMplk-b6cOXOuhHxQrityWDesSDBleb7yrdSLHCuQXNlBHqQqwNzhs1EwvPC-jv1xr_e7FbW0XKQH2c-NeSX_gyqcA1wxS_YfkG0mhRPwG_CFIyAMxzthPChn6L4GHbL8sV9VXMCYcAeblAts_lA0MqEq31_FvJaVW2CCaSFqH6M3xJVJa0EV9Hh0jjaCSTvOvApEXJtM3sDS-t20_sKbh7rlBBbpaPt8jNqrXQXXdSte7NuMyZONPh8bq_XRpOHqkQLQS5BjK1FUNEsI7Jan8Ox5HdsoVibZ8ynKKm2DmNXcN2YNpwqB1YmdRhJ7gQ1g6y43B2rDOSO-dYJ1TVOvJYyZrUN_b60SuoLW5TX8s4GUc8dYWDvFuEffksHF6WkSn4zje-S-C7sQlPtfxk0EkYM-T528pt-qrn7L2SHMfahn7ug721Mxh08v1z1TNm1q1mNzW8pO_IQ8NrsU-llT7inpqWKHPNB9S292yMMzE5HxjPyqOUiBg9RwkE4dOplTQddoQxsO0jKnmoO04SCFG4GDFDj4ibYZSIGBt6bqMBBvXTGQGgY-J_HgJD4eWqbhh5WBVr6wmJRuyu3M43kuAx7ZkXT9KFcsldwHvd6xlRtIkfGQo0DJQP0VngyESLGrg2QvyFZRFmqXUDfMowB11dBzvSxkXMB4HkrblzzNfa9PPtaoJJkpho89Wa4SHZTBEkAw0Qj2yftm7FSXgNk4aq8DbjPUhQ1KyH3WJ-9qtBMQ4eiXE4Uql_MEjS64DWDeX8dE6A0N4EEvNUNWT8Cqn5xHfRJ2uNMMwBLy3SvF5LIqJc9YhC0nXt3h3V6TR6vv9A3ZWsyW6i0o5It0r_os_gBrsu5c
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forkhead+box+protein+p1+is+a+transcriptional+repressor+of+immune+signaling+in+the+CNS%3A+implications+for+transcriptional+dysregulation+in+Huntington+disease&rft.jtitle=Human+molecular+genetics&rft.au=Tang%2C+Bin&rft.au=Becanovic%2C+Kristina&rft.au=Desplats%2C+Paula+A&rft.au=Spencer%2C+Brian&rft.date=2012-07-15&rft.issn=1460-2083&rft.eissn=1460-2083&rft.volume=21&rft.issue=14&rft.spage=3097&rft_id=info:doi/10.1093%2Fhmg%2Fdds132&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon