The roles of intrinsically disordered proteins in neurodegeneration

Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-4...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1869; no. 4; p. 130772
Main Authors Utami, Kagistia Hana, Morimoto, Satoru, Mitsukura, Yasue, Okano, Hideyuki
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2025.130772

Cover

Loading…
Abstract Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies. •IDP misfolding and aggregation in ALS, AD, PD, and HD form toxic inclusions that disrupt cell function.•LLPS forms stress granules; aberrant phase separation by IDPs may drive neurodegeneration.•Chaperones (e.g., Hsps) assist protein folding and prevent abnormal IDP phase transitions.•New therapeutic strategies target IDP hotspots or protein modifiers, offering options beyond traditional drug design.
AbstractList Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies. •IDP misfolding and aggregation in ALS, AD, PD, and HD form toxic inclusions that disrupt cell function.•LLPS forms stress granules; aberrant phase separation by IDPs may drive neurodegeneration.•Chaperones (e.g., Hsps) assist protein folding and prevent abnormal IDP phase transitions.•New therapeutic strategies target IDP hotspots or protein modifiers, offering options beyond traditional drug design.
Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies.
Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies.Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies.
ArticleNumber 130772
Author Morimoto, Satoru
Utami, Kagistia Hana
Mitsukura, Yasue
Okano, Hideyuki
Author_xml – sequence: 1
  givenname: Kagistia Hana
  surname: Utami
  fullname: Utami, Kagistia Hana
  organization: Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan
– sequence: 2
  givenname: Satoru
  surname: Morimoto
  fullname: Morimoto, Satoru
  email: satoru_morimoto@keio.jp
  organization: Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan
– sequence: 3
  givenname: Yasue
  surname: Mitsukura
  fullname: Mitsukura, Yasue
  organization: Faculty of Science and Technology, Keio University, Kanagawa 223-0061, Japan
– sequence: 4
  givenname: Hideyuki
  surname: Okano
  fullname: Okano, Hideyuki
  organization: Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39954969$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PAyEURYmp0bb6D4yZpZupfMzA4MLENH4lJm7qmlB4ozRTqDA18d9LHXXhQtmw4JzHy70TNPLBA0InBM8IJvx8NVsu9TP4GcW0nhGGhaB7aEwaQcsGYz5CY8xwVVaE14doktIK51PL-gAdMinrSnI5RvPFCxQxdJCK0BbO99H55IzuuvfCuhSihQi22MTQQ37JROFhG4OF_DVE3bvgj9B-q7sEx1_3FD3dXC_md-XD4-39_OqhNFVF-pIJoKbmBERFcEu5bIxkljFCrNaWSymoJcYIijFogwnjTWssaytWN5K3lk3R2TA3b_O6hdSrtUsGuk57CNukWDYpz5r4HyVcsFpQ0WT09AvdLtdg1Sa6tY7v6jujDFQDYGJIKUL7gxCsdlWolRqqULsq1FBF1i5-acb1n3n1UbvuP_lykCHn-eYgqmQceAPWRTC9ssH9PeADl-mlSw
CitedBy_id crossref_primary_10_3390_toxics13030178
Cites_doi 10.1073/pnas.85.15.5733
10.1016/j.stem.2022.01.007
10.3390/cells10020262
10.1016/j.ijbiomac.2023.126027
10.1146/annurev-biophys-121219-081629
10.1038/s44320-023-00005-6
10.1038/s41467-017-00480-0
10.1002/wcms.1685
10.3390/cells11152262
10.1007/s13311-013-0182-9
10.3389/fnmol.2019.00301
10.1093/nar/gkad928
10.1093/nar/gkae655
10.1016/j.sbi.2023.102678
10.1016/j.bpj.2022.09.031
10.1038/s41467-020-16580-3
10.31887/DCNS.2004.6.3/galexander
10.1002/mds.10140
10.1186/s12964-022-00821-7
10.1016/j.bbamcr.2020.118876
10.1021/cr500288y
10.1016/j.cell.2018.12.035
10.1038/s41582-022-00749-z
10.1242/jcs.038950
10.1074/jbc.M117.794602
10.1111/febs.17084
10.3389/fnmol.2023.1242925
10.1155/2012/731526
10.1007/s11011-021-00791-8
10.1016/j.cell.2018.03.025
10.1016/j.jalz.2012.01.011
10.1016/j.stem.2023.04.017
10.1128/jvi.69.6.3584-3596.1995
10.14336/AD.2023.1118
10.1016/j.bbadis.2015.12.002
10.1021/bi00191a006
10.1016/j.molcel.2018.07.002
10.3233/JAD-179928
10.3390/cells11111732
10.1056/NEJMra1205406
10.1016/j.jmb.2018.03.028
10.1038/s41591-018-0140-5
10.1074/jbc.R115.695056
10.1016/0022-510X(86)90167-X
10.1021/acs.chemrev.1c00774
10.1111/j.1582-4934.2009.00609.x
10.1016/0092-8674(93)90585-E
10.1073/pnas.83.11.4040
10.1038/s12276-020-00513-7
10.1016/j.tcb.2016.05.004
10.3389/fmolb.2022.826719
10.3934/Neuroscience.2021005
10.1074/jbc.M105196200
10.1007/s12551-022-00968-0
10.1186/s43556-022-00075-2
10.1038/s41580-022-00558-8
10.3389/fnagi.2015.00018
10.3389/fnagi.2014.00087
10.1016/j.jmb.2021.167208
10.1016/j.molcel.2022.08.016
10.1016/j.celrep.2014.03.019
10.1038/nrneurol.2011.153
10.1021/cr400713r
10.3390/cells11132063
10.1038/nrn3121
10.2174/092986708785909111
10.1021/jacs.7b06659
10.3390/ijms232214050
10.1039/D0SC04395H
10.15252/embj.201798049
10.1016/j.ejphar.2020.173554
10.1111/jnc.13625
10.1186/s40478-021-01288-2
10.1021/acs.jpcb.3c04052
10.3389/fnmol.2019.00309
10.1523/JNEUROSCI.16-14-04491.1996
10.1073/pnas.182276099
10.1056/NEJMoa2202867
10.1016/j.gde.2017.01.008
10.1016/S0896-6273(00)81108-3
10.1038/ncomms1255
10.1046/j.1471-4159.2003.02287.x
10.1038/s41582-023-00883-2
10.3390/ijms232214498
10.1097/00002093-198701030-00021
10.1186/s13024-019-0329-1
10.1093/bioinformatics/bti541
10.2741/3594
10.1016/j.jmb.2022.167714
10.1016/j.csbj.2021.06.042
10.7554/eLife.69377
10.1016/j.molcel.2015.08.018
10.1016/S0896-6273(03)00568-3
10.1038/nchembio.797
10.1016/j.bbapap.2019.07.013
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2025.130772
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 39954969
10_1016_j_bbagen_2025_130772
S0304416525000170
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEHWI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-37e2c561e7410f2698c93d3311daad69972d1cc7200eac01368fcd3f435896fd3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Aug 22 20:25:28 EDT 2025
Tue Aug 05 09:31:14 EDT 2025
Mon Jul 21 05:56:25 EDT 2025
Tue Jul 01 05:18:17 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Sat Mar 08 15:49:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Aggregation
Proteostasis
Neurodegenerative diseases
Intrinsically disordered proteins
Chaperone
Liquid-liquid phase separation
Autophagy
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-37e2c561e7410f2698c93d3311daad69972d1cc7200eac01368fcd3f435896fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304416525000170
PMID 39954969
PQID 3167357278
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3200263687
proquest_miscellaneous_3167357278
pubmed_primary_39954969
crossref_primary_10_1016_j_bbagen_2025_130772
crossref_citationtrail_10_1016_j_bbagen_2025_130772
elsevier_sciencedirect_doi_10_1016_j_bbagen_2025_130772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vazquez, Toledo, Gianotti, Ermácora (bb0150) 2022; 4
Pagano (bb0355) 2022; 387
Song (bb0430) 2024; 15
M., D., M., R., N.S., R., V., D.-U. & J., Z (bb0535) 2015; 469
Vidović, Rikalovic (bb0350) 2022; 11
Yuzwa (bb0520) 2012; 8
Chakraborty, Zweckstetter (bb0110) 2023; 82
Ambadipudi, Biernat, Riedel, Mandelkow, Zweckstetter (bb0270) 2017; 8
Jeon, Ham, Park, Lee (bb0140) 2022; 11
Delacourte, Defossez (bb0250) 1986; 76
Aspromonte (bb0100) 2024; 52
Sang (bb0310) 2022; 82
Byeon (bb0070) 2024; 291
Küffner (bb0155) 2021; 12
Protter, Parker (bb0505) 2016; 26
Zhang (bb0515) 2018; 173
Dosztányi, Csizmok, Tompa, Simon (bb0545) 2005; 21
Yu (bb0485) 2021; 371
Dauer, Przedborski (bb0180) 2003; 39
McGurk (bb0465) 2018; 71
Tsangaris (bb0085) 2023; 127
Trivedi, Nagarajaram (bb0005) 2022; 23
Orti, Navarro, Rabinovich, Wodak, Marino-Buslje (bb0145) 2021; 19
Ou, Wu, Harrich, García-Martínez, Gaynor (bb0440) 1995; 69
Magrinelli (bb0320) 2016; 2016
Zhou, Zhao, Dunker (bb0200) 2018; 430
Schulte, Littleton (bb0365) 2011; 5
Gong, Iqbal (bb0260) 2008; 15
Hardiman, Van Den Berg, Kiernan (bb0385) 2011; 7
Kolarova, García-Sierra, Bartos, Ricny, Ripova (bb0235) 2012
Li (bb0120) 2022; 3
Lee (bb0065) 2024; 20
Bharadwaj, Dubey, Masters, Martins, Macreadie (bb0225) 2009; 13
Alexander (bb0185) 2004; 6
Ochneva (bb0090) 2022; 23
Uversky (bb0015) 2014; 19
Choi, Ryter, Levine (bb0525) 2013; 368
Wegmann (bb0275) 2018; 37
Talafous, Marcinowski, Klopman, Zagorski (bb0230) 1994; 33
Sundgreen (bb0540) 2019; 20
Glineburg (bb0470) 2024; 52
Wood, Mirra, Pollock, Binder (bb0240) 1986; 83
Choi, Holehouse, Pappu (bb0130) 2020; 49
Braak, Del Tredici (bb0170) 2012; 8
Naskar, Nayak, Salaikumaran, Vishal, Gopal (bb0475) 2023; 16
Carlomagno (bb0295) 2017; 292
Reid Alderson, Pritišanac, Kolaric, Moses, Forman-Kay (bb0055) 2023; 120
Mitra (bb0045) 2019; 1867
Boczek (bb0480) 2021; 10
Uversky (bb0095) 2014; 114
Bergman, Deuschl (bb0315) 2002; 17
Wang, Xiong, Lai (bb0060) 2023; 13
Cohen (bb0285) 2011; 2
Birol, Melo (bb0370) 2020; 12
Chen, Ferrone, Wetzel (bb0375) 2002; 99
De Sancho (bb0125) 2022; 121
Haase, Stieler, Arendt, Holzer (bb0290) 2004; 88
MacDonald (bb0360) 1993; 72
Uversky (bb0025) 2014; 114
Warner (bb0380) 2017; 139
Gómez-Virgilio (bb0530) 2022; 11
(bb0175) 2020; 1
Hofmann, Kedersha, Anderson, Ivanov (bb0510) 2021; 1868
Abyzov, Blackledge, Zweckstetter (bb0105) 2022; 122
Mormino, Papp (bb0220) 2018; 64
Takahashi (bb0405) 2019; 59
Schiavina (bb0080) 2024; 18
Bah, Forman-Kay (bb0205) 2016; 291
Jo (bb0425) 2020; 52
Carey, Guo (bb0115) 2022; 9
Alberti, Gladfelter, Mittag (bb0160) 2019; 176
Bondos, Dunker, Uversky (bb0030) 2022; 20
Liu (bb0300) 2016; 1862
Ratti, Buratti (bb0450) 2016
Reiner (bb0195) 1988; 85
Tzioras, McGeachan, Durrant, Spires-Jones (bb0215) 2023; 19
Cleveland (bb0190) 1999; 24
Uversky (bb0020) 2015; 7
Uversky (bb0035) 2009; 14
Benazzouz, Mamad, Abedi, Bouali-Benazzouz, Chetrit (bb0325) 2014; 6
Kirby, Al Sultan, Waller, Heath (bb0390) 2016
Calabrò, Rinaldi, Santoro, Crisafulli (bb0210) 2021; 8
Wood, Mirra, Pollock, Binder (bb0245) 1987; 1
Vaz, Silvestre (bb0265) 2020; 887
Okano, Morimoto (bb0400) 2022; 29
Shorter (bb0490) 2007; 16
Congdon, Ji, Tetlow, Jiang, Sigurdsson (bb0255) 2023; 19
Gao, Briano, Komer, Burré (bb0330) 2023; 435
Morimoto (bb0415) 2023; 30
Neumann (bb0395) 2006; 314
Lee, Lee, Trojanowski (bb0445) 2012; 13
Coskuner-Weber, Mirzanli, Uversky (bb0010) 2022; 14
Fujimori (bb0410) 2018; 24
Djulbegovic, Taylor Gonzalez, Uversky, Shields, Karp (bb0075) 2023; 250
Gómez-Isla (bb0165) 1996; 16
Meade, Fairlie, Mason (bb0345) 2019; 14
Ayyadevara, Ganne, Balasubramaniam, Shmookler Reis (bb0040) 2022; 37
Marotta (bb0340) 2021; 9
Rippin, Eldar-Finkelman (bb0500) 2021; 10
François-Moutal (bb0455) 2019; 12
Wainger (bb0420) 2014; 7
Ayala (bb0435) 2008; 121
Lin, Protter, Rosen, Parker (bb0460) 2015; 60
Hirose, Ninomiya, Nakagawa, Yamazaki (bb0135) 2023; 24
Ruff, Pappu (bb0050) 2021; 433
Von Bergen (bb0280) 2001; 276
Kanaan, Hamel, Grabinski, Combs (bb0305) 2020; 11
Shorter (bb0495) 2017; 44
Nakamura (bb0335) 2013; 10
Carey (10.1016/j.bbagen.2025.130772_bb0115) 2022; 9
Braak (10.1016/j.bbagen.2025.130772_bb0170) 2012; 8
Lin (10.1016/j.bbagen.2025.130772_bb0460) 2015; 60
François-Moutal (10.1016/j.bbagen.2025.130772_bb0455) 2019; 12
Ruff (10.1016/j.bbagen.2025.130772_bb0050) 2021; 433
Cohen (10.1016/j.bbagen.2025.130772_bb0285) 2011; 2
Byeon (10.1016/j.bbagen.2025.130772_bb0070) 2024; 291
Protter (10.1016/j.bbagen.2025.130772_bb0505) 2016; 26
Wood (10.1016/j.bbagen.2025.130772_bb0245) 1987; 1
Magrinelli (10.1016/j.bbagen.2025.130772_bb0320) 2016; 2016
M., D., M., R., N.S., R., V., D.-U. & J., Z (10.1016/j.bbagen.2025.130772_bb0535) 2015; 469
Warner (10.1016/j.bbagen.2025.130772_bb0380) 2017; 139
Nakamura (10.1016/j.bbagen.2025.130772_bb0335) 2013; 10
Vazquez (10.1016/j.bbagen.2025.130772_bb0150) 2022; 4
Kolarova (10.1016/j.bbagen.2025.130772_bb0235) 2012
Vaz (10.1016/j.bbagen.2025.130772_bb0265) 2020; 887
Pagano (10.1016/j.bbagen.2025.130772_bb0355) 2022; 387
Wang (10.1016/j.bbagen.2025.130772_bb0060) 2023; 13
Mitra (10.1016/j.bbagen.2025.130772_bb0045) 2019; 1867
Bondos (10.1016/j.bbagen.2025.130772_bb0030) 2022; 20
De Sancho (10.1016/j.bbagen.2025.130772_bb0125) 2022; 121
Ayyadevara (10.1016/j.bbagen.2025.130772_bb0040) 2022; 37
Coskuner-Weber (10.1016/j.bbagen.2025.130772_bb0010) 2022; 14
Boczek (10.1016/j.bbagen.2025.130772_bb0480) 2021; 10
Chen (10.1016/j.bbagen.2025.130772_bb0375) 2002; 99
Choi (10.1016/j.bbagen.2025.130772_bb0130) 2020; 49
Neumann (10.1016/j.bbagen.2025.130772_bb0395) 2006; 314
Uversky (10.1016/j.bbagen.2025.130772_bb0020) 2015; 7
Cleveland (10.1016/j.bbagen.2025.130772_bb0190) 1999; 24
Zhou (10.1016/j.bbagen.2025.130772_bb0200) 2018; 430
Liu (10.1016/j.bbagen.2025.130772_bb0300) 2016; 1862
Abyzov (10.1016/j.bbagen.2025.130772_bb0105) 2022; 122
Uversky (10.1016/j.bbagen.2025.130772_bb0095) 2014; 114
Naskar (10.1016/j.bbagen.2025.130772_bb0475) 2023; 16
Haase (10.1016/j.bbagen.2025.130772_bb0290) 2004; 88
Yuzwa (10.1016/j.bbagen.2025.130772_bb0520) 2012; 8
Hirose (10.1016/j.bbagen.2025.130772_bb0135) 2023; 24
Lee (10.1016/j.bbagen.2025.130772_bb0065) 2024; 20
Ratti (10.1016/j.bbagen.2025.130772_bb0450) 2016
Djulbegovic (10.1016/j.bbagen.2025.130772_bb0075) 2023; 250
Zhang (10.1016/j.bbagen.2025.130772_bb0515) 2018; 173
Benazzouz (10.1016/j.bbagen.2025.130772_bb0325) 2014; 6
Kirby (10.1016/j.bbagen.2025.130772_bb0390) 2016
Reid Alderson (10.1016/j.bbagen.2025.130772_bb0055) 2023; 120
Von Bergen (10.1016/j.bbagen.2025.130772_bb0280) 2001; 276
Glineburg (10.1016/j.bbagen.2025.130772_bb0470) 2024; 52
Uversky (10.1016/j.bbagen.2025.130772_bb0025) 2014; 114
Mormino (10.1016/j.bbagen.2025.130772_bb0220) 2018; 64
(10.1016/j.bbagen.2025.130772_bb0175) 2020; 1
McGurk (10.1016/j.bbagen.2025.130772_bb0465) 2018; 71
Bharadwaj (10.1016/j.bbagen.2025.130772_bb0225) 2009; 13
Ou (10.1016/j.bbagen.2025.130772_bb0440) 1995; 69
Hofmann (10.1016/j.bbagen.2025.130772_bb0510) 2021; 1868
Wainger (10.1016/j.bbagen.2025.130772_bb0420) 2014; 7
Alexander (10.1016/j.bbagen.2025.130772_bb0185) 2004; 6
Song (10.1016/j.bbagen.2025.130772_bb0430) 2024; 15
Chakraborty (10.1016/j.bbagen.2025.130772_bb0110) 2023; 82
Yu (10.1016/j.bbagen.2025.130772_bb0485) 2021; 371
Li (10.1016/j.bbagen.2025.130772_bb0120) 2022; 3
Trivedi (10.1016/j.bbagen.2025.130772_bb0005) 2022; 23
Jeon (10.1016/j.bbagen.2025.130772_bb0140) 2022; 11
Tsangaris (10.1016/j.bbagen.2025.130772_bb0085) 2023; 127
Birol (10.1016/j.bbagen.2025.130772_bb0370) 2020; 12
Dauer (10.1016/j.bbagen.2025.130772_bb0180) 2003; 39
Meade (10.1016/j.bbagen.2025.130772_bb0345) 2019; 14
Dosztányi (10.1016/j.bbagen.2025.130772_bb0545) 2005; 21
Takahashi (10.1016/j.bbagen.2025.130772_bb0405) 2019; 59
Alberti (10.1016/j.bbagen.2025.130772_bb0160) 2019; 176
Delacourte (10.1016/j.bbagen.2025.130772_bb0250) 1986; 76
Morimoto (10.1016/j.bbagen.2025.130772_bb0415) 2023; 30
Uversky (10.1016/j.bbagen.2025.130772_bb0035) 2009; 14
Wegmann (10.1016/j.bbagen.2025.130772_bb0275) 2018; 37
Bergman (10.1016/j.bbagen.2025.130772_bb0315) 2002; 17
MacDonald (10.1016/j.bbagen.2025.130772_bb0360) 1993; 72
Calabrò (10.1016/j.bbagen.2025.130772_bb0210) 2021; 8
Gong (10.1016/j.bbagen.2025.130772_bb0260) 2008; 15
Uversky (10.1016/j.bbagen.2025.130772_bb0015) 2014; 19
Carlomagno (10.1016/j.bbagen.2025.130772_bb0295) 2017; 292
Shorter (10.1016/j.bbagen.2025.130772_bb0490) 2007; 16
Fujimori (10.1016/j.bbagen.2025.130772_bb0410) 2018; 24
Ayala (10.1016/j.bbagen.2025.130772_bb0435) 2008; 121
Sundgreen (10.1016/j.bbagen.2025.130772_bb0540) 2019; 20
Schulte (10.1016/j.bbagen.2025.130772_bb0365) 2011; 5
Gao (10.1016/j.bbagen.2025.130772_bb0330) 2023; 435
Reiner (10.1016/j.bbagen.2025.130772_bb0195) 1988; 85
Choi (10.1016/j.bbagen.2025.130772_bb0525) 2013; 368
Marotta (10.1016/j.bbagen.2025.130772_bb0340) 2021; 9
Shorter (10.1016/j.bbagen.2025.130772_bb0495) 2017; 44
Bah (10.1016/j.bbagen.2025.130772_bb0205) 2016; 291
Talafous (10.1016/j.bbagen.2025.130772_bb0230) 1994; 33
Wood (10.1016/j.bbagen.2025.130772_bb0240) 1986; 83
Sang (10.1016/j.bbagen.2025.130772_bb0310) 2022; 82
Orti (10.1016/j.bbagen.2025.130772_bb0145) 2021; 19
Ochneva (10.1016/j.bbagen.2025.130772_bb0090) 2022; 23
Rippin (10.1016/j.bbagen.2025.130772_bb0500) 2021; 10
Congdon (10.1016/j.bbagen.2025.130772_bb0255) 2023; 19
Kanaan (10.1016/j.bbagen.2025.130772_bb0305) 2020; 11
Gómez-Virgilio (10.1016/j.bbagen.2025.130772_bb0530) 2022; 11
Vidović (10.1016/j.bbagen.2025.130772_bb0350) 2022; 11
Tzioras (10.1016/j.bbagen.2025.130772_bb0215) 2023; 19
Okano (10.1016/j.bbagen.2025.130772_bb0400) 2022; 29
Lee (10.1016/j.bbagen.2025.130772_bb0445) 2012; 13
Aspromonte (10.1016/j.bbagen.2025.130772_bb0100) 2024; 52
Hardiman (10.1016/j.bbagen.2025.130772_bb0385) 2011; 7
Jo (10.1016/j.bbagen.2025.130772_bb0425) 2020; 52
Küffner (10.1016/j.bbagen.2025.130772_bb0155) 2021; 12
Schiavina (10.1016/j.bbagen.2025.130772_bb0080) 2024; 18
Gómez-Isla (10.1016/j.bbagen.2025.130772_bb0165) 1996; 16
Ambadipudi (10.1016/j.bbagen.2025.130772_bb0270) 2017; 8
References_xml – volume: 9
  year: 2022
  ident: bb0115
  article-title: Liquid-liquid phase separation of TDP-43 and FUS in physiology and pathology of neurodegenerative diseases
  publication-title: Front. Mol. Biosci.
– volume: 88
  year: 2004
  ident: bb0290
  article-title: Pseudophosphorylation of tau protein alters its ability for self-aggregation
  publication-title: J. Neurochem.
– volume: 16
  year: 2007
  ident: bb0490
  article-title: Hsp104: a weapon to combat diverse neurodegenerative disorders
  publication-title: NeuroSignals
– volume: 4
  year: 2022
  ident: bb0150
  article-title: Protein conformation and biomolecular condensates
  publication-title: Curr. Res. Struct. Biol.
– volume: 19
  year: 2021
  ident: bb0145
  article-title: Insight into membraneless organelles and their associated proteins: drivers, clients and regulators
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 13
  year: 2012
  ident: bb0445
  article-title: Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration
  publication-title: Nat. Rev. Neurosci.
– volume: 52
  year: 2020
  ident: bb0425
  article-title: The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies
  publication-title: Exp. Mol. Med.
– volume: 114
  year: 2014
  ident: bb0095
  article-title: Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases
  publication-title: Chem. Rev.
– volume: 72
  year: 1993
  ident: bb0360
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
– volume: 122
  year: 2022
  ident: bb0105
  article-title: Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry
  publication-title: Chem. Rev.
– volume: 85
  year: 1988
  ident: bb0195
  article-title: Differential loss of striatal projection neurons in Huntington disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  year: 2020
  ident: bb0370
  article-title: Untangling the conformational polymorphism of disordered proteins associated with neurodegeneration at the single-molecule level
  publication-title: Front. Mol. Neurosci.
– volume: 24
  year: 2023
  ident: bb0135
  article-title: A guide to membraneless organelles and their various roles in gene regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 24
  year: 2018
  ident: bb0410
  article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent
  publication-title: Nat. Med.
– year: 2016
  ident: bb0450
  article-title: Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins
  publication-title: J. Neurochem.
– volume: 37
  year: 2018
  ident: bb0275
  article-title: Tau protein liquid–liquid phase separation can initiate tau aggregation
  publication-title: EMBO J.
– volume: 20
  year: 2024
  ident: bb0065
  article-title: Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
  publication-title: Mol. Syst. Biol.
– volume: 19
  year: 2023
  ident: bb0215
  article-title: Synaptic degeneration in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: 1862
  year: 2016
  ident: bb0300
  article-title: Glycation alter the process of tau phosphorylation to change tau isoforms aggregation property
  publication-title: Biochim. Biophys. Acta Mol. basis Dis.
– volume: 30
  year: 2023
  ident: bb0415
  article-title: Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery
  publication-title: Cell Stem Cell
– volume: 7
  year: 2014
  ident: bb0420
  article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons
  publication-title: Cell Rep.
– volume: 12
  year: 2019
  ident: bb0455
  article-title: Structural insights into TDP-43 and effects of post-translational modifications
  publication-title: Front. Mol. Neurosci.
– volume: 291
  year: 2024
  ident: bb0070
  article-title: Intrinsically disordered Pseudomonas chaperone FapA slows down the fibrillation of major biofilm-forming functional amyloid FapC
  publication-title: FEBS J.
– volume: 52
  year: 2024
  ident: bb0100
  article-title: DisProt in 2024: improving function annotation of intrinsically disordered proteins
  publication-title: Nucleic Acids Res.
– volume: 13
  year: 2009
  ident: bb0225
  article-title: Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis
  publication-title: J. Cell. Mol. Med.
– volume: 20
  year: 2022
  ident: bb0030
  article-title: Intrinsically disordered proteins play diverse roles in cell signaling
  publication-title: Cell Commun. Signal.
– volume: 121
  year: 2022
  ident: bb0125
  article-title: Phase separation in amino acid mixtures is governed by composition
  publication-title: Biophys. J.
– volume: 292
  year: 2017
  ident: bb0295
  article-title: An acetylation–phosphorylation switch that regulates tau aggregation propensity and function
  publication-title: J. Biol. Chem.
– volume: 76
  year: 1986
  ident: bb0250
  article-title: Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments
  publication-title: J. Neurol. Sci.
– volume: 19
  year: 2014
  ident: bb0015
  article-title: The triple power of D3: Protein intrinsic disorder in degenerative diseases
  publication-title: Front. Biosci. (Landmark)
– volume: 23
  year: 2022
  ident: bb0090
  article-title: Protein misfolding and aggregation in the brain: common pathogenetic pathways in neurodegenerative and mental disorders
  publication-title: Int. J. Mol. Sci.
– volume: 2
  year: 2011
  ident: bb0285
  article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation
  publication-title: Nat. Commun.
– volume: 173
  year: 2018
  ident: bb0515
  article-title: Stress granule assembly disrupts nucleocytoplasmic transport
  publication-title: Cell
– volume: 1
  year: 2020
  ident: bb0175
  publication-title: Alzheimers disease: a brief review
– volume: 7
  year: 2015
  ident: bb0020
  article-title: Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders
  publication-title: Front. Aging Neurosci.
– volume: 99
  year: 2002
  ident: bb0375
  article-title: Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  year: 2022
  ident: bb0010
  article-title: Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases
  publication-title: Biophys. Rev.
– volume: 17
  year: 2002
  ident: bb0315
  article-title: Pathophysiology of parkinsion’s disease: from clinical neurology to basic neuroscience and back
  publication-title: Mov. Disord.
– volume: 24
  year: 1999
  ident: bb0190
  article-title: From Charcot to SOD1: mechanisms of selective motor neuron death in ALS
  publication-title: Neuron
– volume: 139
  year: 2017
  ident: bb0380
  article-title: Monomeric Huntingtin exon 1 has similar overall structural features for wild-type and pathological polyglutamine lengths
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2013
  ident: bb0335
  article-title: α-synuclein and mitochondria: partners in crime?
  publication-title: Neurotherapeutics
– volume: 6
  year: 2004
  ident: bb0185
  article-title: Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder
  publication-title: Dialogues Clin. Neurosci.
– year: 2016
  ident: bb0390
  article-title: The genetics of amyotrophic lateral sclerosis: current insights
  publication-title: Degener. Neurol. Neuromuscul. Dis.
– volume: 291
  year: 2016
  ident: bb0205
  article-title: Modulation of intrinsically disordered protein function by post-translational modifications
  publication-title: J. Biol. Chem.
– volume: 20
  year: 2019
  ident: bb0540
  article-title: Design of the phase 3, randomised, placebo-controlled trial of oral arimoclomol in amyotrophic lateral sclerosis ORARIALS-01
  publication-title: Amyotroph. Lateral Scler. Frontotemporal Degener.
– volume: 7
  year: 2011
  ident: bb0385
  article-title: Clinical diagnosis and management of amyotrophic lateral sclerosis
  publication-title: Nat. Rev. Neurol.
– volume: 368
  year: 2013
  ident: bb0525
  article-title: Autophagy in human health and disease
  publication-title: N. Engl. J. Med.
– volume: 16
  year: 1996
  ident: bb0165
  article-title: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease
  publication-title: J. Neurosci.
– volume: 120
  year: 2023
  ident: bb0055
  article-title: Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  year: 2021
  ident: bb0480
  article-title: HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain
  publication-title: Elife
– volume: 60
  year: 2015
  ident: bb0460
  article-title: Formation and maturation of phase-separated liquid droplets by RNA-binding proteins
  publication-title: Mol. Cell
– volume: 10
  year: 2021
  ident: bb0500
  article-title: Mechanisms and therapeutic implications of gsk-3 in treating neurodegeneration
  publication-title: Cells
– volume: 371
  year: 2021
  ident: bb0485
  article-title: HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells
  publication-title: Science (1979)
– volume: 887
  year: 2020
  ident: bb0265
  article-title: Alzheimer’s disease: recent treatment strategies
  publication-title: Eur. J. Pharmacol.
– volume: 435
  year: 2023
  ident: bb0330
  article-title: Functional and pathological effects of α-synuclein on synaptic SNARE complexes
  publication-title: J. Mol. Biol.
– volume: 18
  year: 2024
  ident: bb0080
  article-title: Intrinsically disordered proteins studied by NMR spectroscopy
  publication-title: J. Magn. Reson. Open
– volume: 71
  year: 2018
  ident: bb0465
  article-title: Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization
  publication-title: Mol. Cell
– year: 2012
  ident: bb0235
  article-title: Structure and pathology of tau protein in Alzheimer disease
  publication-title: Int. J. Alzheimers Dis.
– volume: 114
  year: 2014
  ident: bb0025
  article-title: Introduction to intrinsically disordered proteins (IDPs)
  publication-title: Chem. Rev.
– volume: 9
  year: 2021
  ident: bb0340
  article-title: Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro
  publication-title: Acta Neuropathol. Commun.
– volume: 5
  year: 2011
  ident: bb0365
  article-title: The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology
  publication-title: Curr. Trends Neurol.
– volume: 37
  year: 2022
  ident: bb0040
  article-title: Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration
  publication-title: Metab. Brain Dis.
– volume: 176
  year: 2019
  ident: bb0160
  article-title: Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates
  publication-title: Cell
– volume: 11
  year: 2022
  ident: bb0350
  article-title: Alpha-synuclein aggregation pathway in Parkinson’s disease: current status and novel therapeutic approaches
  publication-title: Cells
– volume: 21
  year: 2005
  ident: bb0545
  article-title: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
  publication-title: Bioinformatics
– volume: 82
  year: 2023
  ident: bb0110
  article-title: Role of aberrant phase separation in pathological protein aggregation
  publication-title: Curr. Opin. Struct. Biol.
– volume: 49
  year: 2020
  ident: bb0130
  article-title: Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions
  publication-title: Annu. Rev. Biophys.
– volume: 12
  year: 2021
  ident: bb0155
  article-title: Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation
  publication-title: Chem. Sci.
– volume: 14
  year: 2019
  ident: bb0345
  article-title: Alpha-synuclein structure and Parkinson’s disease - lessons and emerging principles
  publication-title: Mol. Neurodegener.
– volume: 11
  year: 2022
  ident: bb0140
  article-title: Regulation of cellular ribonucleoprotein granules: from assembly to degradation via post-translational modification
  publication-title: Cells
– volume: 469
  year: 2015
  ident: bb0535
  article-title: KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity
  publication-title: Biochem. J.
– volume: 69
  year: 1995
  ident: bb0440
  article-title: Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs
  publication-title: J. Virol.
– volume: 8
  year: 2012
  ident: bb0170
  article-title: Alzheimer’s disease: Pathogenesis and prevention
  publication-title: Alzheimers Dement.
– volume: 250
  year: 2023
  ident: bb0075
  article-title: Intrinsic disorder may drive the interaction of PROS1 and MERTK in uveal melanoma
  publication-title: Int. J. Biol. Macromol.
– volume: 1867
  year: 2019
  ident: bb0045
  article-title: Application of native mass spectrometry in studying intrinsically disordered proteins: a special focus on neurodegenerative diseases
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
– volume: 19
  year: 2023
  ident: bb0255
  article-title: Tau-targeting therapies for Alzheimer disease: current status and future directions
  publication-title: Nat. Rev. Neurol.
– volume: 11
  year: 2022
  ident: bb0530
  article-title: Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators
  publication-title: Cells
– volume: 6
  year: 2014
  ident: bb0325
  article-title: Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease
  publication-title: Front. Aging Neurosci.
– volume: 276
  year: 2001
  ident: bb0280
  article-title: Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure
  publication-title: J. Biol. Chem.
– volume: 314
  year: 2006
  ident: bb0395
  article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science (1979)
– volume: 3
  year: 2022
  ident: bb0120
  article-title: Post-translational modifications in liquid-liquid phase separation: a comprehensive review
  publication-title: Mol. Biomed.
– volume: 13
  year: 2023
  ident: bb0060
  article-title: Rational drug design targeting intrinsically disordered proteins
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 387
  year: 2022
  ident: bb0355
  article-title: Trial of Prasinezumab in early-stage Parkinson’s disease
  publication-title: N. Engl. J. Med.
– volume: 26
  year: 2016
  ident: bb0505
  article-title: Principles and properties of stress granules
  publication-title: Trends Cell Biol.
– volume: 33
  year: 1994
  ident: bb0230
  article-title: Solution structure of residues 1–28 of the amyloid β-peptide
  publication-title: Biochemistry
– volume: 16
  year: 2023
  ident: bb0475
  article-title: Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders
  publication-title: Front. Mol. Neurosci.
– volume: 14
  year: 2009
  ident: bb0035
  article-title: Intrinsic disorder in proteins associated with neurodegenerative diseases
  publication-title: Front. Biosci.
– volume: 39
  year: 2003
  ident: bb0180
  article-title: Parkinson’s disease: mechanisms and models
  publication-title: Neuron
– volume: 1
  year: 1987
  ident: bb0245
  article-title: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (?)
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 2016
  year: 2016
  ident: bb0320
  article-title: Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation
  publication-title: Parkinsons Dis.
– volume: 127
  year: 2023
  ident: bb0085
  article-title: Delineating structural propensities of the 4E-BP2 protein via integrative modeling and clustering
  publication-title: J. Phys. Chem. B
– volume: 83
  year: 1986
  ident: bb0240
  article-title: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ)
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  year: 2022
  ident: bb0310
  article-title: Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding
  publication-title: Mol. Cell
– volume: 11
  year: 2020
  ident: bb0305
  article-title: Liquid-liquid phase separation induces pathogenic tau conformations in vitro
  publication-title: Nat. Commun.
– volume: 430
  year: 2018
  ident: bb0200
  article-title: Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation
  publication-title: J. Mol. Biol.
– volume: 15
  year: 2008
  ident: bb0260
  article-title: Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease
  publication-title: Curr. Med. Chem.
– volume: 8
  year: 2012
  ident: bb0520
  article-title: Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation
  publication-title: Nat. Chem. Biol.
– volume: 433
  year: 2021
  ident: bb0050
  article-title: AlphaFold and implications for intrinsically disordered proteins
  publication-title: J. Mol. Biol.
– volume: 44
  year: 2017
  ident: bb0495
  article-title: Designer protein disaggregases to counter neurodegenerative disease
  publication-title: Curr. Opin. Genet. Dev.
– volume: 8
  year: 2017
  ident: bb0270
  article-title: Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau
  publication-title: Nat. Commun.
– volume: 1868
  year: 2021
  ident: bb0510
  article-title: Molecular mechanisms of stress granule assembly and disassembly
  publication-title: Biochim. Biophys. Acta, Mol. Cell Res.
– volume: 52
  year: 2024
  ident: bb0470
  article-title: Stress granule formation helps to mitigate neurodegeneration
  publication-title: Nucleic Acids Res.
– volume: 29
  year: 2022
  ident: bb0400
  article-title: iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders
  publication-title: Cell Stem Cell
– volume: 23
  year: 2022
  ident: bb0005
  article-title: Intrinsically disordered proteins: an overview
  publication-title: Int. J. Mol. Sci.
– volume: 15
  year: 2024
  ident: bb0430
  article-title: Molecular mechanisms of phase separation and amyloidosis of ALS/FTD-linked FUS and TDP-43
  publication-title: Aging Dis.
– volume: 59
  year: 2019
  ident: bb0405
  article-title: Study protocol for a phase I/IIa, double-blind, placebo-controlled trial of ropinirole for ALS
  publication-title: Clin. Neurol.
– volume: 64
  year: 2018
  ident: bb0220
  article-title: Amyloid accumulation and cognitive decline in clinically normal older individuals: implications for aging and early Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
– volume: 8
  year: 2021
  ident: bb0210
  article-title: The biological pathways of Alzheimer disease: a review
  publication-title: AIMS Neurosci.
– volume: 121
  year: 2008
  ident: bb0435
  article-title: Structural determinants of the cellular localization and shuttling of TDP-43
  publication-title: J. Cell Sci.
– volume: 85
  year: 1988
  ident: 10.1016/j.bbagen.2025.130772_bb0195
  article-title: Differential loss of striatal projection neurons in Huntington disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.85.15.5733
– volume: 29
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0400
  article-title: iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2022.01.007
– volume: 10
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0500
  article-title: Mechanisms and therapeutic implications of gsk-3 in treating neurodegeneration
  publication-title: Cells
  doi: 10.3390/cells10020262
– volume: 250
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0075
  article-title: Intrinsic disorder may drive the interaction of PROS1 and MERTK in uveal melanoma
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.126027
– volume: 49
  year: 2020
  ident: 10.1016/j.bbagen.2025.130772_bb0130
  article-title: Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-121219-081629
– volume: 20
  year: 2024
  ident: 10.1016/j.bbagen.2025.130772_bb0065
  article-title: Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/s44320-023-00005-6
– volume: 8
  year: 2017
  ident: 10.1016/j.bbagen.2025.130772_bb0270
  article-title: Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00480-0
– volume: 13
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0060
  article-title: Rational drug design targeting intrinsically disordered proteins
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1685
– volume: 11
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0530
  article-title: Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators
  publication-title: Cells
  doi: 10.3390/cells11152262
– volume: 10
  year: 2013
  ident: 10.1016/j.bbagen.2025.130772_bb0335
  article-title: α-synuclein and mitochondria: partners in crime?
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-013-0182-9
– volume: 12
  year: 2019
  ident: 10.1016/j.bbagen.2025.130772_bb0455
  article-title: Structural insights into TDP-43 and effects of post-translational modifications
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2019.00301
– volume: 52
  year: 2024
  ident: 10.1016/j.bbagen.2025.130772_bb0100
  article-title: DisProt in 2024: improving function annotation of intrinsically disordered proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad928
– volume: 52
  year: 2024
  ident: 10.1016/j.bbagen.2025.130772_bb0470
  article-title: Stress granule formation helps to mitigate neurodegeneration
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkae655
– volume: 82
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0110
  article-title: Role of aberrant phase separation in pathological protein aggregation
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2023.102678
– volume: 121
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0125
  article-title: Phase separation in amino acid mixtures is governed by composition
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2022.09.031
– volume: 11
  year: 2020
  ident: 10.1016/j.bbagen.2025.130772_bb0305
  article-title: Liquid-liquid phase separation induces pathogenic tau conformations in vitro
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16580-3
– volume: 6
  year: 2004
  ident: 10.1016/j.bbagen.2025.130772_bb0185
  article-title: Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2004.6.3/galexander
– volume: 17
  year: 2002
  ident: 10.1016/j.bbagen.2025.130772_bb0315
  article-title: Pathophysiology of parkinsion’s disease: from clinical neurology to basic neuroscience and back
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10140
– volume: 20
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0030
  article-title: Intrinsically disordered proteins play diverse roles in cell signaling
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-022-00821-7
– volume: 1868
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0510
  article-title: Molecular mechanisms of stress granule assembly and disassembly
  publication-title: Biochim. Biophys. Acta, Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2020.118876
– volume: 114
  year: 2014
  ident: 10.1016/j.bbagen.2025.130772_bb0025
  article-title: Introduction to intrinsically disordered proteins (IDPs)
  publication-title: Chem. Rev.
  doi: 10.1021/cr500288y
– volume: 176
  year: 2019
  ident: 10.1016/j.bbagen.2025.130772_bb0160
  article-title: Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.035
– volume: 19
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0215
  article-title: Synaptic degeneration in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-022-00749-z
– volume: 121
  year: 2008
  ident: 10.1016/j.bbagen.2025.130772_bb0435
  article-title: Structural determinants of the cellular localization and shuttling of TDP-43
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.038950
– volume: 292
  year: 2017
  ident: 10.1016/j.bbagen.2025.130772_bb0295
  article-title: An acetylation–phosphorylation switch that regulates tau aggregation propensity and function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.794602
– volume: 1
  year: 2020
  ident: 10.1016/j.bbagen.2025.130772_bb0175
  publication-title: J. Exp. Neurol.
– volume: 291
  year: 2024
  ident: 10.1016/j.bbagen.2025.130772_bb0070
  article-title: Intrinsically disordered Pseudomonas chaperone FapA slows down the fibrillation of major biofilm-forming functional amyloid FapC
  publication-title: FEBS J.
  doi: 10.1111/febs.17084
– volume: 16
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0475
  article-title: Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2023.1242925
– year: 2012
  ident: 10.1016/j.bbagen.2025.130772_bb0235
  article-title: Structure and pathology of tau protein in Alzheimer disease
  publication-title: Int. J. Alzheimers Dis.
  doi: 10.1155/2012/731526
– volume: 37
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0040
  article-title: Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-021-00791-8
– volume: 173
  year: 2018
  ident: 10.1016/j.bbagen.2025.130772_bb0515
  article-title: Stress granule assembly disrupts nucleocytoplasmic transport
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.025
– volume: 8
  year: 2012
  ident: 10.1016/j.bbagen.2025.130772_bb0170
  article-title: Alzheimer’s disease: Pathogenesis and prevention
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2012.01.011
– volume: 30
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0415
  article-title: Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2023.04.017
– volume: 69
  year: 1995
  ident: 10.1016/j.bbagen.2025.130772_bb0440
  article-title: Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs
  publication-title: J. Virol.
  doi: 10.1128/jvi.69.6.3584-3596.1995
– volume: 15
  year: 2024
  ident: 10.1016/j.bbagen.2025.130772_bb0430
  article-title: Molecular mechanisms of phase separation and amyloidosis of ALS/FTD-linked FUS and TDP-43
  publication-title: Aging Dis.
  doi: 10.14336/AD.2023.1118
– volume: 314
  year: 2006
  ident: 10.1016/j.bbagen.2025.130772_bb0395
  article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science (1979)
– volume: 1862
  year: 2016
  ident: 10.1016/j.bbagen.2025.130772_bb0300
  article-title: Glycation alter the process of tau phosphorylation to change tau isoforms aggregation property
  publication-title: Biochim. Biophys. Acta Mol. basis Dis.
  doi: 10.1016/j.bbadis.2015.12.002
– volume: 33
  year: 1994
  ident: 10.1016/j.bbagen.2025.130772_bb0230
  article-title: Solution structure of residues 1–28 of the amyloid β-peptide
  publication-title: Biochemistry
  doi: 10.1021/bi00191a006
– volume: 5
  year: 2011
  ident: 10.1016/j.bbagen.2025.130772_bb0365
  article-title: The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology
  publication-title: Curr. Trends Neurol.
– volume: 71
  year: 2018
  ident: 10.1016/j.bbagen.2025.130772_bb0465
  article-title: Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.07.002
– volume: 64
  year: 2018
  ident: 10.1016/j.bbagen.2025.130772_bb0220
  article-title: Amyloid accumulation and cognitive decline in clinically normal older individuals: implications for aging and early Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-179928
– volume: 11
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0350
  article-title: Alpha-synuclein aggregation pathway in Parkinson’s disease: current status and novel therapeutic approaches
  publication-title: Cells
  doi: 10.3390/cells11111732
– volume: 368
  year: 2013
  ident: 10.1016/j.bbagen.2025.130772_bb0525
  article-title: Autophagy in human health and disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1205406
– volume: 430
  year: 2018
  ident: 10.1016/j.bbagen.2025.130772_bb0200
  article-title: Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.03.028
– volume: 24
  year: 2018
  ident: 10.1016/j.bbagen.2025.130772_bb0410
  article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0140-5
– volume: 291
  year: 2016
  ident: 10.1016/j.bbagen.2025.130772_bb0205
  article-title: Modulation of intrinsically disordered protein function by post-translational modifications
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.695056
– volume: 76
  year: 1986
  ident: 10.1016/j.bbagen.2025.130772_bb0250
  article-title: Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(86)90167-X
– volume: 122
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0105
  article-title: Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00774
– year: 2016
  ident: 10.1016/j.bbagen.2025.130772_bb0390
  article-title: The genetics of amyotrophic lateral sclerosis: current insights
  publication-title: Degener. Neurol. Neuromuscul. Dis.
– volume: 13
  year: 2009
  ident: 10.1016/j.bbagen.2025.130772_bb0225
  article-title: Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2009.00609.x
– volume: 18
  year: 2024
  ident: 10.1016/j.bbagen.2025.130772_bb0080
  article-title: Intrinsically disordered proteins studied by NMR spectroscopy
  publication-title: J. Magn. Reson. Open
– volume: 72
  year: 1993
  ident: 10.1016/j.bbagen.2025.130772_bb0360
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 59
  year: 2019
  ident: 10.1016/j.bbagen.2025.130772_bb0405
  article-title: Study protocol for a phase I/IIa, double-blind, placebo-controlled trial of ropinirole for ALS
  publication-title: Clin. Neurol.
– volume: 83
  year: 1986
  ident: 10.1016/j.bbagen.2025.130772_bb0240
  article-title: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.83.11.4040
– volume: 52
  year: 2020
  ident: 10.1016/j.bbagen.2025.130772_bb0425
  article-title: The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-020-00513-7
– volume: 26
  year: 2016
  ident: 10.1016/j.bbagen.2025.130772_bb0505
  article-title: Principles and properties of stress granules
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.004
– volume: 9
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0115
  article-title: Liquid-liquid phase separation of TDP-43 and FUS in physiology and pathology of neurodegenerative diseases
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2022.826719
– volume: 8
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0210
  article-title: The biological pathways of Alzheimer disease: a review
  publication-title: AIMS Neurosci.
  doi: 10.3934/Neuroscience.2021005
– volume: 371
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0485
  article-title: HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells
  publication-title: Science (1979)
– volume: 276
  year: 2001
  ident: 10.1016/j.bbagen.2025.130772_bb0280
  article-title: Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M105196200
– volume: 14
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0010
  article-title: Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-022-00968-0
– volume: 19
  year: 2014
  ident: 10.1016/j.bbagen.2025.130772_bb0015
  article-title: The triple power of D3: Protein intrinsic disorder in degenerative diseases
  publication-title: Front. Biosci. (Landmark)
– volume: 3
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0120
  article-title: Post-translational modifications in liquid-liquid phase separation: a comprehensive review
  publication-title: Mol. Biomed.
  doi: 10.1186/s43556-022-00075-2
– volume: 24
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0135
  article-title: A guide to membraneless organelles and their various roles in gene regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-022-00558-8
– volume: 7
  year: 2015
  ident: 10.1016/j.bbagen.2025.130772_bb0020
  article-title: Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2015.00018
– volume: 6
  year: 2014
  ident: 10.1016/j.bbagen.2025.130772_bb0325
  article-title: Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2014.00087
– volume: 433
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0050
  article-title: AlphaFold and implications for intrinsically disordered proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2021.167208
– volume: 82
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0310
  article-title: Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.08.016
– volume: 7
  year: 2014
  ident: 10.1016/j.bbagen.2025.130772_bb0420
  article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.03.019
– volume: 4
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0150
  article-title: Protein conformation and biomolecular condensates
  publication-title: Curr. Res. Struct. Biol.
– volume: 7
  year: 2011
  ident: 10.1016/j.bbagen.2025.130772_bb0385
  article-title: Clinical diagnosis and management of amyotrophic lateral sclerosis
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2011.153
– volume: 114
  year: 2014
  ident: 10.1016/j.bbagen.2025.130772_bb0095
  article-title: Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases
  publication-title: Chem. Rev.
  doi: 10.1021/cr400713r
– volume: 11
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0140
  article-title: Regulation of cellular ribonucleoprotein granules: from assembly to degradation via post-translational modification
  publication-title: Cells
  doi: 10.3390/cells11132063
– volume: 13
  year: 2012
  ident: 10.1016/j.bbagen.2025.130772_bb0445
  article-title: Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3121
– volume: 16
  year: 2007
  ident: 10.1016/j.bbagen.2025.130772_bb0490
  article-title: Hsp104: a weapon to combat diverse neurodegenerative disorders
  publication-title: NeuroSignals
– volume: 20
  year: 2019
  ident: 10.1016/j.bbagen.2025.130772_bb0540
  article-title: Design of the phase 3, randomised, placebo-controlled trial of oral arimoclomol in amyotrophic lateral sclerosis ORARIALS-01
  publication-title: Amyotroph. Lateral Scler. Frontotemporal Degener.
– volume: 15
  year: 2008
  ident: 10.1016/j.bbagen.2025.130772_bb0260
  article-title: Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986708785909111
– volume: 139
  year: 2017
  ident: 10.1016/j.bbagen.2025.130772_bb0380
  article-title: Monomeric Huntingtin exon 1 has similar overall structural features for wild-type and pathological polyglutamine lengths
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06659
– volume: 120
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0055
  article-title: Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0005
  article-title: Intrinsically disordered proteins: an overview
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms232214050
– volume: 12
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0155
  article-title: Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC04395H
– volume: 37
  year: 2018
  ident: 10.1016/j.bbagen.2025.130772_bb0275
  article-title: Tau protein liquid–liquid phase separation can initiate tau aggregation
  publication-title: EMBO J.
  doi: 10.15252/embj.201798049
– volume: 887
  year: 2020
  ident: 10.1016/j.bbagen.2025.130772_bb0265
  article-title: Alzheimer’s disease: recent treatment strategies
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2020.173554
– year: 2016
  ident: 10.1016/j.bbagen.2025.130772_bb0450
  article-title: Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13625
– volume: 9
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0340
  article-title: Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-021-01288-2
– volume: 127
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0085
  article-title: Delineating structural propensities of the 4E-BP2 protein via integrative modeling and clustering
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.3c04052
– volume: 469
  year: 2015
  ident: 10.1016/j.bbagen.2025.130772_bb0535
  article-title: KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity
  publication-title: Biochem. J.
– volume: 12
  year: 2020
  ident: 10.1016/j.bbagen.2025.130772_bb0370
  article-title: Untangling the conformational polymorphism of disordered proteins associated with neurodegeneration at the single-molecule level
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2019.00309
– volume: 16
  year: 1996
  ident: 10.1016/j.bbagen.2025.130772_bb0165
  article-title: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-14-04491.1996
– volume: 99
  year: 2002
  ident: 10.1016/j.bbagen.2025.130772_bb0375
  article-title: Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.182276099
– volume: 387
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0355
  article-title: Trial of Prasinezumab in early-stage Parkinson’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2202867
– volume: 44
  year: 2017
  ident: 10.1016/j.bbagen.2025.130772_bb0495
  article-title: Designer protein disaggregases to counter neurodegenerative disease
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2017.01.008
– volume: 24
  year: 1999
  ident: 10.1016/j.bbagen.2025.130772_bb0190
  article-title: From Charcot to SOD1: mechanisms of selective motor neuron death in ALS
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81108-3
– volume: 2
  year: 2011
  ident: 10.1016/j.bbagen.2025.130772_bb0285
  article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1255
– volume: 88
  year: 2004
  ident: 10.1016/j.bbagen.2025.130772_bb0290
  article-title: Pseudophosphorylation of tau protein alters its ability for self-aggregation
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2003.02287.x
– volume: 19
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0255
  article-title: Tau-targeting therapies for Alzheimer disease: current status and future directions
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-023-00883-2
– volume: 23
  year: 2022
  ident: 10.1016/j.bbagen.2025.130772_bb0090
  article-title: Protein misfolding and aggregation in the brain: common pathogenetic pathways in neurodegenerative and mental disorders
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms232214498
– volume: 1
  year: 1987
  ident: 10.1016/j.bbagen.2025.130772_bb0245
  article-title: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (?)
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/00002093-198701030-00021
– volume: 14
  year: 2019
  ident: 10.1016/j.bbagen.2025.130772_bb0345
  article-title: Alpha-synuclein structure and Parkinson’s disease - lessons and emerging principles
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-019-0329-1
– volume: 21
  year: 2005
  ident: 10.1016/j.bbagen.2025.130772_bb0545
  article-title: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti541
– volume: 14
  year: 2009
  ident: 10.1016/j.bbagen.2025.130772_bb0035
  article-title: Intrinsic disorder in proteins associated with neurodegenerative diseases
  publication-title: Front. Biosci.
  doi: 10.2741/3594
– volume: 435
  year: 2023
  ident: 10.1016/j.bbagen.2025.130772_bb0330
  article-title: Functional and pathological effects of α-synuclein on synaptic SNARE complexes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2022.167714
– volume: 2016
  year: 2016
  ident: 10.1016/j.bbagen.2025.130772_bb0320
  article-title: Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation
  publication-title: Parkinsons Dis.
– volume: 19
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0145
  article-title: Insight into membraneless organelles and their associated proteins: drivers, clients and regulators
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.06.042
– volume: 10
  year: 2021
  ident: 10.1016/j.bbagen.2025.130772_bb0480
  article-title: HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain
  publication-title: Elife
  doi: 10.7554/eLife.69377
– volume: 60
  year: 2015
  ident: 10.1016/j.bbagen.2025.130772_bb0460
  article-title: Formation and maturation of phase-separated liquid droplets by RNA-binding proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.018
– volume: 39
  year: 2003
  ident: 10.1016/j.bbagen.2025.130772_bb0180
  article-title: Parkinson’s disease: mechanisms and models
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00568-3
– volume: 8
  year: 2012
  ident: 10.1016/j.bbagen.2025.130772_bb0520
  article-title: Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.797
– volume: 1867
  year: 2019
  ident: 10.1016/j.bbagen.2025.130772_bb0045
  article-title: Application of native mass spectrometry in studying intrinsically disordered proteins: a special focus on neurodegenerative diseases
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2019.07.013
SSID ssj0000595
Score 2.4835374
SecondaryResourceType review_article
Snippet Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130772
SubjectTerms Aggregation
alpha-Synuclein - metabolism
Alzheimer disease
amyotrophic lateral sclerosis
Animals
Autophagy
Chaperone
drugs
Humans
Intrinsically disordered proteins
Intrinsically Disordered Proteins - metabolism
Liquid-liquid phase separation
Neurodegenerative diseases
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Parkinson disease
proteasome endopeptidase complex
Proteasome Endopeptidase Complex - metabolism
Proteostasis
separation
therapeutics
toxicity
Title The roles of intrinsically disordered proteins in neurodegeneration
URI https://dx.doi.org/10.1016/j.bbagen.2025.130772
https://www.ncbi.nlm.nih.gov/pubmed/39954969
https://www.proquest.com/docview/3167357278
https://www.proquest.com/docview/3200263687
Volume 1869
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KRfQiWr_qR4ngNdZkk2xyLEWpil5U6G3Z7G6kUtKi8eDF3-7MblLxUAtekwksM7uzL8ybNwDnPJdRnEvjFylnfsRV7stC4s8KXd95mhkZU7_z_UMyeo5ux_G4BcOmF4ZolXXudzndZuv6Sb_2Zn8-mfQfqaiHcILqclYFhjrYI060vouvH5oHwofYVRIin6yb9jnL8cpzPLSkghrGNBaZ83DZ9bQMftpr6Hobtmr86A3cEnegZcoOrLuJkp8d2Bg2A9x2YYhbwCP24Ls3K7xJWb1NShuT6aena9FNoz2r1IBv0MKz6pbavFgtagrZHjxfXz0NR349M8FX6IwK84UJFWIig0jhsgiTLFUZ04wFgZZSJ9QmqwOlOB4OTLkk2JYWSrMCUVOaJYVm-9AuZ6U5BA8DF0gmZXKps0grmSMSwHgzxSVmhVR2gTWuEqoWFKe5FlPRMMdehXOwIAcL5-Au-Iuv5k5QY4U9b6Igfm0MgTl_xZdnTdAEep4KIbI0s493Qd3_LEbklv5hQ-yVBN3Du3DgIr5YL7UDR1mSHf17bcewicgrcxSgE2hXbx_mFNFNlffs9u3B2uDmbvTwDZni-Es
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WXUQv4tv1WcFrWdu0TXuURanu46LC3kKapLIiXdHuYf-9M2m74kEXvDYTCN8kk69k5huAK57JIMykcfOYMzfgKnNlLvFnha7vLE6MDKneeTSO0ufgYRJOWtBvamEorbKO_VVMt9G6_tKr0ey9T6e9R3rUQzpB73JWBWYNOqROFbShc3M_SMffATm0zVfI3qUJTQWdTfPKMjy3JITqh9QZmXP_txvqNwZqb6K7bdiqKaRzU61yB1qm2IX1qqnkYhc2-k0Ptz3o4y5wKIHw05nlzrQoP6aFdcvbwtG17qbRjhVrwBG0cKzApTYvVo6avLYPz3e3T_3UrdsmuArxKDFkGF8hLTJIFq5zP0pilTDNmOdpKXVElbLaU4rj-cCoS5ptca40y5E4xUmUa3YA7WJWmCNw0HeeZFJG1zoJtJIZkgF0OVNcYmCIZRdYA5VQtaY4tbZ4E03y2KuoABYEsKgA7oK7nPVeaWqssOeNF8SPvSEw7K-Yedk4TSDy9BYiCzObfwoSAGAhkrf4DxtKYIkQHt6Fw8rjy_VSRXCQRMnxv9d2ARvp02gohvfjwQls0kiVEXQK7fJjbs6Q7JTZeb2ZvwAeNPr5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+roles+of+intrinsically+disordered+proteins+in+neurodegeneration&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Utami%2C+Kagistia+Hana&rft.au=Morimoto%2C+Satoru&rft.au=Mitsukura%2C+Yasue&rft.au=Okano%2C+Hideyuki&rft.date=2025-04-01&rft.eissn=1872-8006&rft.volume=1869&rft.issue=4&rft.spage=130772&rft_id=info:doi/10.1016%2Fj.bbagen.2025.130772&rft_id=info%3Apmid%2F39954969&rft.externalDocID=39954969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon