Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease
Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified ge...
Saved in:
Published in | Human molecular genetics Vol. 21; no. 14; pp. 3097 - 3111 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
15.07.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0964-6906 1460-2083 1460-2083 |
DOI | 10.1093/hmg/dds132 |
Cover
Loading…
Abstract | Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication. |
---|---|
AbstractList | Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication. Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication. Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication.Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS) development, but its role in the mature brain is unknown. In order to ascertain functional roles for Foxp1 in the CNS, we have identified gene targets for Foxp1 both in vitro and in vivo using genome-wide expression microarrays and chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-seq) assays. We found that mouse Foxp1 overexpression in striatal cells elicited expression changes of genes related to immune signaling, transcriptional regulation and a manually curated Huntington's disease (HD)-signaling pathway. Similar results were found when the gene expression data set was integrated with Foxp1-binding data determined from ChIP-seq analysis. In vivo lentiviral-mediated overexpression of human FOXP1 in the context of mutant huntingtin (Htt) protein resulted in a robust downregulation of glial cell-associated, immune genes, including those encoding a variety of cytokines and chemokines. Furthermore, Foxp1-induced expression changes were significantly negatively correlated with those changes elicited by mutant Htt protein in several different HD mouse models, and most significantly in post-mortem caudate from human HD subjects. We finally show that Foxp1 interacts with mutant Htt protein in mouse brain and is present in nuclear Htt aggregates in the striatum of R6/1 transgenic mice. These findings implicate Foxp1 as a key repressor of immune signaling in the CNS and suggest that the loss of Foxp1-mediated gene regulation in HD contributes to the immune dysfunction in this disease. We further suggest that Foxp1-regulated pathways might be important mediators of neuronal-glial cell communication. |
Author | Thomas, Elizabeth A. Becanovic, Kristina Desplats, Paula A. Connolly, Colum Masliah, Eliezer Hill, Austin M. Tang, Bin Spencer, Brian Leavitt, Blair R. |
AuthorAffiliation | 4 Department of Pathology , University of California, San Diego , La Jolla, CA , USA 1 Department of Molecular Biology , The Scripps Research Institute , 10550 North Torrey Pines Rd., La Jolla, CA , USA 3 Department of Neuroscience and 2 Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , University of British Columbia , Vancouver , Canada V5Z 4H4 |
AuthorAffiliation_xml | – name: 2 Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , University of British Columbia , Vancouver , Canada V5Z 4H4 – name: 1 Department of Molecular Biology , The Scripps Research Institute , 10550 North Torrey Pines Rd., La Jolla, CA , USA – name: 3 Department of Neuroscience and – name: 4 Department of Pathology , University of California, San Diego , La Jolla, CA , USA |
Author_xml | – sequence: 1 givenname: Bin surname: Tang fullname: Tang, Bin – sequence: 2 givenname: Kristina surname: Becanovic fullname: Becanovic, Kristina – sequence: 3 givenname: Paula A. surname: Desplats fullname: Desplats, Paula A. – sequence: 4 givenname: Brian surname: Spencer fullname: Spencer, Brian – sequence: 5 givenname: Austin M. surname: Hill fullname: Hill, Austin M. – sequence: 6 givenname: Colum surname: Connolly fullname: Connolly, Colum – sequence: 7 givenname: Eliezer surname: Masliah fullname: Masliah, Eliezer – sequence: 8 givenname: Blair R. surname: Leavitt fullname: Leavitt, Blair R. – sequence: 9 givenname: Elizabeth A. surname: Thomas fullname: Thomas, Elizabeth A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26107953$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22492998$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFDQ-AvEFCSKH-GydmUQmNKEWqYEH3lmM7GUNiBztB9Fl4We50pvxULFhZ1v3O8fG99wQdxRQ9Qk8peUWJ4mfbsT9zrlDOHqAVFZJUjDT8CK2IkqKSishjdFLKZ0KoFLx-hI4ZE4op1azQj4uUv2y9cbhN3_GU0-xDxBPFoWCD52xisTlMc0jRDDj7KftSUsapw2Ecl-hxCT2UQuwxCOetx5sPn15DcRqCNTtdwR0I7lu5m5J9vwy3yE56ucQZXGa4uVC8Kf4xetiZofgnh_MUXV-8vd5cVlcf373fvLmqrBB0rrhzrFXECtV1TqqGNI6tm87z1qm14GtKPJPOWFWrVjTUkloY4aQxLVsL6fgpOt_bTks7emd9hKyDnnIYTb7RyQT9dyWGre7TN815I3hDwODFwSCnr4svsx5DsX4YTPRpKZoSBhQMg_0Pyhohay4AffZnrF957mYHwPMDYIo1QwcNtqH85iQltVpz4MieszkVaHqnbZhv2w6_CQO8qXdrpGGN9H6NQPLynuTO9R_wTx8izjY |
CitedBy_id | crossref_primary_10_1007_s11064_017_2382_x crossref_primary_10_1016_j_neuroscience_2017_12_033 crossref_primary_10_1038_cdd_2013_81 crossref_primary_10_1038_s41598_023_40764_8 crossref_primary_10_1186_1471_2407_14_840 crossref_primary_10_3390_ijms20123097 crossref_primary_10_1038_nn_4133 crossref_primary_10_1371_journal_pcbi_1003884 crossref_primary_10_1016_j_arr_2024_102538 crossref_primary_10_1182_blood_2012_10_462846 crossref_primary_10_1038_leu_2013_224 crossref_primary_10_1007_s12035_016_0010_4 crossref_primary_10_1042_BSR20210158 crossref_primary_10_1186_s13229_021_00469_z crossref_primary_10_1073_pnas_2112852119 crossref_primary_10_3390_biomedicines9091161 crossref_primary_10_1007_s12035_018_1046_4 crossref_primary_10_1038_leu_2015_299 crossref_primary_10_1007_s00439_012_1193_z crossref_primary_10_1038_nrn3406 crossref_primary_10_2174_0929867327666200705225821 crossref_primary_10_15252_msb_20167435 crossref_primary_10_1016_j_yexmp_2015_10_003 crossref_primary_10_1038_srep05403 crossref_primary_10_1038_s41380_020_00995_x crossref_primary_10_3109_08830185_2013_816698 crossref_primary_10_1021_acschemneuro_8b00354 crossref_primary_10_1016_j_ebiom_2018_11_066 crossref_primary_10_3389_fneur_2020_573560 crossref_primary_10_1186_s12864_015_2068_1 crossref_primary_10_3389_fgene_2020_00646 crossref_primary_10_1186_2040_2392_4_23 crossref_primary_10_1016_j_neuroscience_2020_06_032 crossref_primary_10_1101_gad_267989_115 crossref_primary_10_1007_s12035_014_8715_8 crossref_primary_10_1007_s11064_020_03151_7 crossref_primary_10_1371_journal_pone_0096575 crossref_primary_10_7554_eLife_29087 crossref_primary_10_3389_fncel_2014_00295 |
Cites_doi | 10.1093/hmg/ddl013 10.1523/JNEUROSCI.4178-07.2008 10.1097/00005072-198511000-00003 10.1038/35097076 10.1093/nar/gng015 10.1186/gb-2008-9-9-r137 10.1016/S0168-9525(03)00074-X 10.1016/j.nbd.2008.05.005 10.1002/jnr.10638 10.1073/pnas.0911503106 10.1093/hmg/ddl392 10.1002/jnr.21046 10.1074/jbc.M100636200 10.1016/S0896-6273(00)80764-3 10.1371/journal.pone.0003329 10.1523/JNEUROSCI.4390-09.2009 10.1007/s12035-007-0036-8 10.1016/S1567-133X(03)00003-6 10.1021/pr0700753 10.1016/j.ajhg.2010.09.017 10.1093/hmg/ddq548 10.1111/j.1471-4159.2004.02909.x 10.1172/JCI200421100 10.2202/1544-6115.1027 10.1093/jnen/60.2.161 10.1038/nri953 10.1083/jcb.200508072 10.1093/bioinformatics/19.2.185 10.1006/dbio.2002.0780 10.1038/ni1358 10.1084/jem.20080178 10.1093/brain/awm044 10.1074/jbc.M104521200 10.1073/pnas.0502177102 10.1016/j.brainresbull.2006.10.029 10.1093/intimm/dxm043 10.1086/426833 10.1523/JNEUROSCI.0116-08.2008 10.1016/j.cell.2008.06.019 10.1016/0092-8674(93)90585-E 10.1523/JNEUROSCI.2675-04.2004 10.4049/jimmunol.165.5.2783 10.1186/1479-7364-4-5-345 10.1159/000097283 10.1002/glia.21006 10.1172/JCI11916 10.1093/hmg/ddq018 10.1016/S0092-8674(00)80940-X 10.1111/j.1460-9568.1995.tb01042.x 10.1038/nprot.2006.36 10.1016/j.jneuroim.2010.04.010 10.1111/j.1471-4159.2005.03588.x 10.1124/pr.55.2.4 10.1182/blood-2009-07-232694 10.1212/01.wnl.0000222734.56412.17 10.1016/j.nbd.2011.02.008 10.1034/j.1600-0463.2002.1101201.x 10.1093/hmg/9.19.2799 10.1093/hmg/ddm133 10.1002/jnr.10719 10.1002/humu.21362 10.1086/430841 10.4161/cc.6.12.4421 10.1016/j.bcp.2006.09.003 10.1242/dev.01287 10.1016/j.neuron.2008.06.025 10.1002/cne.10654 10.1146/annurev-immunol-031210-101312 10.1101/gr.1173403 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7T5 7TK 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1093/hmg/dds132 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | 3111 |
ExternalDocumentID | PMC3384380 22492998 26107953 10_1093_hmg_dds132 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG022074 – fundername: NINDS NIH HHS grantid: NS050041 – fundername: NINDS NIH HHS grantid: NS44169 – fundername: NIA NIH HHS grantid: AG18440 – fundername: NIA NIH HHS grantid: AG10435 – fundername: NINDS NIH HHS grantid: R01 NS044169 |
GroupedDBID | --- -DZ -E4 .2P .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O0~ O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SJN TEORI TJX TLC TMA TR2 W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZKX ~91 .55 .GJ AAPGJ AAWDT ABEFU ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO AEHUL AEKPW AFFNX AFFQV AFSHK AGKRT AGMDO AGQPQ AHGBF AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG CXTWN DFGAJ EIHJH ELUNK FEDTE HVGLF IQODW MBLQV MBTAY NEJ NTWIH OBFPC O~Y PB- QBD RIG RNI RZF RZO TCN X7M ZCG ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7T5 7TK 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c441t-3dd2b90c49ffd69808d258fe3bd9543510e26dac979b481c074a4d6aab2546d3 |
ISSN | 0964-6906 1460-2083 |
IngestDate | Thu Aug 21 14:08:10 EDT 2025 Fri Jul 11 15:37:33 EDT 2025 Fri Jul 11 06:08:48 EDT 2025 Mon Jul 21 05:17:04 EDT 2025 Mon Jul 21 09:16:23 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Tue Jul 01 00:24:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Nervous system diseases Huntingtin Transcription Huntington disease Transcription repressor Protein A Genetic disease Cerebral disorder Signal transduction Central nervous system disease Genetics Degenerative disease Extrapyramidal syndrome Transcription factor FOXP1 |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-3dd2b90c49ffd69808d258fe3bd9543510e26dac979b481c074a4d6aab2546d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://academic.oup.com/hmg/article-pdf/21/14/3097/17255612/dds132.pdf |
PMID | 22492998 |
PQID | 1022846734 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3384380 proquest_miscellaneous_1028030962 proquest_miscellaneous_1022846734 pubmed_primary_22492998 pascalfrancis_primary_26107953 crossref_citationtrail_10_1093_hmg_dds132 crossref_primary_10_1093_hmg_dds132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-15 |
PublicationDateYYYYMMDD | 2012-07-15 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Memet ( key 20170522143232_DDS132C39) 2006; 72 Cahoy ( key 20170522143232_DDS132C28) 2008; 28 Schubert ( key 20170522143232_DDS132C38) 2001; 276 Fattori ( key 20170522143232_DDS132C56) 1995; 7 Gahring ( key 20170522143232_DDS132C58) 1996; 3 Bolstad ( key 20170522143232_DDS132C64) 2003; 19 Hodges ( key 20170522143232_DDS132C23) 2006; 15 Spencer ( key 20170522143232_DDS132C55) 2009; 29 Li ( key 20170522143232_DDS132C32) 2007; 19 Rousso ( key 20170522143232_DDS132C8) 2008; 59 Smyth ( key 20170522143232_DDS132C66) 2004; 3 Lauw ( key 20170522143232_DDS132C53) 2000; 165 Nguyen ( key 20170522143232_DDS132C70) 2005; 102 Desplats ( key 20170522143232_DDS132C16) 2006; 96 Bjorkqvist ( key 20170522143232_DDS132C43) 2008; 205 Ouyang ( key 20170522143232_DDS132C51) 2011; 29 Shaffer ( key 20170522143232_DDS132C34) 2002; 2 Dalrymple ( key 20170522143232_DDS132C42) 2007; 6 Jakobsson ( key 20170522143232_DDS132C54) 2003; 73 Hodgson ( key 20170522143232_DDS132C26) 1999; 23 Kuhn ( key 20170522143232_DDS132C24) 2007; 16 de Chaldee ( key 20170522143232_DDS132C27) 2003; 13 Tang ( key 20170522143232_DDS132C30) 2011; 42 Thomas ( key 20170522143232_DDS132C31) 2011; 20 Vonsattel ( key 20170522143232_DDS132C48) 1985; 44 Loerch ( key 20170522143232_DDS132C29) 2008; 3 Feng ( key 20170522143232_DDS132C35) 2010; 115 Chou ( key 20170522143232_DDS132C47) 2008; 28 Liu ( key 20170522143232_DDS132C57) 2005; 92 Kleinjan ( key 20170522143232_DDS132C22) 2005; 76 Carlsson ( key 20170522143232_DDS132C1) 2002; 250 Tamura ( key 20170522143232_DDS132C15) 2003; 3 Jackson ( key 20170522143232_DDS132C2) 2010; 4 Sapp ( key 20170522143232_DDS132C45) 2001; 60 Luo ( key 20170522143232_DDS132C67) 1998; 92 Asadullah ( key 20170522143232_DDS132C52) 2003; 55 Horn ( key 20170522143232_DDS132C13) 2010; 31 de Haas ( key 20170522143232_DDS132C59) 2007; 36 Shu ( key 20170522143232_DDS132C3) 2001; 276 Khoshnan ( key 20170522143232_DDS132C41) 2004; 24 Lai ( key 20170522143232_DDS132C9) 2001; 413 Shi ( key 20170522143232_DDS132C6) 2004; 114 Trettel ( key 20170522143232_DDS132C21) 2000; 9 Ferland ( key 20170522143232_DDS132C14) 2003; 460 Dasen ( key 20170522143232_DDS132C7) 2008; 134 Thomas ( key 20170522143232_DDS132C20) 2006; 84 Mattson ( key 20170522143232_DDS132C40) 2001; 107 MacDermot ( key 20170522143232_DDS132C10) 2005; 76 Irizarry ( key 20170522143232_DDS132C65) 2003; 31 Sugars ( key 20170522143232_DDS132C19) 2003; 19 The Huntington's Disease Collaborative Research Group ( key 20170522143232_DDS132C18) 1993; 72 Tiscornia ( key 20170522143232_DDS132C63) 2006; 1 Tai ( key 20170522143232_DDS132C49) 2007; 130 Becanovic ( key 20170522143232_DDS132C25) 2011; 19 Wang ( key 20170522143232_DDS132C4) 2004; 131 Vernes ( key 20170522143232_DDS132C11) 2006; 15 Chung ( key 20170522143232_DDS132C36) 2010; 58 Hu ( key 20170522143232_DDS132C5) 2006; 7 Takahashi ( key 20170522143232_DDS132C17) 2003; 73 Banham ( key 20170522143232_DDS132C33) 2001; 61 Tai ( key 20170522143232_DDS132C50) 2007; 72 Xing ( key 20170522143232_DDS132C61) 2011; 225 Pavese ( key 20170522143232_DDS132C44) 2006; 66 Shin ( key 20170522143232_DDS132C46) 2005; 171 Bradford ( key 20170522143232_DDS132C69) 2009; 106 Larsen ( key 20170522143232_DDS132C60) 2002; 110 Zhang ( key 20170522143232_DDS132C68) 2008; 9 Li ( key 20170522143232_DDS132C37) 2007; 6 Hamdan ( key 20170522143232_DDS132C12) 2010; 87 Desplats ( key 20170522143232_DDS132C62) 2008; 31 |
References_xml | – volume: 15 start-page: 965 year: 2006 ident: key 20170522143232_DDS132C23 article-title: Regional and cellular gene expression changes in human Huntington's disease brain publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl013 – volume: 28 start-page: 264 year: 2008 ident: key 20170522143232_DDS132C28 article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 44 start-page: 559 year: 1985 ident: key 20170522143232_DDS132C48 article-title: Neuropathological classification of Huntington's disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-198511000-00003 – volume: 413 start-page: 519 year: 2001 ident: key 20170522143232_DDS132C9 article-title: A forkhead-domain gene is mutated in a severe speech and language disorder publication-title: Nature doi: 10.1038/35097076 – volume: 31 start-page: e15 year: 2003 ident: key 20170522143232_DDS132C65 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gng015 – volume: 9 start-page: R137 year: 2008 ident: key 20170522143232_DDS132C68 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 19 start-page: 233 year: 2003 ident: key 20170522143232_DDS132C19 article-title: Transcriptional abnormalities in Huntington disease publication-title: Trends Genet. doi: 10.1016/S0168-9525(03)00074-X – volume: 31 start-page: 298 year: 2008 ident: key 20170522143232_DDS132C62 article-title: Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.05.005 – volume: 73 start-page: 61 year: 2003 ident: key 20170522143232_DDS132C17 article-title: Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10638 – volume: 106 start-page: 22480 year: 2009 ident: key 20170522143232_DDS132C69 article-title: Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0911503106 – volume: 15 start-page: 3154 year: 2006 ident: key 20170522143232_DDS132C11 article-title: Functional genetic analysis of mutations implicated in a human speech and language disorder publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl392 – volume: 84 start-page: 1151 year: 2006 ident: key 20170522143232_DDS132C20 article-title: Striatal specificity of gene expression dysregulation in Huntington's disease publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21046 – volume: 276 start-page: 27488 year: 2001 ident: key 20170522143232_DDS132C3 article-title: Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100636200 – volume: 23 start-page: 181 year: 1999 ident: key 20170522143232_DDS132C26 article-title: A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration publication-title: Neuron doi: 10.1016/S0896-6273(00)80764-3 – volume: 3 start-page: e3329 year: 2008 ident: key 20170522143232_DDS132C29 article-title: Evolution of the aging brain transcriptome and synaptic regulation publication-title: PLoS ONE doi: 10.1371/journal.pone.0003329 – volume: 29 start-page: 13578 year: 2009 ident: key 20170522143232_DDS132C55 article-title: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4390-09.2009 – volume: 36 start-page: 137 year: 2007 ident: key 20170522143232_DDS132C59 article-title: Neuronal chemokines: versatile messengers in central nervous system cell interaction publication-title: Mol. Neurobiol. doi: 10.1007/s12035-007-0036-8 – volume: 3 start-page: 193 year: 2003 ident: key 20170522143232_DDS132C15 article-title: Expression pattern of the winged-helix/forkhead transcription factor Foxp1 in the developing central nervous system publication-title: Gene Expr. Patterns doi: 10.1016/S1567-133X(03)00003-6 – volume: 6 start-page: 2833 year: 2007 ident: key 20170522143232_DDS132C42 article-title: Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates publication-title: J. Proteome Res. doi: 10.1021/pr0700753 – volume: 87 start-page: 671 year: 2010 ident: key 20170522143232_DDS132C12 article-title: De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.09.017 – volume: 20 start-page: 1049 year: 2011 ident: key 20170522143232_DDS132C31 article-title: In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq548 – volume: 92 start-page: 546 year: 2005 ident: key 20170522143232_DDS132C57 article-title: S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2004.02909.x – volume: 114 start-page: 408 year: 2004 ident: key 20170522143232_DDS132C6 article-title: Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1 publication-title: J. Clin. Invest. doi: 10.1172/JCI200421100 – volume: 3 year: 2004 ident: key 20170522143232_DDS132C66 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments publication-title: Stat Appl Genet Mol. Biol. doi: 10.2202/1544-6115.1027 – volume: 60 start-page: 161 year: 2001 ident: key 20170522143232_DDS132C45 article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/60.2.161 – volume: 2 start-page: 920 year: 2002 ident: key 20170522143232_DDS132C34 article-title: Lymphoid malignancies: the dark side of B-cell differentiation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri953 – volume: 171 start-page: 1001 year: 2005 ident: key 20170522143232_DDS132C46 article-title: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity publication-title: J. Cell Biol. doi: 10.1083/jcb.200508072 – volume: 19 start-page: 185 year: 2003 ident: key 20170522143232_DDS132C64 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 250 start-page: 1 year: 2002 ident: key 20170522143232_DDS132C1 article-title: Forkhead transcription factors: key players in development and metabolism publication-title: Dev. Biol. doi: 10.1006/dbio.2002.0780 – volume: 7 start-page: 819 year: 2006 ident: key 20170522143232_DDS132C5 article-title: Foxp1 is an essential transcriptional regulator of B cell development publication-title: Nat. Immunol. doi: 10.1038/ni1358 – volume: 205 start-page: 1869 year: 2008 ident: key 20170522143232_DDS132C43 article-title: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease publication-title: J. Exp. Med. doi: 10.1084/jem.20080178 – volume: 130 start-page: 1759 year: 2007 ident: key 20170522143232_DDS132C49 article-title: Microglial activation in presymptomatic Huntington's disease gene carriers publication-title: Brain doi: 10.1093/brain/awm044 – volume: 276 start-page: 37672 year: 2001 ident: key 20170522143232_DDS132C38 article-title: Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104521200 – volume: 102 start-page: 11840 year: 2005 ident: key 20170522143232_DDS132C70 article-title: Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington's disease mouse model publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0502177102 – volume: 72 start-page: 148 year: 2007 ident: key 20170522143232_DDS132C50 article-title: Imaging microglial activation in Huntington's disease publication-title: Brain Res. Bull doi: 10.1016/j.brainresbull.2006.10.029 – volume: 19 start-page: 825 year: 2007 ident: key 20170522143232_DDS132C32 article-title: FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease publication-title: Int. Immunol. doi: 10.1093/intimm/dxm043 – volume: 76 start-page: 8 year: 2005 ident: key 20170522143232_DDS132C22 article-title: Long-range control of gene expression: emerging mechanisms and disruption in disease publication-title: Am. J. Hum. Genet. doi: 10.1086/426833 – volume: 28 start-page: 3277 year: 2008 ident: key 20170522143232_DDS132C47 article-title: Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0116-08.2008 – volume: 134 start-page: 304 year: 2008 ident: key 20170522143232_DDS132C7 article-title: Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1 publication-title: Cell doi: 10.1016/j.cell.2008.06.019 – volume: 72 start-page: 971 year: 1993 ident: key 20170522143232_DDS132C18 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 24 start-page: 7999 year: 2004 ident: key 20170522143232_DDS132C41 article-title: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2675-04.2004 – volume: 165 start-page: 2783 year: 2000 ident: key 20170522143232_DDS132C53 article-title: Proinflammatory effects of IL-10 during human endotoxemia publication-title: J. Immunol. doi: 10.4049/jimmunol.165.5.2783 – volume: 4 start-page: 345 year: 2010 ident: key 20170522143232_DDS132C2 article-title: Update of human and mouse forkhead box (FOX) gene families publication-title: Hum. Genomics doi: 10.1186/1479-7364-4-5-345 – volume: 3 start-page: 289 year: 1996 ident: key 20170522143232_DDS132C58 article-title: Neuronal expression of tumor necrosis factor alpha in the murine brain publication-title: Neuroimmunomodulation doi: 10.1159/000097283 – volume: 58 start-page: 1247 year: 2010 ident: key 20170522143232_DDS132C36 article-title: Foxp3 is a novel repressor of microglia activation publication-title: Glia doi: 10.1002/glia.21006 – volume: 107 start-page: 247 year: 2001 ident: key 20170522143232_DDS132C40 article-title: NF-kappaB in neuronal plasticity and neurodegenerative disorders publication-title: J. Clin. Invest. doi: 10.1172/JCI11916 – volume: 19 start-page: 1438 year: 2011 ident: key 20170522143232_DDS132C25 article-title: Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq018 – volume: 92 start-page: 463 year: 1998 ident: key 20170522143232_DDS132C67 article-title: Rb interacts with histone deacetylase to repress transcription publication-title: Cell doi: 10.1016/S0092-8674(00)80940-X – volume: 7 start-page: 2441 year: 1995 ident: key 20170522143232_DDS132C56 article-title: IL-6 expression in neurons of transgenic mice causes reactive astrocytosis and increase in ramified microglial cells but no neuronal damage publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1995.tb01042.x – volume: 1 start-page: 234 year: 2006 ident: key 20170522143232_DDS132C63 article-title: Design and cloning of lentiviral vectors expressing small interfering RNAs publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.36 – volume: 225 start-page: 43 year: 2011 ident: key 20170522143232_DDS132C61 article-title: Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2010.04.010 – volume: 96 start-page: 743 year: 2006 ident: key 20170522143232_DDS132C16 article-title: Selective deficits in the expression of striatal-enriched mRNAs in Huntington's disease publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03588.x – volume: 55 start-page: 241 year: 2003 ident: key 20170522143232_DDS132C52 article-title: Interleukin-10 therapy–review of a new approach publication-title: Pharmacol. Rev. doi: 10.1124/pr.55.2.4 – volume: 115 start-page: 510 year: 2010 ident: key 20170522143232_DDS132C35 article-title: Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development publication-title: Blood doi: 10.1182/blood-2009-07-232694 – volume: 66 start-page: 1638 year: 2006 ident: key 20170522143232_DDS132C44 article-title: Microglial activation correlates with severity in Huntington disease: a clinical and PET study publication-title: Neurology doi: 10.1212/01.wnl.0000222734.56412.17 – volume: 42 start-page: 459 year: 2011 ident: key 20170522143232_DDS132C30 article-title: Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease publication-title: Neurobiol Dis. doi: 10.1016/j.nbd.2011.02.008 – volume: 110 start-page: 833 year: 2002 ident: key 20170522143232_DDS132C60 article-title: Suppressors of cytokine signalling: SOCS publication-title: APMIS doi: 10.1034/j.1600-0463.2002.1101201.x – volume: 9 start-page: 2799 year: 2000 ident: key 20170522143232_DDS132C21 article-title: Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.19.2799 – volume: 16 start-page: 1845 year: 2007 ident: key 20170522143232_DDS132C24 article-title: Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm133 – volume: 61 start-page: 8820 year: 2001 ident: key 20170522143232_DDS132C33 article-title: The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p publication-title: Cancer Res. – volume: 73 start-page: 876 year: 2003 ident: key 20170522143232_DDS132C54 article-title: Targeted transgene expression in rat brain using lentiviral vectors publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10719 – volume: 31 start-page: E1851 year: 2010 ident: key 20170522143232_DDS132C13 article-title: Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits publication-title: Hum. Mutat. doi: 10.1002/humu.21362 – volume: 76 start-page: 1074 year: 2005 ident: key 20170522143232_DDS132C10 article-title: Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits publication-title: Am. J. Hum. Genet. doi: 10.1086/430841 – volume: 6 start-page: 1432 year: 2007 ident: key 20170522143232_DDS132C37 article-title: FOXP3 actively represses transcription by recruiting the HAT/HDAC complex publication-title: Cell Cycle doi: 10.4161/cc.6.12.4421 – volume: 72 start-page: 1180 year: 2006 ident: key 20170522143232_DDS132C39 article-title: NF-kappaB functions in the nervous system: from development to disease publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.09.003 – volume: 131 start-page: 4477 year: 2004 ident: key 20170522143232_DDS132C4 article-title: Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation publication-title: Development doi: 10.1242/dev.01287 – volume: 59 start-page: 226 year: 2008 ident: key 20170522143232_DDS132C8 article-title: Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons publication-title: Neuron doi: 10.1016/j.neuron.2008.06.025 – volume: 460 start-page: 266 year: 2003 ident: key 20170522143232_DDS132C14 article-title: Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain publication-title: J. Comp. Neurol. doi: 10.1002/cne.10654 – volume: 29 start-page: 71 year: 2011 ident: key 20170522143232_DDS132C51 article-title: Regulation and functions of the IL-10 family of cytokines in inflammation and disease publication-title: Annu Rev. Immunol. doi: 10.1146/annurev-immunol-031210-101312 – volume: 13 start-page: 1646 year: 2003 ident: key 20170522143232_DDS132C27 article-title: Quantitative assessment of transcriptome differences between brain territories publication-title: Genome Res. doi: 10.1101/gr.1173403 |
SSID | ssj0016437 |
Score | 2.2594051 |
Snippet | Forkhead box protein p1 (Foxp1), a transcription factor showing highly enriched expression in the striatum, has been implicated in central nervous system (CNS)... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3097 |
SubjectTerms | Animal models Animals Biological and medical sciences Brain Brain - metabolism Cell interactions Cell physiology Central nervous system Central Nervous System - immunology Chemokines Cytokines Data processing Development Disease Models, Animal DNA microarrays Down-Regulation Forkhead protein Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism Foxp1 protein Fundamental and applied biological sciences. Psychology Gene Expression Regulation Gene regulation Genetics of eukaryotes. Biological and molecular evolution Humans Huntingtin Huntington Disease - genetics Huntington Disease - immunology Huntington Disease - metabolism Huntington's disease Mice Mice, Transgenic Molecular and cellular biology Molecular genetics Neostriatum Repressor Proteins - genetics Repressor Proteins - metabolism Repressors Signal Transduction Transcription factors Transcription, Genetic Transcription. Transcription factor. Splicing. Rna processing Transgenic mice |
Title | Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22492998 https://www.proquest.com/docview/1022846734 https://www.proquest.com/docview/1028030962 https://pubmed.ncbi.nlm.nih.gov/PMC3384380 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WiiIU0Xrpeikj-iIlbZLJbXyzpesi7frQFPYtTDITu9Amy17A-lfE_-o5mUk22S5SfQlLMplk-b6cOXOuhHxQrityWDesSDBleb7yrdSLHCuQXNlBHqQqwNzhs1EwvPC-jv1xr_e7FbW0XKQH2c-NeSX_gyqcA1wxS_YfkG0mhRPwG_CFIyAMxzthPChn6L4GHbL8sV9VXMCYcAeblAts_lA0MqEq31_FvJaVW2CCaSFqH6M3xJVJa0EV9Hh0jjaCSTvOvApEXJtM3sDS-t20_sKbh7rlBBbpaPt8jNqrXQXXdSte7NuMyZONPh8bq_XRpOHqkQLQS5BjK1FUNEsI7Jan8Ox5HdsoVibZ8ynKKm2DmNXcN2YNpwqB1YmdRhJ7gQ1g6y43B2rDOSO-dYJ1TVOvJYyZrUN_b60SuoLW5TX8s4GUc8dYWDvFuEffksHF6WkSn4zje-S-C7sQlPtfxk0EkYM-T528pt-qrn7L2SHMfahn7ug721Mxh08v1z1TNm1q1mNzW8pO_IQ8NrsU-llT7inpqWKHPNB9S292yMMzE5HxjPyqOUiBg9RwkE4dOplTQddoQxsO0jKnmoO04SCFG4GDFDj4ibYZSIGBt6bqMBBvXTGQGgY-J_HgJD4eWqbhh5WBVr6wmJRuyu3M43kuAx7ZkXT9KFcsldwHvd6xlRtIkfGQo0DJQP0VngyESLGrg2QvyFZRFmqXUDfMowB11dBzvSxkXMB4HkrblzzNfa9PPtaoJJkpho89Wa4SHZTBEkAw0Qj2yftm7FSXgNk4aq8DbjPUhQ1KyH3WJ-9qtBMQ4eiXE4Uql_MEjS64DWDeX8dE6A0N4EEvNUNWT8Cqn5xHfRJ2uNMMwBLy3SvF5LIqJc9YhC0nXt3h3V6TR6vv9A3ZWsyW6i0o5It0r_os_gBrsu5c |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forkhead+box+protein+p1+is+a+transcriptional+repressor+of+immune+signaling+in+the+CNS%3A+implications+for+transcriptional+dysregulation+in+Huntington+disease&rft.jtitle=Human+molecular+genetics&rft.au=Tang%2C+Bin&rft.au=Becanovic%2C+Kristina&rft.au=Desplats%2C+Paula+A&rft.au=Spencer%2C+Brian&rft.date=2012-07-15&rft.issn=1460-2083&rft.eissn=1460-2083&rft.volume=21&rft.issue=14&rft.spage=3097&rft_id=info:doi/10.1093%2Fhmg%2Fdds132&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |