Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine

Abstract Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex compo...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 5
Main Authors Vadapalli, Sreya, Abdelhalim, Habiba, Zeeshan, Saman, Ahmed, Zeeshan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
AbstractList Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Abstract Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Author Zeeshan, Saman
Ahmed, Zeeshan
Abdelhalim, Habiba
Vadapalli, Sreya
Author_xml – sequence: 1
  givenname: Sreya
  surname: Vadapalli
  fullname: Vadapalli, Sreya
  email: sv659@scarletmail.rutgers.edu
  organization: Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
– sequence: 2
  givenname: Habiba
  surname: Abdelhalim
  fullname: Abdelhalim, Habiba
  email: ha375@scarletmail.rutgers.edu
  organization: Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
– sequence: 3
  givenname: Saman
  surname: Zeeshan
  fullname: Zeeshan, Saman
  email: saman.zeeshan@rutgers.edu
  organization: Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
– sequence: 4
  givenname: Zeeshan
  orcidid: 0000-0002-7065-1699
  surname: Ahmed
  fullname: Ahmed, Zeeshan
  email: zahmed@ifh.rutgers.edu
  organization: Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35595537$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJyFdz6r0ICqVQ3EiWJdmnEkI_AoFemrMYyeONgldyJTuk_eurzW5CG0pPEqPfvHmad0z2QgxIyCvOPnDWiTPr7Zm14HjHX5Aj3mhdNUw2e5u70pVslDgkxznfMlYz3fIDciik7KQU-ojcn6fZD955GKkPM46jX2FwSCH0dA3uxgekI0IKPqwoTFOKpYiZLnlTKCxSvJ8S5uxjeOi6g-QhzLSHGegQE50w5Rhg9L-waGJfpgV8SfYHGDOe7s4Tcv350_eLr9XVty-XF-dXlWsaPleit9CKtu5Uo1otRK-GXrpaKMYd2EErrS13zjVMYYtMKd4Bypr1vLMKOidOyMet7rTYMtthmBOMZkp-DemnieDN3y_B35hVvDOc1UIIzovCu51Cij8WzLNZ--zKpiBgXLKpVTHRaiVYQd88Q2_jksrXC6W5FkrLB8HXf1p68vKYSgH4FnAp5pxwMM7PMJcFF4d-LNbMJnlTkje75EvP-2c9j7L_pt9u6bhM_wV_A04kwBU
CitedBy_id crossref_primary_10_1007_s00521_023_09142_3
crossref_primary_10_3390_biomedicines12122750
crossref_primary_10_3390_cancers15143749
crossref_primary_10_1093_biomethods_bpae040
crossref_primary_10_1111_opo_13206
crossref_primary_10_1186_s40644_025_00841_9
crossref_primary_10_1089_omi_2024_0150
crossref_primary_10_1093_bib_bbae325
crossref_primary_10_1007_s00784_023_05406_3
crossref_primary_10_1111_cts_13640
crossref_primary_10_1186_s12929_024_01018_5
crossref_primary_10_1371_journal_pone_0311370
crossref_primary_10_3390_biomedicines12081926
crossref_primary_10_3389_fmolb_2024_1430794
crossref_primary_10_31185_wjcm_85
crossref_primary_10_3390_biomedicines13010167
crossref_primary_10_1093_bib_bbae673
crossref_primary_10_3390_diagnostics14192174
crossref_primary_10_1038_s41598_024_78553_6
crossref_primary_10_1186_s42492_024_00154_x
crossref_primary_10_3389_fgene_2022_929736
crossref_primary_10_1093_bioinformatics_btad755
crossref_primary_10_1186_s40001_023_01366_2
crossref_primary_10_3389_fgene_2023_1162869
crossref_primary_10_1093_bib_bbac568
crossref_primary_10_1016_j_compbiolchem_2024_108026
crossref_primary_10_1016_j_ipha_2024_12_001
crossref_primary_10_1002_ctm2_974
crossref_primary_10_3389_fgene_2023_1100352
crossref_primary_10_1016_j_ygeno_2023_110584
crossref_primary_10_1007_s11760_024_03264_4
crossref_primary_10_1186_s40246_024_00685_7
crossref_primary_10_3390_ijms252212233
crossref_primary_10_2217_fmai_2023_0018
crossref_primary_10_1038_s41598_023_44127_1
crossref_primary_10_1186_s40246_023_00498_0
crossref_primary_10_1016_j_clon_2025_103789
crossref_primary_10_1007_s12672_025_02111_3
crossref_primary_10_1016_j_asoc_2025_112911
crossref_primary_10_15406_mojgg_2023_08_00308
crossref_primary_10_1002_ctd2_206
crossref_primary_10_1016_j_mam_2023_101222
crossref_primary_10_1038_s41598_023_50600_8
crossref_primary_10_1093_bib_bbae291
crossref_primary_10_1093_database_baad033
crossref_primary_10_1016_j_simpa_2023_100493
crossref_primary_10_1177_14604582241290725
crossref_primary_10_3390_pharmaceutics16081107
crossref_primary_10_1002_cdt3_68
crossref_primary_10_3390_life14020233
Cites_doi 10.1016/j.metabol.2018.12.012
10.1097/GCO.0000000000000340
10.1016/S2589-7500(21)00104-7
10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P
10.1007/978-3-030-78775-2_24
10.7748/ns.30.51.15.s16
10.1093/bib/bbab272
10.3390/s19235077
10.1007/978-1-60327-194-3_5
10.1001/jama.1982.03330180088048
10.1007/978-1-59745-530-5_9
10.1093/bib/bbz038
10.21037/tp.2019.09.09
10.1016/S1040-8428(97)10024-5
10.7717/peerj.11724
10.1186/s12888-020-02503-5
10.2174/138161282541191230102715
10.17849/insm-47-01-31-39.1
10.1038/nrdp.2016.39
10.4137/CIN.S606
10.1007/978-1-59745-530-5_14
10.1038/s41746-021-00549-7
10.1038/s41598-019-45989-0
10.1038/nbt0908-1011
10.4258/hir.2016.22.3.186
10.1002/ajmg.b.32839
10.21037/atm.2016.03.37
10.1177/1039856218762308
10.3389/fgene.2019.00978
10.1016/j.cmpb.2019.04.008
10.1038/nbt1406
10.1186/s12918-016-0306-z
10.1111/risa.13239
10.1186/s40246-021-00336-1
10.3168/jds.2012-5630
10.3390/jpm11070609
10.1002/ctm2.28
10.1089/106652700750050961
10.1371/journal.pone.0224365
10.1101/gr.275569.121
10.1016/S0959-440X(96)80056-X
10.1038/s41598-017-03011-5
10.1097/MIB.0000000000001222
10.1007/s00438-019-01600-9
10.1007/978-1-0716-1534-8_9
10.1186/s13073-020-00742-5
10.7150/ijbs.42080
10.5455/aim.2016.24.364-369
10.1371/journal.pone.0139685
10.1177/1460458221989402
10.1093/bib/bbz063
10.1186/s40246-020-00287-z
10.1093/nar/gky1016
10.1016/j.neunet.2014.09.003
10.1002/sim.8347
10.1530/REP-09-0567
10.1038/tp.2015.137
10.3389/fmed.2020.00451
10.1038/s41588-021-00797-z
10.1038/nrdp.2016.10
10.1002/2211-5463.13261
10.11613/BM.2014.003
10.1186/1471-2105-13-S15-S14
10.1016/j.molmet.2019.12.006
10.1371/journal.pone.0210236
10.1038/s41576-018-0016-z
10.1186/s13059-020-02075-3
10.1002/humu.22911
10.1371/journal.pone.0190152
10.1186/1471-2105-14-7
10.1371/journal.pcbi.1009670
10.1002/ajmg.b.32638
10.1109/TNNLS.2019.2914471
10.1016/bs.pmbts.2022.02.002
10.1016/j.ctrv.2020.102019
10.1186/1471-2105-9-559
10.1042/ETLS20210244
10.1016/j.ygeno.2012.04.003
10.1371/journal.pone.0251800
10.2217/pme-2021-0068
10.1016/S0140-6736(12)60026-9
10.1093/database/baaa010
10.18632/aging.103861
10.1097/00002826-198306000-00002
10.1016/j.csbj.2021.06.052
10.1007/s11042-020-10139-6
10.1007/s00134-019-05537-w
10.1177/1460458219899210
10.1186/s12859-019-2778-5
10.1186/1471-2105-13-S14-S6
10.1093/nar/16.5.1681
10.3389/fnins.2021.645998
10.1016/j.gtc.2007.12.002
10.1016/j.mayocp.2019.01.018
10.1016/j.lungcan.2004.04.006
10.1038/s41467-017-02465-5
10.1038/nature10209
10.1016/j.ygeno.2020.10.018
10.1186/1753-6561-6-S2-S10
10.1089/cmb.2018.0002
10.21037/atm.2016.06.20
10.1186/s13073-019-0670-6
10.1073/pnas.2023070118
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbac191
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC10233311
35595537
10_1093_bib_bbac191
10.1093/bib/bbac191
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R33 AG068931
– fundername: ;
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c441t-3dba838296468733d6fd5c23601cabf7677b1ccc406e8e06619ae520d19b6a9c3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:36:58 EDT 2025
Thu Jul 10 18:45:38 EDT 2025
Mon Jun 30 08:51:48 EDT 2025
Thu Apr 03 07:08:28 EDT 2025
Tue Jul 01 03:39:41 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Wed Aug 28 03:18:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords machine learning
artificial intelligence
gene expression
gene variant
predictive analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-3dba838296468733d6fd5c23601cabf7677b1ccc406e8e06619ae520d19b6a9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Sreya Vadapalli and Habiba Abdelhalim contributed equally.
ORCID 0000-0002-7065-1699
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10233311
PMID 35595537
PQID 2717367511
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10233311
proquest_miscellaneous_2667787630
proquest_journals_2717367511
pubmed_primary_35595537
crossref_citationtrail_10_1093_bib_bbac191
crossref_primary_10_1093_bib_bbac191
oup_primary_10_1093_bib_bbac191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Anderson (2023060106420917100_ref91) 2019; 25
Schubach (2023060106420917100_ref120) 2017; 7
Ahmed (2023060106420917100_ref10) 2021; 18
Vabalas (2023060106420917100_ref122) 2019; 14
Rodriguez (2023060106420917100_ref43) 2019; 14
Georgevici (2023060106420917100_ref53) 2019; 45
González-Recio (2023060106420917100_ref15) 2013; 96
Katoch (2023060106420917100_ref45) 2020; 80
Li (2023060106420917100_ref116) 2021; 2328
Wang (2023060106420917100_ref62) 2018; 25
Schaid (2023060106420917100_ref104) 2018; 19
Folkow (2023060106420917100_ref93) 1993; 11
Sperandei (2023060106420917100_ref22) 2014; 24
Ahmed (2023060106420917100_ref106) 2022
Ahmed (2023060106420917100_ref9) 2020; 2020
Schaack (2023060106420917100_ref76) 2021; 16
Li (2023060106420917100_ref78) 2021; 2021
Costa-Silva (2023060106420917100_ref102) 2017; 12
Hänzelmann (2023060106420917100_ref103) 2013; 14
Wu (2023060106420917100_ref117) 2021; 118
Liu (2023060106420917100_ref17) 2020; 295
Tan (2023060106420917100_ref28) 2019; 38
Baumgart (2023060106420917100_ref82) 2012; 380
Zhang (2023060106420917100_ref24) 2016; 4
Zeeshan (2023060106420917100_ref1) 2020; 21
Hond (2023060106420917100_ref58) 2022; 5
Van Marck (2023060106420917100_ref97) 2004; 45
Menti (2023060106420917100_ref61) 2017; 2016
Shah (2023060106420917100_ref111) 2020; 1
Wiharto (2023060106420917100_ref40) 2016; 22
Eberly (2023060106420917100_ref44) 2007; 404
Zauderer (2023060106420917100_ref48) 2021; 3
Gotts (2023060106420917100_ref95) 2016; 353
Frigyesi (2023060106420917100_ref38) 2008; 6
Khor (2023060106420917100_ref80) 2011; 474
Liu (2023060106420917100_ref35)
He (2023060106420917100_ref79) 2021; 22
Ahmed (2023060106420917100_ref5) 2021; 11
Chen (2023060106420917100_ref36) 2019; 19
Huang (2023060106420917100_ref14) 2018; 15
Do (2023060106420917100_ref55) 2008; 26
Sardaar (2023060106420917100_ref71) 2020; 20
Parente (2023060106420917100_ref18) 2021; 15
Lamy (2023060106420917100_ref39) 2008; 136
Frades (2023060106420917100_ref42) 2010; 593
Oussaada (2023060106420917100_ref83) 2019; 92
Stevens (2023060106420917100_ref90) 1983; 6
Kaul (2023060106420917100_ref81) 2016; 2
Ahmed (2023060106420917100_ref4) 2021; 9
Cappell (2023060106420917100_ref84) 2008; 37
Verduijn (2023060106420917100_ref88) 2015; 5
Aevermann (2023060106420917100_ref108) 2021; 31
Wang (2023060106420917100_ref47) 2019; 11
Isakov (2023060106420917100_ref59) 2017; 23
Trakadis (2023060106420917100_ref70) 2019; 180
Chen (2023060106420917100_ref12) 2012; 99
Hu (2023060106420917100_ref113) 2021; 19
Uribe (2023060106420917100_ref101) 2004; 31
Zheng (2023060106420917100_ref56) 2000; 19
Bugnon (2023060106420917100_ref121) 2020; 31
Rentzsch (2023060106420917100_ref49) 2019; 47
Repetto (2023060106420917100_ref96) 1998; 27
Malovini (2023060106420917100_ref27) 2012; 13 Suppl 14
Vrahatis (2023060106420917100_ref110) 2021; 1338
Hampel (2023060106420917100_ref66) 2020; 6
Shelling (2023060106420917100_ref92) 2010; 140
Martin (2023060106420917100_ref3) 2021; 53
Zhang (2023060106420917100_ref31) 2016; 4
Ying (2023060106420917100_ref16) 2021; 113
Pearce (2023060106420917100_ref85) 2016; 30
Kroeger (2023060106420917100_ref98) 2017; 29
Keller (2023060106420917100_ref41) 2012; 2012
Vural (2023060106420917100_ref64) 2016; 10
Langfelder (2023060106420917100_ref100) 2008; 9
Zhao (2023060106420917100_ref67) 2021; 15
Rigatti (2023060106420917100_ref11) 2017; 47
Schmidhuber (2023060106420917100_ref25) 2015; 61
Ahmed (2023060106420917100_ref6) 2021; 15
Qi (2023060106420917100_ref69) 2021; 186
Kim (2023060106420917100_ref46) 2015; 10
Lin (2023060106420917100_ref77) 2021; 12
Eddy (2023060106420917100_ref57) 1996; 6
Liu (2023060106420917100_ref30) 2012; 13
Ogutu (2023060106420917100_ref19) 2012; 6
Henarejos-Castillo (2023060106420917100_ref72) 2021; 11
Eratne (2023060106420917100_ref87) 2018; 26
Held (2023060106420917100_ref74) 2016; 10
Kegerreis (2023060106420917100_ref60) 2019; 9
Friedman (2023060106420917100_ref29) 2000; 7
Nick (2023060106420917100_ref21) 2007; 404
Jin (2023060106420917100_ref73) 2020; 13
Torroja (2023060106420917100_ref114) 2019; 10
Ricciardi (2023060106420917100_ref33) 2020; 26
Langarizadeh (2023060106420917100_ref26) 2016; 24
Njage (2023060106420917100_ref75) 2019; 39
Attimonelli (2023060106420917100_ref54) 1988; 16
Yang (2023060106420917100_ref37) 2016; 32
Ryback (2023060106420917100_ref34) 1982; 248
Petegrosso (2023060106420917100_ref107) 2020; 21
Feuerstein (2023060106420917100_ref89) 2019; 94
Rai (2023060106420917100_ref119) 2020; 32
Ahmed (2023060106420917100_ref2) 2020; 10
Khwaja (2023060106420917100_ref86) 2016; 2
Li (2023060106420917100_ref109) 2020; 7
Byvatov (2023060106420917100_ref13) 2003; 2
Choi (2023060106420917100_ref52) 2020; 9
Chen (2023060106420917100_ref112) 2020; 16
Thibodeau (2023060106420917100_ref115) 2021; 17
Hodges (2023060106420917100_ref94) 2020; 9
Tsimberidou (2023060106420917100_ref99) 2020; 86
Gumaei (2023060106420917100_ref51) 2021; 27
Lee (2023060106420917100_ref65) 2018; 9
Lewis (2023060106420917100_ref7) 2020; 12
Li (2023060106420917100_ref68) 2020; 12
Maniruzzaman (2023060106420917100_ref63) 2019; 176
Ji (2023060106420917100_ref118) 2020; 21
Candia (2023060106420917100_ref20) 2019; 20
Ahmed (2023060106420917100_ref105) 2022
Ahmed (2023060106420917100_ref8) 2020; 14
Douville (2023060106420917100_ref50) 2016; 37
Zou (2023060106420917100_ref23) 2008; 458
Kingsford (2023060106420917100_ref32) 2008; 26
References_xml – volume: 92
  start-page: 26
  year: 2019
  ident: 2023060106420917100_ref83
  article-title: The pathogenesis of obesity
  publication-title: Metab Clin Exp
  doi: 10.1016/j.metabol.2018.12.012
– volume: 29
  start-page: 26
  issue: 1
  year: 2017
  ident: 2023060106420917100_ref98
  article-title: Pathogenesis and heterogeneity of ovarian cancer
  publication-title: Curr Opin Obstet Gynecol
  doi: 10.1097/GCO.0000000000000340
– volume: 3
  start-page: e565
  issue: 9
  year: 2021
  ident: 2023060106420917100_ref48
  article-title: The use of a next-generation sequencing-derived machine-learning risk-prediction model (OncoCast-MPM) for malignant pleural mesothelioma: a retrospective study
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(21)00104-7
– volume: 19
  start-page: 1771
  issue: 13
  year: 2000
  ident: 2023060106420917100_ref56
  article-title: Summarizing the predictive power of a generalized linear model
  publication-title: Stat Med
  doi: 10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P
– volume: 1338
  start-page: 199
  year: 2021
  ident: 2023060106420917100_ref110
  article-title: Emerging machine learning techniques for modelling cellular complex systems in Alzheimer's disease
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-030-78775-2_24
– volume: 30
  start-page: 15
  issue: 51
  year: 2016
  ident: 2023060106420917100_ref85
  article-title: Breast cancer
  publication-title: Nurs Stand
  doi: 10.7748/ns.30.51.15.s16
– volume: 22
  start-page: bbab272
  issue: 6
  year: 2021
  ident: 2023060106420917100_ref79
  article-title: Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab272
– volume: 19
  start-page: 5077
  issue: 23
  year: 2019
  ident: 2023060106420917100_ref36
  article-title: A strong machine learning classifier and decision stumps based hybrid AdaBoost classification algorithm for cognitive radios
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s19235077
– volume: 593
  start-page: 81
  year: 2010
  ident: 2023060106420917100_ref42
  article-title: Overview on techniques in cluster analysis
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60327-194-3_5
– volume: 13
  start-page: 159
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref73
  article-title: Identification of potential causal variants for premature ovarian failure by whole exome sequencing
  publication-title: BMC Med Genet
– volume: 248
  start-page: 2342
  issue: 18
  year: 1982
  ident: 2023060106420917100_ref34
  article-title: Quadratic discriminant analysis as an aid to interpretive reporting of clinical laboratory tests
  publication-title: JAMA
  doi: 10.1001/jama.1982.03330180088048
– volume: 404
  start-page: 165
  year: 2007
  ident: 2023060106420917100_ref44
  article-title: Multiple linear regression
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-530-5_9
– volume: 21
  start-page: 885
  issue: 3
  year: 2020
  ident: 2023060106420917100_ref1
  article-title: 100 Years of evolving gene-disease complexities and scientific debutants
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz038
– volume: 458
  start-page: 15
  year: 2008
  ident: 2023060106420917100_ref23
  article-title: Overview of artificial neural networks
  publication-title: Methods Mol Biol
– volume: 9
  start-page: S55
  issue: Suppl 1
  year: 2020
  ident: 2023060106420917100_ref94
  article-title: Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation
  publication-title: Transl Pediatr
  doi: 10.21037/tp.2019.09.09
– volume: 27
  start-page: 145
  issue: 2
  year: 1998
  ident: 2023060106420917100_ref96
  article-title: Prostate cancer
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/S1040-8428(97)10024-5
– volume: 9
  start-page: e11724
  year: 2021
  ident: 2023060106420917100_ref4
  article-title: Genomics pipelines to investigate susceptibility in whole genome and exome sequenced data for variant discovery, annotation, prediction and genotyping
  publication-title: PeerJ
  doi: 10.7717/peerj.11724
– volume: 20
  start-page: 92
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref71
  article-title: Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-020-02503-5
– volume: 25
  start-page: 4319
  issue: 41
  year: 2019
  ident: 2023060106420917100_ref91
  article-title: Autism spectrum disorder: pathophysiology and treatment implications
  publication-title: Curr Pharm Des
  doi: 10.2174/138161282541191230102715
– volume: 47
  start-page: 31
  issue: 1
  year: 2017
  ident: 2023060106420917100_ref11
  article-title: Random Forest
  publication-title: J Insur Med
  doi: 10.17849/insm-47-01-31-39.1
– volume: 2
  start-page: 16039
  issue: 1
  year: 2016
  ident: 2023060106420917100_ref81
  article-title: Systemic lupus erythematosus
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2016.39
– volume: 6
  start-page: 275
  year: 2008
  ident: 2023060106420917100_ref38
  article-title: Non-negative matrix factorization for the analysis of complex gene expression data: identification of clinically relevant tumor subtypes
  publication-title: Cancer Informat
  doi: 10.4137/CIN.S606
– volume: 404
  start-page: 273
  year: 2007
  ident: 2023060106420917100_ref21
  article-title: Logistic regression
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-530-5_14
– volume: 5
  start-page: 2
  issue: 1
  year: 2022
  ident: 2023060106420917100_ref58
  article-title: Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review
  publication-title: NPJ Digital Med
  doi: 10.1038/s41746-021-00549-7
– volume: 9
  start-page: 9617
  issue: 1
  year: 2019
  ident: 2023060106420917100_ref60
  article-title: Machine learning approaches to predict lupus disease activity from gene expression data
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45989-0
– volume: 26
  start-page: 1011
  issue: 9
  year: 2008
  ident: 2023060106420917100_ref32
  article-title: What are decision trees?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0908-1011
– volume: 22
  start-page: 186
  issue: 3
  year: 2016
  ident: 2023060106420917100_ref40
  article-title: Interpretation of clinical data based on C4.5 algorithm for the diagnosis of coronary heart disease
  publication-title: Healthc Inform Res
  doi: 10.4258/hir.2016.22.3.186
– volume: 2012
  start-page: 42
  year: 2012
  ident: 2023060106420917100_ref41
  article-title: Formal concept analysis of disease similarity. AMIA Joint Summits on Translational Science proceedings
  publication-title: AMIA Jt Summits Transl Sci
– volume: 186
  start-page: 101
  issue: 2
  year: 2021
  ident: 2023060106420917100_ref69
  article-title: Machine learning and bioinformatic analysis of brain and blood mRNA profiles in major depressive disorder: a case-control study
  publication-title: Am J Med Genetics B Neuropsychiatr Genetics
  doi: 10.1002/ajmg.b.32839
– volume: 4
  start-page: 218
  issue: 11
  year: 2016
  ident: 2023060106420917100_ref31
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2016.03.37
– volume: 11
  start-page: S21
  issue: 4
  year: 1993
  ident: 2023060106420917100_ref93
  article-title: Pathophysiology of hypertension: differences between young and elderly
  publication-title: J Hypertens
– volume: 26
  start-page: 347
  issue: 4
  year: 2018
  ident: 2023060106420917100_ref87
  article-title: Alzheimer's disease: clinical update on epidemiology, pathophysiology and diagnosis
  publication-title: Australas Psychiatry
  doi: 10.1177/1039856218762308
– volume: 10
  start-page: 978
  year: 2019
  ident: 2023060106420917100_ref114
  article-title: Digitaldlsorter: deep-learning on scRNA-Seq to deconvolute gene expression data
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00978
– volume: 176
  start-page: 173
  year: 2019
  ident: 2023060106420917100_ref63
  article-title: Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2019.04.008
– volume: 26
  start-page: 897
  issue: 8
  year: 2008
  ident: 2023060106420917100_ref55
  article-title: What is the expectation maximization algorithm?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1406
– volume: 10
  start-page: 62
  issue: Suppl 3
  year: 2016
  ident: 2023060106420917100_ref64
  article-title: Classification of breast cancer patients using somatic mutation profiles and machine learning approaches
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-016-0306-z
– volume: 39
  start-page: 1397
  issue: 6
  year: 2019
  ident: 2023060106420917100_ref75
  article-title: Machine learning methods as a tool for predicting risk of illness applying next-generation sequencing data
  publication-title: Risk Anal
  doi: 10.1111/risa.13239
– volume: 15
  start-page: 37
  issue: 1
  year: 2021
  ident: 2023060106420917100_ref6
  article-title: Advancing clinical genomics and precision medicine with GVViZ: FAIR bioinformatics platform for variable gene-disease annotation, visualization, and expression analysis
  publication-title: Hum Genomics
  doi: 10.1186/s40246-021-00336-1
– volume: 96
  start-page: 614
  issue: 1
  year: 2013
  ident: 2023060106420917100_ref15
  article-title: The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2012-5630
– volume: 11
  start-page: 609
  issue: 7
  year: 2021
  ident: 2023060106420917100_ref72
  article-title: Machine learning-based approach highlights the use of a genomic variant profile for precision medicine in ovarian failure
  publication-title: J Pers Med
  doi: 10.3390/jpm11070609
– volume: 10
  start-page: 297
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref2
  article-title: Human gene and disease associations for clinical-genomics and precision medicine research
  publication-title: Clin Transl Med
  doi: 10.1002/ctm2.28
– volume: 7
  start-page: 601
  issue: 3–4
  year: 2000
  ident: 2023060106420917100_ref29
  article-title: Using Bayesian networks to analyze expression data
  publication-title: J Comput Biol
  doi: 10.1089/106652700750050961
– volume: 15
  start-page: 41
  issue: 1
  year: 2018
  ident: 2023060106420917100_ref14
  article-title: Applications of support vector machine (SVM) learning in cancer genomics
  publication-title: Cancer Genomics Proteomics
– volume: 14
  issue: 11
  year: 2019
  ident: 2023060106420917100_ref122
  article-title: Machine learning algorithm validation with a limited sample size
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0224365
– volume: 31
  start-page: 1767
  issue: 10
  year: 2021
  ident: 2023060106420917100_ref108
  article-title: A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.275569.121
– volume: 6
  start-page: 361
  issue: 3
  year: 1996
  ident: 2023060106420917100_ref57
  article-title: Hidden Markov models
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/S0959-440X(96)80056-X
– volume: 7
  start-page: 2959
  issue: 1
  year: 2017
  ident: 2023060106420917100_ref120
  article-title: Imbalance-aware machine learning for predicting rare and common disease-associated non-coding variants
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03011-5
– volume: 23
  start-page: 1516
  issue: 9
  year: 2017
  ident: 2023060106420917100_ref59
  article-title: Machine learning-based gene prioritization identifies novel candidate risk genes for inflammatory bowel disease
  publication-title: Inflamm Bowel Dis
  doi: 10.1097/MIB.0000000000001222
– volume: 295
  start-page: 13
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref17
  article-title: XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites
  publication-title: Mol Gen Genom
  doi: 10.1007/s00438-019-01600-9
– volume: 9
  start-page: 14
  issue: 2
  year: 2020
  ident: 2023060106420917100_ref52
  article-title: Introduction to machine learning, neural networks, and deep learning
  publication-title: Transl Vis Sci Technol
– volume: 2328
  start-page: 153
  year: 2021
  ident: 2023060106420917100_ref116
  article-title: Identification of gene regulatory networks from single-cell expression data
  publication-title: Methods Mol Biol (Clifton, NJ)
  doi: 10.1007/978-1-0716-1534-8_9
– volume: 12
  start-page: 44
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref7
  article-title: Polygenic risk scores: from research tools to clinical instruments
  publication-title: Genome Med
  doi: 10.1186/s13073-020-00742-5
– volume: 16
  start-page: 2205
  issue: 12
  year: 2020
  ident: 2023060106420917100_ref112
  article-title: Ligand-receptor interaction atlas within and between tumor cells and T cells in lung adenocarcinoma
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.42080
– volume: 12
  year: 2021
  ident: 2023060106420917100_ref77
  article-title: Identifying subgroups of patients with autism by gene expression profiles using machine learning algorithms
  publication-title: Front Psychol
– volume: 24
  start-page: 364
  issue: 5
  year: 2016
  ident: 2023060106420917100_ref26
  article-title: Applying naive Bayesian networks to disease prediction: a systematic review
  publication-title: Acta Informatica Medica
  doi: 10.5455/aim.2016.24.364-369
– volume: 10
  start-page: e0139685
  issue: 10
  year: 2015
  ident: 2023060106420917100_ref46
  article-title: Application of LogitBoost classifier for traceability using SNP Chip data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0139685
– volume: 27
  start-page: 1460458221989402
  issue: 1
  year: 2021
  ident: 2023060106420917100_ref51
  article-title: Feature selection with ensemble learning for prostate cancer diagnosis from microarray gene expression
  publication-title: Health Informatics J
  doi: 10.1177/1460458221989402
– volume: 21
  start-page: 1209
  issue: 4
  year: 2020
  ident: 2023060106420917100_ref107
  article-title: Machine learning and statistical methods for clustering single-cell RNA-sequencing data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz063
– volume: 14
  start-page: 35
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref8
  article-title: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis
  publication-title: Hum Genomics
  doi: 10.1186/s40246-020-00287-z
– volume: 47
  start-page: D886
  issue: D1
  year: 2019
  ident: 2023060106420917100_ref49
  article-title: CADD: predicting the deleteriousness of variants throughout the human genome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1016
– volume: 2
  start-page: 67
  issue: 2
  year: 2003
  ident: 2023060106420917100_ref13
  article-title: Support vector machine applications in bioinformatics
  publication-title: Appl Bioinforma
– volume: 61
  start-page: 85
  year: 2015
  ident: 2023060106420917100_ref25
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 38
  start-page: 5048
  issue: 25
  year: 2019
  ident: 2023060106420917100_ref28
  article-title: Bayesian additive regression trees and the general BART model
  publication-title: Stat Med
  doi: 10.1002/sim.8347
– volume: 140
  start-page: 633
  issue: 5
  year: 2010
  ident: 2023060106420917100_ref92
  article-title: Premature ovarian failure
  publication-title: Reproduction (Cambridge, England)
  doi: 10.1530/REP-09-0567
– volume: 5
  issue: 9
  year: 2015
  ident: 2023060106420917100_ref88
  article-title: Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.137
– volume: 7
  start-page: 451
  year: 2020
  ident: 2023060106420917100_ref109
  article-title: Evaluating distribution and prognostic value of new tumor-infiltrating lymphocytes in HCC based on a scRNA-Seq study with CIBERSORTx
  publication-title: Front Med
  doi: 10.3389/fmed.2020.00451
– volume: 53
  start-page: 763
  issue: 5
  year: 2021
  ident: 2023060106420917100_ref3
  article-title: Publisher correction: clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00797-z
– volume: 2
  start-page: 16010
  issue: 1
  year: 2016
  ident: 2023060106420917100_ref86
  article-title: Acute myeloid leukaemia
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2016.10
– ident: 2023060106420917100_ref35
  article-title: Scalable Gaussian process classification with additive noise for non-Gaussian likelihoods
  publication-title: IEEE Trans Cybern
– volume: 11
  start-page: 2441
  issue: 9
  year: 2021
  ident: 2023060106420917100_ref5
  article-title: JWES: a new pipeline for whole genome/exome sequence data processing, management, and gene-variant discovery, annotation, prediction, and genotyping
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.13261
– volume: 24
  start-page: 12
  issue: 1
  year: 2014
  ident: 2023060106420917100_ref22
  article-title: Understanding logistic regression analysis
  publication-title: Biochem Med
  doi: 10.11613/BM.2014.003
– volume: 13
  start-page: S14
  issue: Suppl 15
  year: 2012
  ident: 2023060106420917100_ref30
  article-title: Empirical evaluation of scoring functions for Bayesian network model selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S15-S14
– volume: 32
  start-page: 109
  year: 2020
  ident: 2023060106420917100_ref119
  article-title: Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2019.12.006
– volume: 14
  issue: 1
  year: 2019
  ident: 2023060106420917100_ref43
  article-title: Clustering algorithms: a comparative approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210236
– volume: 19
  start-page: 491
  issue: 8
  year: 2018
  ident: 2023060106420917100_ref104
  article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0016-z
– volume: 21
  start-page: 161
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref118
  article-title: Single-cell ATAC-seq signal extraction and enhancement with SCATE
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02075-3
– volume: 37
  start-page: 28
  issue: 1
  year: 2016
  ident: 2023060106420917100_ref50
  article-title: Assessing the pathogenicity of insertion and deletion variants with the Variant Effect Scoring Tool (VEST-Indel)
  publication-title: Hum Mutat
  doi: 10.1002/humu.22911
– volume: 12
  issue: 12
  year: 2017
  ident: 2023060106420917100_ref102
  article-title: RNA-Seq differential expression analysis: an extended review and a software tool
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0190152
– volume: 14
  start-page: 1
  issue: 1
  year: 2013
  ident: 2023060106420917100_ref103
  article-title: GSVA: gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-7
– volume: 17
  start-page: e1009670
  issue: 12
  year: 2021
  ident: 2023060106420917100_ref115
  article-title: CoRE-ATAC: a deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1009670
– volume: 180
  start-page: 103
  issue: 2
  year: 2019
  ident: 2023060106420917100_ref70
  article-title: Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.32638
– volume: 31
  start-page: 2857
  issue: 8
  year: 2020
  ident: 2023060106420917100_ref121
  article-title: Deep neural architectures for highly imbalanced data in bioinformatics
  publication-title: IEEE Trans Neural Netw Learn Systems
  doi: 10.1109/TNNLS.2019.2914471
– year: 2022
  ident: 2023060106420917100_ref105
  article-title: Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis
  publication-title: Prog Mol Biol Transl Sci
  doi: 10.1016/bs.pmbts.2022.02.002
– volume: 86
  year: 2020
  ident: 2023060106420917100_ref99
  article-title: Review of precision cancer medicine: evolution of the treatment paradigm
  publication-title: Cancer Treat Rev
  doi: 10.1016/j.ctrv.2020.102019
– volume: 9
  start-page: 559
  issue: 1
  year: 2008
  ident: 2023060106420917100_ref100
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– year: 2022
  ident: 2023060106420917100_ref106
  article-title: Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities
  publication-title: Emerg Topics Life Sci
  doi: 10.1042/ETLS20210244
– volume: 31
  start-page: 1934
  issue: 10
  year: 2004
  ident: 2023060106420917100_ref101
  article-title: The systemic lupus activity measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus
  publication-title: J Rheumatol
– volume: 99
  start-page: 323
  issue: 6
  year: 2012
  ident: 2023060106420917100_ref12
  article-title: Random forests for genomic data analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2012.04.003
– volume: 10
  start-page: 141
  issue: Suppl 7
  year: 2016
  ident: 2023060106420917100_ref74
  article-title: Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data
  publication-title: BMC Proc
– volume: 16
  start-page: e0251800
  issue: 5
  year: 2021
  ident: 2023060106420917100_ref76
  article-title: Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0251800
– volume: 18
  start-page: 573
  issue: 6
  year: 2021
  ident: 2023060106420917100_ref10
  article-title: Intelligent health system for the investigation of consenting COVID-19 patients and precision medicine
  publication-title: Pers Med
  doi: 10.2217/pme-2021-0068
– volume: 380
  start-page: 1590
  issue: 9853
  year: 2012
  ident: 2023060106420917100_ref82
  article-title: Crohn's disease
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(12)60026-9
– volume: 2020
  year: 2020
  ident: 2023060106420917100_ref9
  article-title: Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine
  publication-title: Database (Oxford)
  doi: 10.1093/database/baaa010
– volume: 15
  issue: 2–3
  year: 2021
  ident: 2023060106420917100_ref18
  article-title: PolyBoost: an enhanced genomic variant classifier using extreme gradient boosting
  publication-title: Proteomics Clin Appl
– volume: 12
  start-page: 20471
  issue: 20
  year: 2020
  ident: 2023060106420917100_ref68
  article-title: Development of a susceptibility gene based novel predictive model for the diagnosis of ulcerative colitis using random forest and artificial neural network
  publication-title: Aging
  doi: 10.18632/aging.103861
– volume: 6
  issue: 1
  year: 2020
  ident: 2023060106420917100_ref66
  article-title: A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer's disease therapy: analysis of the Blarcamesine (ANAVEX2-73) phase 2a clinical study
  publication-title: Alzheimers Dement
– volume: 6
  start-page: 77
  issue: 2
  year: 1983
  ident: 2023060106420917100_ref90
  article-title: Pathophysiology of schizophrenia
  publication-title: Clin Neuropharmacol
  doi: 10.1097/00002826-198306000-00002
– volume: 2016
  start-page: 884
  year: 2017
  ident: 2023060106420917100_ref61
  article-title: Bayesian machine learning techniques for revealing complex interactions among genetic and clinical factors in association with extra-intestinal manifestations in IBD patients
  publication-title: AMIA Annu Symp Proc
– volume: 32
  start-page: btv544
  issue: 1
  year: 2016
  ident: 2023060106420917100_ref37
  article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
  publication-title: Bioinformatics (Oxford, England)
– volume: 19
  start-page: 3829
  year: 2021
  ident: 2023060106420917100_ref113
  article-title: Statistical and machine learning methods for spatially resolved transcriptomics with histology
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.06.052
– volume: 80
  start-page: 8091
  issue: 5
  year: 2020
  ident: 2023060106420917100_ref45
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10139-6
– volume: 45
  start-page: 712
  issue: 5
  year: 2019
  ident: 2023060106420917100_ref53
  article-title: Neural networks and deep learning: a brief introduction
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-019-05537-w
– volume: 26
  start-page: 2181
  issue: 3
  year: 2020
  ident: 2023060106420917100_ref33
  article-title: Linear discriminant analysis and principal component analysis to predict coronary artery disease
  publication-title: Health Informatics J
  doi: 10.1177/1460458219899210
– volume: 1
  issue: 5
  year: 2020
  ident: 2023060106420917100_ref111
  article-title: An experiment on ab initio discovery of biological knowledge from scRNA-Seq data using machine learning
  publication-title: Patterns (New York, NY)
– volume: 20
  start-page: 189
  issue: 1
  year: 2019
  ident: 2023060106420917100_ref20
  article-title: eNetXplorer: an R package for the quantitative exploration of elastic net families for generalized linear models
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2778-5
– volume: 2021
  start-page: 6653793
  year: 2021
  ident: 2023060106420917100_ref78
  article-title: Identification of tumor tissue of origin with RNA-Seq data and using gradient boosting strategy
  publication-title: Biomed Res Int
– volume: 13 Suppl 14
  start-page: S6
  issue: Suppl 14
  year: 2012
  ident: 2023060106420917100_ref27
  article-title: Hierarchical naive Bayes for genetic association studies
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S14-S6
– volume: 16
  start-page: 1681
  issue: 5
  year: 1988
  ident: 2023060106420917100_ref54
  article-title: MERGE: a software package for generating a single data-base starting from EMBL and GenBank collections
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/16.5.1681
– volume: 15
  start-page: 645998
  year: 2021
  ident: 2023060106420917100_ref67
  article-title: Identification of diagnostic markers for major depressive disorder using machine learning methods
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.645998
– volume: 37
  start-page: 1
  issue: 1
  year: 2008
  ident: 2023060106420917100_ref84
  article-title: Pathophysiology, clinical presentation, and management of colon cancer
  publication-title: Gastroenterol Clin N Am
  doi: 10.1016/j.gtc.2007.12.002
– volume: 94
  start-page: 1357
  issue: 7
  year: 2019
  ident: 2023060106420917100_ref89
  article-title: Ulcerative colitis
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2019.01.018
– volume: 45
  start-page: S35
  issue: Suppl 1
  year: 2004
  ident: 2023060106420917100_ref97
  article-title: Pathology of malignant mesothelioma
  publication-title: Lung Cancer (Amsterdam, Netherlands)
  doi: 10.1016/j.lungcan.2004.04.006
– volume: 9
  start-page: 42
  issue: 1
  year: 2018
  ident: 2023060106420917100_ref65
  article-title: A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02465-5
– volume: 474
  start-page: 307
  issue: 7351
  year: 2011
  ident: 2023060106420917100_ref80
  article-title: Genetics and pathogenesis of inflammatory bowel disease
  publication-title: Nature
  doi: 10.1038/nature10209
– volume: 136
  start-page: 223
  year: 2008
  ident: 2023060106420917100_ref39
  article-title: Use of the C4.5 machine learning algorithm to test a clinical guideline-based decision support system
  publication-title: Stud Health Technol Inform
– volume: 113
  start-page: 874
  issue: 1 Pt 2
  year: 2021
  ident: 2023060106420917100_ref16
  article-title: Diagnostic potential of a gradient boosting-based model for detecting pediatric sepsis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.10.018
– volume: 6
  start-page: S10
  issue: Suppl 2
  year: 2012
  ident: 2023060106420917100_ref19
  article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-6-S2-S10
– volume: 25
  start-page: 1347
  issue: 12
  year: 2018
  ident: 2023060106420917100_ref62
  article-title: Machine learning-based method for obesity risk evaluation using single-nucleotide polymorphisms derived from next-generation sequencing
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2018.0002
– volume: 353
  year: 2016
  ident: 2023060106420917100_ref95
  article-title: Sepsis: pathophysiology and clinical management
  publication-title: BMJ (Clin Res ed)
– volume: 4
  start-page: 370
  issue: 19
  year: 2016
  ident: 2023060106420917100_ref24
  article-title: A gentle introduction to artificial neural networks
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2016.06.20
– volume: 11
  start-page: 59
  issue: 1
  year: 2019
  ident: 2023060106420917100_ref47
  article-title: Identifying Crohn's disease signal from variome analysis
  publication-title: Genome Med
  doi: 10.1186/s13073-019-0670-6
– volume: 118
  issue: 15
  year: 2021
  ident: 2023060106420917100_ref117
  article-title: BABEL enables cross-modality translation between multiomic profiles at single-cell resolution
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2023070118
SSID ssj0020781
Score 2.5961094
SecondaryResourceType review_article
Snippet Abstract Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and...
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Comparative analysis
Data sources
DNA microarrays
Gene Expression
Gene sequencing
Genetics
Genomics
Genomics - methods
Learning algorithms
Machine Learning
Precision medicine
Precision Medicine - methods
Review
Title Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine
URI https://www.ncbi.nlm.nih.gov/pubmed/35595537
https://www.proquest.com/docview/2717367511
https://www.proquest.com/docview/2667787630
https://pubmed.ncbi.nlm.nih.gov/PMC10233311
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRfzudGmFPQlnarG3yKOIYgvqywd5KkqZzoN1wm0z_eu_arGxj6PNd2pJLet9xd98R0mQsCyLB2p7gbeO1eRp6SgjtMZmBO_GtYBKbk59fom6__TQIB65AdrolhS95S490S2tl_KJJHdwvUuT3XgdVXIV8NWUTUewhu7trw9tYu-Z41prZVjDlZmnkiq_pHJB9BxLpfWnVQ7Jj8yOyW46N_D4mCxSUzA90tEKpSVWe0o-iOtJSNw5iSJes4XZKsch9SEHXUrtwFbB5seoLQmbYY4oFoxRwLJ0sQfqPhWe6BPwJ6Xceew9dz01Q8AzAnJnHU60EF5hajUTMeRplaWgCDlGYUTqLozjWvjEGvLoVFtCHL5UNA5b6UkdKGn5Kavk4t-eEWs0ylkorIb5A0KUzEUkbwkEMhVBS1cndcnsT4-jFccrFe1KmuXkCtkicLeqkWSlPSlaN7Wo3YKe_NRpLGybu8k2TACsLIBDyQXxbieHaYC5E5XY8B50ImfPg58rq5Kw0efUegGAyDHlcJ2LtMFQKSMm9LslHbwU1NxJhcO77F_9--SXZC7CTAhNcrEFqs8-5vQJ8M9PXxen-BX8k-0U
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+machine+learning+approaches+using+gene+expression+and+variant+data+for+personalized+medicine&rft.jtitle=Briefings+in+bioinformatics&rft.au=Vadapalli%2C+Sreya&rft.au=Abdelhalim%2C+Habiba&rft.au=Saman+Zeeshan&rft.au=Ahmed%2C+Zeeshan&rft.date=2022-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac191&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon