Avenues for biofortification of zinc in barley for human and animal health a meta-analysis

Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley ( Hordeum vulgare...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 466; no. 1/2; pp. 101 - 119
Main Authors Khan, Waleed Amjad, Shabala, Sergey, Cuin, Tracey Ann, Zhou, Meixue, Penrose, Beth
Format Journal Article
LanguageEnglish
Published Cham Springer Science + Business Media 01.09.2021
Springer International Publishing
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley ( Hordeum vulgare L.). Methods A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Results Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. Conclusions This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley.
AbstractList Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (Hordeum vulgare L.). Methods A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Results Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. Conclusions This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley.
Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (Hordeum vulgare L.). A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley.
Background and aimsZinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (Hordeum vulgare L.).MethodsA meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability.ResultsHigher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others.ConclusionsThis meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley.
Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley ( Hordeum vulgare L.). Methods A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Results Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. Conclusions This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley.
Audience Academic
Author Shabala, Sergey
Penrose, Beth
Zhou, Meixue
Khan, Waleed Amjad
Cuin, Tracey Ann
Author_xml – sequence: 1
  givenname: Waleed Amjad
  surname: Khan
  fullname: Khan, Waleed Amjad
– sequence: 2
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
– sequence: 3
  givenname: Tracey Ann
  surname: Cuin
  fullname: Cuin, Tracey Ann
– sequence: 4
  givenname: Meixue
  surname: Zhou
  fullname: Zhou, Meixue
– sequence: 5
  givenname: Beth
  surname: Penrose
  fullname: Penrose, Beth
BookMark eNp9kV9rHCEUxaWk0E3aL1AoDPSlL5Peq6POPC6hfwnkJYG8iTqadZnVVGcL6aevu1MaGkoQEeX87j3Xc0pOYoqOkLcI5wggPxZEhK4Fii1woLJlL8gKuWQtByZOyAqA0RbkcPuKnJayhcMdxYp8X_90ce9K41NuTEj1mIMPVs8hxSb55leItgmxMTpP7uEo2-x3OjY6jnWHnZ6ajdPTvHlNXno9Fffmz3lGbj5_ur742l5effl2sb5sbdfh3DKORruxNyMXYjRaGxTGmMFQhAEYgvOeit7ZYRgEA8qsAWqsccZbY3vPzsiHpe59Tj-q9VntQrFumnR0aV8UFUxwKXpkVfr-iXSb9jlWd4pySRnvJIVH1Z2enArRpzlreyiq1kJyjhKHrqrO_6Oqa3S7YGscPtT3fwC6ADanUrLz6j7X78oPCkEdUlNLaqqmpo6pqYPj_glkw3wMo3YL0_MoW9BS-8Q7lx-HfZZ6t1DbMqf812LXizoCIPsNzG-1zw
CitedBy_id crossref_primary_10_3390_ijms241814333
crossref_primary_10_3390_agronomy12112839
crossref_primary_10_3390_ijerph20053943
Cites_doi 10.1007/s11192-015-1765-5
10.1007/s11157-016-9390-1
10.1093/oxfordjournals.molbev.a026330
10.1016/j.fcr.2015.09.007
10.1104/pp.011825
10.3389/fpls.2019.00426
10.1016/S0378-4290(99)00028-3
10.1104/pp.108.128967
10.1007/s11104-007-9466-3
10.1007/0-387-27421-9_14
10.1631/jzus.B1000291
10.1016/j.jcs.2009.09.004
10.1016/j.jtemb.2018.02.009
10.1007/s11104-012-1332-2
10.1186/s12870-019-1741-y
10.1021/jf101197h
10.3389/fpls.2014.00030
10.1007/978-3-662-44406-1_9
10.1093/ajcn/75.6.1062
10.1104/pp.101.2.619
10.1371/journal.pone.0225018
10.1111/ppl.12697
10.4269/ajtmh.2004.71.55
10.1038/ejcn.2008.9
10.3389/fpls.2017.00281
10.1002/jpln.200390015
10.1371/journal.pone.0050568
10.1007/s10725-018-0418-0
10.1093/jxb/erm142
10.17226/10026
10.18637/jss.v036.i03
10.1016/j.plantsci.2016.05.001
10.1590/S0100-204X2002001200013
10.1071/AR99045
10.1002/9780470960707.ch16
10.4014/jmb.1609.09021
10.1016/j.fcr.2017.05.023
10.1093/jxb/ery236
10.1007/bf00012018
10.1007/s11104-012-1369-2
10.3168/jds.2008-1232
10.1016/j.gfs.2016.12.001
10.3389/fnbeh.2014.00443
10.1073/pnas.1800442115
10.1023/a:1018318005103
10.1080/00103620600822952
10.3389/fpls.2016.01137
10.1111/ejss.12437
10.1134/S1021443708030175
10.1042/BJ20040074
10.1186/s43014-020-0020-5
10.1079/PNS19980045
10.1007/s11104-015-2684-1
10.3390/plants9020140
10.1007/s11104-015-2430-8
10.1515/sab-2017-0003
10.1094/cfw-51-0004
10.1016/j.jcs.2007.04.006
10.1016/S1002-0160(17)60442-9
10.1890/11-0423.1
10.1017/S1368980017003202
10.1080/00103620600710454
10.2527/jas1980.514966x
10.1016/j.tplants.2009.01.001
10.1016/j.abb.2016.04.010
10.1021/bk-2011-1089.ch001
10.1615/JEnvironPatholToxicolOncol.v25.i3.40
10.1007/978-94-011-0878-2_5
10.1104/pp.112.197798
10.1016/j.apgeochem.2019.03.017
10.1007/978-94-015-8909-3_12
10.1007/s11192-020-03387-8
10.1071/ar01085
10.1016/j.jcs.2013.09.001
10.1081/CSS-120002762
10.1590/S0103-90162005000300010
10.1007/s10534-013-9643-1
10.1007/978-94-017-2685-6_24
10.1093/ajcn/80.5.1185
10.11604/pamj.2013.15.120.2535
10.3390/agronomy9050250
10.1080/01904160903150974
10.1016/B978-1-891127-79-3.50010-X
10.1093/jn/130.5.1500S
10.1631/jzus.B0710640
10.1080/00103624.2018.1499769
10.1080/01904169809365558
10.1007/s11104-012-1272-x
10.1016/j.scitotenv.2011.11.029
10.1093/jn/130.5.1437S
10.1007/s11270-017-3507-1
10.1002/fsn3.1127
10.1023/b:Plso.0000047741.52700.29
10.1111/nph.12468
10.1071/ar01088
10.1016/B978-0-08-100596-5.03425-9
10.1016/B978-0-12-384905-2.00012-1
10.1111/j.1469-8137.2007.01996.x
10.3389/fpls.2020.00188
10.1007/s11104-012-1346-9
10.21608/agro.2017.1841.1078
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-021-05027-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Agricultural Science Database

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 119
ExternalDocumentID A675517194
10_1007_s11104_021_05027_3
48694301
GeographicLocations Australia
China
GeographicLocations_xml – name: China
– name: Australia
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JLS
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
2~F
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABBHK
ABQSL
ABULA
ABXSQ
ACBXY
ACHIC
ACKIV
ADINQ
ADULT
ADYPR
AEBTG
AEFIE
AEKMD
AEUPB
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
AQVQM
BBWZM
BDATZ
CAG
COF
DATOO
EJD
EN4
FINBP
FSGXE
GQ6
H13
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SA0
SBY
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c441t-351baed8bd566dbaab16bbb9b21090310eff268ec99963023cb02bcbebfcbc8f3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Thu Jul 10 23:36:46 EDT 2025
Fri Jul 25 19:23:49 EDT 2025
Tue Jun 17 21:26:16 EDT 2025
Tue Jun 10 20:19:48 EDT 2025
Tue Jul 01 01:47:13 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Fri Feb 21 02:47:58 EST 2025
Thu Jun 19 19:54:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Biofortification
meta-analysis
Barley
Micronutrients
Hordeum vulgare
Zinc
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-351baed8bd566dbaab16bbb9b21090310eff268ec99963023cb02bcbebfcbc8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0945-6165
PQID 2572354720
PQPubID 54098
PageCount 19
ParticipantIDs proquest_miscellaneous_2636576813
proquest_journals_2572354720
gale_infotracmisc_A675517194
gale_infotracacademiconefile_A675517194
crossref_primary_10_1007_s11104_021_05027_3
crossref_citationtrail_10_1007_s11104_021_05027_3
springer_journals_10_1007_s11104_021_05027_3
jstor_primary_48694301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210901
20210900
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210901
  day: 1
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2021
Publisher Springer Science + Business Media
Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References SloupVJankovskáINechybováSPeřinkováPLangrováIZinc in the animal organism: a ReviewSci Agric Bohem2017481310.1515/sab-2017-0003
VeluGOrtiz-MonasterioICakmakIHaoYSinghRPBiofortification strategies to increase grain zinc and iron concentrations in wheatJ Cereal Sci2014593653721:CAS:528:DC%2BC3sXhs1SksLvI10.1016/j.jcs.2013.09.001
AndreyGThe role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soilsAppl Geochem2019104931011:CAS:528:DC%2BC1MXmtlWmt7c%3D10.1016/j.apgeochem.2019.03.017
CakmakIEnrichment of cereal grains with zinc: Agronomic or genetic biofortification?Plant Soil20083021171:CAS:528:DC%2BD1cXltVKn10.1007/s11104-007-9466-3
CakmakIKutmanUBAgronomic biofortification of cereals with zinc: a reviewEur J Soil Sci20186917218010.1111/ejss.12437
Marschner P, Rengel Z (2012) Chapter 12 - Nutrient availability in soils. In: Marschner P (ed) Marschner's mineral nutrition of higher plants. 3rd edn. Academic Press, San Diego, pp 315–330. https://doi.org/10.1016/B978-0-12-384905-2.00012-1
BehallKMScholfieldDJHallfrischJDiets containing barley significantly reduce lipids in mildly hypercholesterolemic men and womenAm J Clin Nutr200480118511931:CAS:528:DC%2BD2cXhtVSnt73E10.1093/ajcn/80.5.118515531664
CakmakIMorphological and physiological differences in the response of cereals to zinc deficiencyEuphytica19981003493571:CAS:528:DyaK1cXivFWqs7g%3D10.1023/a:1018318005103
ImtiazMAllowayBJKhanPMemonMYSiddiquiSUHAslamMShahSKHZinc deficiency in selected cultivars of wheat and barley as tested in solution cultureCommun Soil Sci Plant Anal200637170317211:CAS:528:DC%2BD28Xms1ajt78%3D10.1080/00103620600710454
Baik B-K (2014) Chapter 10 - Processing of barley grain for food and feed. In: Shewry PR, Ullrich SE (eds) Barley (Second Edition). AACC International Press, pp 233–268. https://doi.org/10.1016/B978-1-891127-79-3.50010-X
GürelFÖztürkZNUçarlıCRoselliniDBarley genes as tools to confer abiotic stress tolerance in cropsFront Plant Sci201671137113710.3389/fpls.2016.01137275363054971604
ClemensSDeinleinUAhmadiHHorethSUraguchiSNicotianamine is a major player in plant Zn homeostasisBiometals2013266236321:CAS:528:DC%2BC3sXht1ShsbfK10.1007/s10534-013-9643-123775667
Baron VS, Okine E, Campbell A (2000) Optimizing yield and quality of cereal silage. In: Proceedings of the 2000 western canadian dairy seminar Lacombe, Canada
Sadeghzadeh B, Rengel Z (2011) Zinc in soils and crop nutrition. In: The molecular and physiological basis of nutrient use efficiency in crops. John Wiley & Sons, UK. https://doi.org/10.1002/9780470960707.ch16
TjStomphJiangWStruikPCZinc biofortification of cereals: rice differs from wheat and barleyTrends in Plant Science2009141231241:CAS:528:DC%2BD1MXjtF2lt7g%3D10.1016/j.tplants.2009.01.001
CopeCMMackenzieAMWildeDSinclairLAEffects of level and form of dietary zinc on dairy cow performance and healthJ Dairy Sci200992212821351:CAS:528:DC%2BD1MXlsFyms78%3D10.3168/jds.2008-123219389970
Chattha MU et al (2017) Biofortification of wheat cultivars to combat zinc deficiency Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00281
GuptaNRamHKumarBMechanism of zinc absorption in plants: uptake, transport, translocation and accumulationRev Environ Sci Biotechnol201615891091:CAS:528:DC%2BC28XitFaqtLo%3D10.1007/s11157-016-9390-1
Rezaul KarimMDTianDZhangY-QChenF-JZouC-QFine roots for uptake and translocation of zinc into young leaves as important traits for zinc efficiency of maize genotypesCommun Soil Sci Plant Anal201849234523561:CAS:528:DC%2BC1cXhtlOisLbI10.1080/00103624.2018.1499769
NiyigabaETwizerimanaAMugenziINgnadongWAYeYPWuBMHaiJBWinter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizersAgron201992501:CAS:528:DC%2BC1MXisVOjs7rN10.3390/agronomy9050250
GencYMcDonaldGKGrahamRDDifferential expression of zinc efficiency during the growing season of barleyPlant Soil20042632732821:CAS:528:DC%2BD2cXpsF2lur4%3D10.1023/b:Plso.0000047741.52700.29
HagmeyerSHaderspeckJCGrabruckerAMBehavioral impairments in animal models for zinc deficiencyFront Behav Neurosci2015844344310.3389/fnbeh.2014.00443256103794285094
Dresios J, Chan Y-L, Wool IG (2005) Ribosomal zinc fnger proteins: The structure and the function of yeast YL37a. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Springer US, Boston, pp 91–98. https://doi.org/10.1007/0-387-27421-9_14
NewmanCWNewmanRKA brief history of barley foodsCereal Foods World2006514710.1094/cfw-51-0004
MacDonaldRSThe role of zinc in growth and cell proliferationJ Nutr20001301500150810.1093/jn/130.5.1500S
ManzekeGMMapfumoPMtambanengweFChikowoRTendayiTCakmakISoil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of ZimbabwePlant Soil201236157691:CAS:528:DC%2BC38Xhs1yntbbP10.1007/s11104-012-1332-2
ZhuJLiuWA tale of two databases: the use of Web of Science and Scopus in academic papersScientometrics202012332133510.1007/s11192-020-03387-8
WangZContribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilizationPlant Growth Regul2018861591671:CAS:528:DC%2BC1cXhtFGgtLnM10.1007/s10725-018-0418-0
HegelundJNSchillerMKicheyTHansenTHPedasPHustedSSchjoerringJKBarley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc bindingPlant Physiol2012159112511371:CAS:528:DC%2BC38XhtVGlsbjJ10.1104/pp.112.197798225821323387699
Ali MB, Salem E, Sayed MA-EA (2017) Genetic variability of barley (Hordeum vulgare L.) genotypes in phytoremediation of heavy metals-contaminated soil. Egypt J Agron 39:383–399. https://doi.org/10.21608/agro.2017.1841.1078
ChenWRFengYChaoYEGenomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiencyRuss J Plant Physiol2008554004091:CAS:528:DC%2BD1cXlvVClsrc%3D10.1134/S1021443708030175
SadeghzadehBRengelZLiCDifferential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solutionJ Plant Nutr200932174417671:CAS:528:DC%2BD1MXhtFSns7fM10.1080/01904160903150974
GencYMcDonaldGKGrahamRDA soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plantsAust J Agric Res2002534094211:CAS:528:DC%2BD38XjtlWisr8%3D10.1071/ar01088
Liu D-Y, Liu Y-M, Zhang W, Chen X-P, Zou C-Q (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00426
BrownKHPeersonJMRiveraJAllenLHEffect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trialsAm J Clin Nutr200275106210711:CAS:528:DC%2BD38XktlSmtrs%3D10.1093/ajcn/75.6.106212036814
MongeonPPaul-HusAThe journal coverage of Web of Science and Scopus: a comparative analysisScientometrics201610621322810.1007/s11192-015-1765-5
HacisalihogluGHartJJWangYHCakmakIKochianLVZinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheatPlant Physiol20031315956021:CAS:528:DC%2BD3sXhtlyjsrs%3D10.1104/pp.01182512586883166835
WangLShahAMLiuYJinLWangZXueBPengQRelationship between true digestibility of dietary phosphorus and gastrointestinal bacteria of goatsPLoS One202015e0225018e02250181:CAS:528:DC%2BB3cXhtFGksbbN10.1371/journal.pone.0225018324421737244181
HosnedlovaBTravnicekJSochMCurrent view of the significance of zinc for ruminants: a reviewAgric Trop Subtrop2007405764
ZouCQBiofortification of wheat with zinc through zinc fertilization in seven countriesPlant Soil20123611191301:CAS:528:DC%2BC38Xhs1yntbbK10.1007/s11104-012-1369-2
McCallKAHuangC-cFierkeCAFunction and mechanism of zinc metalloenzymesJ Nutr20001301437144610.1093/jn/130.5.1437S
SchulteDThe international barley sequencing consortium—at the threshold of efficient access to the barley genomePlant Physiol20091491421471:CAS:528:DC%2BD1MXjt1Wqsb0%3D10.1104/pp.108.128967191267062613708
Kishor PBK, Rajesh K, Reddy PS, Seiler C, Sreenivasulu N (2014) Drought stress tolerance mechanisms in barley and Its relevance to cereals. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 161–179. https://doi.org/10.1007/978-3-662-44406-1_9
Fischer WalkerCLEzzatiMBlackREGlobal and regional child mortality and burden of disease attributable to zinc deficiencyEur J Clin Nutr20086359110.1038/ejcn.2008.918270521
WangZLiuQPanFYuanLYinXEffects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheatField Crops Res2015184586410.1016/j.fcr.2015.09.007
SamtiyaMAlukoREDhewaTPlant food anti-nutritional factors and their reduction strategies: an overviewFood Production, Processing and Nutrition20202610.1186/s43014-020-0020-5
de ValençaAWBakeABrouwerIDGillerKEAgronomic biofortification of crops to fight hidden hunger in sub-Saharan AfricaGlob Food Sec20171281410.1016/j.gfs.2016.12.001
Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. Food Agric Org
BroadleyMRWhitePJHammondJPZelkoILuxAZinc in plantsNew Phytol20071736777021:CAS:528:DC%2BD2sXjvFGgsL8%3D10.1111/j.1469-8137.2007.01996.x17286818
FageriaNKInfluence of micronutrients on dry matter yield and interaction with other nutrients in annual cropsPesqui Agropecu Bras2002371765177210.1590/S0100-204X2002001200013
Institute of Medicine Panel on Micronutrients (2001) In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, USA. https://doi.org/10.17226/10026
United Nations Organization (2001) Nutrition throughout life cycle. 4th report on the world nutrition situation. Collaboration with International Food Policy Research Institute, Geneva
Raboy V (1997) Accumula
5027_CR99
5027_CR10
C-y Wu (5027_CR107) 2011; 12
Z Wang (5027_CR103) 2015; 184
Y Genc (5027_CR40) 2002; 53
S Saha (5027_CR90) 2017; 210
AW de Valença (5027_CR29) 2017; 12
S Hussain (5027_CR56) 2016; 399
MJ Lajeunesse (5027_CR65) 2011; 92
CL Doolette (5027_CR30) 2018; 69
5027_CR22
RJ Cousins (5027_CR28) 1998; 57
A Coccina (5027_CR26) 2019; 19
S Frassinetti (5027_CR36) 2006; 25
5027_CR106
5027_CR105
CM Cope (5027_CR27) 2009; 92
YG Zhu (5027_CR109) 2002; 53
E Niyigaba (5027_CR79) 2019; 9
A Singh (5027_CR95) 2019; 29
L Bohn (5027_CR13) 2008; 9
WA Norvell (5027_CR80) 1993; 101
Stomph Tj (5027_CR97) 2009; 14
5027_CR31
5027_CR8
5027_CR9
5027_CR6
P Lombnaes (5027_CR68) 2003; 166
5027_CR5
M Kalayci (5027_CR60) 1999; 63
5027_CR2
5027_CR3
LI Olsen (5027_CR82) 2014; 5
5027_CR1
MR Karaman (5027_CR61) 2010; 8
J Zhu (5027_CR108) 2020; 123
RS MacDonald (5027_CR69) 2000; 130
B Sadeghzadeh (5027_CR89) 2009; 32
G Hacisalihoglu (5027_CR50) 2003; 131
CW Newman (5027_CR78) 2006; 51
H Ekiz (5027_CR32) 1998; 21
NK Fageria (5027_CR34) 2002; 37
Z Wang (5027_CR104) 2018; 86
5027_CR44
5027_CR42
RB Saper (5027_CR92) 2009; 79
C Noulas (5027_CR81) 2018; 49
LE Caulfield (5027_CR21) 2004; 71
GM Manzeke (5027_CR70) 2012; 361
G Andrey (5027_CR4) 2019; 104
A Badr (5027_CR7) 2000; 17
I Cakmak (5027_CR19) 1998; 100
Y Genc (5027_CR41) 2004; 263
AW Peck (5027_CR83) 2008; 47
J Tiong (5027_CR98) 2014; 201
ÂMC Furlani (5027_CR37) 2005; 62
WR Chen (5027_CR23) 2008; 55
JN Hegelund (5027_CR54) 2012; 159
W Viechtbauer (5027_CR101) 2010; 36
KS Eom (5027_CR33) 2016; 26
KM Behall (5027_CR11) 2004; 80
ZA Bhutta (5027_CR12) 1999; 135
Y Genc (5027_CR39) 1999; 51
F Gürel (5027_CR49) 2016; 7
HF Mayland (5027_CR74) 1980; 51
5027_CR58
RD Graham (5027_CR45) 1992; 146
5027_CR67
5027_CR66
V Raboy (5027_CR85) 2020; 9
V Castro-Alba (5027_CR20) 2019; 7
5027_CR63
S Hagmeyer (5027_CR51) 2015; 8
MD Rezaul Karim (5027_CR87) 2018; 49
S Clemens (5027_CR25) 2013; 26
D Schulte (5027_CR94) 2009; 149
KH Brown (5027_CR15) 2002; 75
M Imtiaz (5027_CR57) 2006; 37
L Wang (5027_CR102) 2020; 15
I Cakmak (5027_CR18) 2018; 69
KL Harding (5027_CR52) 2018; 21
SS Chou (5027_CR24) 2004; 383
JN Hegelund (5027_CR53) 2012; 361
5027_CR72
5027_CR71
A Gitto (5027_CR43) 2018; 164
UC Gupta (5027_CR48) 2006; 37
V Sloup (5027_CR96) 2017; 48
G Velu (5027_CR100) 2014; 59
CL Fischer Walker (5027_CR35) 2008; 63
B Hosnedlova (5027_CR55) 2007; 40
H-u Rehman (5027_CR86) 2012; 361
PFD Scheelbeek (5027_CR93) 2018; 115
S Martos (5027_CR73) 2016; 249
B Kenbaev (5027_CR62) 2002; 33
5027_CR88
C Griffey (5027_CR46) 2010; 51
M Samtiya (5027_CR91) 2020; 2
5027_CR84
EJM Joy (5027_CR59) 2015; 389
I Cakmak (5027_CR16) 2008; 302
I Cakmak (5027_CR17) 2010; 58
KA McCall (5027_CR75) 2000; 130
N Gupta (5027_CR47) 2016; 15
P Mongeon (5027_CR76) 2016; 106
CQ Zou (5027_CR110) 2012; 361
Y Genc (5027_CR38) 2007; 58
MR Broadley (5027_CR14) 2007; 173
I Muhammad (5027_CR77) 2012; 416
A Krężel (5027_CR64) 2016; 611
References_xml – reference: ManzekeGMMapfumoPMtambanengweFChikowoRTendayiTCakmakISoil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of ZimbabwePlant Soil201236157691:CAS:528:DC%2BC38Xhs1yntbbP10.1007/s11104-012-1332-2
– reference: Marschner H (1993) Zinc uptake from soils. In: Robson AD (ed) Zinc in soils and plants, The university of western Australia. Springer Netherlands, Dordrecht, pp 59–77. https://doi.org/10.1007/978-94-011-0878-2_5
– reference: CakmakIEnrichment of cereal grains with zinc: Agronomic or genetic biofortification?Plant Soil20083021171:CAS:528:DC%2BD1cXltVKn10.1007/s11104-007-9466-3
– reference: SchulteDThe international barley sequencing consortium—at the threshold of efficient access to the barley genomePlant Physiol20091491421471:CAS:528:DC%2BD1MXjt1Wqsb0%3D10.1104/pp.108.128967191267062613708
– reference: SinghAShivayYSEffects of green manures and zinc fertilizer sources on DTPA-extractable zinc in soil and zinc content in basmati rice plants at different growth stagesPedosphere20192950451510.1016/S1002-0160(17)60442-9
– reference: SloupVJankovskáINechybováSPeřinkováPLangrováIZinc in the animal organism: a ReviewSci Agric Bohem2017481310.1515/sab-2017-0003
– reference: WangLShahAMLiuYJinLWangZXueBPengQRelationship between true digestibility of dietary phosphorus and gastrointestinal bacteria of goatsPLoS One202015e0225018e02250181:CAS:528:DC%2BB3cXhtFGksbbN10.1371/journal.pone.0225018324421737244181
– reference: de ValençaAWBakeABrouwerIDGillerKEAgronomic biofortification of crops to fight hidden hunger in sub-Saharan AfricaGlob Food Sec20171281410.1016/j.gfs.2016.12.001
– reference: KaramanMRKandemirNSahinSCobanSStrategies to select genetic variations of barley (Hordeum vulgare L.) cultivars for agronomic zinc utilization charactersJ Food Agric Environ20108395399
– reference: GürelFÖztürkZNUçarlıCRoselliniDBarley genes as tools to confer abiotic stress tolerance in cropsFront Plant Sci201671137113710.3389/fpls.2016.01137275363054971604
– reference: Genc Y, McDonald GK, Rengel Z, Graham RD Genotypic variation in the response of barley to zinc deficiency. In: Proceedings of the sixth international symposium on genetics and molecular biology of plant nutrition, Dordrecht, 1999b. Plant nutrition — Molecular biology and genetics. Springer Netherlands, pp 205–221
– reference: CousinsRJA role of zinc in the regulation of gene expressionProc Nutr Soc1998573073111:CAS:528:DyaK1cXks1aku7g%3D10.1079/PNS19980045
– reference: Welch R, Webb M, Loneragan J (1982) Zinc in membrane function and its role in phosphorus toxicity. Paper presented at the Proceedings of the ninth plant nutrition colloquium, Warwick, England
– reference: ChenWRFengYChaoYEGenomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiencyRuss J Plant Physiol2008554004091:CAS:528:DC%2BD1cXlvVClsrc%3D10.1134/S1021443708030175
– reference: FageriaNKInfluence of micronutrients on dry matter yield and interaction with other nutrients in annual cropsPesqui Agropecu Bras2002371765177210.1590/S0100-204X2002001200013
– reference: MongeonPPaul-HusAThe journal coverage of Web of Science and Scopus: a comparative analysisScientometrics201610621322810.1007/s11192-015-1765-5
– reference: VeluGOrtiz-MonasterioICakmakIHaoYSinghRPBiofortification strategies to increase grain zinc and iron concentrations in wheatJ Cereal Sci2014593653721:CAS:528:DC%2BC3sXhs1SksLvI10.1016/j.jcs.2013.09.001
– reference: LajeunesseMJOn the meta-analysis of response ratios for studies with correlated and multi-group designsEcology2011922049205510.1890/11-0423.1
– reference: PeckAWMcDonaldGKGrahamRDZinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.)J Cereal Sci2008472662741:CAS:528:DC%2BD1cXislaksbs%3D10.1016/j.jcs.2007.04.006
– reference: DooletteCLFoliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciationJ Exp Bot201869446944811:CAS:528:DC%2BC1MXpt1OntL8%3D10.1093/jxb/ery236299311176093386
– reference: EkizHBagciSAKiralASEkerSGultekinIAlkanACakmakIEffects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soilsJ Plant Nutr199821224522561:CAS:528:DyaK1cXmslemtbg%3D10.1080/01904169809365558
– reference: Liu D-Y, Liu Y-M, Zhang W, Chen X-P, Zou C-Q (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00426
– reference: NorvellWAWelchRMGrowth and nutrient uptake by barley (Hordeum vulgare L. cv Herta): studies using an N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid-buffered nutrient solution technique (II. role of zinc in the uptake and root leakage of mineral nutrients)Plant Physiol19931016196251:CAS:528:DyaK3sXhs1ygs7o%3D10.1104/pp.101.2.61912231717160611
– reference: MartosSGallegoBCabotCLluganyMBarcelóJPoschenriederCZinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thalianaPlant Sci201624913241:CAS:528:DC%2BC28Xot12hsbw%3D10.1016/j.plantsci.2016.05.00127297986
– reference: ViechtbauerWConducting meta-analyses in R with the metaforJournal of Statistical Software20103614810.18637/jss.v036.i03
– reference: BohnLMeyerASRasmussenSKPhytate: impact on environment and human nutrition. A challenge for molecular breedingJ Zhejiang Univ Sci B2008916519110.1631/jzus.B0710640183576202266880
– reference: Awika JM (2011) Major cereal grains production and use around the world. In: Advances in cereal science: implications to food processing and health promotion, vol 1089. ACS Symposium Series. American Chemical Society, Washington, DC, pp 1-13. https://doi.org/10.1021/bk-2011-1089.ch001
– reference: SadeghzadehBRengelZLiCDifferential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solutionJ Plant Nutr200932174417671:CAS:528:DC%2BD1MXhtFSns7fM10.1080/01904160903150974
– reference: RehmanH-uAzizTFarooqMWakeelARengelZZinc nutrition in rice production systems: a reviewPlant Soil20123612032261:CAS:528:DC%2BC38Xhs1yntbbI10.1007/s11104-012-1346-9
– reference: KalayciMTorunBEkerSAydinMOzturkLCakmakIGrain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouseField Crops Res199963879810.1016/S0378-4290(99)00028-3
– reference: Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. Food Agric Org
– reference: ImtiazMAllowayBJKhanPMemonMYSiddiquiSUHAslamMShahSKHZinc deficiency in selected cultivars of wheat and barley as tested in solution cultureCommun Soil Sci Plant Anal200637170317211:CAS:528:DC%2BD28Xms1ajt78%3D10.1080/00103620600710454
– reference: HagmeyerSHaderspeckJCGrabruckerAMBehavioral impairments in animal models for zinc deficiencyFront Behav Neurosci2015844344310.3389/fnbeh.2014.00443256103794285094
– reference: GencYMcDonaldGKGrahamRDA soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plantsAust J Agric Res2002534094211:CAS:528:DC%2BD38XjtlWisr8%3D10.1071/ar01088
– reference: Raboy V (1997) Accumulation and Storage of Phosphate and Minerals. In: Larkins BA, Vasil IK (eds) Cellular and Molecular Biology of Plant Seed Development. Springer Netherlands, Dordrecht, pp 441–477. https://doi.org/10.1007/978-94-015-8909-3_12
– reference: FurlaniÂMCFurlaniPRMedaARDuarteAPEfficiency of maize cultivars for zinc uptake and useSci Agric2005622642731:CAS:528:DC%2BD2MXms1aqtLw%3D10.1590/S0103-90162005000300010
– reference: CakmakIBiofortification and localization of zinc in wheat grainJ Agric Food Chem201058909291021:CAS:528:DC%2BC3cXptlWgt7w%3D10.1021/jf101197h23654236
– reference: Alloway BJ (2008) Zinc in soils and crop nutrition. International fertilizer industry association and international zinc association, Brussels, Belgium and Paris
– reference: Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting PLoS One 7. https://doi.org/10.1371/journal.pone.0050568
– reference: NoulasCTziouvalekasMKaryotisTZinc in soils, water and food cropsJ Trace Elem Med Biol2018492522601:CAS:528:DC%2BC1cXjs1Wgt7c%3D10.1016/j.jtemb.2018.02.00929472130
– reference: GrahamRDAscherJSHynesSCSelecting zinc-efficient cereal genotypes for soils of low zinc statusPlant Soil19921462412501:CAS:528:DyaK3sXitFWqtLc%3D10.1007/bf00012018
– reference: BadrAOn the origin and domestication history of barley (Hordeum vulgare)Mol Biol Evol2000174995101:CAS:528:DC%2BD3cXisVSgt7w%3D10.1093/oxfordjournals.molbev.a02633010742042
– reference: Fischer WalkerCLEzzatiMBlackREGlobal and regional child mortality and burden of disease attributable to zinc deficiencyEur J Clin Nutr20086359110.1038/ejcn.2008.918270521
– reference: EomKSCheongJSLeeSJStructural analyses of zinc finger domains for specific Interactions with DNAJ Microbiol Biotechnol201626201920291:CAS:528:DC%2BC1cXhtlWmt7rM10.4014/jmb.1609.0902127713215
– reference: GencYMcDonaldGKGrahamRDEffect of seed zinc content on early growth of barley (Hordeum vulgare L.) under low and adequate soil zinc supplyAust J Agric Res199951374610.1071/AR99045
– reference: ChouSSCleggMSMommaTYNilesBJDuffyJYDastonGPKeenCLAlterations in protein kinase C activity and processing during zinc-deficiency-induced cell deathBiochem J200438363711:CAS:528:DC%2BD2cXnslOqsL8%3D10.1042/BJ20040074151986391134044
– reference: LombnaesPSinghBRVarietal tolerance to zinc deficiency in wheat and barely grown in chelator-buffered nutrient solution and its effect on uptake of Cu, Fe, and MnJ Plant Nutr Soil Sci200316676831:CAS:528:DC%2BD3sXit1Wnsr0%3D10.1002/jpln.200390015
– reference: Bain LE, Awah PK, Geraldine N, Kindong NP, Sigal Y, Bernard N, Tanjeko AT (2013) Malnutrition in sub-saharan africa: burden, causes and prospects. Pan Afr Med J 15:120–120. https://doi.org/10.11604/pamj.2013.15.120.2535
– reference: GuptaNRamHKumarBMechanism of zinc absorption in plants: uptake, transport, translocation and accumulationRev Environ Sci Biotechnol201615891091:CAS:528:DC%2BC28XitFaqtLo%3D10.1007/s11157-016-9390-1
– reference: Liu D-Y,  Zhang W, Liu Y-M, Chen X-P, Zou C-Q (2020) Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00188
– reference: BehallKMScholfieldDJHallfrischJDiets containing barley significantly reduce lipids in mildly hypercholesterolemic men and womenAm J Clin Nutr200480118511931:CAS:528:DC%2BD2cXhtVSnt73E10.1093/ajcn/80.5.118515531664
– reference: HardingKLAguayoVMWebbPHidden hunger in south Asia: a review of recent trends and persistent challengesPublic Health Nutr20182178579510.1017/S136898001700320229256361
– reference: WuC-yFengYShohagMJILuL-lWeiY-yGaoCYangX-eCharacterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotypeJ Zhejiang Univ Sci B2011124084181:CAS:528:DC%2BC3MXlslaht7g%3D10.1631/jzus.B1000291215284963087098
– reference: BroadleyMRWhitePJHammondJPZelkoILuxAZinc in plantsNew Phytol20071736777021:CAS:528:DC%2BD2sXjvFGgsL8%3D10.1111/j.1469-8137.2007.01996.x17286818
– reference: MuhammadIPuschenreiterMWenzelWWCadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plantsSci Total Environ20124164905001:CAS:528:DC%2BC38XhsV2jtLs%3D10.1016/j.scitotenv.2011.11.02922177029
– reference: Marschner P, Rengel Z (2012) Chapter 12 - Nutrient availability in soils. In: Marschner P (ed) Marschner's mineral nutrition of higher plants. 3rd edn. Academic Press, San Diego, pp 315–330. https://doi.org/10.1016/B978-0-12-384905-2.00012-1
– reference: CaulfieldLERichardSABlackREUndernutrition as an underlying cause of malaria morbidity and mortality in children less than five years oldAm J Trop Med Hyg200471556310.4269/ajtmh.2004.71.55
– reference: Castro-AlbaVLazarteCEBergenståhlBGranfeldtYPhytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailabilityFood Sci Nutr20197285428651:CAS:528:DC%2BC1MXhvVOitrrN10.1002/fsn3.1127315725796766547
– reference: CakmakIMorphological and physiological differences in the response of cereals to zinc deficiencyEuphytica19981003493571:CAS:528:DyaK1cXivFWqs7g%3D10.1023/a:1018318005103
– reference: ZhuJLiuWA tale of two databases: the use of Web of Science and Scopus in academic papersScientometrics202012332133510.1007/s11192-020-03387-8
– reference: GencYMcDonaldGKGrahamRDDifferential expression of zinc efficiency during the growing season of barleyPlant Soil20042632732821:CAS:528:DC%2BD2cXpsF2lur4%3D10.1023/b:Plso.0000047741.52700.29
– reference: HosnedlovaBTravnicekJSochMCurrent view of the significance of zinc for ruminants: a reviewAgric Trop Subtrop2007405764
– reference: HegelundJNSchillerMKicheyTHansenTHPedasPHustedSSchjoerringJKBarley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc bindingPlant Physiol2012159112511371:CAS:528:DC%2BC38XhtVGlsbjJ10.1104/pp.112.197798225821323387699
– reference: HussainSRengelZMohammadiSAEbadi-SegherlooAMaqsoodMAMapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare)Plant Soil20163991932081:CAS:528:DC%2BC2MXhs1SltL3K10.1007/s11104-015-2684-1
– reference: Rezaul KarimMDTianDZhangY-QChenF-JZouC-QFine roots for uptake and translocation of zinc into young leaves as important traits for zinc efficiency of maize genotypesCommun Soil Sci Plant Anal201849234523561:CAS:528:DC%2BC1cXhtlOisLbI10.1080/00103624.2018.1499769
– reference: BhuttaZAPrevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trialsZinc Investigators' Collaborative Group. J Pediatr19991356896971:CAS:528:DC%2BD3cXls1yhsA%3D%3D
– reference: Institute of Medicine Panel on Micronutrients (2001) In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, USA. https://doi.org/10.17226/10026
– reference: WangZContribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilizationPlant Growth Regul2018861591671:CAS:528:DC%2BC1cXhtFGgtLnM10.1007/s10725-018-0418-0
– reference: ZouCQBiofortification of wheat with zinc through zinc fertilization in seven countriesPlant Soil20123611191301:CAS:528:DC%2BC38Xhs1yntbbK10.1007/s11104-012-1369-2
– reference: Baik B-K (2014) Chapter 10 - Processing of barley grain for food and feed. In: Shewry PR, Ullrich SE (eds) Barley (Second Edition). AACC International Press, pp 233–268. https://doi.org/10.1016/B978-1-891127-79-3.50010-X
– reference: KrężelAMaretWThe biological inorganic chemistry of zinc ionsArch Biochem Biophys20166113191:CAS:528:DC%2BC28XnslGrtLs%3D10.1016/j.abb.2016.04.010271172345120989
– reference: Sadeghzadeh B, Rengel Z (2011) Zinc in soils and crop nutrition. In: The molecular and physiological basis of nutrient use efficiency in crops. John Wiley & Sons, UK. https://doi.org/10.1002/9780470960707.ch16
– reference: Baron VS, Okine E, Campbell A (2000) Optimizing yield and quality of cereal silage. In: Proceedings of the 2000 western canadian dairy seminar Lacombe, Canada
– reference: Chattha MU et al (2017) Biofortification of wheat cultivars to combat zinc deficiency Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00281
– reference: SaperRBRashRZinc: an essential micronutrientAm Fam Physician200979768772201410962820120
– reference: Ali MB, Salem E, Sayed MA-EA (2017) Genetic variability of barley (Hordeum vulgare L.) genotypes in phytoremediation of heavy metals-contaminated soil. Egypt J Agron 39:383–399. https://doi.org/10.21608/agro.2017.1841.1078
– reference: MaylandHFRosenauRCFlorenceARGrazing cow and calf responses to zinc supplementationJ Anim Sci1980519669741:CAS:528:DyaL3cXmtVaqtb0%3D10.2527/jas1980.514966x7462120
– reference: Gonzalez A, Gil-Diaz MM, Pinilla P, Lobo MC (2017) Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. Water Air Soil Pollut 228. https://doi.org/10.1007/s11270-017-3507-1
– reference: GuptaUCKalraYPResidual effect of copper and zinc from fertilizers on plant concentration, phytotoxicity, and crop yield responseCommun Soil Sci Plant Anal200637250525111:CAS:528:DC%2BD28XhtFelsL7F10.1080/00103620600822952
– reference: BrownKHPeersonJMRiveraJAllenLHEffect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trialsAm J Clin Nutr200275106210711:CAS:528:DC%2BD38XktlSmtrs%3D10.1093/ajcn/75.6.106212036814
– reference: TjStomphJiangWStruikPCZinc biofortification of cereals: rice differs from wheat and barleyTrends in Plant Science2009141231241:CAS:528:DC%2BD1MXjtF2lt7g%3D10.1016/j.tplants.2009.01.001
– reference: ZhuYGSmithFASmithSEPhosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand cultureAust J Agric Res2002532112161:CAS:528:DC%2BD38Xit1amtLs%3D10.1071/ar01085
– reference: HegelundJNPedasPHustedSSchillerMSchjoerringJKZinc fluxes into developing barley grains: use of stable Zn isotopes to separate root uptake from remobilization in plants with contrasting Zn statusPlant Soil20123612412501:CAS:528:DC%2BC38Xhs1yntbnJ10.1007/s11104-012-1272-x
– reference: ScheelbeekPFDEffect of environmental changes on vegetable and legume yields and nutritional qualityProceedings of the National Academy of Sciences2018115680468091:CAS:528:DC%2BC1cXhvFentbnP10.1073/pnas.1800442115
– reference: WangZLiuQPanFYuanLYinXEffects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheatField Crops Res2015184586410.1016/j.fcr.2015.09.007
– reference: CakmakIKutmanUBAgronomic biofortification of cereals with zinc: a reviewEur J Soil Sci20186917218010.1111/ejss.12437
– reference: RaboyVLow phytic acid Crops: Observations Based On Four Decades of ResearchPlants (Basel)202091401:CAS:528:DC%2BB3cXhtlequ7%2FP10.3390/plants9020140
– reference: KenbaevBSadeBResponse of field-grown barley cultivars grown on zinc-deficient soil to zinc applicationCommun Soil Sci Plant Anal2002335335441:CAS:528:DC%2BD38XislCqsL4%3D10.1081/CSS-120002762
– reference: NiyigabaETwizerimanaAMugenziINgnadongWAYeYPWuBMHaiJBWinter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizersAgron201992501:CAS:528:DC%2BC1MXisVOjs7rN10.3390/agronomy9050250
– reference: FrassinettiSBronzettiGCaltavuturoLCiniMCroceCDThe role of zinc in life: a reviewJ Environ Pathol Toxicol Oncol2006255976101:CAS:528:DC%2BD28XhtFOrtrnF10.1615/JEnvironPatholToxicolOncol.v25.i3.40
– reference: OlsenLIPalmgrenMGMany rivers to cross: the journey of zinc from soil to seedFront Plant Sci20145303010.3389/fpls.2014.00030245751043921580
– reference: Dresios J, Chan Y-L, Wool IG (2005) Ribosomal zinc fnger proteins: The structure and the function of yeast YL37a. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Springer US, Boston, pp 91–98. https://doi.org/10.1007/0-387-27421-9_14
– reference: CopeCMMackenzieAMWildeDSinclairLAEffects of level and form of dietary zinc on dairy cow performance and healthJ Dairy Sci200992212821351:CAS:528:DC%2BD1MXlsFyms78%3D10.3168/jds.2008-123219389970
– reference: GriffeyCBrooksWKurantzMThomasonWTaylorFObertDMoreauRFloresRSohnMHicksKGrain composition of Virginia winter barley and implications for use in feed, food, and biofuels productionJ Cereal Sci20105141491:CAS:528:DC%2BC3cXnsVyltA%3D%3D10.1016/j.jcs.2009.09.004
– reference: HacisalihogluGHartJJWangYHCakmakIKochianLVZinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheatPlant Physiol20031315956021:CAS:528:DC%2BD3sXhtlyjsrs%3D10.1104/pp.01182512586883166835
– reference: NewmanCWNewmanRKA brief history of barley foodsCereal Foods World2006514710.1094/cfw-51-0004
– reference: GencYHuangCYLangridgePA study of the role of root morphological traits in growth of barley in zinc-deficient soilJ Exp Bot200758277527841:CAS:528:DC%2BD2sXhtFWitLnO10.1093/jxb/erm14217609531
– reference: SahaSAgronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailabilityField Crops Res2017210526010.1016/j.fcr.2017.05.023
– reference: SamtiyaMAlukoREDhewaTPlant food anti-nutritional factors and their reduction strategies: an overviewFood Production, Processing and Nutrition20202610.1186/s43014-020-0020-5
– reference: ClemensSDeinleinUAhmadiHHorethSUraguchiSNicotianamine is a major player in plant Zn homeostasisBiometals2013266236321:CAS:528:DC%2BC3sXht1ShsbfK10.1007/s10534-013-9643-123775667
– reference: Astley S, Finglas P (2016) Nutrition and Health. In: Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03425-9
– reference: McCallKAHuangC-cFierkeCAFunction and mechanism of zinc metalloenzymesJ Nutr20001301437144610.1093/jn/130.5.1437S
– reference: CoccinaACavagnaroTRPellegrinoEErcoliLMcLaughlinMJWatts-WilliamsSJThe mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grainBMC Plant Biol20191913310.1186/s12870-019-1741-y309671086456977
– reference: AndreyGThe role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soilsAppl Geochem2019104931011:CAS:528:DC%2BC1MXmtlWmt7c%3D10.1016/j.apgeochem.2019.03.017
– reference: TiongJHvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supplyNew Phytol20142011311431:CAS:528:DC%2BC3sXhvVGktLnP10.1111/nph.1246824033183
– reference: GittoAFrickeWZinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expressionPhysiol Plant20181641761901:CAS:528:DC%2BC1cXht1aktbjO10.1111/ppl.1269729381217
– reference: MacDonaldRSThe role of zinc in growth and cell proliferationJ Nutr20001301500150810.1093/jn/130.5.1500S
– reference: Kishor PBK, Rajesh K, Reddy PS, Seiler C, Sreenivasulu N (2014) Drought stress tolerance mechanisms in barley and Its relevance to cereals. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 161–179. https://doi.org/10.1007/978-3-662-44406-1_9
– reference: JoyEJMSteinAJYoungSDAnderELWattsMJBroadleyMRZinc-enriched fertilisers as a potential public health intervention in AfricaPlant Soil20153891241:CAS:528:DC%2BC2MXjvF2ht7w%3D10.1007/s11104-015-2430-8
– reference: United Nations Organization (2001) Nutrition throughout life cycle. 4th report on the world nutrition situation. Collaboration with International Food Policy Research Institute, Geneva
– volume: 106
  start-page: 213
  year: 2016
  ident: 5027_CR76
  publication-title: Scientometrics
  doi: 10.1007/s11192-015-1765-5
– volume: 15
  start-page: 89
  year: 2016
  ident: 5027_CR47
  publication-title: Rev Environ Sci Biotechnol
  doi: 10.1007/s11157-016-9390-1
– volume: 17
  start-page: 499
  year: 2000
  ident: 5027_CR7
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026330
– volume: 184
  start-page: 58
  year: 2015
  ident: 5027_CR103
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2015.09.007
– volume: 131
  start-page: 595
  year: 2003
  ident: 5027_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.011825
– ident: 5027_CR10
– ident: 5027_CR66
  doi: 10.3389/fpls.2019.00426
– ident: 5027_CR3
– volume: 63
  start-page: 87
  year: 1999
  ident: 5027_CR60
  publication-title: Field Crops Res
  doi: 10.1016/S0378-4290(99)00028-3
– volume: 149
  start-page: 142
  year: 2009
  ident: 5027_CR94
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.128967
– ident: 5027_CR99
– volume: 302
  start-page: 1
  year: 2008
  ident: 5027_CR16
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9466-3
– ident: 5027_CR31
  doi: 10.1007/0-387-27421-9_14
– volume: 12
  start-page: 408
  year: 2011
  ident: 5027_CR107
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.B1000291
– volume: 51
  start-page: 41
  year: 2010
  ident: 5027_CR46
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2009.09.004
– volume: 49
  start-page: 252
  year: 2018
  ident: 5027_CR81
  publication-title: J Trace Elem Med Biol
  doi: 10.1016/j.jtemb.2018.02.009
– volume: 361
  start-page: 57
  year: 2012
  ident: 5027_CR70
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1332-2
– volume: 19
  start-page: 133
  year: 2019
  ident: 5027_CR26
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-019-1741-y
– volume: 58
  start-page: 9092
  year: 2010
  ident: 5027_CR17
  publication-title: J Agric Food Chem
  doi: 10.1021/jf101197h
– volume: 5
  start-page: 30
  year: 2014
  ident: 5027_CR82
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00030
– ident: 5027_CR63
  doi: 10.1007/978-3-662-44406-1_9
– volume: 75
  start-page: 1062
  year: 2002
  ident: 5027_CR15
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/75.6.1062
– volume: 101
  start-page: 619
  year: 1993
  ident: 5027_CR80
  publication-title: Plant Physiol
  doi: 10.1104/pp.101.2.619
– volume: 135
  start-page: 689
  year: 1999
  ident: 5027_CR12
  publication-title: Zinc Investigators' Collaborative Group. J Pediatr
– volume: 15
  start-page: e0225018
  year: 2020
  ident: 5027_CR102
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0225018
– volume: 40
  start-page: 57
  year: 2007
  ident: 5027_CR55
  publication-title: Agric Trop Subtrop
– volume: 164
  start-page: 176
  year: 2018
  ident: 5027_CR43
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12697
– volume: 71
  start-page: 55
  year: 2004
  ident: 5027_CR21
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2004.71.55
– volume: 63
  start-page: 591
  year: 2008
  ident: 5027_CR35
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2008.9
– ident: 5027_CR22
  doi: 10.3389/fpls.2017.00281
– volume: 166
  start-page: 76
  year: 2003
  ident: 5027_CR68
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200390015
– ident: 5027_CR106
  doi: 10.1371/journal.pone.0050568
– ident: 5027_CR1
– volume: 86
  start-page: 159
  year: 2018
  ident: 5027_CR104
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-018-0418-0
– volume: 58
  start-page: 2775
  year: 2007
  ident: 5027_CR38
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm142
– ident: 5027_CR58
  doi: 10.17226/10026
– volume: 36
  start-page: 1
  year: 2010
  ident: 5027_CR101
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v036.i03
– volume: 249
  start-page: 13
  year: 2016
  ident: 5027_CR73
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2016.05.001
– volume: 37
  start-page: 1765
  year: 2002
  ident: 5027_CR34
  publication-title: Pesqui Agropecu Bras
  doi: 10.1590/S0100-204X2002001200013
– volume: 51
  start-page: 37
  year: 1999
  ident: 5027_CR39
  publication-title: Aust J Agric Res
  doi: 10.1071/AR99045
– ident: 5027_CR88
  doi: 10.1002/9780470960707.ch16
– volume: 26
  start-page: 2019
  year: 2016
  ident: 5027_CR33
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1609.09021
– volume: 210
  start-page: 52
  year: 2017
  ident: 5027_CR90
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2017.05.023
– volume: 69
  start-page: 4469
  year: 2018
  ident: 5027_CR30
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery236
– volume: 146
  start-page: 241
  year: 1992
  ident: 5027_CR45
  publication-title: Plant Soil
  doi: 10.1007/bf00012018
– volume: 361
  start-page: 119
  year: 2012
  ident: 5027_CR110
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1369-2
– volume: 92
  start-page: 2128
  year: 2009
  ident: 5027_CR27
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2008-1232
– volume: 12
  start-page: 8
  year: 2017
  ident: 5027_CR29
  publication-title: Glob Food Sec
  doi: 10.1016/j.gfs.2016.12.001
– volume: 8
  start-page: 443
  year: 2015
  ident: 5027_CR51
  publication-title: Front Behav Neurosci
  doi: 10.3389/fnbeh.2014.00443
– volume: 115
  start-page: 6804
  year: 2018
  ident: 5027_CR93
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1800442115
– volume: 100
  start-page: 349
  year: 1998
  ident: 5027_CR19
  publication-title: Euphytica
  doi: 10.1023/a:1018318005103
– volume: 37
  start-page: 2505
  year: 2006
  ident: 5027_CR48
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103620600822952
– volume: 7
  start-page: 1137
  year: 2016
  ident: 5027_CR49
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01137
– volume: 69
  start-page: 172
  year: 2018
  ident: 5027_CR18
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12437
– volume: 55
  start-page: 400
  year: 2008
  ident: 5027_CR23
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443708030175
– volume: 383
  start-page: 63
  year: 2004
  ident: 5027_CR24
  publication-title: Biochem J
  doi: 10.1042/BJ20040074
– volume: 2
  start-page: 6
  year: 2020
  ident: 5027_CR91
  publication-title: Food Production, Processing and Nutrition
  doi: 10.1186/s43014-020-0020-5
– volume: 57
  start-page: 307
  year: 1998
  ident: 5027_CR28
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS19980045
– volume: 399
  start-page: 193
  year: 2016
  ident: 5027_CR56
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2684-1
– volume: 8
  start-page: 395
  year: 2010
  ident: 5027_CR61
  publication-title: J Food Agric Environ
– volume: 9
  start-page: 140
  year: 2020
  ident: 5027_CR85
  publication-title: Plants (Basel)
  doi: 10.3390/plants9020140
– volume: 389
  start-page: 1
  year: 2015
  ident: 5027_CR59
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2430-8
– volume: 48
  start-page: 13
  year: 2017
  ident: 5027_CR96
  publication-title: Sci Agric Bohem
  doi: 10.1515/sab-2017-0003
– ident: 5027_CR105
– volume: 51
  start-page: 4
  year: 2006
  ident: 5027_CR78
  publication-title: Cereal Foods World
  doi: 10.1094/cfw-51-0004
– volume: 47
  start-page: 266
  year: 2008
  ident: 5027_CR83
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2007.04.006
– volume: 29
  start-page: 504
  year: 2019
  ident: 5027_CR95
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60442-9
– volume: 92
  start-page: 2049
  year: 2011
  ident: 5027_CR65
  publication-title: Ecology
  doi: 10.1890/11-0423.1
– volume: 21
  start-page: 785
  year: 2018
  ident: 5027_CR52
  publication-title: Public Health Nutr
  doi: 10.1017/S1368980017003202
– volume: 37
  start-page: 1703
  year: 2006
  ident: 5027_CR57
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103620600710454
– volume: 51
  start-page: 966
  year: 1980
  ident: 5027_CR74
  publication-title: J Anim Sci
  doi: 10.2527/jas1980.514966x
– volume: 14
  start-page: 123
  year: 2009
  ident: 5027_CR97
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2009.01.001
– volume: 611
  start-page: 3
  year: 2016
  ident: 5027_CR64
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2016.04.010
– ident: 5027_CR6
  doi: 10.1021/bk-2011-1089.ch001
– volume: 25
  start-page: 597
  year: 2006
  ident: 5027_CR36
  publication-title: J Environ Pathol Toxicol Oncol
  doi: 10.1615/JEnvironPatholToxicolOncol.v25.i3.40
– ident: 5027_CR71
  doi: 10.1007/978-94-011-0878-2_5
– volume: 159
  start-page: 1125
  year: 2012
  ident: 5027_CR54
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.197798
– volume: 104
  start-page: 93
  year: 2019
  ident: 5027_CR4
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2019.03.017
– ident: 5027_CR84
  doi: 10.1007/978-94-015-8909-3_12
– volume: 123
  start-page: 321
  year: 2020
  ident: 5027_CR108
  publication-title: Scientometrics
  doi: 10.1007/s11192-020-03387-8
– volume: 53
  start-page: 211
  year: 2002
  ident: 5027_CR109
  publication-title: Aust J Agric Res
  doi: 10.1071/ar01085
– volume: 59
  start-page: 365
  year: 2014
  ident: 5027_CR100
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2013.09.001
– volume: 33
  start-page: 533
  year: 2002
  ident: 5027_CR62
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1081/CSS-120002762
– volume: 62
  start-page: 264
  year: 2005
  ident: 5027_CR37
  publication-title: Sci Agric
  doi: 10.1590/S0103-90162005000300010
– volume: 26
  start-page: 623
  year: 2013
  ident: 5027_CR25
  publication-title: Biometals
  doi: 10.1007/s10534-013-9643-1
– ident: 5027_CR42
  doi: 10.1007/978-94-017-2685-6_24
– volume: 80
  start-page: 1185
  year: 2004
  ident: 5027_CR11
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/80.5.1185
– ident: 5027_CR9
  doi: 10.11604/pamj.2013.15.120.2535
– volume: 9
  start-page: 250
  year: 2019
  ident: 5027_CR79
  publication-title: Agron
  doi: 10.3390/agronomy9050250
– volume: 32
  start-page: 1744
  year: 2009
  ident: 5027_CR89
  publication-title: J Plant Nutr
  doi: 10.1080/01904160903150974
– ident: 5027_CR8
  doi: 10.1016/B978-1-891127-79-3.50010-X
– volume: 130
  start-page: 1500
  year: 2000
  ident: 5027_CR69
  publication-title: J Nutr
  doi: 10.1093/jn/130.5.1500S
– volume: 9
  start-page: 165
  year: 2008
  ident: 5027_CR13
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.B0710640
– volume: 49
  start-page: 2345
  year: 2018
  ident: 5027_CR87
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2018.1499769
– volume: 21
  start-page: 2245
  year: 1998
  ident: 5027_CR32
  publication-title: J Plant Nutr
  doi: 10.1080/01904169809365558
– volume: 361
  start-page: 241
  year: 2012
  ident: 5027_CR53
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1272-x
– volume: 416
  start-page: 490
  year: 2012
  ident: 5027_CR77
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.11.029
– volume: 130
  start-page: 1437
  year: 2000
  ident: 5027_CR75
  publication-title: J Nutr
  doi: 10.1093/jn/130.5.1437S
– ident: 5027_CR44
  doi: 10.1007/s11270-017-3507-1
– volume: 7
  start-page: 2854
  year: 2019
  ident: 5027_CR20
  publication-title: Food Sci Nutr
  doi: 10.1002/fsn3.1127
– volume: 263
  start-page: 273
  year: 2004
  ident: 5027_CR41
  publication-title: Plant Soil
  doi: 10.1023/b:Plso.0000047741.52700.29
– volume: 201
  start-page: 131
  year: 2014
  ident: 5027_CR98
  publication-title: New Phytol
  doi: 10.1111/nph.12468
– volume: 79
  start-page: 768
  year: 2009
  ident: 5027_CR92
  publication-title: Am Fam Physician
– volume: 53
  start-page: 409
  year: 2002
  ident: 5027_CR40
  publication-title: Aust J Agric Res
  doi: 10.1071/ar01088
– ident: 5027_CR5
  doi: 10.1016/B978-0-08-100596-5.03425-9
– ident: 5027_CR72
  doi: 10.1016/B978-0-12-384905-2.00012-1
– volume: 173
  start-page: 677
  year: 2007
  ident: 5027_CR14
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.01996.x
– ident: 5027_CR67
  doi: 10.3389/fpls.2020.00188
– volume: 361
  start-page: 203
  year: 2012
  ident: 5027_CR86
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1346-9
– ident: 5027_CR2
  doi: 10.21608/agro.2017.1841.1078
SSID ssj0003216
Score 2.3651094
Snippet Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient...
Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient...
Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work...
Background and aimsZinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient...
BACKGROUND AND AIMS : Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Agriculture
animal and human health
Animal health
Barley
Bioaccumulation
biofortification
Biomedical and Life Sciences
Cultivars
Ecology
Fertilization
Gene mapping
genotype
Genotypes
Grain
Growth
Hordeum vulgare
Life Sciences
Measurement
Meta-analysis
Nutrient deficiency
Phenotypes
Plant breeding
Plant Physiology
Plant Sciences
plant-based diet
Quantitative trait loci
REGULAR ARTICLE
Selective breeding
Shoots
soil
Soil Science & Conservation
Substrates
Translocation
Zinc
Zinc in the body
Subtitle a meta-analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0VNCH41w9XD2PCIIPGth8NG1968kdh6BPLiz4EDJpKgteK3d7D-tf7ySb7rKigg-lhU4mbacz-Q2ZD4DXTnamVrXgAk3Ftek6jqJUvK5962lQaFPnuU-fzeVcf1wUi5wUdjNGu49bkslS75LdaKXSPIYUzApypri6C_cK8t1jINdcNlv7q2RqeBov-KysFzlV5s889pajbJQ3gYl7kPO3XdK0-FwcwWFGjazZiPkx3An9BB41365z5YwwgftnA-G89QQenKdC1Osn8LUhS0acGQFThsuBTikyKAmDDR37uew9W_YM45b7OpGlnn3M9S0dyyuac5Mo-Z45dhVWjrtcxOQpzC_Ov3y45LmZAveEeFYxYh9daCtsCcC16BwKg4g1yhiaSSAvdJ00VfDRA4qdhDzOJHoM2Hn0VaeO4aAf-vAMWIkCVaHaQPqsNVZVrZ2sCIh5ukQZpiDGb2p9rjQeG158t7sayVEOluRgkxysmsLb7Zgfmzob_6R-E0VloxISZ-9yLgE9XyxnZRtygwpRilpP4WSPkpTH790-TsLezqkrEwvSCxo3St9mrb6xZN6kKnQpZ1N4tb0dWcZItT4Mt0RjlIk-nKCHfDf-NTsWf3-n5_9H_gIeyvQfx3C3EzhYXd-Gl4SPVnia1OEXUU4Cxw
  priority: 102
  providerName: Springer Nature
Title Avenues for biofortification of zinc in barley for human and animal health
URI https://www.jstor.org/stable/48694301
https://link.springer.com/article/10.1007/s11104-021-05027-3
https://www.proquest.com/docview/2572354720
https://www.proquest.com/docview/2636576813
Volume 466
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEA9e64M-iJ4eV-8sEQQfNNgku9usL7LV1kPxELFQ8WHJZLNS8Hbvo_dw_vXOZNOWCt7DkkA-N5OZ_JJMZhh7YVWd5TqXQkJmRJLVtQA51iLPXeWwkK-C57kvp9nJPPm0SBfxwO0qqlWuZWIQ1FXr6Iz8DU4tpdNkrEbvzi8EeY2i29XoQmOP9VEEG9Nj_cn09Ou3jSzWKjg_pYgYjfNFfDbTPZ7DlS8RpKIwSnFzJvTO0hQFdKekuAM__7kxDQvR7CF7EBEkLzqSP2J3fLPP7he_LqMVDb_P7k5axHw3j9nPAmUZ1scRmnJYthgE3aBADt7W_M-ycXzZcKBL95uQLXjt47ap8FueYUvdU8m33PIzv7LCRjMmT9h8Nv3-_kREdwrCIeZZkc4-WF8ZqBDCVWAtyAwAclCknIkwz9e1yox3tAciX0IORgoceKgdOFPrA9Zr2sYfMj4GCTrVlUeOThIwJk-sMgjFHEZB-QGT65EsXbQ1Ti4vfpdbK8k0-iWOfhlGv9QD9mpT5ryztHFr7pdEoJLYEGt2Nr4mwP6RQauywI1QKscyTwbseCcnso_bST4IJN60mZiMTNJLLLemeRn5-qrczsIBe75JpipJV63x7TXmyXRGuziJnXy9nivbKv7_T09vb_GI3VNhtpKC2zHrrS6v_TNERCsYsn4x-TCZUfjxx-fpMLLBkO3NVfEXE40IXw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKhXQX0QrRZPq66g-KCLyW6ylwgiV2252vYQaeHAh5jZbOTAJrW9IueP8jc6s0nuOMG-9SEkkN3Z3MzsfNzOB8DzXJUm1WkoQzSJjExZSgwHWqapLSxNcoXvPHc4NqPj6NMknqzBny4XhsMqO5noBXVRW_6P_A2xltJxNFDB-9OfkrtG8elq10KjYYt9N_9FLtv5u72PRN8XSu3uHH0YybargLSk-mccuo65KxIsyJIpMM8xNIiYouIYRbJ2XFkqkzjLrgC31LEYKLTosLRok1IT3GuwHmkTqB6sb--MP39ZyH6tfLNVfpDBIJ20aTpNsh5p2khySEQQkzMo9YoqbBVCExS5Yu7-c0LrFd_uHbjdWqxi2LDYXVhz1QbcGn4_a6t2uA24vl2TjTm_B1-HJDsJniBTWOC0ppuPRfLkF3Upfk8rK6aVQD7kn_thvkugyKuCrukJrdSkZr4VuThxs1zmbdmU-3B8JYjehF5VV-4BiAGGqGNdOJIgUYRJkka5Ssj0s_SIyvUh7DCZ2ba2ObfY-JEtqzIz9jPCfuaxn-k-vFrMOW0qe1w6-iUTKONtT5Bt3mYv0PdxAa1sSI5XHA7CNOrD1spI2q525fWmJ_FizSgxXAI_pHkdzbNWjpxnS67vw7PFawbJsXGVqy9ojNGGvcaQPvJ1xytLEP__TQ8vX_Ep3BgdHR5kB3vj_UdwU3nO5eC6LejNzi7cY7LGZvik3QICvl31rvsLShxD1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxNBcKipiD6IVovRqisoPujS3O59CiKpbWithiIWAj6cN3t7ErB3tU2R-NP8dc7s7SVEsG99OO7gdmcvs_OZnQ-A54Wq4kxngQwwTmUYV5XEINEyy0xpaJItXee5T-N4_zj8MIkma_Cny4XhsMpOJjpBXTaG_yPfJtJSOgoTNdiufFjE0e7o3elPyR2k-KS1a6fRksihnf8i9-387cEu7fULpUZ7X97vS99hQBoyA2Ycxo6FLVMsyaopsSgwiBExQ8XximT52KpScWoNuwXcXsfgQKFBi5VBk1aa4F6D9YS9oh6s7-yNjz4v9IBWrvEqP8hBkk18yk6buEdaN5QcHjGIyDGUekUteuXQBkiumL7_nNY6JTi6A7e99SqGLbndhTVbb8Ct4fczX8HDbsD1nYbszfk9-DokOUrwBJnFAqcN3VxckiMF0VTi97Q2YloL5AP_uRvmOgaKoi7pmp7QSm2a5htRiBM7K2ThS6jch-MrQfQm9Oqmtg9AJBigjnRpSZqEIaZpFhYqJTPQ0CMq24egw2RufJ1zbrfxI19WaGbs54T93GE_1314tZhz2lb5uHT0S96gnEUAQTaFz2Sg7-NiWvmQnLAoSIIs7MPWykhiXbPyetNt8WLNMI25HH5A87o9z71MOc-XHNCHZ4vXDJLj5GrbXNCYWMfsQQb0ka87WlmC-P9venj5ik_hBnFb_vFgfPgIbipHuBxntwW92dmFfUyG2QyfeA4Q8O2qme4vidNICg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Avenues+for+biofortification+of+zinc+in+barley+for+human+and+animal+health%3A+a+meta-analysis&rft.jtitle=Plant+and+soil&rft.au=Khan%2C+Waleed+Amjad&rft.au=Shabala+Sergey&rft.au=Cuin%2C+Tracey+Ann&rft.au=Zhou+Meixue&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=466&rft.issue=1-2&rft.spage=101&rft.epage=119&rft_id=info:doi/10.1007%2Fs11104-021-05027-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon