Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine
Abstract Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex compo...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.09.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases. |
---|---|
AbstractList | Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases. Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases. Abstract Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases. |
Author | Zeeshan, Saman Ahmed, Zeeshan Abdelhalim, Habiba Vadapalli, Sreya |
Author_xml | – sequence: 1 givenname: Sreya surname: Vadapalli fullname: Vadapalli, Sreya email: sv659@scarletmail.rutgers.edu organization: Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA – sequence: 2 givenname: Habiba surname: Abdelhalim fullname: Abdelhalim, Habiba email: ha375@scarletmail.rutgers.edu organization: Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA – sequence: 3 givenname: Saman surname: Zeeshan fullname: Zeeshan, Saman email: saman.zeeshan@rutgers.edu organization: Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA – sequence: 4 givenname: Zeeshan orcidid: 0000-0002-7065-1699 surname: Ahmed fullname: Ahmed, Zeeshan email: zahmed@ifh.rutgers.edu organization: Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35595537$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r3DAQxUVJyFdz6r0ICqVQ3EiWJdmnEkI_AoFemrMYyeONgldyJTuk_eurzW5CG0pPEqPfvHmad0z2QgxIyCvOPnDWiTPr7Zm14HjHX5Aj3mhdNUw2e5u70pVslDgkxznfMlYz3fIDciik7KQU-ojcn6fZD955GKkPM46jX2FwSCH0dA3uxgekI0IKPqwoTFOKpYiZLnlTKCxSvJ8S5uxjeOi6g-QhzLSHGegQE50w5Rhg9L-waGJfpgV8SfYHGDOe7s4Tcv350_eLr9XVty-XF-dXlWsaPleit9CKtu5Uo1otRK-GXrpaKMYd2EErrS13zjVMYYtMKd4Bypr1vLMKOidOyMet7rTYMtthmBOMZkp-DemnieDN3y_B35hVvDOc1UIIzovCu51Cij8WzLNZ--zKpiBgXLKpVTHRaiVYQd88Q2_jksrXC6W5FkrLB8HXf1p68vKYSgH4FnAp5pxwMM7PMJcFF4d-LNbMJnlTkje75EvP-2c9j7L_pt9u6bhM_wV_A04kwBU |
CitedBy_id | crossref_primary_10_1007_s00521_023_09142_3 crossref_primary_10_3390_biomedicines12122750 crossref_primary_10_3390_cancers15143749 crossref_primary_10_1093_biomethods_bpae040 crossref_primary_10_1111_opo_13206 crossref_primary_10_1186_s40644_025_00841_9 crossref_primary_10_1089_omi_2024_0150 crossref_primary_10_1093_bib_bbae325 crossref_primary_10_1007_s00784_023_05406_3 crossref_primary_10_1111_cts_13640 crossref_primary_10_1186_s12929_024_01018_5 crossref_primary_10_1371_journal_pone_0311370 crossref_primary_10_3390_biomedicines12081926 crossref_primary_10_3389_fmolb_2024_1430794 crossref_primary_10_31185_wjcm_85 crossref_primary_10_3390_biomedicines13010167 crossref_primary_10_1093_bib_bbae673 crossref_primary_10_3390_diagnostics14192174 crossref_primary_10_1038_s41598_024_78553_6 crossref_primary_10_1186_s42492_024_00154_x crossref_primary_10_3389_fgene_2022_929736 crossref_primary_10_1093_bioinformatics_btad755 crossref_primary_10_1186_s40001_023_01366_2 crossref_primary_10_3389_fgene_2023_1162869 crossref_primary_10_1093_bib_bbac568 crossref_primary_10_1016_j_compbiolchem_2024_108026 crossref_primary_10_1016_j_ipha_2024_12_001 crossref_primary_10_1002_ctm2_974 crossref_primary_10_3389_fgene_2023_1100352 crossref_primary_10_1016_j_ygeno_2023_110584 crossref_primary_10_1007_s11760_024_03264_4 crossref_primary_10_1186_s40246_024_00685_7 crossref_primary_10_3390_ijms252212233 crossref_primary_10_2217_fmai_2023_0018 crossref_primary_10_1038_s41598_023_44127_1 crossref_primary_10_1186_s40246_023_00498_0 crossref_primary_10_1016_j_clon_2025_103789 crossref_primary_10_1007_s12672_025_02111_3 crossref_primary_10_1016_j_asoc_2025_112911 crossref_primary_10_15406_mojgg_2023_08_00308 crossref_primary_10_1002_ctd2_206 crossref_primary_10_1016_j_mam_2023_101222 crossref_primary_10_1038_s41598_023_50600_8 crossref_primary_10_1093_bib_bbae291 crossref_primary_10_1093_database_baad033 crossref_primary_10_1016_j_simpa_2023_100493 crossref_primary_10_1177_14604582241290725 crossref_primary_10_3390_pharmaceutics16081107 crossref_primary_10_1002_cdt3_68 crossref_primary_10_3390_life14020233 |
Cites_doi | 10.1016/j.metabol.2018.12.012 10.1097/GCO.0000000000000340 10.1016/S2589-7500(21)00104-7 10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P 10.1007/978-3-030-78775-2_24 10.7748/ns.30.51.15.s16 10.1093/bib/bbab272 10.3390/s19235077 10.1007/978-1-60327-194-3_5 10.1001/jama.1982.03330180088048 10.1007/978-1-59745-530-5_9 10.1093/bib/bbz038 10.21037/tp.2019.09.09 10.1016/S1040-8428(97)10024-5 10.7717/peerj.11724 10.1186/s12888-020-02503-5 10.2174/138161282541191230102715 10.17849/insm-47-01-31-39.1 10.1038/nrdp.2016.39 10.4137/CIN.S606 10.1007/978-1-59745-530-5_14 10.1038/s41746-021-00549-7 10.1038/s41598-019-45989-0 10.1038/nbt0908-1011 10.4258/hir.2016.22.3.186 10.1002/ajmg.b.32839 10.21037/atm.2016.03.37 10.1177/1039856218762308 10.3389/fgene.2019.00978 10.1016/j.cmpb.2019.04.008 10.1038/nbt1406 10.1186/s12918-016-0306-z 10.1111/risa.13239 10.1186/s40246-021-00336-1 10.3168/jds.2012-5630 10.3390/jpm11070609 10.1002/ctm2.28 10.1089/106652700750050961 10.1371/journal.pone.0224365 10.1101/gr.275569.121 10.1016/S0959-440X(96)80056-X 10.1038/s41598-017-03011-5 10.1097/MIB.0000000000001222 10.1007/s00438-019-01600-9 10.1007/978-1-0716-1534-8_9 10.1186/s13073-020-00742-5 10.7150/ijbs.42080 10.5455/aim.2016.24.364-369 10.1371/journal.pone.0139685 10.1177/1460458221989402 10.1093/bib/bbz063 10.1186/s40246-020-00287-z 10.1093/nar/gky1016 10.1016/j.neunet.2014.09.003 10.1002/sim.8347 10.1530/REP-09-0567 10.1038/tp.2015.137 10.3389/fmed.2020.00451 10.1038/s41588-021-00797-z 10.1038/nrdp.2016.10 10.1002/2211-5463.13261 10.11613/BM.2014.003 10.1186/1471-2105-13-S15-S14 10.1016/j.molmet.2019.12.006 10.1371/journal.pone.0210236 10.1038/s41576-018-0016-z 10.1186/s13059-020-02075-3 10.1002/humu.22911 10.1371/journal.pone.0190152 10.1186/1471-2105-14-7 10.1371/journal.pcbi.1009670 10.1002/ajmg.b.32638 10.1109/TNNLS.2019.2914471 10.1016/bs.pmbts.2022.02.002 10.1016/j.ctrv.2020.102019 10.1186/1471-2105-9-559 10.1042/ETLS20210244 10.1016/j.ygeno.2012.04.003 10.1371/journal.pone.0251800 10.2217/pme-2021-0068 10.1016/S0140-6736(12)60026-9 10.1093/database/baaa010 10.18632/aging.103861 10.1097/00002826-198306000-00002 10.1016/j.csbj.2021.06.052 10.1007/s11042-020-10139-6 10.1007/s00134-019-05537-w 10.1177/1460458219899210 10.1186/s12859-019-2778-5 10.1186/1471-2105-13-S14-S6 10.1093/nar/16.5.1681 10.3389/fnins.2021.645998 10.1016/j.gtc.2007.12.002 10.1016/j.mayocp.2019.01.018 10.1016/j.lungcan.2004.04.006 10.1038/s41467-017-02465-5 10.1038/nature10209 10.1016/j.ygeno.2020.10.018 10.1186/1753-6561-6-S2-S10 10.1089/cmb.2018.0002 10.21037/atm.2016.06.20 10.1186/s13073-019-0670-6 10.1073/pnas.2023070118 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbac191 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC10233311 35595537 10_1093_bib_bbac191 10.1093/bib/bbac191 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R33 AG068931 – fundername: ; |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF GROUPED_DOAJ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c441t-3dba838296468733d6fd5c23601cabf7677b1ccc406e8e06619ae520d19b6a9c3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:36:58 EDT 2025 Thu Jul 10 18:45:38 EDT 2025 Mon Jun 30 08:51:48 EDT 2025 Thu Apr 03 07:08:28 EDT 2025 Tue Jul 01 03:39:41 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Wed Aug 28 03:18:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | machine learning artificial intelligence gene expression gene variant predictive analysis |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-3dba838296468733d6fd5c23601cabf7677b1ccc406e8e06619ae520d19b6a9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Sreya Vadapalli and Habiba Abdelhalim contributed equally. |
ORCID | 0000-0002-7065-1699 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10233311 |
PMID | 35595537 |
PQID | 2717367511 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10233311 proquest_miscellaneous_2667787630 proquest_journals_2717367511 pubmed_primary_35595537 crossref_citationtrail_10_1093_bib_bbac191 crossref_primary_10_1093_bib_bbac191 oup_primary_10_1093_bib_bbac191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Anderson (2023060106420917100_ref91) 2019; 25 Schubach (2023060106420917100_ref120) 2017; 7 Ahmed (2023060106420917100_ref10) 2021; 18 Vabalas (2023060106420917100_ref122) 2019; 14 Rodriguez (2023060106420917100_ref43) 2019; 14 Georgevici (2023060106420917100_ref53) 2019; 45 González-Recio (2023060106420917100_ref15) 2013; 96 Katoch (2023060106420917100_ref45) 2020; 80 Li (2023060106420917100_ref116) 2021; 2328 Wang (2023060106420917100_ref62) 2018; 25 Schaid (2023060106420917100_ref104) 2018; 19 Folkow (2023060106420917100_ref93) 1993; 11 Sperandei (2023060106420917100_ref22) 2014; 24 Ahmed (2023060106420917100_ref106) 2022 Ahmed (2023060106420917100_ref9) 2020; 2020 Schaack (2023060106420917100_ref76) 2021; 16 Li (2023060106420917100_ref78) 2021; 2021 Costa-Silva (2023060106420917100_ref102) 2017; 12 Hänzelmann (2023060106420917100_ref103) 2013; 14 Wu (2023060106420917100_ref117) 2021; 118 Liu (2023060106420917100_ref17) 2020; 295 Tan (2023060106420917100_ref28) 2019; 38 Baumgart (2023060106420917100_ref82) 2012; 380 Zhang (2023060106420917100_ref24) 2016; 4 Zeeshan (2023060106420917100_ref1) 2020; 21 Hond (2023060106420917100_ref58) 2022; 5 Van Marck (2023060106420917100_ref97) 2004; 45 Menti (2023060106420917100_ref61) 2017; 2016 Shah (2023060106420917100_ref111) 2020; 1 Wiharto (2023060106420917100_ref40) 2016; 22 Eberly (2023060106420917100_ref44) 2007; 404 Zauderer (2023060106420917100_ref48) 2021; 3 Gotts (2023060106420917100_ref95) 2016; 353 Frigyesi (2023060106420917100_ref38) 2008; 6 Khor (2023060106420917100_ref80) 2011; 474 Liu (2023060106420917100_ref35) He (2023060106420917100_ref79) 2021; 22 Ahmed (2023060106420917100_ref5) 2021; 11 Chen (2023060106420917100_ref36) 2019; 19 Huang (2023060106420917100_ref14) 2018; 15 Do (2023060106420917100_ref55) 2008; 26 Sardaar (2023060106420917100_ref71) 2020; 20 Parente (2023060106420917100_ref18) 2021; 15 Lamy (2023060106420917100_ref39) 2008; 136 Frades (2023060106420917100_ref42) 2010; 593 Oussaada (2023060106420917100_ref83) 2019; 92 Stevens (2023060106420917100_ref90) 1983; 6 Kaul (2023060106420917100_ref81) 2016; 2 Ahmed (2023060106420917100_ref4) 2021; 9 Cappell (2023060106420917100_ref84) 2008; 37 Verduijn (2023060106420917100_ref88) 2015; 5 Aevermann (2023060106420917100_ref108) 2021; 31 Wang (2023060106420917100_ref47) 2019; 11 Isakov (2023060106420917100_ref59) 2017; 23 Trakadis (2023060106420917100_ref70) 2019; 180 Chen (2023060106420917100_ref12) 2012; 99 Hu (2023060106420917100_ref113) 2021; 19 Uribe (2023060106420917100_ref101) 2004; 31 Zheng (2023060106420917100_ref56) 2000; 19 Bugnon (2023060106420917100_ref121) 2020; 31 Rentzsch (2023060106420917100_ref49) 2019; 47 Repetto (2023060106420917100_ref96) 1998; 27 Malovini (2023060106420917100_ref27) 2012; 13 Suppl 14 Vrahatis (2023060106420917100_ref110) 2021; 1338 Hampel (2023060106420917100_ref66) 2020; 6 Shelling (2023060106420917100_ref92) 2010; 140 Martin (2023060106420917100_ref3) 2021; 53 Zhang (2023060106420917100_ref31) 2016; 4 Ying (2023060106420917100_ref16) 2021; 113 Pearce (2023060106420917100_ref85) 2016; 30 Kroeger (2023060106420917100_ref98) 2017; 29 Keller (2023060106420917100_ref41) 2012; 2012 Vural (2023060106420917100_ref64) 2016; 10 Langfelder (2023060106420917100_ref100) 2008; 9 Zhao (2023060106420917100_ref67) 2021; 15 Rigatti (2023060106420917100_ref11) 2017; 47 Schmidhuber (2023060106420917100_ref25) 2015; 61 Ahmed (2023060106420917100_ref6) 2021; 15 Qi (2023060106420917100_ref69) 2021; 186 Kim (2023060106420917100_ref46) 2015; 10 Lin (2023060106420917100_ref77) 2021; 12 Eddy (2023060106420917100_ref57) 1996; 6 Liu (2023060106420917100_ref30) 2012; 13 Ogutu (2023060106420917100_ref19) 2012; 6 Henarejos-Castillo (2023060106420917100_ref72) 2021; 11 Eratne (2023060106420917100_ref87) 2018; 26 Held (2023060106420917100_ref74) 2016; 10 Kegerreis (2023060106420917100_ref60) 2019; 9 Friedman (2023060106420917100_ref29) 2000; 7 Nick (2023060106420917100_ref21) 2007; 404 Jin (2023060106420917100_ref73) 2020; 13 Torroja (2023060106420917100_ref114) 2019; 10 Ricciardi (2023060106420917100_ref33) 2020; 26 Langarizadeh (2023060106420917100_ref26) 2016; 24 Njage (2023060106420917100_ref75) 2019; 39 Attimonelli (2023060106420917100_ref54) 1988; 16 Yang (2023060106420917100_ref37) 2016; 32 Ryback (2023060106420917100_ref34) 1982; 248 Petegrosso (2023060106420917100_ref107) 2020; 21 Feuerstein (2023060106420917100_ref89) 2019; 94 Rai (2023060106420917100_ref119) 2020; 32 Ahmed (2023060106420917100_ref2) 2020; 10 Khwaja (2023060106420917100_ref86) 2016; 2 Li (2023060106420917100_ref109) 2020; 7 Byvatov (2023060106420917100_ref13) 2003; 2 Choi (2023060106420917100_ref52) 2020; 9 Chen (2023060106420917100_ref112) 2020; 16 Thibodeau (2023060106420917100_ref115) 2021; 17 Hodges (2023060106420917100_ref94) 2020; 9 Tsimberidou (2023060106420917100_ref99) 2020; 86 Gumaei (2023060106420917100_ref51) 2021; 27 Lee (2023060106420917100_ref65) 2018; 9 Lewis (2023060106420917100_ref7) 2020; 12 Li (2023060106420917100_ref68) 2020; 12 Maniruzzaman (2023060106420917100_ref63) 2019; 176 Ji (2023060106420917100_ref118) 2020; 21 Candia (2023060106420917100_ref20) 2019; 20 Ahmed (2023060106420917100_ref105) 2022 Ahmed (2023060106420917100_ref8) 2020; 14 Douville (2023060106420917100_ref50) 2016; 37 Zou (2023060106420917100_ref23) 2008; 458 Kingsford (2023060106420917100_ref32) 2008; 26 |
References_xml | – volume: 92 start-page: 26 year: 2019 ident: 2023060106420917100_ref83 article-title: The pathogenesis of obesity publication-title: Metab Clin Exp doi: 10.1016/j.metabol.2018.12.012 – volume: 29 start-page: 26 issue: 1 year: 2017 ident: 2023060106420917100_ref98 article-title: Pathogenesis and heterogeneity of ovarian cancer publication-title: Curr Opin Obstet Gynecol doi: 10.1097/GCO.0000000000000340 – volume: 3 start-page: e565 issue: 9 year: 2021 ident: 2023060106420917100_ref48 article-title: The use of a next-generation sequencing-derived machine-learning risk-prediction model (OncoCast-MPM) for malignant pleural mesothelioma: a retrospective study publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(21)00104-7 – volume: 19 start-page: 1771 issue: 13 year: 2000 ident: 2023060106420917100_ref56 article-title: Summarizing the predictive power of a generalized linear model publication-title: Stat Med doi: 10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P – volume: 1338 start-page: 199 year: 2021 ident: 2023060106420917100_ref110 article-title: Emerging machine learning techniques for modelling cellular complex systems in Alzheimer's disease publication-title: Adv Exp Med Biol doi: 10.1007/978-3-030-78775-2_24 – volume: 30 start-page: 15 issue: 51 year: 2016 ident: 2023060106420917100_ref85 article-title: Breast cancer publication-title: Nurs Stand doi: 10.7748/ns.30.51.15.s16 – volume: 22 start-page: bbab272 issue: 6 year: 2021 ident: 2023060106420917100_ref79 article-title: Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer publication-title: Brief Bioinform doi: 10.1093/bib/bbab272 – volume: 19 start-page: 5077 issue: 23 year: 2019 ident: 2023060106420917100_ref36 article-title: A strong machine learning classifier and decision stumps based hybrid AdaBoost classification algorithm for cognitive radios publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s19235077 – volume: 593 start-page: 81 year: 2010 ident: 2023060106420917100_ref42 article-title: Overview on techniques in cluster analysis publication-title: Methods Mol Biol doi: 10.1007/978-1-60327-194-3_5 – volume: 13 start-page: 159 issue: 1 year: 2020 ident: 2023060106420917100_ref73 article-title: Identification of potential causal variants for premature ovarian failure by whole exome sequencing publication-title: BMC Med Genet – volume: 248 start-page: 2342 issue: 18 year: 1982 ident: 2023060106420917100_ref34 article-title: Quadratic discriminant analysis as an aid to interpretive reporting of clinical laboratory tests publication-title: JAMA doi: 10.1001/jama.1982.03330180088048 – volume: 404 start-page: 165 year: 2007 ident: 2023060106420917100_ref44 article-title: Multiple linear regression publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-530-5_9 – volume: 21 start-page: 885 issue: 3 year: 2020 ident: 2023060106420917100_ref1 article-title: 100 Years of evolving gene-disease complexities and scientific debutants publication-title: Brief Bioinform doi: 10.1093/bib/bbz038 – volume: 458 start-page: 15 year: 2008 ident: 2023060106420917100_ref23 article-title: Overview of artificial neural networks publication-title: Methods Mol Biol – volume: 9 start-page: S55 issue: Suppl 1 year: 2020 ident: 2023060106420917100_ref94 article-title: Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation publication-title: Transl Pediatr doi: 10.21037/tp.2019.09.09 – volume: 27 start-page: 145 issue: 2 year: 1998 ident: 2023060106420917100_ref96 article-title: Prostate cancer publication-title: Crit Rev Oncol Hematol doi: 10.1016/S1040-8428(97)10024-5 – volume: 9 start-page: e11724 year: 2021 ident: 2023060106420917100_ref4 article-title: Genomics pipelines to investigate susceptibility in whole genome and exome sequenced data for variant discovery, annotation, prediction and genotyping publication-title: PeerJ doi: 10.7717/peerj.11724 – volume: 20 start-page: 92 issue: 1 year: 2020 ident: 2023060106420917100_ref71 article-title: Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia publication-title: BMC Psychiatry doi: 10.1186/s12888-020-02503-5 – volume: 25 start-page: 4319 issue: 41 year: 2019 ident: 2023060106420917100_ref91 article-title: Autism spectrum disorder: pathophysiology and treatment implications publication-title: Curr Pharm Des doi: 10.2174/138161282541191230102715 – volume: 47 start-page: 31 issue: 1 year: 2017 ident: 2023060106420917100_ref11 article-title: Random Forest publication-title: J Insur Med doi: 10.17849/insm-47-01-31-39.1 – volume: 2 start-page: 16039 issue: 1 year: 2016 ident: 2023060106420917100_ref81 article-title: Systemic lupus erythematosus publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2016.39 – volume: 6 start-page: 275 year: 2008 ident: 2023060106420917100_ref38 article-title: Non-negative matrix factorization for the analysis of complex gene expression data: identification of clinically relevant tumor subtypes publication-title: Cancer Informat doi: 10.4137/CIN.S606 – volume: 404 start-page: 273 year: 2007 ident: 2023060106420917100_ref21 article-title: Logistic regression publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-530-5_14 – volume: 5 start-page: 2 issue: 1 year: 2022 ident: 2023060106420917100_ref58 article-title: Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review publication-title: NPJ Digital Med doi: 10.1038/s41746-021-00549-7 – volume: 9 start-page: 9617 issue: 1 year: 2019 ident: 2023060106420917100_ref60 article-title: Machine learning approaches to predict lupus disease activity from gene expression data publication-title: Sci Rep doi: 10.1038/s41598-019-45989-0 – volume: 26 start-page: 1011 issue: 9 year: 2008 ident: 2023060106420917100_ref32 article-title: What are decision trees? publication-title: Nat Biotechnol doi: 10.1038/nbt0908-1011 – volume: 22 start-page: 186 issue: 3 year: 2016 ident: 2023060106420917100_ref40 article-title: Interpretation of clinical data based on C4.5 algorithm for the diagnosis of coronary heart disease publication-title: Healthc Inform Res doi: 10.4258/hir.2016.22.3.186 – volume: 2012 start-page: 42 year: 2012 ident: 2023060106420917100_ref41 article-title: Formal concept analysis of disease similarity. AMIA Joint Summits on Translational Science proceedings publication-title: AMIA Jt Summits Transl Sci – volume: 186 start-page: 101 issue: 2 year: 2021 ident: 2023060106420917100_ref69 article-title: Machine learning and bioinformatic analysis of brain and blood mRNA profiles in major depressive disorder: a case-control study publication-title: Am J Med Genetics B Neuropsychiatr Genetics doi: 10.1002/ajmg.b.32839 – volume: 4 start-page: 218 issue: 11 year: 2016 ident: 2023060106420917100_ref31 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann Transl Med doi: 10.21037/atm.2016.03.37 – volume: 11 start-page: S21 issue: 4 year: 1993 ident: 2023060106420917100_ref93 article-title: Pathophysiology of hypertension: differences between young and elderly publication-title: J Hypertens – volume: 26 start-page: 347 issue: 4 year: 2018 ident: 2023060106420917100_ref87 article-title: Alzheimer's disease: clinical update on epidemiology, pathophysiology and diagnosis publication-title: Australas Psychiatry doi: 10.1177/1039856218762308 – volume: 10 start-page: 978 year: 2019 ident: 2023060106420917100_ref114 article-title: Digitaldlsorter: deep-learning on scRNA-Seq to deconvolute gene expression data publication-title: Front Genet doi: 10.3389/fgene.2019.00978 – volume: 176 start-page: 173 year: 2019 ident: 2023060106420917100_ref63 article-title: Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2019.04.008 – volume: 26 start-page: 897 issue: 8 year: 2008 ident: 2023060106420917100_ref55 article-title: What is the expectation maximization algorithm? publication-title: Nat Biotechnol doi: 10.1038/nbt1406 – volume: 10 start-page: 62 issue: Suppl 3 year: 2016 ident: 2023060106420917100_ref64 article-title: Classification of breast cancer patients using somatic mutation profiles and machine learning approaches publication-title: BMC Syst Biol doi: 10.1186/s12918-016-0306-z – volume: 39 start-page: 1397 issue: 6 year: 2019 ident: 2023060106420917100_ref75 article-title: Machine learning methods as a tool for predicting risk of illness applying next-generation sequencing data publication-title: Risk Anal doi: 10.1111/risa.13239 – volume: 15 start-page: 37 issue: 1 year: 2021 ident: 2023060106420917100_ref6 article-title: Advancing clinical genomics and precision medicine with GVViZ: FAIR bioinformatics platform for variable gene-disease annotation, visualization, and expression analysis publication-title: Hum Genomics doi: 10.1186/s40246-021-00336-1 – volume: 96 start-page: 614 issue: 1 year: 2013 ident: 2023060106420917100_ref15 article-title: The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets publication-title: J Dairy Sci doi: 10.3168/jds.2012-5630 – volume: 11 start-page: 609 issue: 7 year: 2021 ident: 2023060106420917100_ref72 article-title: Machine learning-based approach highlights the use of a genomic variant profile for precision medicine in ovarian failure publication-title: J Pers Med doi: 10.3390/jpm11070609 – volume: 10 start-page: 297 issue: 1 year: 2020 ident: 2023060106420917100_ref2 article-title: Human gene and disease associations for clinical-genomics and precision medicine research publication-title: Clin Transl Med doi: 10.1002/ctm2.28 – volume: 7 start-page: 601 issue: 3–4 year: 2000 ident: 2023060106420917100_ref29 article-title: Using Bayesian networks to analyze expression data publication-title: J Comput Biol doi: 10.1089/106652700750050961 – volume: 15 start-page: 41 issue: 1 year: 2018 ident: 2023060106420917100_ref14 article-title: Applications of support vector machine (SVM) learning in cancer genomics publication-title: Cancer Genomics Proteomics – volume: 14 issue: 11 year: 2019 ident: 2023060106420917100_ref122 article-title: Machine learning algorithm validation with a limited sample size publication-title: PLoS One doi: 10.1371/journal.pone.0224365 – volume: 31 start-page: 1767 issue: 10 year: 2021 ident: 2023060106420917100_ref108 article-title: A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing publication-title: Genome Res doi: 10.1101/gr.275569.121 – volume: 6 start-page: 361 issue: 3 year: 1996 ident: 2023060106420917100_ref57 article-title: Hidden Markov models publication-title: Curr Opin Struct Biol doi: 10.1016/S0959-440X(96)80056-X – volume: 7 start-page: 2959 issue: 1 year: 2017 ident: 2023060106420917100_ref120 article-title: Imbalance-aware machine learning for predicting rare and common disease-associated non-coding variants publication-title: Sci Rep doi: 10.1038/s41598-017-03011-5 – volume: 23 start-page: 1516 issue: 9 year: 2017 ident: 2023060106420917100_ref59 article-title: Machine learning-based gene prioritization identifies novel candidate risk genes for inflammatory bowel disease publication-title: Inflamm Bowel Dis doi: 10.1097/MIB.0000000000001222 – volume: 295 start-page: 13 issue: 1 year: 2020 ident: 2023060106420917100_ref17 article-title: XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites publication-title: Mol Gen Genom doi: 10.1007/s00438-019-01600-9 – volume: 9 start-page: 14 issue: 2 year: 2020 ident: 2023060106420917100_ref52 article-title: Introduction to machine learning, neural networks, and deep learning publication-title: Transl Vis Sci Technol – volume: 2328 start-page: 153 year: 2021 ident: 2023060106420917100_ref116 article-title: Identification of gene regulatory networks from single-cell expression data publication-title: Methods Mol Biol (Clifton, NJ) doi: 10.1007/978-1-0716-1534-8_9 – volume: 12 start-page: 44 issue: 1 year: 2020 ident: 2023060106420917100_ref7 article-title: Polygenic risk scores: from research tools to clinical instruments publication-title: Genome Med doi: 10.1186/s13073-020-00742-5 – volume: 16 start-page: 2205 issue: 12 year: 2020 ident: 2023060106420917100_ref112 article-title: Ligand-receptor interaction atlas within and between tumor cells and T cells in lung adenocarcinoma publication-title: Int J Biol Sci doi: 10.7150/ijbs.42080 – volume: 12 year: 2021 ident: 2023060106420917100_ref77 article-title: Identifying subgroups of patients with autism by gene expression profiles using machine learning algorithms publication-title: Front Psychol – volume: 24 start-page: 364 issue: 5 year: 2016 ident: 2023060106420917100_ref26 article-title: Applying naive Bayesian networks to disease prediction: a systematic review publication-title: Acta Informatica Medica doi: 10.5455/aim.2016.24.364-369 – volume: 10 start-page: e0139685 issue: 10 year: 2015 ident: 2023060106420917100_ref46 article-title: Application of LogitBoost classifier for traceability using SNP Chip data publication-title: PLoS One doi: 10.1371/journal.pone.0139685 – volume: 27 start-page: 1460458221989402 issue: 1 year: 2021 ident: 2023060106420917100_ref51 article-title: Feature selection with ensemble learning for prostate cancer diagnosis from microarray gene expression publication-title: Health Informatics J doi: 10.1177/1460458221989402 – volume: 21 start-page: 1209 issue: 4 year: 2020 ident: 2023060106420917100_ref107 article-title: Machine learning and statistical methods for clustering single-cell RNA-sequencing data publication-title: Brief Bioinform doi: 10.1093/bib/bbz063 – volume: 14 start-page: 35 issue: 1 year: 2020 ident: 2023060106420917100_ref8 article-title: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis publication-title: Hum Genomics doi: 10.1186/s40246-020-00287-z – volume: 47 start-page: D886 issue: D1 year: 2019 ident: 2023060106420917100_ref49 article-title: CADD: predicting the deleteriousness of variants throughout the human genome publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1016 – volume: 2 start-page: 67 issue: 2 year: 2003 ident: 2023060106420917100_ref13 article-title: Support vector machine applications in bioinformatics publication-title: Appl Bioinforma – volume: 61 start-page: 85 year: 2015 ident: 2023060106420917100_ref25 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 38 start-page: 5048 issue: 25 year: 2019 ident: 2023060106420917100_ref28 article-title: Bayesian additive regression trees and the general BART model publication-title: Stat Med doi: 10.1002/sim.8347 – volume: 140 start-page: 633 issue: 5 year: 2010 ident: 2023060106420917100_ref92 article-title: Premature ovarian failure publication-title: Reproduction (Cambridge, England) doi: 10.1530/REP-09-0567 – volume: 5 issue: 9 year: 2015 ident: 2023060106420917100_ref88 article-title: Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression publication-title: Transl Psychiatry doi: 10.1038/tp.2015.137 – volume: 7 start-page: 451 year: 2020 ident: 2023060106420917100_ref109 article-title: Evaluating distribution and prognostic value of new tumor-infiltrating lymphocytes in HCC based on a scRNA-Seq study with CIBERSORTx publication-title: Front Med doi: 10.3389/fmed.2020.00451 – volume: 53 start-page: 763 issue: 5 year: 2021 ident: 2023060106420917100_ref3 article-title: Publisher correction: clinical use of current polygenic risk scores may exacerbate health disparities publication-title: Nat Genet doi: 10.1038/s41588-021-00797-z – volume: 2 start-page: 16010 issue: 1 year: 2016 ident: 2023060106420917100_ref86 article-title: Acute myeloid leukaemia publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2016.10 – ident: 2023060106420917100_ref35 article-title: Scalable Gaussian process classification with additive noise for non-Gaussian likelihoods publication-title: IEEE Trans Cybern – volume: 11 start-page: 2441 issue: 9 year: 2021 ident: 2023060106420917100_ref5 article-title: JWES: a new pipeline for whole genome/exome sequence data processing, management, and gene-variant discovery, annotation, prediction, and genotyping publication-title: FEBS Open Bio doi: 10.1002/2211-5463.13261 – volume: 24 start-page: 12 issue: 1 year: 2014 ident: 2023060106420917100_ref22 article-title: Understanding logistic regression analysis publication-title: Biochem Med doi: 10.11613/BM.2014.003 – volume: 13 start-page: S14 issue: Suppl 15 year: 2012 ident: 2023060106420917100_ref30 article-title: Empirical evaluation of scoring functions for Bayesian network model selection publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S15-S14 – volume: 32 start-page: 109 year: 2020 ident: 2023060106420917100_ref119 article-title: Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures publication-title: Mol Metab doi: 10.1016/j.molmet.2019.12.006 – volume: 14 issue: 1 year: 2019 ident: 2023060106420917100_ref43 article-title: Clustering algorithms: a comparative approach publication-title: PLoS One doi: 10.1371/journal.pone.0210236 – volume: 19 start-page: 491 issue: 8 year: 2018 ident: 2023060106420917100_ref104 article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0016-z – volume: 21 start-page: 161 issue: 1 year: 2020 ident: 2023060106420917100_ref118 article-title: Single-cell ATAC-seq signal extraction and enhancement with SCATE publication-title: Genome Biol doi: 10.1186/s13059-020-02075-3 – volume: 37 start-page: 28 issue: 1 year: 2016 ident: 2023060106420917100_ref50 article-title: Assessing the pathogenicity of insertion and deletion variants with the Variant Effect Scoring Tool (VEST-Indel) publication-title: Hum Mutat doi: 10.1002/humu.22911 – volume: 12 issue: 12 year: 2017 ident: 2023060106420917100_ref102 article-title: RNA-Seq differential expression analysis: an extended review and a software tool publication-title: PLoS One doi: 10.1371/journal.pone.0190152 – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 2023060106420917100_ref103 article-title: GSVA: gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-7 – volume: 17 start-page: e1009670 issue: 12 year: 2021 ident: 2023060106420917100_ref115 article-title: CoRE-ATAC: a deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1009670 – volume: 180 start-page: 103 issue: 2 year: 2019 ident: 2023060106420917100_ref70 article-title: Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes publication-title: Am J Med Genet B Neuropsychiatr Genet doi: 10.1002/ajmg.b.32638 – volume: 31 start-page: 2857 issue: 8 year: 2020 ident: 2023060106420917100_ref121 article-title: Deep neural architectures for highly imbalanced data in bioinformatics publication-title: IEEE Trans Neural Netw Learn Systems doi: 10.1109/TNNLS.2019.2914471 – year: 2022 ident: 2023060106420917100_ref105 article-title: Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis publication-title: Prog Mol Biol Transl Sci doi: 10.1016/bs.pmbts.2022.02.002 – volume: 86 year: 2020 ident: 2023060106420917100_ref99 article-title: Review of precision cancer medicine: evolution of the treatment paradigm publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2020.102019 – volume: 9 start-page: 559 issue: 1 year: 2008 ident: 2023060106420917100_ref100 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – year: 2022 ident: 2023060106420917100_ref106 article-title: Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities publication-title: Emerg Topics Life Sci doi: 10.1042/ETLS20210244 – volume: 31 start-page: 1934 issue: 10 year: 2004 ident: 2023060106420917100_ref101 article-title: The systemic lupus activity measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus publication-title: J Rheumatol – volume: 99 start-page: 323 issue: 6 year: 2012 ident: 2023060106420917100_ref12 article-title: Random forests for genomic data analysis publication-title: Genomics doi: 10.1016/j.ygeno.2012.04.003 – volume: 10 start-page: 141 issue: Suppl 7 year: 2016 ident: 2023060106420917100_ref74 article-title: Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data publication-title: BMC Proc – volume: 16 start-page: e0251800 issue: 5 year: 2021 ident: 2023060106420917100_ref76 article-title: Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data publication-title: PLoS One doi: 10.1371/journal.pone.0251800 – volume: 18 start-page: 573 issue: 6 year: 2021 ident: 2023060106420917100_ref10 article-title: Intelligent health system for the investigation of consenting COVID-19 patients and precision medicine publication-title: Pers Med doi: 10.2217/pme-2021-0068 – volume: 380 start-page: 1590 issue: 9853 year: 2012 ident: 2023060106420917100_ref82 article-title: Crohn's disease publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(12)60026-9 – volume: 2020 year: 2020 ident: 2023060106420917100_ref9 article-title: Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine publication-title: Database (Oxford) doi: 10.1093/database/baaa010 – volume: 15 issue: 2–3 year: 2021 ident: 2023060106420917100_ref18 article-title: PolyBoost: an enhanced genomic variant classifier using extreme gradient boosting publication-title: Proteomics Clin Appl – volume: 12 start-page: 20471 issue: 20 year: 2020 ident: 2023060106420917100_ref68 article-title: Development of a susceptibility gene based novel predictive model for the diagnosis of ulcerative colitis using random forest and artificial neural network publication-title: Aging doi: 10.18632/aging.103861 – volume: 6 issue: 1 year: 2020 ident: 2023060106420917100_ref66 article-title: A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer's disease therapy: analysis of the Blarcamesine (ANAVEX2-73) phase 2a clinical study publication-title: Alzheimers Dement – volume: 6 start-page: 77 issue: 2 year: 1983 ident: 2023060106420917100_ref90 article-title: Pathophysiology of schizophrenia publication-title: Clin Neuropharmacol doi: 10.1097/00002826-198306000-00002 – volume: 2016 start-page: 884 year: 2017 ident: 2023060106420917100_ref61 article-title: Bayesian machine learning techniques for revealing complex interactions among genetic and clinical factors in association with extra-intestinal manifestations in IBD patients publication-title: AMIA Annu Symp Proc – volume: 32 start-page: btv544 issue: 1 year: 2016 ident: 2023060106420917100_ref37 article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data publication-title: Bioinformatics (Oxford, England) – volume: 19 start-page: 3829 year: 2021 ident: 2023060106420917100_ref113 article-title: Statistical and machine learning methods for spatially resolved transcriptomics with histology publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.06.052 – volume: 80 start-page: 8091 issue: 5 year: 2020 ident: 2023060106420917100_ref45 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – volume: 45 start-page: 712 issue: 5 year: 2019 ident: 2023060106420917100_ref53 article-title: Neural networks and deep learning: a brief introduction publication-title: Intensive Care Med doi: 10.1007/s00134-019-05537-w – volume: 26 start-page: 2181 issue: 3 year: 2020 ident: 2023060106420917100_ref33 article-title: Linear discriminant analysis and principal component analysis to predict coronary artery disease publication-title: Health Informatics J doi: 10.1177/1460458219899210 – volume: 1 issue: 5 year: 2020 ident: 2023060106420917100_ref111 article-title: An experiment on ab initio discovery of biological knowledge from scRNA-Seq data using machine learning publication-title: Patterns (New York, NY) – volume: 20 start-page: 189 issue: 1 year: 2019 ident: 2023060106420917100_ref20 article-title: eNetXplorer: an R package for the quantitative exploration of elastic net families for generalized linear models publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2778-5 – volume: 2021 start-page: 6653793 year: 2021 ident: 2023060106420917100_ref78 article-title: Identification of tumor tissue of origin with RNA-Seq data and using gradient boosting strategy publication-title: Biomed Res Int – volume: 13 Suppl 14 start-page: S6 issue: Suppl 14 year: 2012 ident: 2023060106420917100_ref27 article-title: Hierarchical naive Bayes for genetic association studies publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S14-S6 – volume: 16 start-page: 1681 issue: 5 year: 1988 ident: 2023060106420917100_ref54 article-title: MERGE: a software package for generating a single data-base starting from EMBL and GenBank collections publication-title: Nucleic Acids Res doi: 10.1093/nar/16.5.1681 – volume: 15 start-page: 645998 year: 2021 ident: 2023060106420917100_ref67 article-title: Identification of diagnostic markers for major depressive disorder using machine learning methods publication-title: Front Neurosci doi: 10.3389/fnins.2021.645998 – volume: 37 start-page: 1 issue: 1 year: 2008 ident: 2023060106420917100_ref84 article-title: Pathophysiology, clinical presentation, and management of colon cancer publication-title: Gastroenterol Clin N Am doi: 10.1016/j.gtc.2007.12.002 – volume: 94 start-page: 1357 issue: 7 year: 2019 ident: 2023060106420917100_ref89 article-title: Ulcerative colitis publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2019.01.018 – volume: 45 start-page: S35 issue: Suppl 1 year: 2004 ident: 2023060106420917100_ref97 article-title: Pathology of malignant mesothelioma publication-title: Lung Cancer (Amsterdam, Netherlands) doi: 10.1016/j.lungcan.2004.04.006 – volume: 9 start-page: 42 issue: 1 year: 2018 ident: 2023060106420917100_ref65 article-title: A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia publication-title: Nat Commun doi: 10.1038/s41467-017-02465-5 – volume: 474 start-page: 307 issue: 7351 year: 2011 ident: 2023060106420917100_ref80 article-title: Genetics and pathogenesis of inflammatory bowel disease publication-title: Nature doi: 10.1038/nature10209 – volume: 136 start-page: 223 year: 2008 ident: 2023060106420917100_ref39 article-title: Use of the C4.5 machine learning algorithm to test a clinical guideline-based decision support system publication-title: Stud Health Technol Inform – volume: 113 start-page: 874 issue: 1 Pt 2 year: 2021 ident: 2023060106420917100_ref16 article-title: Diagnostic potential of a gradient boosting-based model for detecting pediatric sepsis publication-title: Genomics doi: 10.1016/j.ygeno.2020.10.018 – volume: 6 start-page: S10 issue: Suppl 2 year: 2012 ident: 2023060106420917100_ref19 article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions publication-title: BMC Proc doi: 10.1186/1753-6561-6-S2-S10 – volume: 25 start-page: 1347 issue: 12 year: 2018 ident: 2023060106420917100_ref62 article-title: Machine learning-based method for obesity risk evaluation using single-nucleotide polymorphisms derived from next-generation sequencing publication-title: J Comput Biol doi: 10.1089/cmb.2018.0002 – volume: 353 year: 2016 ident: 2023060106420917100_ref95 article-title: Sepsis: pathophysiology and clinical management publication-title: BMJ (Clin Res ed) – volume: 4 start-page: 370 issue: 19 year: 2016 ident: 2023060106420917100_ref24 article-title: A gentle introduction to artificial neural networks publication-title: Ann Transl Med doi: 10.21037/atm.2016.06.20 – volume: 11 start-page: 59 issue: 1 year: 2019 ident: 2023060106420917100_ref47 article-title: Identifying Crohn's disease signal from variome analysis publication-title: Genome Med doi: 10.1186/s13073-019-0670-6 – volume: 118 issue: 15 year: 2021 ident: 2023060106420917100_ref117 article-title: BABEL enables cross-modality translation between multiomic profiles at single-cell resolution publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2023070118 |
SSID | ssj0020781 |
Score | 2.5961094 |
SecondaryResourceType | review_article |
Snippet | Abstract
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and... Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Artificial Intelligence Comparative analysis Data sources DNA microarrays Gene Expression Gene sequencing Genetics Genomics Genomics - methods Learning algorithms Machine Learning Precision medicine Precision Medicine - methods Review |
Title | Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35595537 https://www.proquest.com/docview/2717367511 https://www.proquest.com/docview/2667787630 https://pubmed.ncbi.nlm.nih.gov/PMC10233311 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRfzudGmFPQlnarG3yKOIYgvqywd5KkqZzoN1wm0z_eu_arGxj6PNd2pJLet9xd98R0mQsCyLB2p7gbeO1eRp6SgjtMZmBO_GtYBKbk59fom6__TQIB65AdrolhS95S490S2tl_KJJHdwvUuT3XgdVXIV8NWUTUewhu7trw9tYu-Z41prZVjDlZmnkiq_pHJB9BxLpfWnVQ7Jj8yOyW46N_D4mCxSUzA90tEKpSVWe0o-iOtJSNw5iSJes4XZKsch9SEHXUrtwFbB5seoLQmbYY4oFoxRwLJ0sQfqPhWe6BPwJ6Xceew9dz01Q8AzAnJnHU60EF5hajUTMeRplaWgCDlGYUTqLozjWvjEGvLoVFtCHL5UNA5b6UkdKGn5Kavk4t-eEWs0ylkorIb5A0KUzEUkbwkEMhVBS1cndcnsT4-jFccrFe1KmuXkCtkicLeqkWSlPSlaN7Wo3YKe_NRpLGybu8k2TACsLIBDyQXxbieHaYC5E5XY8B50ImfPg58rq5Kw0efUegGAyDHlcJ2LtMFQKSMm9LslHbwU1NxJhcO77F_9--SXZC7CTAhNcrEFqs8-5vQJ8M9PXxen-BX8k-0U |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+machine+learning+approaches+using+gene+expression+and+variant+data+for+personalized+medicine&rft.jtitle=Briefings+in+bioinformatics&rft.au=Vadapalli%2C+Sreya&rft.au=Abdelhalim%2C+Habiba&rft.au=Saman+Zeeshan&rft.au=Ahmed%2C+Zeeshan&rft.date=2022-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac191&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |