NAD and the aging process: Role in life, death and everything in between

Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been descri...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular endocrinology Vol. 455; pp. 62 - 74
Main Authors Chini, Claudia C.S., Tarragó, Mariana G., Chini, Eduardo N.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 05.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline. •NAD plays a key role in energy metabolism, cell signaling and energy sensing.•Cellular NAD levels decrease during the process of chronological aging.•NAD decline during aging leads to decrease in SIRTUINS activity, mitochondrial and metabolic dysfunction.•The enzyme CD38 is the main NADase in tissues and plays a key role on the age-related NAD decline.•NAD replacement therapy may serve as target for age-related metabolic dysfunction.
AbstractList Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline.Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline.
Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline.
Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline. •NAD plays a key role in energy metabolism, cell signaling and energy sensing.•Cellular NAD levels decrease during the process of chronological aging.•NAD decline during aging leads to decrease in SIRTUINS activity, mitochondrial and metabolic dysfunction.•The enzyme CD38 is the main NADase in tissues and plays a key role on the age-related NAD decline.•NAD replacement therapy may serve as target for age-related metabolic dysfunction.
Author Chini, Claudia C.S.
Chini, Eduardo N.
Tarragó, Mariana G.
AuthorAffiliation a Signal Transduction Laboratory. Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI signaling center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
AuthorAffiliation_xml – name: a Signal Transduction Laboratory. Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI signaling center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
Author_xml – sequence: 1
  givenname: Claudia C.S.
  surname: Chini
  fullname: Chini, Claudia C.S.
– sequence: 2
  givenname: Mariana G.
  surname: Tarragó
  fullname: Tarragó, Mariana G.
– sequence: 3
  givenname: Eduardo N.
  surname: Chini
  fullname: Chini, Eduardo N.
  email: chini.eduardo@mayo.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27825999$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r3DAUxEVISTZpP0AuxcceakdPsi25hUJI_6QQWijtWcjy864Wr7SVtBvy7aPtJiXpIT1JML8Zhjcn5NB5h4ScAa2AQnu-rFYGK5a_FUBFKT8gM5CClZI24pDMKKe8FIyKY3IS45JSKhomj8gxE5I1XdfNyNW3i4-FdkORFljouXXzYh28wRjfFT_8hIV1xWRHfFsMqNPiD4pbDLdpsWOz2mO6QXQvyYtRTxFf3b-n5NfnTz8vr8rr71--Xl5cl6auIZV8kLrXEsEwyuqmMa1hPa_7VqKQ2I2dEbTVjWQD1VoKTdlg0CDlYkCA0fBT8mGfu970K8yiS0FPah3sSodb5bVVTxVnF2rut6qpoZOyzgFv7gOC_73BmNTKRoPTpB36TVQsn4lT6KD5LwqSd8Bq1vKMvn5c62-fh0tnQOwBE3yMAUdlbNLJ-l1LOymgarepWqq8qdptqgBUrpKd8I_zIfw5z_u9B_MUW4tBRWPRGRxsQJPU4O0z7jtYgbin
CitedBy_id crossref_primary_10_1080_13685538_2020_1766438
crossref_primary_10_3390_nu15020445
crossref_primary_10_1177_0271678X211006291
crossref_primary_10_4103_abr_abr_303_20
crossref_primary_10_1007_s00018_023_05093_z
crossref_primary_10_1016_j_semcdb_2019_05_001
crossref_primary_10_1093_sleep_zsad246
crossref_primary_10_1038_s41598_023_49450_1
crossref_primary_10_3390_cancers14010160
crossref_primary_10_3389_fcvm_2023_1232681
crossref_primary_10_15252_embj_2019103420
crossref_primary_10_1007_s11357_020_00171_7
crossref_primary_10_1371_journal_pgen_1008892
crossref_primary_10_18632_oncotarget_24871
crossref_primary_10_1016_j_bbadis_2018_09_025
crossref_primary_10_3390_antiox11091637
crossref_primary_10_3389_fnins_2020_618395
crossref_primary_10_3390_biom11050730
crossref_primary_10_1074_jbc_RA118_006987
crossref_primary_10_3389_fendo_2022_896356
crossref_primary_10_1073_pnas_1902346116
crossref_primary_10_1016_j_mce_2017_08_012
crossref_primary_10_1111_bph_13926
crossref_primary_10_3390_ijms24032959
crossref_primary_10_1016_j_exger_2020_110841
crossref_primary_10_1007_s00294_019_00972_0
crossref_primary_10_1177_1178646917704661
crossref_primary_10_1093_cvr_cvac166
crossref_primary_10_1016_j_arr_2022_101833
crossref_primary_10_1111_febs_15716
crossref_primary_10_1097_BOR_0000000000000737
crossref_primary_10_1016_j_cmet_2018_03_016
crossref_primary_10_1007_s11064_019_02729_0
crossref_primary_10_4103_ijmr_IJMR_2120_18
crossref_primary_10_1016_j_arr_2024_102646
crossref_primary_10_3389_fphys_2021_702276
crossref_primary_10_18632_aging_204220
crossref_primary_10_1016_j_cmet_2018_03_018
crossref_primary_10_3389_fragi_2021_785171
crossref_primary_10_3390_cancers14174169
crossref_primary_10_3389_fimmu_2020_597959
crossref_primary_10_3390_ijms24076347
crossref_primary_10_3390_nu15132851
crossref_primary_10_1161_CIRCULATIONAHA_121_056589
crossref_primary_10_3389_fgene_2019_00948
crossref_primary_10_3389_fimmu_2019_01187
crossref_primary_10_1364_BOE_432561
crossref_primary_10_14336_AD_2023_0203
crossref_primary_10_1177_1535370220929287
crossref_primary_10_1016_j_cmet_2017_11_002
crossref_primary_10_1096_fj_201800489R
crossref_primary_10_1111_acel_13410
crossref_primary_10_1155_2020_2692794
crossref_primary_10_1080_14728222_2018_1413091
crossref_primary_10_1007_s10522_020_09871_1
crossref_primary_10_1007_s11357_023_00752_2
crossref_primary_10_1042_BST20180420
crossref_primary_10_1007_s10522_022_09958_x
crossref_primary_10_3390_metabo14060343
crossref_primary_10_3390_ijms22169045
crossref_primary_10_1038_s41598_017_16184_w
crossref_primary_10_3390_cells12091329
crossref_primary_10_1002_mco2_62
crossref_primary_10_1016_j_ijfoodmicro_2024_110966
crossref_primary_10_1021_acs_jproteome_1c00893
crossref_primary_10_3390_antiox14010039
crossref_primary_10_3390_ijms25094680
crossref_primary_10_3389_fmolb_2021_686412
crossref_primary_10_1121_1_5132706
crossref_primary_10_3390_antiox12101849
crossref_primary_10_1016_j_intimp_2020_107092
crossref_primary_10_1038_s41375_019_0692_5
crossref_primary_10_1177_11206721231161101
crossref_primary_10_1016_j_jid_2019_02_005
crossref_primary_10_1016_j_celrep_2018_04_045
crossref_primary_10_1007_s12035_022_03142_5
crossref_primary_10_1016_j_drudis_2023_103583
crossref_primary_10_1038_s41419_022_04535_z
crossref_primary_10_3390_molecules24224187
crossref_primary_10_3390_nu14010113
crossref_primary_10_3390_cells12010021
crossref_primary_10_1152_ajpcell_00451_2021
crossref_primary_10_7554_eLife_94007
crossref_primary_10_3390_ijms20051180
crossref_primary_10_1016_j_devcel_2020_06_011
crossref_primary_10_18632_aging_202755
crossref_primary_10_14336_AD_2021_0202
crossref_primary_10_3389_fcell_2020_00246
crossref_primary_10_1016_j_jbc_2022_102410
crossref_primary_10_1021_acschembio_0c00757
crossref_primary_10_3390_biom10020330
crossref_primary_10_3390_nu13072197
crossref_primary_10_3389_fphar_2024_1436597
crossref_primary_10_1016_j_brainresbull_2024_111114
crossref_primary_10_1016_j_isci_2020_101902
crossref_primary_10_1016_j_mito_2021_01_002
crossref_primary_10_20900_agmr20210005
crossref_primary_10_3390_cells11162596
crossref_primary_10_3390_jcm8111948
crossref_primary_10_1016_j_bcp_2019_08_022
crossref_primary_10_37349_emed_2023_00180
crossref_primary_10_1016_j_exger_2023_112088
crossref_primary_10_1210_clinem_dgad120
crossref_primary_10_18632_aging_204425
crossref_primary_10_1016_j_freeradbiomed_2021_12_008
crossref_primary_10_1089_ars_2023_0295
crossref_primary_10_1007_s10529_021_03191_1
crossref_primary_10_1016_j_bcp_2020_113905
crossref_primary_10_3390_molecules26092729
crossref_primary_10_1021_acs_jmedchem_3c02112
crossref_primary_10_1371_journal_pone_0220794
crossref_primary_10_1111_acel_13920
crossref_primary_10_18632_aging_203177
crossref_primary_10_3390_antiox13020201
crossref_primary_10_3390_nu12061616
crossref_primary_10_1089_ars_2017_7445
crossref_primary_10_15446_rev_colomb_quim_v51n2_95495
crossref_primary_10_1007_s00018_022_04520_x
crossref_primary_10_1016_j_freeradbiomed_2024_09_036
crossref_primary_10_3390_jcm9020437
crossref_primary_10_3389_fimmu_2019_02358
crossref_primary_10_1039_D1RA02062E
crossref_primary_10_3390_antiox10020254
crossref_primary_10_1016_j_bbrc_2019_03_199
crossref_primary_10_3390_ijms24010543
crossref_primary_10_3390_nu13113707
crossref_primary_10_4049_jimmunol_2300693
crossref_primary_10_1016_j_isci_2019_01_020
crossref_primary_10_1016_j_bcp_2022_114946
crossref_primary_10_1016_j_exger_2018_04_026
crossref_primary_10_1074_jbc_M117_807214
crossref_primary_10_1097_PRS_0000000000009673
crossref_primary_10_1186_s13102_024_00999_y
crossref_primary_10_1016_j_biopha_2020_110928
crossref_primary_10_3390_biology8020027
crossref_primary_10_3389_fpls_2021_831883
crossref_primary_10_3390_cells10061402
crossref_primary_10_2174_1567205018666210608103831
crossref_primary_10_1016_j_tips_2018_02_001
crossref_primary_10_3390_cells10030649
crossref_primary_10_1016_j_trsl_2018_05_005
crossref_primary_10_1074_jbc_RA119_011667
crossref_primary_10_1016_j_addr_2023_115024
crossref_primary_10_1002_hlca_202300080
crossref_primary_10_1002_vjch_201900073
crossref_primary_10_1016_j_cels_2021_09_001
crossref_primary_10_3390_biom14050602
crossref_primary_10_3390_cells11040710
crossref_primary_10_3390_ijms23031067
Cites_doi 10.1016/j.molcel.2005.02.022
10.18632/aging.100492
10.1038/srep26933
10.1042/BJ20041217
10.1016/j.lfs.2003.08.033
10.1111/dom.12171
10.1091/mbc.2.3.203
10.1038/nm1101-1209
10.1016/j.cmet.2010.02.006
10.1016/j.abb.2014.09.008
10.1016/j.bbrc.2006.08.066
10.1371/journal.pone.0042357
10.1007/s10059-012-0263-3
10.1111/j.1474-9726.2009.00453.x
10.1152/ajpendo.00318.2009
10.15252/embj.201488969
10.1371/journal.pone.0001759
10.1016/j.cell.2007.07.035
10.1016/j.celrep.2013.01.005
10.1126/science.1171641
10.1016/j.tcb.2014.04.002
10.3109/10409238.2015.1028612
10.1073/pnas.89.24.11759
10.1172/JCI69413
10.1016/S0021-9258(18)80125-9
10.1016/S0021-9258(18)47970-7
10.1038/nature13198
10.1016/j.tem.2015.06.001
10.1016/j.cmet.2016.05.027
10.1016/S0021-9258(19)45675-5
10.18632/aging.100075
10.1038/nature07813
10.1016/j.bbrc.2006.05.042
10.1016/j.cell.2013.06.016
10.1021/pr4010597
10.1073/pnas.0803790105
10.1074/jbc.270.7.3216
10.1097/MCO.0b013e32836510c0
10.1074/jbc.R112.349464
10.1038/nature01578
10.1038/nature05354
10.1098/rspb.1906.0070
10.1074/jbc.M205670200
10.1016/j.cmet.2014.04.001
10.15252/embj.201386907
10.1042/bj3620125
10.2337/db07-0443
10.1038/srep00070
10.1038/nchembio.1352
10.1016/j.devcel.2008.02.004
10.1016/j.exger.2011.11.010
10.1091/mbc.2.3.193
10.1074/jbc.C700018200
10.1016/j.arr.2014.12.006
10.1111/acel.12461
10.1016/j.cell.2010.10.002
10.1016/j.mad.2015.03.008
10.1128/MCB.01636-07
10.1126/science.aad5168
10.1074/jbc.M113.484253
10.1152/ajpcell.00390.2006
10.2337/db12-1139
10.1101/gad.1164804
10.1007/s10522-011-9342-7
10.1523/JNEUROSCI.2939-14.2015
10.1073/pnas.0802917105
10.1016/j.cmet.2012.04.022
10.1111/j.1474-9726.2007.00304.x
10.1126/science.1170803
10.1126/science.1118357
10.1210/er.2009-0026
10.3945/jn.113.176875
10.1016/j.cell.2013.01.023
10.1016/0014-5793(94)01279-2
10.1096/fj.07-8290com
10.1371/journal.pone.0019194
10.1073/pnas.1320843111
10.1074/jbc.M113.470435
10.1126/science.289.5487.2126
10.1073/pnas.1417921112
10.1002/hep.28245
10.1038/sj.emboj.7601633
10.1016/j.cmet.2011.03.004
10.3389/fnagi.2013.00048
10.4331/wjbc.v5.i1.58
10.1172/JCI117932
10.1189/jlb.69.4.605
10.18632/aging.100289
10.1016/j.bbrc.2006.02.109
10.1016/j.bbrc.2006.01.033
10.1038/nrendo.2015.117
10.1016/j.cell.2013.11.037
10.1126/science.1258366
10.1101/sqb.2012.76.010439
10.1371/journal.pone.0134927
10.1016/j.cmet.2014.10.005
10.1093/jn/125.6.1455
10.1016/j.cmet.2016.05.006
10.1016/j.dnarep.2014.07.009
10.1016/j.bbapap.2016.06.014
10.1126/science.8395705
10.1016/j.febslet.2008.01.019
10.18632/aging.100696
10.1021/jm301431y
10.1093/gerona/glu057
10.1111/j.1474-9726.2007.00355.x
10.1111/acel.12338
10.2174/138161209787185788
10.1016/j.cmet.2016.07.005
10.1016/j.cmet.2014.04.002
10.1681/ASN.V12154
10.1126/science.aac4854
10.1016/j.tips.2010.02.003
10.1038/nature10815
10.1016/j.mad.2009.11.002
10.1146/annurev.nutr.28.061807.155443
10.1016/0006-291X(63)90024-X
10.1152/physrev.00035.2007
10.1126/science.aaf2693
10.1152/ajpheart.00012.2008
10.1016/j.cmet.2008.08.017
10.1016/j.cmet.2011.08.014
10.1016/j.tem.2013.12.001
10.1016/j.bbrc.2006.05.100
10.1016/j.freeradbiomed.2016.04.197
10.1056/NEJMoa1506348
10.1016/0968-0004(92)90337-9
10.1006/jmbi.2001.5386
10.18632/aging.100252
10.1016/S0092-8674(04)00416-7
10.1042/BST20140300
10.1002/cyto.b.21092
10.1016/j.freeradbiomed.2010.10.700
10.1111/imr.12389
10.1016/j.cmet.2008.08.014
10.1006/bbrc.1995.1485
10.1074/jbc.M112.405928
10.1021/jm502009h
10.1038/nature06261
10.1016/j.mad.2016.02.003
10.1677/JOE-09-0402
10.1016/j.bbapap.2009.09.030
10.1016/j.cmet.2015.05.023
10.1152/ajpcell.00638.2005
10.1210/jc.2015-3054
10.1083/jcb.201207019
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.mce.2016.11.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-8057
EndPage 74
ExternalDocumentID PMC5419884
27825999
10_1016_j_mce_2016_11_003
S0303720716304622
Genre Journal Article
Review
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG026094
– fundername: NCI NIH HHS
  grantid: P50 CA102701
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LX3
LZ1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
WH7
~G-
.55
.GJ
29M
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HDZ
HLW
HMK
HMO
HVGLF
HZ~
J5H
MVM
R2-
SAE
SBG
SEW
WUQ
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c441t-3d8aba8e1c202455c6c2b34b68e78e9f9c706a582d0aa87a02dcece037de11fc3
IEDL.DBID .~1
ISSN 0303-7207
1872-8057
IngestDate Thu Aug 21 14:32:27 EDT 2025
Mon Jul 21 11:11:32 EDT 2025
Tue Aug 05 10:46:30 EDT 2025
Thu Apr 03 07:01:42 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Thu Jul 03 08:17:46 EDT 2025
Fri Feb 23 02:20:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NAD
Aging
CD38
PARP
SIRTUINS
Mitochondrial function
NAD(+)
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-3d8aba8e1c202455c6c2b34b68e78e9f9c706a582d0aa87a02dcece037de11fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27825999
PQID 1839124263
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5419884
proquest_miscellaneous_2000301915
proquest_miscellaneous_1839124263
pubmed_primary_27825999
crossref_citationtrail_10_1016_j_mce_2016_11_003
crossref_primary_10_1016_j_mce_2016_11_003
elsevier_sciencedirect_doi_10_1016_j_mce_2016_11_003
PublicationCentury 2000
PublicationDate 2017-11-05
PublicationDateYYYYMMDD 2017-11-05
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-05
  day: 05
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Molecular and cellular endocrinology
PublicationTitleAlternate Mol Cell Endocrinol
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Collins, Chaykin (bib41) 1972; 247
Kim, Jeong, Yoo, Kim (bib76) 2016; 16
Wiley, Campisi (bib141) 2014; 33
Cantó, Menzies, Auwerx (bib26) 2015; 22
Bogan, Brenner (bib14) 2008; 28
Chini, Dousa (bib37) 1995; 205
Hafner, Dai, Gomes, Xiao, Palmeira, Rosenzweig, Sinclair (bib58) 2010; 2
Ruggieri, Orsomando, Sorci, Raffaelli (bib122) 2015; 1854
Lu, Lin (bib92) 2010; 1804
Zhao, Allison, Condon, Zhang, Gheyi, Zhang, Ashok, Russell, MacEwan, Qian, Jamison, Luz (bib151) 2013; 56
Quarona, Zaccarello, Chillemi, Brunetti, Singh, Ferrero, Funaro, Horenstein, Malavasi (bib116) 2013; 84
Wei, Graeff, Yue (bib140) 2014; 5
Clapper, Walseth, Dargie, Lee (bib40) 1987; 262
Liu, Nam, Fan, Akie, Hoaglin, Gao, Keaney, Cooper (bib87) 2014; 124
Wang, Nguyen, Qin, Tong (bib138) 2007; 6
Yamamoto-Katayama, Ariyoshi, Ishihara, Hirano, Jingami, Morikawa (bib142) 2002; 316
North, Rosenberg, Jeganathan, Hafner, Michan, Dai, Baker, Cen, Wu, Sauve (bib107) 2014; 33
Koltai, Szabo, Atalay, Boldogh, Naito, Goto, Nyakas, Radak (bib78) 2010; 131
Cantó, Jiang, Deshmukh, Mataki, Coste, Lagouge, Zierath, Auwerx (bib25) 2010; 11
Fulco, Cen, Zhao, Hoffman, McBurney, Sauve, Sartorelli (bib50) 2008; 14
Jackson, Rawling, Roebuck, Kirkland (bib70) 1995; 125
Zhu, Lu, Lee, Ugurbil, Chen (bib152) 2015; 112
Lee (bib82) 1999; 380
Kanfi, Naiman, Amir, Peshti, Zinman, Nahum, Bar-Joseph, Cohen (bib71) 2012; 483
Lin, Defossez, Guarente (bib85) 2000; 289
Rusinko, Lee (bib123) 1989; 264
Lee, Song, Yoo, Kwak, Han (bib80) 2012; 34
Anderson, Bitterman, Wood, Medvedik, Sinclair (bib4) 2003; 423
Grozio, Sociali, Sturla, Caffa, Soncini, Salis, Raffaelli, De Flora, Nencioni, Bruzzone (bib56) 2013; 288
Young, Choleris, Lund, Kirkland (bib147) 2006; 346
Feige, Lagouge, Canto, Strehle, Houten, Milne, Lambert, Mataki, Elliott, Auwerx (bib48) 2008; 8
Harden, Young (bib60) 1906; 78
Malavasi, Deaglio, Funaro, Ferrero, Horenstein, Ortolan, Vaisitti, Aydin (bib94) 2008; 88
Franceschi, Campisi (bib47) 2014; 69
Yoshino, Mills, Yoon, Imai (bib146) 2011; 14
Baur, Pearson, Price, Jamieson, Lerin, Kalra (bib10) 2006; 444
Milne, Lambert, Schenk, Carney, Smith, Gagne, Jin, Boss, Perni, Vu (bib97) 2007; 450
Palacios, Carmona, Michan, Chen, Manabe, Ward, Goodyear, Tong (bib109) 2009; 1
Banks, Kon, Knight, Matsumoto, Gutiérrez-Juárez, Rossetti, Gu, Accili (bib8) 2008; 8
Lokhorst, Plesner, Laubach, Nahi, Gimsing, Hansson, Minnema, Lassen, Krejcik, Palumbo (bib88) 2015; 373
Ramsey, Mills, Satoh, Imai (bib119) 2008; 7
Garten, Schuster, Penke, Gorski, de Giorgis, Kiess (bib52) 2015; 11
Imai, Guarente (bib67) 2014; 24
Noren Hooten, Fitzpatrick, Kompaniez, Jacob, Moore, Nagle, Barnes, Lohani, Evans (bib106) 2012; 4
Frederick, Loro, Liu, Davila, Chellappa, Silverman, Quinn, Gosai, Tichy, Davis (bib49) 2016; 24
Partida-Sanchez, Cockayne, Monard, Jacobson, Oppenheimer, Garvy, Kusser, Goodrich, Howard, Harmsen (bib111) 2001; 7
Rappou, Jukarainen, Rinnankoski-Tuikka, Kaye, Heinonen, Hakkarainen, Lundbom, Lundbom, Saunavaara V,Rissanen, Virtanen (bib121) 2016; 101
Yang, Song, Chen, Hu (bib144) 2011; 12
Cerutti, Pirinen, Lamperti, Marchet, Sauve, Li, Leoni, Schon, Dantzer, Auwerx (bib27) 2014; 19
Minor, Baur, Gomes, Ward, Csiszar, Mercken, Abdelmohsen, Shin, Canto, Scheibye-Knudsen (bib98) 2011; 1
Warburg, Christian (bib139) 1936; 287
Schmeisser, Mansfeld, Kuhlow, Weimer, Priebe, Heiland, Birringer, Groth, Segref, Kanfi (bib125) 2013; 9
Kim, Park, Yim, Takasawa, Okamoto, Im, Kim (bib74) 2008; 57
Kraus, Yang, Kong, Banks, Zhang, Rodgers, Pirinen, Pulinilkunnil, Gong, Wang (bib79) 2014; 508
Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib55) 2013; 155
Cho, Chen, Sayed, Ward, Gao, Nguyen, Krabbe, Sohn, Lo, Minami (bib38) 2015; 35
Nikiforov, Kulikova, Ziegler (bib105) 2015; 50
Sun, Iqbal, Zaidi, Zhu, Zhang, Peng, Moonga, Zaidi (bib131) 2006; 341
Brown, Xie, Qiu, Mohrin, Shin, Liu, Zhang, Scadden, Chen (bib18) 2013; 3
Yuan, Cruzat, Newsholme, Cheng, Chen, Lu (bib148) 2016; 155
Grube, Bürkle (bib57) 1992; 89
Nakahata, Sahar, Astarita, Kaluzova, Sassone-Corsi (bib104) 2009; 324
Devalaraja-Narashimha, Padanilam (bib43) 2010; 205
Zhang, Xiong, Cao (bib150) 2014; 111
Chi, Sauve (bib32) 2013; 16
Chiang, Harrington, Luo, Milliken, Ulrich, Chen, Rajpal, Qian, Carpenter, Murray (bib33) 2015; 10
Soares, Thompson, White, Isbell, Yamasaki, Prakash, Lund, Galione, Chini (bib127) 2007; 292
Gerdts, Brace, Sasaki, DiAntonio, Milbrandt (bib53) 2015; 348
Aksoy, Escande, White, Thompson, Soares, Benech, Chini (bib2) 2006; 349
Gerhart-Hines, Rodgers, Bare, Lerin, Kim, Mostoslavsky, Alt, Wu, Puigserver (bib54) 2007; 26
Zhang, Ryu, Wu, Gariani, Wang, Luan, D'Amico, Ropelle, Lutolf, Aebersold (bib149) 2016; 352
Bieganowski, Brenner (bib12) 2004; 117
Ungvari, Labinskyy, Gupte, Chander, Edwards, Csiszar (bib134) 2008; 294
Chang, Guarente (bib29) 2014; 25
Costford, Bajpeyi, Pasarica, Albarado, Thomas, Xie, Church, Jubrias, Conley, Smith (bib42) 2010; 298
Hu, Wang, Wang, Deng (bib65) 2014; 13
Verdin (bib137) 2015; 350
Veith, Mangerich (bib136) 2015; 23
Yang, Yang, Baur, terzic, Matsui, Carmona, Lamming, Souza-Pinto, Bohr, Rosenzweig (bib143) 2007; 130
Terakata, Fukuwatari, Kadota, Sano, Kanai, Nakamura (bib132) 2013; 143
Bitterman, Anderson, Cohen, Latorre-Esteves, Sinclair (bib13) 2002; 277
Cheng, Yusufi, Thompson, Chini, Grande (bib31) 2001; 12
Lin, Ford, Haigis, Liszt, Guarente (bib86) 2004; 18
Quintas, de Solís, Díez-Guerra, Carrascosa, Bogónez (bib117) 2012; 47
Kincaid, Bossy-Wetzel (bib77) 2013; 5
Choudhury, Jonscher, Friedman (bib39) 2011; 3
Hirata, Kimura, Sato, Ohsugi, Takasawa, Okamoto, Ishikawa, Kaisho, Ishihara, Hirano (bib62) 1994; 356
Borradaile, Pickering (bib16) 2009; 8
Ahn, Kim, Song, Lee, Liu, Vassilopoulos, Deng, Finkel (bib1) 2008; 105
Lu, Hao, Graeff, Wong, Wu, Yue (bib93) 2013; 288
Pirinen, Cantó, Jo, Morato, Zhang, Menzies, Williams, Mouchiroud, Moullan, Hagberg (bib114) 2014; 19
Houtkooper, Auwerx (bib63) 2012; 199
Chini (bib34) 2009; 15
Sharma, Diecke, Zhang, Lan, He, Mordwinkin, Chua, Wu (bib126) 2013; 288
Escande, Nin, Price, Capellini, Gomes, Barbosa, O'Neil, White, Sinclair, Chini (bib46) 2013; 62
Haffner, Becherer, Boros, Cadilla, Carpenter, Cowan, Deaton, Guo, Harrington, Henke (bib59) 2015; 58
Chambon, Weill, Mandel (bib28) 1963; 11
Iqbal, Zaidi (bib69) 2006; 342
Scheibye-Knudsen, Mitchell, Fang, Iyama, Ward, Wang, Dunn, Singh, Veith, Hasan-Olive (bib124) 2014; 20
Musso, Deaglio, Franco, Calosso, Badolato, Garbarino, Dianzani, Malavasi (bib103) 2001; 69
Bakondi, Catalgol, Bak, Jung, Bozaykut, Bayramicli, Ozer, Grune (bib7) 2011; 50
Cantó, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose (bib24) 2012; 15
Massudi, Grant, Braidy, Guest, Farnsworth, Guillemin (bib95) 2012; 7
Preugschat, Carter, Boros, Porter, Stewart, Shewchuk (bib115) 2014; 564
Trammell, Weidemann, Chadda, Yorek, Holmes, Coppey, Obrosov, Kardon, Yorek, Brenner (bib133) 2016; 6
Morgan, Davis, Ruas, Galione (bib101) 2015; 43
Yang, Sauve (bib145) 2016
Cang, Zhou, Navarro, Seo, Aranda, Shi, Battaglia-Hsu, Nissim, Clapham, Ren (bib21) 2013; 152
Longo, Antebi, Bartke, Barzilai, Brown-Borg, Caruso, Curiel, de Cabo, Franceschi, Gems (bib90) 2015; 14
Osborne, Bentley, Montgomery, Turner (bib108) 2016
Lee (bib83) 2012; 287
Chen, Steele, Lindquist, Guarente (bib30) 2005; 310
Ziegler, Niere (bib153) 2004; 382
Beers, Chini, Dousa (bib11) 1995; 95
Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh, Tanokura, Denu, Prolla (bib128) 2010; 143
Camacho-Pereira, Tarragó, Chini, Nin, Escande, Warner, Puranik, Schoon, Reid, Galina (bib19) 2016; 23
Imai, Yoshino (bib68) 2013; 3
van de Donk, Janmaat, Mutis, Lammerts van Bueren, Ahmadi, Sasser, Lokhorst, Parren (bib44) 2016; 270
Houtkooper, Cantó, Wanders, Auwerx (bib64) 2010; 31
States, Walseth, Lee (bib129) 1992; 17
Kato, Lin (bib72) 2014; 23
Braidy, Guillemin, Mansour, Chan-Ling, Poljak, Grant (bib17) 2011; 6
Lopatina, Inzhutova, Salmina, Higashida (bib91) 2012; 6
Chini, Chini, Kato, Takasawa, Okamoto (bib36) 2002; 362
Kanfi, Shalman, Peshti, Pilosof, Gozlan, Pearson, Lerrer, Moazed, Marine, de Cabo (bib73) 2008; 582
Bai, Cantó, Oudart, Brunyánszki, Cen, Thomas, Yamamoto, Huber, Kiss, Houtkooper (bib6) 2011; 13
Cantó, Gerhart-Hines, Feige, Lagouge, Noriega, Milne, Elliott, Puigserver, Auwerx (bib23) 2009; 458
Ramsey, Yoshino, Brace, Abrassart, Kobayashi, Marcheva, Hong, Chong, Buhr, Lee (bib120) 2009; 324
Cambronne, Stewart, Kim, Jones-Brunette, Morgan, Farrens, Cohen, Goodman (bib20) 2016; 352
Mitchell, Madrigal-Matute, Scheibye-Knudsen, Fang, Aon, González-Reyes, Cortassa, Kaushik, Gonzalez-Freire, Patel (bib99) 2016; 23
McDonnell, Peterson, Bomze, Hirschey (bib96) 2015; 26
Ramis, Esteban, Miralles, Tan, Reiter (bib118) 2015; 146–148
Chini, Beers, Dousa (bib35) 1995; 270
Palade (bib110) 2007; 292
Barbosa, Soares, Novak, Sinclair, Levine, Aksoy, Chini (bib9) 2007; 21
Hellmich, Strumwasser (bib61) 1991; 2
von Euler-Chelpin (bib45) 1930
Mouchiroud, Houtkooper, Moullan, Katsyuba, Ryu, Cantó, Mottis, Jo, Viswanathan, Schoonjans (bib102) 2013; 154
Kim, Jacobson, Jacobson (bib75) 1993; 261
Aksoy, White, Thompson, Chini (bib3) 2006; 345
Lee, Aarhus (bib81) 1991; 3
Avalos, Bever, Wolberger (bib5) 2005; 17
Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos (bib51) 2016; 63
Pfluger, Herranz, Velasco-Miguel, Serrano, Tschöp (bib112) 2008; 105
van der Veer, Ho, O'Neil, Barbosa, Scott, Cregan, Pickering (bib135) 2007; 282
Zielinska, Barata, Chini (bib154) 2004; 74
Stein, Imai (bib130) 2014; 33
Mohamed, Wilson, Myers, Sisson, Alway (bib100) 2014; 6
Imai, Guarente (bib66) 2010; 31
Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy (bib89) 2007; 27
de Picciotto, Gano, Johnson, Martens, Sindler, Mills, Imai, Seals (bib113) 2016
Boily, Seifert, Bevilacqua, He, Sabourin, Estey, Moffat, Crawford, Saliba, Jardine (bib15) 2008; 3
Cantó, Auwerx (bib22) 2011; 76
Chini (10.1016/j.mce.2016.11.003_bib37) 1995; 205
Lee (10.1016/j.mce.2016.11.003_bib82) 1999; 380
Avalos (10.1016/j.mce.2016.11.003_bib5) 2005; 17
Massudi (10.1016/j.mce.2016.11.003_bib95) 2012; 7
Bitterman (10.1016/j.mce.2016.11.003_bib13) 2002; 277
Yamamoto-Katayama (10.1016/j.mce.2016.11.003_bib142) 2002; 316
Sun (10.1016/j.mce.2016.11.003_bib131) 2006; 341
Ramsey (10.1016/j.mce.2016.11.003_bib119) 2008; 7
Stein (10.1016/j.mce.2016.11.003_bib130) 2014; 33
Feige (10.1016/j.mce.2016.11.003_bib48) 2008; 8
Cantó (10.1016/j.mce.2016.11.003_bib24) 2012; 15
Milne (10.1016/j.mce.2016.11.003_bib97) 2007; 450
Rappou (10.1016/j.mce.2016.11.003_bib121) 2016; 101
Bakondi (10.1016/j.mce.2016.11.003_bib7) 2011; 50
Cheng (10.1016/j.mce.2016.11.003_bib31) 2001; 12
Kim (10.1016/j.mce.2016.11.003_bib74) 2008; 57
McDonnell (10.1016/j.mce.2016.11.003_bib96) 2015; 26
Morgan (10.1016/j.mce.2016.11.003_bib101) 2015; 43
Lu (10.1016/j.mce.2016.11.003_bib92) 2010; 1804
Chi (10.1016/j.mce.2016.11.003_bib32) 2013; 16
Cantó (10.1016/j.mce.2016.11.003_bib25) 2010; 11
Wiley (10.1016/j.mce.2016.11.003_bib141) 2014; 33
Cho (10.1016/j.mce.2016.11.003_bib38) 2015; 35
Ziegler (10.1016/j.mce.2016.11.003_bib153) 2004; 382
Pirinen (10.1016/j.mce.2016.11.003_bib114) 2014; 19
Ramis (10.1016/j.mce.2016.11.003_bib118) 2015; 146–148
Aksoy (10.1016/j.mce.2016.11.003_bib2) 2006; 349
Kincaid (10.1016/j.mce.2016.11.003_bib77) 2013; 5
Partida-Sanchez (10.1016/j.mce.2016.11.003_bib111) 2001; 7
Grozio (10.1016/j.mce.2016.11.003_bib56) 2013; 288
Harden (10.1016/j.mce.2016.11.003_bib60) 1906; 78
North (10.1016/j.mce.2016.11.003_bib107) 2014; 33
Choudhury (10.1016/j.mce.2016.11.003_bib39) 2011; 3
Braidy (10.1016/j.mce.2016.11.003_bib17) 2011; 6
Yang (10.1016/j.mce.2016.11.003_bib145) 2016
van de Donk (10.1016/j.mce.2016.11.003_bib44) 2016; 270
Hafner (10.1016/j.mce.2016.11.003_bib58) 2010; 2
Hu (10.1016/j.mce.2016.11.003_bib65) 2014; 13
Gerhart-Hines (10.1016/j.mce.2016.11.003_bib54) 2007; 26
Cang (10.1016/j.mce.2016.11.003_bib21) 2013; 152
Longo (10.1016/j.mce.2016.11.003_bib90) 2015; 14
Pfluger (10.1016/j.mce.2016.11.003_bib112) 2008; 105
Zhu (10.1016/j.mce.2016.11.003_bib152) 2015; 112
Yang (10.1016/j.mce.2016.11.003_bib143) 2007; 130
Barbosa (10.1016/j.mce.2016.11.003_bib9) 2007; 21
Cantó (10.1016/j.mce.2016.11.003_bib26) 2015; 22
Chen (10.1016/j.mce.2016.11.003_bib30) 2005; 310
Nakahata (10.1016/j.mce.2016.11.003_bib104) 2009; 324
Aksoy (10.1016/j.mce.2016.11.003_bib3) 2006; 345
Borradaile (10.1016/j.mce.2016.11.003_bib16) 2009; 8
de Picciotto (10.1016/j.mce.2016.11.003_bib113) 2016
Quarona (10.1016/j.mce.2016.11.003_bib116) 2013; 84
Yang (10.1016/j.mce.2016.11.003_bib144) 2011; 12
Musso (10.1016/j.mce.2016.11.003_bib103) 2001; 69
Anderson (10.1016/j.mce.2016.11.003_bib4) 2003; 423
Palacios (10.1016/j.mce.2016.11.003_bib109) 2009; 1
Franceschi (10.1016/j.mce.2016.11.003_bib47) 2014; 69
Cantó (10.1016/j.mce.2016.11.003_bib23) 2009; 458
Mohamed (10.1016/j.mce.2016.11.003_bib100) 2014; 6
Grube (10.1016/j.mce.2016.11.003_bib57) 1992; 89
Kanfi (10.1016/j.mce.2016.11.003_bib73) 2008; 582
Hirata (10.1016/j.mce.2016.11.003_bib62) 1994; 356
Kato (10.1016/j.mce.2016.11.003_bib72) 2014; 23
Palade (10.1016/j.mce.2016.11.003_bib110) 2007; 292
Houtkooper (10.1016/j.mce.2016.11.003_bib63) 2012; 199
Cantó (10.1016/j.mce.2016.11.003_bib22) 2011; 76
Osborne (10.1016/j.mce.2016.11.003_bib108) 2016
Someya (10.1016/j.mce.2016.11.003_bib128) 2010; 143
Chambon (10.1016/j.mce.2016.11.003_bib28) 1963; 11
Lombard (10.1016/j.mce.2016.11.003_bib89) 2007; 27
Terakata (10.1016/j.mce.2016.11.003_bib132) 2013; 143
Fulco (10.1016/j.mce.2016.11.003_bib50) 2008; 14
Mouchiroud (10.1016/j.mce.2016.11.003_bib102) 2013; 154
Sharma (10.1016/j.mce.2016.11.003_bib126) 2013; 288
Kim (10.1016/j.mce.2016.11.003_bib75) 1993; 261
Wei (10.1016/j.mce.2016.11.003_bib140) 2014; 5
Lee (10.1016/j.mce.2016.11.003_bib80) 2012; 34
Cerutti (10.1016/j.mce.2016.11.003_bib27) 2014; 19
Collins (10.1016/j.mce.2016.11.003_bib41) 1972; 247
Chini (10.1016/j.mce.2016.11.003_bib34) 2009; 15
Rusinko (10.1016/j.mce.2016.11.003_bib123) 1989; 264
Ramsey (10.1016/j.mce.2016.11.003_bib120) 2009; 324
Gerdts (10.1016/j.mce.2016.11.003_bib53) 2015; 348
Imai (10.1016/j.mce.2016.11.003_bib68) 2013; 3
Chini (10.1016/j.mce.2016.11.003_bib35) 1995; 270
Malavasi (10.1016/j.mce.2016.11.003_bib94) 2008; 88
Koltai (10.1016/j.mce.2016.11.003_bib78) 2010; 131
Trammell (10.1016/j.mce.2016.11.003_bib133) 2016; 6
van der Veer (10.1016/j.mce.2016.11.003_bib135) 2007; 282
Banks (10.1016/j.mce.2016.11.003_bib8) 2008; 8
Gariani (10.1016/j.mce.2016.11.003_bib51) 2016; 63
Zielinska (10.1016/j.mce.2016.11.003_bib154) 2004; 74
Mitchell (10.1016/j.mce.2016.11.003_bib99) 2016; 23
Yoshino (10.1016/j.mce.2016.11.003_bib146) 2011; 14
Bieganowski (10.1016/j.mce.2016.11.003_bib12) 2004; 117
Boily (10.1016/j.mce.2016.11.003_bib15) 2008; 3
Preugschat (10.1016/j.mce.2016.11.003_bib115) 2014; 564
Garten (10.1016/j.mce.2016.11.003_bib52) 2015; 11
Escande (10.1016/j.mce.2016.11.003_bib46) 2013; 62
Lu (10.1016/j.mce.2016.11.003_bib93) 2013; 288
Kanfi (10.1016/j.mce.2016.11.003_bib71) 2012; 483
Cambronne (10.1016/j.mce.2016.11.003_bib20) 2016; 352
Yuan (10.1016/j.mce.2016.11.003_bib148) 2016; 155
Gomes (10.1016/j.mce.2016.11.003_bib55) 2013; 155
Zhao (10.1016/j.mce.2016.11.003_bib151) 2013; 56
Wang (10.1016/j.mce.2016.11.003_bib138) 2007; 6
Lee (10.1016/j.mce.2016.11.003_bib81) 1991; 3
Lin (10.1016/j.mce.2016.11.003_bib86) 2004; 18
Zhang (10.1016/j.mce.2016.11.003_bib149) 2016; 352
Lokhorst (10.1016/j.mce.2016.11.003_bib88) 2015; 373
Soares (10.1016/j.mce.2016.11.003_bib127) 2007; 292
Verdin (10.1016/j.mce.2016.11.003_bib137) 2015; 350
Ungvari (10.1016/j.mce.2016.11.003_bib134) 2008; 294
Haffner (10.1016/j.mce.2016.11.003_bib59) 2015; 58
Baur (10.1016/j.mce.2016.11.003_bib10) 2006; 444
Ruggieri (10.1016/j.mce.2016.11.003_bib122) 2015; 1854
Ahn (10.1016/j.mce.2016.11.003_bib1) 2008; 105
Nikiforov (10.1016/j.mce.2016.11.003_bib105) 2015; 50
Iqbal (10.1016/j.mce.2016.11.003_bib69) 2006; 342
Liu (10.1016/j.mce.2016.11.003_bib87) 2014; 124
Veith (10.1016/j.mce.2016.11.003_bib136) 2015; 23
Kraus (10.1016/j.mce.2016.11.003_bib79) 2014; 508
Chini (10.1016/j.mce.2016.11.003_bib36) 2002; 362
Kim (10.1016/j.mce.2016.11.003_bib76) 2016; 16
Chiang (10.1016/j.mce.2016.11.003_bib33) 2015; 10
Imai (10.1016/j.mce.2016.11.003_bib66) 2010; 31
Devalaraja-Narashimha (10.1016/j.mce.2016.11.003_bib43) 2010; 205
Jackson (10.1016/j.mce.2016.11.003_bib70) 1995; 125
Houtkooper (10.1016/j.mce.2016.11.003_bib64) 2010; 31
Quintas (10.1016/j.mce.2016.11.003_bib117) 2012; 47
Imai (10.1016/j.mce.2016.11.003_bib67) 2014; 24
Lin (10.1016/j.mce.2016.11.003_bib85) 2000; 289
Minor (10.1016/j.mce.2016.11.003_bib98) 2011; 1
States (10.1016/j.mce.2016.11.003_bib129) 1992; 17
Camacho-Pereira (10.1016/j.mce.2016.11.003_bib19) 2016; 23
Bai (10.1016/j.mce.2016.11.003_bib6) 2011; 13
Brown (10.1016/j.mce.2016.11.003_bib18) 2013; 3
von Euler-Chelpin (10.1016/j.mce.2016.11.003_bib45) 1930
Chang (10.1016/j.mce.2016.11.003_bib29) 2014; 25
Noren Hooten (10.1016/j.mce.2016.11.003_bib106) 2012; 4
Zhang (10.1016/j.mce.2016.11.003_bib150) 2014; 111
Lopatina (10.1016/j.mce.2016.11.003_bib91) 2012; 6
Frederick (10.1016/j.mce.2016.11.003_bib49) 2016; 24
Costford (10.1016/j.mce.2016.11.003_bib42) 2010; 298
Warburg (10.1016/j.mce.2016.11.003_bib139) 1936; 287
Schmeisser (10.1016/j.mce.2016.11.003_bib125) 2013; 9
Scheibye-Knudsen (10.1016/j.mce.2016.11.003_bib124) 2014; 20
Bogan (10.1016/j.mce.2016.11.003_bib14) 2008; 28
Young (10.1016/j.mce.2016.11.003_bib147) 2006; 346
Beers (10.1016/j.mce.2016.11.003_bib11) 1995; 95
Clapper (10.1016/j.mce.2016.11.003_bib40) 1987; 262
Hellmich (10.1016/j.mce.2016.11.003_bib61) 1991; 2
Lee (10.1016/j.mce.2016.11.003_bib83) 2012; 287
26308596 - N Engl J Med. 2015 Sep 24;373(13):1207-19
21541336 - PLoS One. 2011 Apr 26;6(4):e19194
20338998 - J Endocrinol. 2010 Jun;205(3):243-52
19262508 - Nature. 2009 Apr 23;458(7241):1056-60
24811750 - EMBO J. 2014 Jun 17;33(12):1321-40
19299583 - Science. 2009 May 1;324(5927):651-4
22355589 - Sci Rep. 2011;1:70
20226541 - Trends Pharmacol Sci. 2010 May;31(5):212-20
23870130 - Cell. 2013 Jul 18;154(2):430-41
25828863 - J Med Chem. 2015 Apr 23;58(8):3548-71
16730329 - Biochem Biophys Res Commun. 2006 Jul 14;345(4):1386-92
27230286 - Sci Rep. 2016 May 27;6:26933
18429699 - Annu Rev Nutr. 2008;28:115-30
16899546 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C4-7
26009180 - Biochem Soc Trans. 2015 Jun;43(3):384-9
24833586 - J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9
23375372 - Cell Rep. 2013 Feb 21;3(2):319-27
21982712 - Cell Metab. 2011 Oct 5;14(4):528-36
1830494 - Cell Regul. 1991 Mar;2(3):203-9
22367546 - Nature. 2012 Feb 22;483(7388):218-21
16935261 - Biochem Biophys Res Commun. 2006 Oct 13;349(1):353-9
11829748 - Biochem J. 2002 Feb 15;362(Pt 1):125-30
26215259 - Nat Rev Endocrinol. 2015 Sep;11(9):535-46
1471258 - Trends Biochem Sci. 1992 Dec;17(12):495
17585054 - FASEB J. 2007 Nov;21(13):3629-39
24786309 - Trends Cell Biol. 2014 Aug;24(8):464-71
23335873 - Front Neurosci. 2013 Jan 11;6:182
15352307 - Biochem J. 2004 Sep 15;382(Pt 3):e5-6
26760174 - J Clin Endocrinol Metab. 2016 Mar;101(3):1263-73
18184929 - Diabetes. 2008 Apr;57(4):868-78
7537765 - J Clin Invest. 1995 May;95(5):2385-90
20157566 - Aging (Albany NY). 2009 Aug 15;1(9):771-83
17347648 - EMBO J. 2007 Apr 4;26(7):1913-23
24295520 - J Proteome Res. 2014 Feb 7;13(2):786-95
18794531 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52
22822066 - J Biol Chem. 2012 Sep 14;287(38):31633-40
26404765 - Hepatology. 2016 Apr;63(4):1190-204
1465394 - Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11759-63
10494827 - Biol Chem. 1999 Jul-Aug;380(7-8):785-93
24814483 - Cell Metab. 2014 Jun 3;19(6):1042-9
19046567 - Cell Metab. 2008 Nov;8(5):347-58
24046746 - Front Aging Neurosci. 2013 Sep 06;5:48
23836916 - J Biol Chem. 2013 Aug 16;288(33):24247-63
25824609 - Mech Ageing Dev. 2015 Mar;146-148:28-41
24717514 - Nature. 2014 Apr 10;508(7495):258-62
11000115 - Science. 2000 Sep 22;289(5487):2126-8
1650254 - Cell Regul. 1991 Mar;2(3):193-202
25555679 - Ageing Res Rev. 2015 Sep;23 (Pt A):12-28
23700344 - J Nutr. 2013 Jul;143(7):1046-51
27508874 - Cell Metab. 2016 Aug 9;24(2):269-82
24360282 - Cell. 2013 Dec 19;155(7):1624-38
21386135 - Aging (Albany NY). 2011 Feb;3(2):175-8
24600514 - World J Biol Chem. 2014 Feb 26;5(1):58-67
18326800 - Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2121-8
16339438 - Science. 2005 Dec 9;310(5754):1641
19818879 - Biochim Biophys Acta. 2010 Aug;1804(8):1567-75
27127236 - Science. 2016 Jun 17;352(6292):1436-43
25361036 - Aging (Albany NY). 2014 Oct;6(10 ):820-34
26287487 - PLoS One. 2015 Aug 19;10(8):e0134927
18477450 - Dev Cell. 2008 May;14(5):661-73
7726831 - Biochem Biophys Res Commun. 1995 Apr 6;209(1):167-74
27304511 - Cell Metab. 2016 Jun 14;23 (6):1127-1139
25908823 - Science. 2015 Apr 24;348(6233):453-7
27304509 - Cell Metab. 2016 Jun 14;23 (6):1093-1112
18599449 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9793-8
20197054 - Cell Metab. 2010 Mar 3;11(3):213-9
19302375 - Aging Cell. 2009 Apr;8(2):100-12
19286518 - Science. 2009 May 1;324(5927):654-7
23172919 - Diabetes. 2013 Apr;62(4):1084-93
24894550 - EMBO J. 2014 Jun 17;33(12):1289-91
27313049 - Science. 2016 Jun 17;352(6292):1474-7
25440059 - Cell Metab. 2014 Nov 4;20(5):840-55
16516847 - Biochem Biophys Res Commun. 2006 Apr 21;342(4):1312-8
11310847 - J Leukoc Biol. 2001 Apr;69(4):605-12
20007326 - Endocr Rev. 2010 Apr;31(2):194-223
19887595 - Am J Physiol Endocrinol Metab. 2010 Jan;298(1):E117-26
26923269 - Mech Ageing Dev. 2016 Apr;155:10-21
18046409 - Nature. 2007 Nov 29;450(7170):712-6
24077178 - Nat Chem Biol. 2013 Nov;9(11):693-700
18005249 - Aging Cell. 2008 Jan;7(1):78-88
11134250 - J Am Soc Nephrol. 2001 Jan;12(1):54-60
26772806 - BMC Microbiol. 2016 Jan 16;16:9
11594753 - Biochem Biophys Res Commun. 2001 Oct 19;288(1):69-74
26785480 - Science. 2015 Dec 4;350(6265):1208-13
24388149 - Trends Endocrinol Metab. 2014 Mar;25(3):138-45
26970090 - Aging Cell. 2016 Jun;15(3):522-30
15137942 - Cell. 2004 May 14;117(4):495-502
27374990 - Biochim Biophys Acta. 2016 Dec;1864(12 ):1787-1800
26118927 - Cell Metab. 2015 Jul 7;22(1):31-53
19149603 - Curr Pharm Des. 2009;15(1):57-63
25902704 - Aging Cell. 2015 Aug;14(4):497-510
17307730 - J Biol Chem. 2007 Apr 13;282(15):10841-5
21459330 - Cell Metab. 2011 Apr 6;13(4):461-8
18840364 - Cell Metab. 2008 Oct;8(4):333-41
11866528 - J Mol Biol. 2002 Feb 22;316(3):711-23
18335035 - PLoS One. 2008 Mar 12;3(3):e1759
27164052 - Free Radic Biol Med. 2016 Nov;100:164-174
14741735 - Life Sci. 2004 Feb 20;74(14):1781-90
23394946 - Cell. 2013 Feb 14;152(4):778-790
7805847 - FEBS Lett. 1994 Dec 19;356(2-3):244-8
17889652 - Cell. 2007 Sep 21;130(6):1095-107
14724176 - Genes Dev. 2004 Jan 1;18(1):12-6
26138757 - Trends Endocrinol Metab. 2015 Sep;26(9):486-492
16442077 - Biochem Biophys Res Commun. 2006 Mar 17;341(3):804-9
25837229 - Crit Rev Biochem Mol Biol. 2015;50(4):284-97
18626062 - Physiol Rev. 2008 Jul;88(3):841-86
23880765 - J Biol Chem. 2013 Sep 6;288(36):25938-49
22848760 - PLoS One. 2012;7(7):e42357
25096760 - DNA Repair (Amst). 2014 Nov;23:49-58
24430182 - J Clin Invest. 2014 Feb;124(2):768-84
21094524 - Cell. 2010 Nov 24;143(5):802-12
26864107 - Immunol Rev. 2016 Mar;270(1):95-112
21212461 - Aging (Albany NY). 2010 Dec;2(12):914-23
21604001 - Biogerontology. 2011 Dec;12(6):527-36
22682224 - Cell Metab. 2012 Jun 6;15(6):838-47
7852407 - J Biol Chem. 1995 Feb 17;270(7):3216-23
18242175 - FEBS Lett. 2008 Mar 5;582(5):543-8
23576305 - Cytometry B Clin Cytom. 2013 Jul-Aug;84(4):207-17
25770681 - Biochim Biophys Acta. 2015 Sep;1854(9):1138-49
24814482 - Cell Metab. 2014 Jun 3;19(6):1034-41
23071150 - J Cell Biol. 2012 Oct 15;199(2):205-9
7782898 - J Nutr. 1995 Jun;125(6):1455-61
22345172 - Cold Spring Harb Symp Quant Biol. 2011;76:291-8
24843141 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2261-70
25589773 - J Neurosci. 2015 Jan 14;35(2):807-18
17521387 - Aging Cell. 2007 Aug;6(4):505-14
16750163 - Biochem Biophys Res Commun. 2006 Jul 21;346(1):188-92
2745413 - J Biol Chem. 1989 Jul 15;264(20):11725-31
4333514 - J Biol Chem. 1972 Feb 10;247(3):778-83
23104860 - Aging (Albany NY). 2012 Oct;4(10 ):674-85
11689885 - Nat Med. 2001 Nov;7(11):1209-16
14019961 - Biochem Biophys Res Commun. 1963 Apr 2;11:39-43
25250980 - Arch Biochem Biophys. 2014 Dec 15;564:156-63
19913571 - Mech Ageing Dev. 2010 Jan;131(1):21-8
16790499 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C227-39
12736687 - Nature. 2003 May 8;423(6936):181-5
20977936 - Free Radic Biol Med. 2011 Jan 1;50(1):86-92
8395705 - Science. 1993 Sep 3;261(5126):1330-3
24825348 - EMBO J. 2014 Jul 1;33(13):1438-53
23184288 - Mol Cells. 2012 Dec;34(6):573-6
3496336 - J Biol Chem. 1987 Jul 15;262(20):9561-8
23653361 - J Biol Chem. 2013 Jun 21;288(25):18439-47
25730862 - Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2876-81
15780941 - Mol Cell. 2005 Mar 18;17(6):855-68
12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107
24003918 - Diabetes Obes Metab. 2013 Sep;15 Suppl 3:26-33
24071780 - Curr Opin Clin Nutr Metab Care. 2013 Nov;16(6):657-61
22143179 - Exp Gerontol. 2012 Feb;47(2):198-201
17923681 - Mol Cell Biol. 2007 Dec;27(24):8807-14
23311358 - J Med Chem. 2013 Feb 14;56(3):963-9
17086191 - Nature. 2006 Nov 16;444(7117):337-42
References_xml – volume: 205
  start-page: 243
  year: 2010
  end-page: 252
  ident: bib43
  article-title: PARP1 deficiency exacerbates diet-induced obesity in mice
  publication-title: J. Endocrinol.
– volume: 288
  start-page: 25938
  year: 2013
  end-page: 25949
  ident: bib56
  article-title: CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: e0134927
  year: 2015
  ident: bib33
  article-title: Genetic ablation of CD38 protects against western diet-induced exercise intolerance and metabolic inflexibility
  publication-title: PLoS One
– volume: 111
  start-page: E2261
  year: 2014
  end-page: E2270
  ident: bib150
  article-title: Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1
  publication-title: Proc. Natl. Acad. Sci.
– volume: 341
  start-page: 804
  year: 2006
  end-page: 809
  ident: bib131
  article-title: Structure and functional regulation of the CD38 promoter
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 143
  start-page: 802
  year: 2010
  end-page: 812
  ident: bib128
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
– volume: 143
  start-page: 1046
  year: 2013
  end-page: 1051
  ident: bib132
  article-title: The niacin required for optimum growth can be synthesized from l-tryptophan in growing mice lacking tryptophan-2,3-dioxygenase
  publication-title: J. Nutr.
– volume: 3
  start-page: e1759
  year: 2008
  ident: bib15
  article-title: SirT1 regulates energy metabolism and response to caloric restriction in mice
  publication-title: PLoS One
– volume: 13
  start-page: 461
  year: 2011
  end-page: 468
  ident: bib6
  article-title: PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
  publication-title: Cell Metab.
– volume: 287
  start-page: 31633
  year: 2012
  end-page: 31640
  ident: bib83
  article-title: Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 49
  year: 2014
  end-page: 58
  ident: bib72
  article-title: Regulation of NAD
  publication-title: DNA repair
– volume: 17
  start-page: 855
  year: 2005
  end-page: 868
  ident: bib5
  article-title: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
  publication-title: Mol. Cell
– volume: 11
  start-page: 213
  year: 2010
  end-page: 219
  ident: bib25
  article-title: Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
  publication-title: Cell Metab.
– volume: 63
  start-page: 1190
  year: 2016
  end-page: 1204
  ident: bib51
  article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
– volume: 15
  start-page: 57
  year: 2009
  end-page: 63
  ident: bib34
  article-title: CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions
  publication-title: Curr. Pharm. Des.
– volume: 25
  start-page: 138
  year: 2014
  end-page: 145
  ident: bib29
  article-title: SIRT1 and other sirtuins in Metabolism
  publication-title: Trends Endocrinol. Metab.
– volume: 292
  start-page: C4
  year: 2007
  end-page: C7
  ident: bib110
  article-title: The hunt for an alternate way to generate NAADP. Focus on “NAADP as a second messenger: neither CD38 nor base exchange reaction are necessary for in vivo generation of NAADP in myometrial cells”
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 3
  start-page: 26
  year: 2013
  end-page: 33
  ident: bib68
  article-title: The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and aging
  publication-title: Diabetes Obes. Metab. Suppl.
– volume: 6
  start-page: 26933
  year: 2016
  ident: bib133
  article-title: Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice
  publication-title: Sci. Rep.
– volume: 69
  start-page: 605
  year: 2001
  end-page: 612
  ident: bib103
  article-title: CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines
  publication-title: J. Leukoc. Biol.
– volume: 270
  start-page: 95
  year: 2016
  end-page: 112
  ident: bib44
  article-title: Monoclonal antibodies targeting CD38 in hematological malignancies and beyond
  publication-title: Immunol. Rev.
– volume: 352
  start-page: 1436
  year: 2016
  end-page: 1443
  ident: bib149
  article-title: NAD
  publication-title: Science
– year: 1930
  ident: bib45
  article-title: Fermentation of Sugars and Fermentative Enzymes: Nobel Lecture
– volume: 125
  start-page: 1455
  year: 1995
  end-page: 1461
  ident: bib70
  article-title: Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats
  publication-title: J. Nutr.
– volume: 310
  start-page: 1641
  year: 2005
  ident: bib30
  article-title: Increase in activity during calorie restriction requires Sirt1
  publication-title: Science
– volume: 348
  start-page: 453
  year: 2015
  end-page: 457
  ident: bib53
  article-title: SARM1 activation triggers axon degeneration locally via NAD
  publication-title: Science
– volume: 2
  start-page: 193
  year: 1991
  end-page: 202
  ident: bib61
  article-title: Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme
  publication-title: Cell Regul.
– volume: 316
  start-page: 711
  year: 2002
  end-page: 723
  ident: bib142
  article-title: Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities
  publication-title: J. Mol. Biol.
– volume: 23
  start-page: 1093
  year: 2016
  end-page: 1112
  ident: bib99
  article-title: Effects of sex, strain, and energy intake on hallmarks of aging in mice
  publication-title: Cell Metab.
– volume: 289
  start-page: 2126
  year: 2000
  end-page: 2128
  ident: bib85
  article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Science
– volume: 154
  start-page: 430
  year: 2013
  end-page: 441
  ident: bib102
  article-title: The NAD
  publication-title: Cell
– volume: 19
  start-page: 1034
  year: 2014
  end-page: 1041
  ident: bib114
  article-title: Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle
  publication-title: Cell Metab.
– volume: 33
  start-page: 1321
  year: 2014
  end-page: 1340
  ident: bib130
  article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging
  publication-title: EMBO J.
– volume: 89
  start-page: 11759
  year: 1992
  end-page: 11763
  ident: bib57
  article-title: Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 661
  year: 2008
  end-page: 673
  ident: bib50
  article-title: Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
  publication-title: Dev. Cell.
– volume: 78
  start-page: 369
  year: 1906
  end-page: 375
  ident: bib60
  article-title: The alcoholic ferment of yeast-juice Part II.–The coferment of yeast-juice
  publication-title: Proc. R. Soc. Lond. Ser. B
– volume: 7
  start-page: 1209
  year: 2001
  end-page: 1216
  ident: bib111
  article-title: Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo
  publication-title: Nat. Med.
– volume: 582
  start-page: 543
  year: 2008
  end-page: 548
  ident: bib73
  article-title: Regulation of SIRT6 protein levels by nutrient availability
  publication-title: FEBS Lett.
– volume: 26
  start-page: 1913
  year: 2007
  end-page: 1923
  ident: bib54
  article-title: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
  publication-title: EMBO J.
– volume: 2
  start-page: 914
  year: 2010
  end-page: 923
  ident: bib58
  article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
  publication-title: Aging (Albany NY)
– volume: 346
  start-page: 188
  year: 2006
  end-page: 192
  ident: bib147
  article-title: Decreased cADPR and increased NAD+ in the Cd38−/− mouse
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 508
  start-page: 258
  year: 2014
  end-page: 262
  ident: bib79
  article-title: Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity
  publication-title: Nature
– volume: 105
  start-page: 9793
  year: 2008
  end-page: 9798
  ident: bib112
  article-title: Sirt1 protects against high-fat diet-induced metabolic damage
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 270
  start-page: 3216
  year: 1995
  end-page: 3223
  ident: bib35
  article-title: Nicotinate adenine dinucleotide phosphate [NAADP] triggers a specific calcium release system in sea urchin eggs
  publication-title: J. Biol. Chem.
– volume: 262
  start-page: 9561
  year: 1987
  end-page: 9568
  ident: bib40
  article-title: Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate
  publication-title: J. Biol. Chem.
– volume: 247
  start-page: 778
  year: 1972
  end-page: 783
  ident: bib41
  article-title: The management of nicotinamide and nicotinic acid in the mouse
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 535
  year: 2015
  end-page: 546
  ident: bib52
  article-title: Physiological and pathophysiological roles of NAMPT and NAD metabolism
  publication-title: Nat. Rev. Endocrinol.
– volume: 35
  start-page: 807
  year: 2015
  end-page: 818
  ident: bib38
  article-title: SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β
  publication-title: J. Neurosci.
– volume: 423
  start-page: 181
  year: 2003
  end-page: 185
  ident: bib4
  article-title: Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Nature
– volume: 3
  start-page: 175
  year: 2011
  end-page: 178
  ident: bib39
  article-title: Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat
  publication-title: Aging (Albany NY)
– volume: 373
  start-page: 1207
  year: 2015
  end-page: 1219
  ident: bib88
  article-title: Targeting CD38 with Daratumumab monotherapy in multiple myeloma
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 505
  year: 2007
  end-page: 514
  ident: bib138
  article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
  publication-title: Aging Cell
– year: 2016
  ident: bib113
  article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice
  publication-title: Aging Cell
– volume: 458
  start-page: 1056
  year: 2009
  end-page: 1060
  ident: bib23
  article-title: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
  publication-title: Nature
– volume: 3
  start-page: 203
  year: 1991
  end-page: 209
  ident: bib81
  article-title: ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite
  publication-title: Cell Regul.
– volume: 24
  start-page: 464
  year: 2014
  end-page: 471
  ident: bib67
  article-title: NAD
  publication-title: Trends Cell Biol.
– volume: 152
  start-page: 778
  year: 2013
  end-page: 790
  ident: bib21
  article-title: mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state
  publication-title: Cell
– volume: 294
  start-page: H2121
  year: 2008
  end-page: H2128
  ident: bib134
  article-title: Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 288
  start-page: 24247
  year: 2013
  end-page: 24263
  ident: bib93
  article-title: Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 115
  year: 2008
  end-page: 130
  ident: bib14
  article-title: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition
  publication-title: Annu. Rev. Nutr.
– volume: 26
  start-page: 486
  year: 2015
  end-page: 492
  ident: bib96
  article-title: SIRT3 regulates progression and development of diseases of aging
  publication-title: Trends Endocrinol. Metab.
– volume: 7
  start-page: e42357
  year: 2012
  ident: bib95
  article-title: Age-associated changes in oxidative stress and Sirt1 activity in wistar rats
  publication-title: PLoS one
– volume: 292
  year: 2007
  ident: bib127
  article-title: NAADP as a second messenger: neither CD38 nor baseexchange reaction are necessary for in vivo generation of NAADP in myometrial cells
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 23
  start-page: 1127
  year: 2016
  end-page: 1139
  ident: bib19
  article-title: CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism
  publication-title: Cell Metab.
– volume: 12
  start-page: 54
  year: 2001
  end-page: 60
  ident: bib31
  article-title: Nicotinic acid adenine dinucleotide phosphate: a new Ca2+ releasing agent in kidney
  publication-title: J. Am. Soc. Nephrol.
– volume: 84
  start-page: 207
  year: 2013
  end-page: 217
  ident: bib116
  article-title: CD38 and CD157: a long journey from activation markers to multifunctional molecules
  publication-title: Cytom. B Clin. Cytom.
– volume: 6
  start-page: e19194
  year: 2011
  ident: bib17
  article-title: Age-related changes in NAD+ metabolism oxidative stress and SIRT1 activity in wistar rats
  publication-title: PLoS One
– volume: 117
  start-page: 495
  year: 2004
  end-page: 502
  ident: bib12
  article-title: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
  publication-title: Cell
– volume: 9
  start-page: 693
  year: 2013
  end-page: 700
  ident: bib125
  article-title: Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide
  publication-title: Nat. Chem. Biol.
– year: 2016
  ident: bib108
  article-title: The role of mitochondrial sirtuins in health and disease
  publication-title: Free Rad. Biol. Med.
– volume: 24
  start-page: 269
  year: 2016
  end-page: 282
  ident: bib49
  article-title: Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle
  publication-title: Cell Metab.
– volume: 342
  start-page: 1312
  year: 2006
  end-page: 1318
  ident: bib69
  article-title: TNF regulates cellular NAD+ metabolism in primary macrophages
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 324
  start-page: 654
  year: 2009
  end-page: 657
  ident: bib104
  article-title: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
  publication-title: Science
– volume: 1
  start-page: 771
  year: 2009
  end-page: 783
  ident: bib109
  article-title: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle
  publication-title: Aging (Albany NY)
– volume: 349
  start-page: 353
  year: 2006
  end-page: 359
  ident: bib2
  article-title: Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 50
  start-page: 86
  year: 2011
  end-page: 92
  ident: bib7
  article-title: Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity
  publication-title: Free Radic. Biol. Med.
– volume: 277
  start-page: 45099
  year: 2002
  end-page: 45107
  ident: bib13
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 70
  year: 2011
  ident: bib98
  article-title: SRT1720 improves survival and healthspan of obese mice
  publication-title: Sci. Rep.
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  ident: bib55
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
– volume: 261
  start-page: 1330
  year: 1993
  end-page: 1333
  ident: bib75
  article-title: Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases
  publication-title: Science
– volume: 288
  start-page: 18439
  year: 2013
  end-page: 18447
  ident: bib126
  article-title: The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
  publication-title: J. Biol. Chem.
– volume: 205
  start-page: 167
  year: 1995
  end-page: 174
  ident: bib37
  article-title: Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate [NAADP], a Ca[2+]- releasing agonist, in rat tissues
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 69
  start-page: S4
  year: 2014
  end-page: S9
  ident: bib47
  article-title: Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 15
  start-page: 838
  year: 2012
  end-page: 847
  ident: bib24
  article-title: The NAD
  publication-title: Cell Metab.
– volume: 16
  start-page: 9
  year: 2016
  ident: bib76
  article-title: Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice
  publication-title: J. BMC Microbiol.
– volume: 31
  start-page: 212
  year: 2010
  end-page: 220
  ident: bib66
  article-title: Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases
  publication-title: Trends Pharmacol. Sci.
– volume: 14
  start-page: 497
  year: 2015
  end-page: 510
  ident: bib90
  article-title: Interventions to slow aging in humans: are we ready?
  publication-title: Aging Cell
– volume: 450
  start-page: 712
  year: 2007
  end-page: 716
  ident: bib97
  article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
  publication-title: Nature
– volume: 1854
  start-page: 1138
  year: 2015
  end-page: 1173
  ident: bib122
  article-title: Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues
  publication-title: Biochem. Biophys. Acta
– volume: 1804
  start-page: 1567
  year: 2010
  end-page: 1575
  ident: bib92
  article-title: Regulation of yeast sirtuins by NAD
  publication-title: Biochim. Biophys. Acta
– volume: 88
  start-page: 841
  year: 2008
  end-page: 886
  ident: bib94
  article-title: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology
  publication-title: Physiol. Rev.
– volume: 483
  start-page: 218
  year: 2012
  end-page: 221
  ident: bib71
  article-title: The sirtuin SIRT6 regulates lifespan in male mice
  publication-title: Nature
– volume: 199
  start-page: 205
  year: 2012
  end-page: 209
  ident: bib63
  article-title: Exploring the therapeutic space around NAD
  publication-title: J. Cell Biol.
– volume: 8
  start-page: 333
  year: 2008
  end-page: 341
  ident: bib8
  article-title: SirT1 gain-of-function increases energy efficiency and prevents diabetes in mice
  publication-title: Cell Metab.
– volume: 5
  start-page: 48
  year: 2013
  ident: bib77
  article-title: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration
  publication-title: Front. Aging Neurosci.
– volume: 345
  start-page: 1386
  year: 2006
  end-page: 1392
  ident: bib3
  article-title: Regulation of intracellular levels of NAD: a novel role for CD38
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 20
  start-page: 840
  year: 2014
  end-page: 855
  ident: bib124
  article-title: A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome
  publication-title: Cell Metab.
– volume: 18
  start-page: 12
  year: 2004
  end-page: 16
  ident: bib86
  article-title: Calorie restriction extends yeast life span by lowering the level of NADH
  publication-title: Genes Dev.
– volume: 76
  start-page: 291
  year: 2011
  end-page: 298
  ident: bib22
  article-title: NAD+ as a signaling molecule modulating metabolism
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 7
  start-page: 78
  year: 2008
  end-page: 88
  ident: bib119
  article-title: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
  publication-title: Aging Cell
– volume: 47
  start-page: 198
  year: 2012
  end-page: 201
  ident: bib117
  article-title: Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction
  publication-title: Exp. Gerontol.
– volume: 12
  start-page: 527
  year: 2011
  end-page: 536
  ident: bib144
  article-title: Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD+ level, SIRT1 activity and replicative lifespan of human Hs68 cells
  publication-title: Biogerontology
– volume: 11
  start-page: 39
  year: 1963
  end-page: 43
  ident: bib28
  article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 43
  start-page: 384
  year: 2015
  end-page: 389
  ident: bib101
  article-title: TPC: the NAADP discovery channel?
  publication-title: Biochem. Soc. Trans.
– volume: 57
  start-page: 868
  year: 2008
  end-page: 878
  ident: bib74
  article-title: Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets
  publication-title: Diabetes
– volume: 130
  start-page: 1095
  year: 2007
  end-page: 1107
  ident: bib143
  article-title: Nutrient-sensitive mitochondrial NAD
  publication-title: Cell
– volume: 352
  start-page: 1474
  year: 2016
  end-page: 1477
  ident: bib20
  article-title: Biosensor reveals multiple sources for mitochondrial NAD+
  publication-title: Science
– volume: 146–148
  start-page: 28
  year: 2015
  end-page: 41
  ident: bib118
  article-title: Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases
  publication-title: Mech. Ageing Dev.
– volume: 74
  start-page: 1781
  year: 2004
  end-page: 1790
  ident: bib154
  article-title: Metabolism of cyclic ADPribose: zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid
  publication-title: Life Sci.
– volume: 8
  start-page: 100
  year: 2009
  end-page: 112
  ident: bib16
  article-title: Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment
  publication-title: Aging Cell
– volume: 124
  start-page: 768
  year: 2014
  end-page: 784
  ident: bib87
  article-title: Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation
  publication-title: J. Clin. Investig.
– volume: 22
  start-page: 31
  year: 2015
  end-page: 53
  ident: bib26
  article-title: NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus
  publication-title: Cell Metab.
– volume: 380
  start-page: 785
  year: 1999
  end-page: 793
  ident: bib82
  article-title: A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 495
  year: 1992
  ident: bib129
  article-title: Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38
  publication-title: Trends biochem. Sci.
– volume: 105
  start-page: 14447
  year: 2008
  end-page: 14452
  ident: bib1
  article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 14
  start-page: 528
  year: 2011
  end-page: 536
  ident: bib146
  article-title: Nicotinamide mononucleotide, a key NAD
  publication-title: Cell Metab.
– volume: 282
  start-page: 10841
  year: 2007
  end-page: 10845
  ident: bib135
  article-title: Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 12
  year: 2015
  end-page: 28
  ident: bib136
  article-title: RecQ helicases and PARP1 team up in maintaining genome integrity
  publication-title: Ageing Res. Rev.
– volume: 155
  start-page: 10
  year: 2016
  end-page: 21
  ident: bib148
  article-title: Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis
  publication-title: Mech. Ageing Dev.
– volume: 19
  start-page: 1042
  year: 2014
  end-page: 1049
  ident: bib27
  article-title: NAD
  publication-title: Cell Metab.
– volume: 287
  start-page: 291
  year: 1936
  ident: bib139
  article-title: Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide)
  publication-title: Biochem. Z.
– volume: 34
  start-page: 573
  year: 2012
  end-page: 576
  ident: bib80
  article-title: Lipopolysaccharide induces CD38 expression and solubilization in J774 macrophage cells
  publication-title: Mol. Cells
– volume: 362
  start-page: 125
  year: 2002
  end-page: 130
  ident: bib36
  article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues
  publication-title: Biochem. J.
– volume: 31
  start-page: 194
  year: 2010
  end-page: 223
  ident: bib64
  article-title: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways
  publication-title: Endocrinol. Rev.
– volume: 101
  start-page: 1263
  year: 2016
  end-page: 1273
  ident: bib121
  article-title: Weight loss is associated with increased NAD(+)/SIRT1 expression but reduced PARP activity in white adipose tissue
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 56
  start-page: 963
  year: 2013
  end-page: 969
  ident: bib151
  article-title: The 2.5Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
  publication-title: J. Med. Chem.
– volume: 13
  start-page: 786
  year: 2014
  end-page: 795
  ident: bib65
  article-title: Overexpression of CD38 decreases cellular NAD levels and alters the expression of proteins involved in energy metabolism and antioxidant defense
  publication-title: J. Proteome Res.
– volume: 27
  start-page: 8807
  year: 2007
  end-page: 8814
  ident: bib89
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Mol. Cell Biol.
– volume: 6
  start-page: 182
  year: 2012
  ident: bib91
  article-title: The roles of oxytocin and CD38 in social or parental behaviors. Front
  publication-title: Neurosci
– volume: 324
  start-page: 651
  year: 2009
  end-page: 654
  ident: bib120
  article-title: Circadian clock feedback cycle through NAMPT-mediated NAD
  publication-title: Science
– volume: 298
  start-page: E117
  year: 2010
  end-page: E126
  ident: bib42
  article-title: Skeletal muscle NAMPT is induced by exercise in humans
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 33
  start-page: 1289
  year: 2014
  end-page: 1291
  ident: bib141
  article-title: NAD
  publication-title: EMBO J.
– volume: 6
  start-page: 820
  year: 2014
  end-page: 834
  ident: bib100
  article-title: Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism
  publication-title: Aging (Albany NY)
– volume: 350
  start-page: 1208
  year: 2015
  end-page: 1213
  ident: bib137
  article-title: NAD
  publication-title: Science
– volume: 58
  start-page: 3548
  year: 2015
  end-page: 3571
  ident: bib59
  article-title: Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors
  publication-title: J. Med. Chem.
– volume: 564
  start-page: 156
  year: 2014
  end-page: 163
  ident: bib115
  article-title: A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157
  publication-title: Arch. Biochem. Biophys.
– volume: 444
  start-page: 337
  year: 2006
  end-page: 342
  ident: bib10
  article-title: Resveratrol improves health and survival of mice on a high calorie diet
  publication-title: Nature
– volume: 264
  start-page: 11725
  year: 1989
  end-page: 11731
  ident: bib123
  article-title: Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 674
  year: 2012
  end-page: 685
  ident: bib106
  article-title: Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging
  publication-title: Aging (Albany NY)
– volume: 131
  start-page: 21
  year: 2010
  end-page: 28
  ident: bib78
  article-title: Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats
  publication-title: Mech. Ageing Dev.
– volume: 3
  start-page: 319
  year: 2013
  end-page: 327
  ident: bib18
  article-title: SIRT3 reverses aging-associated degeneration
  publication-title: Cell Rep.
– volume: 50
  start-page: 284
  year: 2015
  end-page: 297
  ident: bib105
  article-title: The human NAD metabolome: functions, metabolism and compartmentalization
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 5
  start-page: 58
  year: 2014
  end-page: 67
  ident: bib140
  article-title: Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway
  publication-title: World J. Biol. Chem.
– volume: 8
  start-page: 347
  year: 2008
  end-page: 358
  ident: bib48
  article-title: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
  publication-title: Cell Metab.
– volume: 356
  start-page: 244
  year: 1994
  end-page: 248
  ident: bib62
  article-title: ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1
  publication-title: FEBS Lett.
– year: 2016
  ident: bib145
  article-title: NAD+ metabolism: bioenergetics, signaling and manipulation for therapy
  publication-title: Biochim. Biophys. Acta
– volume: 382
  start-page: 5
  year: 2004
  end-page: 6
  ident: bib153
  article-title: NAD+ surfaces again
  publication-title: Biochem. J.
– volume: 62
  start-page: 1084
  year: 2013
  end-page: 1093
  ident: bib46
  article-title: Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome
  publication-title: Diabetes
– volume: 21
  start-page: 3629
  year: 2007
  end-page: 3639
  ident: bib9
  article-title: The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
  publication-title: FASEB J.
– volume: 95
  start-page: 2385
  year: 1995
  end-page: 2390
  ident: bib11
  article-title: All-trans-retinoic acid stimulates synthesis of cyclic ADP-ribose in renal LLC-PK1 cells
  publication-title: J. Clin. Investig.
– volume: 33
  start-page: 1438
  year: 2014
  end-page: 1453
  ident: bib107
  article-title: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
  publication-title: EMBO J.
– volume: 16
  start-page: 657
  year: 2013
  end-page: 661
  ident: bib32
  article-title: Nicotinamide riboside, a trace nutrient in foods, is a Vitamin B3 with effects on energy metabolism and neuroprotection
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 112
  start-page: 2876
  year: 2015
  end-page: 2881
  ident: bib152
  article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences
  publication-title: Proc. Natl. Acad. Sci.
– volume: 17
  start-page: 855
  year: 2005
  ident: 10.1016/j.mce.2016.11.003_bib5
  article-title: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.022
– volume: 4
  start-page: 674
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib106
  article-title: Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100492
– volume: 6
  start-page: 26933
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib133
  article-title: Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep26933
– volume: 382
  start-page: 5
  year: 2004
  ident: 10.1016/j.mce.2016.11.003_bib153
  article-title: NAD+ surfaces again
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041217
– volume: 74
  start-page: 1781
  year: 2004
  ident: 10.1016/j.mce.2016.11.003_bib154
  article-title: Metabolism of cyclic ADPribose: zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2003.08.033
– volume: 3
  start-page: 26
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib68
  article-title: The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and aging
  publication-title: Diabetes Obes. Metab. Suppl.
  doi: 10.1111/dom.12171
– volume: 3
  start-page: 203
  year: 1991
  ident: 10.1016/j.mce.2016.11.003_bib81
  article-title: ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite
  publication-title: Cell Regul.
  doi: 10.1091/mbc.2.3.203
– volume: 7
  start-page: 1209
  year: 2001
  ident: 10.1016/j.mce.2016.11.003_bib111
  article-title: Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo
  publication-title: Nat. Med.
  doi: 10.1038/nm1101-1209
– volume: 1854
  start-page: 1138
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib122
  article-title: Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues
  publication-title: Biochem. Biophys. Acta
– volume: 11
  start-page: 213
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib25
  article-title: Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.02.006
– volume: 564
  start-page: 156
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib115
  article-title: A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.09.008
– volume: 349
  start-page: 353
  year: 2006
  ident: 10.1016/j.mce.2016.11.003_bib2
  article-title: Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.08.066
– volume: 7
  start-page: e42357
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib95
  article-title: Age-associated changes in oxidative stress and Sirt1 activity in wistar rats
  publication-title: PLoS one
  doi: 10.1371/journal.pone.0042357
– volume: 34
  start-page: 573
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib80
  article-title: Lipopolysaccharide induces CD38 expression and solubilization in J774 macrophage cells
  publication-title: Mol. Cells
  doi: 10.1007/s10059-012-0263-3
– volume: 8
  start-page: 100
  year: 2009
  ident: 10.1016/j.mce.2016.11.003_bib16
  article-title: Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00453.x
– volume: 298
  start-page: E117
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib42
  article-title: Skeletal muscle NAMPT is induced by exercise in humans
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00318.2009
– volume: 33
  start-page: 1289
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib141
  article-title: NAD+ controls neural stem cell fate in the aging brain
  publication-title: EMBO J.
  doi: 10.15252/embj.201488969
– volume: 3
  start-page: e1759
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib15
  article-title: SirT1 regulates energy metabolism and response to caloric restriction in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001759
– volume: 130
  start-page: 1095
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib143
  article-title: Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.035
– volume: 3
  start-page: 319
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib18
  article-title: SIRT3 reverses aging-associated degeneration
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.01.005
– volume: 324
  start-page: 651
  year: 2009
  ident: 10.1016/j.mce.2016.11.003_bib120
  article-title: Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
  publication-title: Science
  doi: 10.1126/science.1171641
– volume: 24
  start-page: 464
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib67
  article-title: NAD+ and sirtuins in aging and disease
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.04.002
– volume: 50
  start-page: 284
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib105
  article-title: The human NAD metabolome: functions, metabolism and compartmentalization
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2015.1028612
– volume: 89
  start-page: 11759
  year: 1992
  ident: 10.1016/j.mce.2016.11.003_bib57
  article-title: Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.24.11759
– volume: 124
  start-page: 768
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib87
  article-title: Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI69413
– volume: 264
  start-page: 11725
  year: 1989
  ident: 10.1016/j.mce.2016.11.003_bib123
  article-title: Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)80125-9
– volume: 262
  start-page: 9561
  year: 1987
  ident: 10.1016/j.mce.2016.11.003_bib40
  article-title: Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47970-7
– volume: 508
  start-page: 258
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib79
  article-title: Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity
  publication-title: Nature
  doi: 10.1038/nature13198
– volume: 26
  start-page: 486
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib96
  article-title: SIRT3 regulates progression and development of diseases of aging
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2015.06.001
– volume: 23
  start-page: 1093
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib99
  article-title: Effects of sex, strain, and energy intake on hallmarks of aging in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.027
– volume: 247
  start-page: 778
  year: 1972
  ident: 10.1016/j.mce.2016.11.003_bib41
  article-title: The management of nicotinamide and nicotinic acid in the mouse
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)45675-5
– volume: 1
  start-page: 771
  year: 2009
  ident: 10.1016/j.mce.2016.11.003_bib109
  article-title: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100075
– volume: 458
  start-page: 1056
  year: 2009
  ident: 10.1016/j.mce.2016.11.003_bib23
  article-title: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
  publication-title: Nature
  doi: 10.1038/nature07813
– volume: 345
  start-page: 1386
  year: 2006
  ident: 10.1016/j.mce.2016.11.003_bib3
  article-title: Regulation of intracellular levels of NAD: a novel role for CD38
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.05.042
– volume: 154
  start-page: 430
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib102
  article-title: The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.016
– volume: 13
  start-page: 786
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib65
  article-title: Overexpression of CD38 decreases cellular NAD levels and alters the expression of proteins involved in energy metabolism and antioxidant defense
  publication-title: J. Proteome Res.
  doi: 10.1021/pr4010597
– volume: 105
  start-page: 14447
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib1
  article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0803790105
– volume: 270
  start-page: 3216
  year: 1995
  ident: 10.1016/j.mce.2016.11.003_bib35
  article-title: Nicotinate adenine dinucleotide phosphate [NAADP] triggers a specific calcium release system in sea urchin eggs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.7.3216
– volume: 16
  start-page: 657
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib32
  article-title: Nicotinamide riboside, a trace nutrient in foods, is a Vitamin B3 with effects on energy metabolism and neuroprotection
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0b013e32836510c0
– volume: 287
  start-page: 31633
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib83
  article-title: Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R112.349464
– volume: 423
  start-page: 181
  year: 2003
  ident: 10.1016/j.mce.2016.11.003_bib4
  article-title: Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Nature
  doi: 10.1038/nature01578
– volume: 33
  start-page: 1321
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib130
  article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging
  publication-title: EMBO J.
– volume: 444
  start-page: 337
  year: 2006
  ident: 10.1016/j.mce.2016.11.003_bib10
  article-title: Resveratrol improves health and survival of mice on a high calorie diet
  publication-title: Nature
  doi: 10.1038/nature05354
– volume: 78
  start-page: 369
  year: 1906
  ident: 10.1016/j.mce.2016.11.003_bib60
  article-title: The alcoholic ferment of yeast-juice Part II.–The coferment of yeast-juice
  publication-title: Proc. R. Soc. Lond. Ser. B
  doi: 10.1098/rspb.1906.0070
– volume: 277
  start-page: 45099
  year: 2002
  ident: 10.1016/j.mce.2016.11.003_bib13
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205670200
– volume: 19
  start-page: 1042
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib27
  article-title: NAD+-Dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.04.001
– volume: 33
  start-page: 1438
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib107
  article-title: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
  publication-title: EMBO J.
  doi: 10.15252/embj.201386907
– volume: 362
  start-page: 125
  year: 2002
  ident: 10.1016/j.mce.2016.11.003_bib36
  article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues
  publication-title: Biochem. J.
  doi: 10.1042/bj3620125
– volume: 57
  start-page: 868
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib74
  article-title: Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets
  publication-title: Diabetes
  doi: 10.2337/db07-0443
– volume: 1
  start-page: 70
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib98
  article-title: SRT1720 improves survival and healthspan of obese mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep00070
– volume: 9
  start-page: 693
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib125
  article-title: Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1352
– volume: 14
  start-page: 661
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib50
  article-title: Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2008.02.004
– volume: 47
  start-page: 198
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib117
  article-title: Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2011.11.010
– volume: 2
  start-page: 193
  year: 1991
  ident: 10.1016/j.mce.2016.11.003_bib61
  article-title: Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme
  publication-title: Cell Regul.
  doi: 10.1091/mbc.2.3.193
– volume: 282
  start-page: 10841
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib135
  article-title: Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C700018200
– volume: 23
  start-page: 12
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib136
  article-title: RecQ helicases and PARP1 team up in maintaining genome integrity
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2014.12.006
– year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib113
  article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice
  publication-title: Aging Cell
  doi: 10.1111/acel.12461
– volume: 143
  start-page: 802
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib128
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.002
– volume: 146–148
  start-page: 28
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib118
  article-title: Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2015.03.008
– volume: 27
  start-page: 8807
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib89
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01636-07
– year: 1930
  ident: 10.1016/j.mce.2016.11.003_bib45
– volume: 352
  start-page: 1474
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib20
  article-title: Biosensor reveals multiple sources for mitochondrial NAD+
  publication-title: Science
  doi: 10.1126/science.aad5168
– volume: 288
  start-page: 24247
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib93
  article-title: Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.484253
– volume: 292
  start-page: C4
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib110
  article-title: The hunt for an alternate way to generate NAADP. Focus on “NAADP as a second messenger: neither CD38 nor base exchange reaction are necessary for in vivo generation of NAADP in myometrial cells”
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00390.2006
– volume: 62
  start-page: 1084
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib46
  article-title: Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome
  publication-title: Diabetes
  doi: 10.2337/db12-1139
– volume: 18
  start-page: 12
  year: 2004
  ident: 10.1016/j.mce.2016.11.003_bib86
  article-title: Calorie restriction extends yeast life span by lowering the level of NADH
  publication-title: Genes Dev.
  doi: 10.1101/gad.1164804
– volume: 12
  start-page: 527
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib144
  article-title: Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD+ level, SIRT1 activity and replicative lifespan of human Hs68 cells
  publication-title: Biogerontology
  doi: 10.1007/s10522-011-9342-7
– volume: 35
  start-page: 807
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib38
  article-title: SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2939-14.2015
– volume: 105
  start-page: 9793
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib112
  article-title: Sirt1 protects against high-fat diet-induced metabolic damage
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0802917105
– volume: 15
  start-page: 838
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib24
  article-title: The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.022
– volume: 6
  start-page: 505
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib138
  article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00304.x
– volume: 324
  start-page: 654
  year: 2009
  ident: 10.1016/j.mce.2016.11.003_bib104
  article-title: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
  publication-title: Science
  doi: 10.1126/science.1170803
– volume: 310
  start-page: 1641
  year: 2005
  ident: 10.1016/j.mce.2016.11.003_bib30
  article-title: Increase in activity during calorie restriction requires Sirt1
  publication-title: Science
  doi: 10.1126/science.1118357
– volume: 31
  start-page: 194
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib64
  article-title: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways
  publication-title: Endocrinol. Rev.
  doi: 10.1210/er.2009-0026
– volume: 143
  start-page: 1046
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib132
  article-title: The niacin required for optimum growth can be synthesized from l-tryptophan in growing mice lacking tryptophan-2,3-dioxygenase
  publication-title: J. Nutr.
  doi: 10.3945/jn.113.176875
– volume: 152
  start-page: 778
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib21
  article-title: mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.023
– volume: 356
  start-page: 244
  year: 1994
  ident: 10.1016/j.mce.2016.11.003_bib62
  article-title: ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(94)01279-2
– volume: 21
  start-page: 3629
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib9
  article-title: The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
  publication-title: FASEB J.
  doi: 10.1096/fj.07-8290com
– volume: 6
  start-page: e19194
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib17
  article-title: Age-related changes in NAD+ metabolism oxidative stress and SIRT1 activity in wistar rats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019194
– volume: 111
  start-page: E2261
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib150
  article-title: Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1320843111
– volume: 288
  start-page: 25938
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib56
  article-title: CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.470435
– volume: 289
  start-page: 2126
  year: 2000
  ident: 10.1016/j.mce.2016.11.003_bib85
  article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Science
  doi: 10.1126/science.289.5487.2126
– volume: 6
  start-page: 182
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib91
  article-title: The roles of oxytocin and CD38 in social or parental behaviors. Front
  publication-title: Neurosci
– volume: 112
  start-page: 2876
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib152
  article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1417921112
– volume: 63
  start-page: 1190
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib51
  article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
  doi: 10.1002/hep.28245
– volume: 26
  start-page: 1913
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib54
  article-title: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601633
– volume: 13
  start-page: 461
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib6
  article-title: PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.03.004
– volume: 5
  start-page: 48
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib77
  article-title: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00048
– volume: 5
  start-page: 58
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib140
  article-title: Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway
  publication-title: World J. Biol. Chem.
  doi: 10.4331/wjbc.v5.i1.58
– volume: 95
  start-page: 2385
  year: 1995
  ident: 10.1016/j.mce.2016.11.003_bib11
  article-title: All-trans-retinoic acid stimulates synthesis of cyclic ADP-ribose in renal LLC-PK1 cells
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI117932
– volume: 69
  start-page: 605
  year: 2001
  ident: 10.1016/j.mce.2016.11.003_bib103
  article-title: CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.69.4.605
– volume: 287
  start-page: 291
  year: 1936
  ident: 10.1016/j.mce.2016.11.003_bib139
  article-title: Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide)
  publication-title: Biochem. Z.
– volume: 3
  start-page: 175
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib39
  article-title: Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100289
– volume: 342
  start-page: 1312
  year: 2006
  ident: 10.1016/j.mce.2016.11.003_bib69
  article-title: TNF regulates cellular NAD+ metabolism in primary macrophages
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.02.109
– volume: 341
  start-page: 804
  year: 2006
  ident: 10.1016/j.mce.2016.11.003_bib131
  article-title: Structure and functional regulation of the CD38 promoter
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.01.033
– volume: 11
  start-page: 535
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib52
  article-title: Physiological and pathophysiological roles of NAMPT and NAD metabolism
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2015.117
– volume: 16
  start-page: 9
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib76
  article-title: Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice
  publication-title: J. BMC Microbiol.
– volume: 155
  start-page: 1624
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib55
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.037
– volume: 348
  start-page: 453
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib53
  article-title: SARM1 activation triggers axon degeneration locally via NAD+ destruction
  publication-title: Science
  doi: 10.1126/science.1258366
– volume: 76
  start-page: 291
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib22
  article-title: NAD+ as a signaling molecule modulating metabolism
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2012.76.010439
– volume: 10
  start-page: e0134927
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib33
  article-title: Genetic ablation of CD38 protects against western diet-induced exercise intolerance and metabolic inflexibility
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134927
– volume: 20
  start-page: 840
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib124
  article-title: A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.10.005
– volume: 125
  start-page: 1455
  year: 1995
  ident: 10.1016/j.mce.2016.11.003_bib70
  article-title: Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats
  publication-title: J. Nutr.
  doi: 10.1093/jn/125.6.1455
– volume: 23
  start-page: 1127
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib19
  article-title: CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.006
– volume: 23
  start-page: 49
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib72
  article-title: Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae
  publication-title: DNA repair
  doi: 10.1016/j.dnarep.2014.07.009
– year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib145
  article-title: NAD+ metabolism: bioenergetics, signaling and manipulation for therapy
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2016.06.014
– volume: 261
  start-page: 1330
  year: 1993
  ident: 10.1016/j.mce.2016.11.003_bib75
  article-title: Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases
  publication-title: Science
  doi: 10.1126/science.8395705
– volume: 582
  start-page: 543
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib73
  article-title: Regulation of SIRT6 protein levels by nutrient availability
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.01.019
– volume: 6
  start-page: 820
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib100
  article-title: Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100696
– volume: 56
  start-page: 963
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib151
  article-title: The 2.5Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301431y
– volume: 69
  start-page: S4
  issue: Suppl. 1
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib47
  article-title: Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glu057
– volume: 7
  start-page: 78
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib119
  article-title: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00355.x
– volume: 14
  start-page: 497
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib90
  article-title: Interventions to slow aging in humans: are we ready?
  publication-title: Aging Cell
  doi: 10.1111/acel.12338
– volume: 15
  start-page: 57
  year: 2009
  ident: 10.1016/j.mce.2016.11.003_bib34
  article-title: CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209787185788
– volume: 24
  start-page: 269
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib49
  article-title: Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.07.005
– volume: 19
  start-page: 1034
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib114
  article-title: Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.04.002
– volume: 12
  start-page: 54
  year: 2001
  ident: 10.1016/j.mce.2016.11.003_bib31
  article-title: Nicotinic acid adenine dinucleotide phosphate: a new Ca2+ releasing agent in kidney
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.V12154
– volume: 380
  start-page: 785
  year: 1999
  ident: 10.1016/j.mce.2016.11.003_bib82
  article-title: A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP
  publication-title: J. Biol. Chem.
– volume: 350
  start-page: 1208
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib137
  article-title: NAD+ in aging, metabolism, and neurodegeneration
  publication-title: Science
  doi: 10.1126/science.aac4854
– volume: 31
  start-page: 212
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib66
  article-title: Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2010.02.003
– volume: 483
  start-page: 218
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib71
  article-title: The sirtuin SIRT6 regulates lifespan in male mice
  publication-title: Nature
  doi: 10.1038/nature10815
– volume: 131
  start-page: 21
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib78
  article-title: Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2009.11.002
– volume: 28
  start-page: 115
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib14
  article-title: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.28.061807.155443
– volume: 11
  start-page: 39
  year: 1963
  ident: 10.1016/j.mce.2016.11.003_bib28
  article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(63)90024-X
– volume: 88
  start-page: 841
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib94
  article-title: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00035.2007
– volume: 352
  start-page: 1436
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib149
  article-title: NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice
  publication-title: Science
  doi: 10.1126/science.aaf2693
– volume: 294
  start-page: H2121
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib134
  article-title: Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00012.2008
– volume: 8
  start-page: 347
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib48
  article-title: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.08.017
– volume: 14
  start-page: 528
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib146
  article-title: Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.08.014
– volume: 25
  start-page: 138
  year: 2014
  ident: 10.1016/j.mce.2016.11.003_bib29
  article-title: SIRT1 and other sirtuins in Metabolism
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2013.12.001
– volume: 346
  start-page: 188
  year: 2006
  ident: 10.1016/j.mce.2016.11.003_bib147
  article-title: Decreased cADPR and increased NAD+ in the Cd38−/− mouse
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.05.100
– year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib108
  article-title: The role of mitochondrial sirtuins in health and disease
  publication-title: Free Rad. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.04.197
– volume: 373
  start-page: 1207
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib88
  article-title: Targeting CD38 with Daratumumab monotherapy in multiple myeloma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1506348
– volume: 17
  start-page: 495
  year: 1992
  ident: 10.1016/j.mce.2016.11.003_bib129
  article-title: Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38
  publication-title: Trends biochem. Sci.
  doi: 10.1016/0968-0004(92)90337-9
– volume: 316
  start-page: 711
  year: 2002
  ident: 10.1016/j.mce.2016.11.003_bib142
  article-title: Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.5386
– volume: 2
  start-page: 914
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib58
  article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100252
– volume: 117
  start-page: 495
  year: 2004
  ident: 10.1016/j.mce.2016.11.003_bib12
  article-title: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00416-7
– volume: 43
  start-page: 384
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib101
  article-title: TPC: the NAADP discovery channel?
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20140300
– volume: 84
  start-page: 207
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib116
  article-title: CD38 and CD157: a long journey from activation markers to multifunctional molecules
  publication-title: Cytom. B Clin. Cytom.
  doi: 10.1002/cyto.b.21092
– volume: 50
  start-page: 86
  year: 2011
  ident: 10.1016/j.mce.2016.11.003_bib7
  article-title: Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.10.700
– volume: 270
  start-page: 95
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib44
  article-title: Monoclonal antibodies targeting CD38 in hematological malignancies and beyond
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12389
– volume: 8
  start-page: 333
  year: 2008
  ident: 10.1016/j.mce.2016.11.003_bib8
  article-title: SirT1 gain-of-function increases energy efficiency and prevents diabetes in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.08.014
– volume: 205
  start-page: 167
  year: 1995
  ident: 10.1016/j.mce.2016.11.003_bib37
  article-title: Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate [NAADP], a Ca[2+]- releasing agonist, in rat tissues
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1995.1485
– volume: 288
  start-page: 18439
  year: 2013
  ident: 10.1016/j.mce.2016.11.003_bib126
  article-title: The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.405928
– volume: 58
  start-page: 3548
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib59
  article-title: Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm502009h
– volume: 450
  start-page: 712
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib97
  article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature06261
– volume: 155
  start-page: 10
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib148
  article-title: Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2016.02.003
– volume: 205
  start-page: 243
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib43
  article-title: PARP1 deficiency exacerbates diet-induced obesity in mice
  publication-title: J. Endocrinol.
  doi: 10.1677/JOE-09-0402
– volume: 1804
  start-page: 1567
  year: 2010
  ident: 10.1016/j.mce.2016.11.003_bib92
  article-title: Regulation of yeast sirtuins by NAD+ metabolism and calorie restriction
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2009.09.030
– volume: 22
  start-page: 31
  year: 2015
  ident: 10.1016/j.mce.2016.11.003_bib26
  article-title: NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.023
– volume: 292
  year: 2007
  ident: 10.1016/j.mce.2016.11.003_bib127
  article-title: NAADP as a second messenger: neither CD38 nor baseexchange reaction are necessary for in vivo generation of NAADP in myometrial cells
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00638.2005
– volume: 101
  start-page: 1263
  year: 2016
  ident: 10.1016/j.mce.2016.11.003_bib121
  article-title: Weight loss is associated with increased NAD(+)/SIRT1 expression but reduced PARP activity in white adipose tissue
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-3054
– volume: 199
  start-page: 205
  year: 2012
  ident: 10.1016/j.mce.2016.11.003_bib63
  article-title: Exploring the therapeutic space around NAD+
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201207019
– reference: 3496336 - J Biol Chem. 1987 Jul 15;262(20):9561-8
– reference: 17889652 - Cell. 2007 Sep 21;130(6):1095-107
– reference: 16730329 - Biochem Biophys Res Commun. 2006 Jul 14;345(4):1386-92
– reference: 11000115 - Science. 2000 Sep 22;289(5487):2126-8
– reference: 21459330 - Cell Metab. 2011 Apr 6;13(4):461-8
– reference: 19299583 - Science. 2009 May 1;324(5927):651-4
– reference: 17585054 - FASEB J. 2007 Nov;21(13):3629-39
– reference: 17521387 - Aging Cell. 2007 Aug;6(4):505-14
– reference: 26785480 - Science. 2015 Dec 4;350(6265):1208-13
– reference: 24003918 - Diabetes Obes Metab. 2013 Sep;15 Suppl 3:26-33
– reference: 16790499 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C227-39
– reference: 14724176 - Genes Dev. 2004 Jan 1;18(1):12-6
– reference: 27508874 - Cell Metab. 2016 Aug 9;24(2):269-82
– reference: 26760174 - J Clin Endocrinol Metab. 2016 Mar;101(3):1263-73
– reference: 18626062 - Physiol Rev. 2008 Jul;88(3):841-86
– reference: 16442077 - Biochem Biophys Res Commun. 2006 Mar 17;341(3):804-9
– reference: 11310847 - J Leukoc Biol. 2001 Apr;69(4):605-12
– reference: 20197054 - Cell Metab. 2010 Mar 3;11(3):213-9
– reference: 16516847 - Biochem Biophys Res Commun. 2006 Apr 21;342(4):1312-8
– reference: 1650254 - Cell Regul. 1991 Mar;2(3):193-202
– reference: 19302375 - Aging Cell. 2009 Apr;8(2):100-12
– reference: 24843141 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2261-70
– reference: 16935261 - Biochem Biophys Res Commun. 2006 Oct 13;349(1):353-9
– reference: 7537765 - J Clin Invest. 1995 May;95(5):2385-90
– reference: 23184288 - Mol Cells. 2012 Dec;34(6):573-6
– reference: 20157566 - Aging (Albany NY). 2009 Aug 15;1(9):771-83
– reference: 25824609 - Mech Ageing Dev. 2015 Mar;146-148:28-41
– reference: 18840364 - Cell Metab. 2008 Oct;8(4):333-41
– reference: 25096760 - DNA Repair (Amst). 2014 Nov;23:49-58
– reference: 11134250 - J Am Soc Nephrol. 2001 Jan;12(1):54-60
– reference: 14019961 - Biochem Biophys Res Commun. 1963 Apr 2;11:39-43
– reference: 26772806 - BMC Microbiol. 2016 Jan 16;16:9
– reference: 18599449 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9793-8
– reference: 23335873 - Front Neurosci. 2013 Jan 11;6:182
– reference: 23870130 - Cell. 2013 Jul 18;154(2):430-41
– reference: 25828863 - J Med Chem. 2015 Apr 23;58(8):3548-71
– reference: 25837229 - Crit Rev Biochem Mol Biol. 2015;50(4):284-97
– reference: 26308596 - N Engl J Med. 2015 Sep 24;373(13):1207-19
– reference: 26215259 - Nat Rev Endocrinol. 2015 Sep;11(9):535-46
– reference: 17307730 - J Biol Chem. 2007 Apr 13;282(15):10841-5
– reference: 24071780 - Curr Opin Clin Nutr Metab Care. 2013 Nov;16(6):657-61
– reference: 24077178 - Nat Chem Biol. 2013 Nov;9(11):693-700
– reference: 20007326 - Endocr Rev. 2010 Apr;31(2):194-223
– reference: 23394946 - Cell. 2013 Feb 14;152(4):778-790
– reference: 24046746 - Front Aging Neurosci. 2013 Sep 06;5:48
– reference: 24814483 - Cell Metab. 2014 Jun 3;19(6):1042-9
– reference: 17086191 - Nature. 2006 Nov 16;444(7117):337-42
– reference: 18184929 - Diabetes. 2008 Apr;57(4):868-78
– reference: 22367546 - Nature. 2012 Feb 22;483(7388):218-21
– reference: 2745413 - J Biol Chem. 1989 Jul 15;264(20):11725-31
– reference: 20226541 - Trends Pharmacol Sci. 2010 May;31(5):212-20
– reference: 23653361 - J Biol Chem. 2013 Jun 21;288(25):18439-47
– reference: 10494827 - Biol Chem. 1999 Jul-Aug;380(7-8):785-93
– reference: 21982712 - Cell Metab. 2011 Oct 5;14(4):528-36
– reference: 24717514 - Nature. 2014 Apr 10;508(7495):258-62
– reference: 26138757 - Trends Endocrinol Metab. 2015 Sep;26(9):486-492
– reference: 21604001 - Biogerontology. 2011 Dec;12(6):527-36
– reference: 7852407 - J Biol Chem. 1995 Feb 17;270(7):3216-23
– reference: 23375372 - Cell Rep. 2013 Feb 21;3(2):319-27
– reference: 23104860 - Aging (Albany NY). 2012 Oct;4(10 ):674-85
– reference: 15352307 - Biochem J. 2004 Sep 15;382(Pt 3):e5-6
– reference: 7726831 - Biochem Biophys Res Commun. 1995 Apr 6;209(1):167-74
– reference: 18477450 - Dev Cell. 2008 May;14(5):661-73
– reference: 22848760 - PLoS One. 2012;7(7):e42357
– reference: 24811750 - EMBO J. 2014 Jun 17;33(12):1321-40
– reference: 24894550 - EMBO J. 2014 Jun 17;33(12):1289-91
– reference: 17347648 - EMBO J. 2007 Apr 4;26(7):1913-23
– reference: 16750163 - Biochem Biophys Res Commun. 2006 Jul 21;346(1):188-92
– reference: 24786309 - Trends Cell Biol. 2014 Aug;24(8):464-71
– reference: 24388149 - Trends Endocrinol Metab. 2014 Mar;25(3):138-45
– reference: 15780941 - Mol Cell. 2005 Mar 18;17(6):855-68
– reference: 27127236 - Science. 2016 Jun 17;352(6292):1436-43
– reference: 27374990 - Biochim Biophys Acta. 2016 Dec;1864(12 ):1787-1800
– reference: 19046567 - Cell Metab. 2008 Nov;8(5):347-58
– reference: 25250980 - Arch Biochem Biophys. 2014 Dec 15;564:156-63
– reference: 19262508 - Nature. 2009 Apr 23;458(7241):1056-60
– reference: 18046409 - Nature. 2007 Nov 29;450(7170):712-6
– reference: 16899546 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C4-7
– reference: 18429699 - Annu Rev Nutr. 2008;28:115-30
– reference: 27304509 - Cell Metab. 2016 Jun 14;23 (6):1093-1112
– reference: 25589773 - J Neurosci. 2015 Jan 14;35(2):807-18
– reference: 16339438 - Science. 2005 Dec 9;310(5754):1641
– reference: 27313049 - Science. 2016 Jun 17;352(6292):1474-7
– reference: 23836916 - J Biol Chem. 2013 Aug 16;288(33):24247-63
– reference: 26404765 - Hepatology. 2016 Apr;63(4):1190-204
– reference: 25902704 - Aging Cell. 2015 Aug;14(4):497-510
– reference: 1830494 - Cell Regul. 1991 Mar;2(3):203-9
– reference: 26287487 - PLoS One. 2015 Aug 19;10(8):e0134927
– reference: 27304511 - Cell Metab. 2016 Jun 14;23 (6):1127-1139
– reference: 18005249 - Aging Cell. 2008 Jan;7(1):78-88
– reference: 22355589 - Sci Rep. 2011;1:70
– reference: 12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107
– reference: 21212461 - Aging (Albany NY). 2010 Dec;2(12):914-23
– reference: 8395705 - Science. 1993 Sep 3;261(5126):1330-3
– reference: 19149603 - Curr Pharm Des. 2009;15(1):57-63
– reference: 18335035 - PLoS One. 2008 Mar 12;3(3):e1759
– reference: 21094524 - Cell. 2010 Nov 24;143(5):802-12
– reference: 7805847 - FEBS Lett. 1994 Dec 19;356(2-3):244-8
– reference: 19286518 - Science. 2009 May 1;324(5927):654-7
– reference: 20977936 - Free Radic Biol Med. 2011 Jan 1;50(1):86-92
– reference: 24430182 - J Clin Invest. 2014 Feb;124(2):768-84
– reference: 24814482 - Cell Metab. 2014 Jun 3;19(6):1034-41
– reference: 22345172 - Cold Spring Harb Symp Quant Biol. 2011;76:291-8
– reference: 23700344 - J Nutr. 2013 Jul;143(7):1046-51
– reference: 15137942 - Cell. 2004 May 14;117(4):495-502
– reference: 24295520 - J Proteome Res. 2014 Feb 7;13(2):786-95
– reference: 26009180 - Biochem Soc Trans. 2015 Jun;43(3):384-9
– reference: 19913571 - Mech Ageing Dev. 2010 Jan;131(1):21-8
– reference: 14741735 - Life Sci. 2004 Feb 20;74(14):1781-90
– reference: 23576305 - Cytometry B Clin Cytom. 2013 Jul-Aug;84(4):207-17
– reference: 23880765 - J Biol Chem. 2013 Sep 6;288(36):25938-49
– reference: 25555679 - Ageing Res Rev. 2015 Sep;23 (Pt A):12-28
– reference: 22822066 - J Biol Chem. 2012 Sep 14;287(38):31633-40
– reference: 11594753 - Biochem Biophys Res Commun. 2001 Oct 19;288(1):69-74
– reference: 12736687 - Nature. 2003 May 8;423(6936):181-5
– reference: 18794531 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52
– reference: 22682224 - Cell Metab. 2012 Jun 6;15(6):838-47
– reference: 22143179 - Exp Gerontol. 2012 Feb;47(2):198-201
– reference: 26118927 - Cell Metab. 2015 Jul 7;22(1):31-53
– reference: 11829748 - Biochem J. 2002 Feb 15;362(Pt 1):125-30
– reference: 21541336 - PLoS One. 2011 Apr 26;6(4):e19194
– reference: 25730862 - Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2876-81
– reference: 25908823 - Science. 2015 Apr 24;348(6233):453-7
– reference: 24360282 - Cell. 2013 Dec 19;155(7):1624-38
– reference: 25361036 - Aging (Albany NY). 2014 Oct;6(10 ):820-34
– reference: 26923269 - Mech Ageing Dev. 2016 Apr;155:10-21
– reference: 23311358 - J Med Chem. 2013 Feb 14;56(3):963-9
– reference: 18326800 - Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2121-8
– reference: 4333514 - J Biol Chem. 1972 Feb 10;247(3):778-83
– reference: 26970090 - Aging Cell. 2016 Jun;15(3):522-30
– reference: 27164052 - Free Radic Biol Med. 2016 Nov;100:164-174
– reference: 19818879 - Biochim Biophys Acta. 2010 Aug;1804(8):1567-75
– reference: 23172919 - Diabetes. 2013 Apr;62(4):1084-93
– reference: 19887595 - Am J Physiol Endocrinol Metab. 2010 Jan;298(1):E117-26
– reference: 23071150 - J Cell Biol. 2012 Oct 15;199(2):205-9
– reference: 24600514 - World J Biol Chem. 2014 Feb 26;5(1):58-67
– reference: 21386135 - Aging (Albany NY). 2011 Feb;3(2):175-8
– reference: 27230286 - Sci Rep. 2016 May 27;6:26933
– reference: 24825348 - EMBO J. 2014 Jul 1;33(13):1438-53
– reference: 17923681 - Mol Cell Biol. 2007 Dec;27(24):8807-14
– reference: 25440059 - Cell Metab. 2014 Nov 4;20(5):840-55
– reference: 25770681 - Biochim Biophys Acta. 2015 Sep;1854(9):1138-49
– reference: 11689885 - Nat Med. 2001 Nov;7(11):1209-16
– reference: 1465394 - Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11759-63
– reference: 20338998 - J Endocrinol. 2010 Jun;205(3):243-52
– reference: 24833586 - J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9
– reference: 11866528 - J Mol Biol. 2002 Feb 22;316(3):711-23
– reference: 18242175 - FEBS Lett. 2008 Mar 5;582(5):543-8
– reference: 1471258 - Trends Biochem Sci. 1992 Dec;17(12):495
– reference: 7782898 - J Nutr. 1995 Jun;125(6):1455-61
– reference: 26864107 - Immunol Rev. 2016 Mar;270(1):95-112
SSID ssj0007528
Score 2.5815833
SecondaryResourceType review_article
Snippet Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms ADP-ribosyl Cyclase 1 - genetics
ADP-ribosyl Cyclase 1 - metabolism
Aging
Aging - genetics
Aging - metabolism
Animals
Armadillo Domain Proteins - genetics
Armadillo Domain Proteins - metabolism
bacteria
calcium
Caloric Restriction
CD38
chromatin
Cyclic ADP-Ribose - metabolism
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
death
electron transfer
epigenetics
Humans
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
metabolism
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial function
NAD
NAD (coenzyme)
NAD - metabolism
NADP - analogs & derivatives
NADP - metabolism
Oxidation-Reduction
PARP
Poly(ADP-ribose) Polymerases - genetics
Poly(ADP-ribose) Polymerases - metabolism
Protein Processing, Post-Translational
Signal Transduction
SIRTUINS
Sirtuins - genetics
Sirtuins - metabolism
Title NAD and the aging process: Role in life, death and everything in between
URI https://dx.doi.org/10.1016/j.mce.2016.11.003
https://www.ncbi.nlm.nih.gov/pubmed/27825999
https://www.proquest.com/docview/1839124263
https://www.proquest.com/docview/2000301915
https://pubmed.ncbi.nlm.nih.gov/PMC5419884
Volume 455
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hkBAXtFteZZfKSCsOiNDEdWKXW8UuKovogYfELbIdRwSVtNotBy7723fGSQpdtBy45BCPlXg8Hn_jGc8AfNMu1zxHs0QIaQOhuAtM2HOByHKjDD5ESBecL0fJ8Fb8vIvvluC0uQtDYZW17q90utfW9Ztuzc3utCi61yieVGIFAT959zjpYfwgSfnxn5cwDxn7-qpEHBB149n0MV6PljJlRskxJfJs6ma93ZveYs9_Qyhf7Ulnn2C9BpNsUP3vZ1hyZQs2BiUa0o_P7ID58E5_bt6C1cvai74Bw9HgO9NlxhD8MV-liE2r-wIn7Goydqwo2bjI3RHLCCB6Uoci_zyj4ypqraO7NuH27MfN6TCoKyoEFmHPLOhlShutXGQ5uVxjm1huesIkyknl-nnfyjDRseJZqLWSOuQ4QKooJjMXRbntbcFyOSndDjCDyIebBM1PaUXkjMqk0XmOJm-C82zDNoQNL1NbpxunqhfjtIkre0iR_SmxH80QylHahsN5l2mVa-M9YtFMULogMCnuBe91228mM8WFRN4RXbrJ0--UoGLk89f_n4ZXJmQ_ituwXQnA_E85Yq0Y4XYb5IJozAkokfdiS1nc-4TesYj6Sondjw3pC6xxwhp01h1_heXZrye3h0hpZjp-KXRgZXB-MRz9BV7zEoU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4hkLa9IAbbKLDNkxAP00IT14ndvVUM1G20DxtIvFm242iZSlpBeeCF386dk3TrEDzsJQ_xWbLP5_N3vvMdwL7xheEFmiVCSBcJxX1k456PRF5YZfEjYnrgPBpnw3Px7SK9WIGj9i0MhVU2ur_W6UFbN3-6DTe7s7Ls_kTxpBIrCPjJu8dRD68J3L5UxuDw7k-ch0xDgVWijoi8dW2GIK9LR6kyk-yQMnm2hbMeHk4Pwee_MZR_HUonG7DeoEk2qAf8ElZ8tQlbgwot6ctbdsBCfGe4ON-EZ6PGjb4Fw_HgCzNVzhD9sVCmiM3qBwOf2Y_pxLOyYpOy8J9YTggxkHqU-ds53VdRaxPe9QrOT47PjoZRU1Ihcoh75lEvV8Ya5RPHyeeausxx2xM2U14q3y_6TsaZSRXPY2OUNDHHCVJJMZn7JClc7zWsVtPKbwOzCH24zdD-lE4k3qpcWlMUaPNmuNAu7kDc8lK7Jt84lb2Y6Daw7LdG9mtiP9ohlKS0Ax8XXWZ1so2niEW7QHpJYjQeBk91-9AupsadRO4RU_npzbUmrJiEBPaP0_DahuwnaQfe1AKwGClHsJUi3u6AXBKNBQFl8l5uqcpfIaN3KpK-UmLn_6b0Hp4Pz0an-vTr-PsuvOAEPOjiO92D1fnVjX-LsGlu34VtcQ9_GRQT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+and+the+aging+process%3A+Role+in+life%2C+death+and+everything+in+between&rft.jtitle=Molecular+and+cellular+endocrinology&rft.au=Chini%2C+Claudia+C.S.&rft.au=Tarrag%C3%B3%2C+Mariana+G.&rft.au=Chini%2C+Eduardo+N.&rft.date=2017-11-05&rft.pub=Elsevier+B.V&rft.issn=0303-7207&rft.eissn=1872-8057&rft.volume=455&rft.spage=62&rft.epage=74&rft_id=info:doi/10.1016%2Fj.mce.2016.11.003&rft.externalDocID=S0303720716304622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-7207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-7207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-7207&client=summon