Bicruciate-retaining total knee arthroplasty reproduces in vivo kinematics of normal knees to a lower extent than unicompartmental knee arthroplasty

Purpose This study aimed to clarify the natural knee kinematics provided by bicruciate-retaining total knee arthroplasty (BCR-TKA) compared with those of unicompartmental knee arthroplasty (UKA) and normal knees. Methods Volunteers and patients who had undergone UKA and BCR-TKA with anatomical artic...

Full description

Saved in:
Bibliographic Details
Published inKnee surgery, sports traumatology, arthroscopy : official journal of the ESSKA Vol. 28; no. 9; pp. 3007 - 3015
Main Authors Kono, Kenichi, Inui, Hiroshi, Tomita, Tetsuya, Yamazaki, Takaharu, Taketomi, Shuji, Tanaka, Sakae
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose This study aimed to clarify the natural knee kinematics provided by bicruciate-retaining total knee arthroplasty (BCR-TKA) compared with those of unicompartmental knee arthroplasty (UKA) and normal knees. Methods Volunteers and patients who had undergone UKA and BCR-TKA with anatomical articular surface performed squatting motion under fluoroscopy. To estimate the knee’s spatial position and orientation, a two-dimensional/three-dimensional registration technique was used. The rotation angle and anteroposterior translation of the medial and lateral sides of the femur relative to the tibia in each flexion angle were directly evaluated using the same local coordinate system and their differences amongst the three groups were analysed using two-way analysis of variance and Bonferroni post hoc pairwise comparison. Results From 0° to 10° of flexion, the femoral external rotation angle of BCR-TKA knees was significantly greater than that of normal and UKA knees and the medial side of BCR-TKA knees was significantly more anteriorly located than that of normal and UKA knees. From 40° to 50° of flexion, the medial side of UKA knees was significantly more posteriorly located than that of normal and BCR-TKA knees. From 30° to 120° of flexion, the lateral side of BCR-TKA knees was significantly more anteriorly located than that of normal and UKA knees. Conclusion The in vivo kinematics of BCR-TKA knees reproduces those of normal knees to a lower extent than those of UKA knees. Thus, BCR-TKA with anatomical articular surface reproduces in vivo kinematics of normal knees to a lower extent than UKA. Level of evidence III.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0942-2056
1433-7347
DOI:10.1007/s00167-019-05754-2