Avenues for biofortification of zinc in barley for human and animal health a meta-analysis
Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley ( Hordeum vulgare...
Saved in:
Published in | Plant and soil Vol. 466; no. 1/2; pp. 101 - 119 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.09.2021
Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims
Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (
Hordeum vulgare
L.).
Methods
A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability.
Results
Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others.
Conclusions
This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley. |
---|---|
AbstractList | Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (Hordeum vulgare L.). Methods A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Results Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. Conclusions This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley. Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (Hordeum vulgare L.). A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley. Background and aimsZinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley (Hordeum vulgare L.).MethodsA meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability.ResultsHigher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others.ConclusionsThis meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley. Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work explores the effects of both soil factors and genotype on Zn accumulation in aboveground tissues in barley ( Hordeum vulgare L.). Methods A meta-analysis was performed on collected articles data published between 1945-2020 describing Zn concentrations in barley shoots and grains in plants grown at different levels of Zn availability. Results Higher Zn levels in the growth substrate resulted in increased Zn concentrations in barley shoots and grains. Of note is that Zn concentrations were found to be highly cultivar specific, with a 3.5-fold (shoots) to 4.5-fold (grains) difference reported between high and low Zn accumulating cultivars under the same conditions. Additionally, the Zn translocation and remobilisation rate from shoots to grains were also 2-fold greater in Zn-efficient cultivars than others. Conclusions This meta-analysis is the first to collect all available data regarding Zn concentrations in barley. The findings demonstrate that Zn concentrations in aboveground parts of barley are highly cultivar-specific and change with substrate Zn. Target Zn concentrations in barley could be achieved through selective breeding and optimal Zn fertilisation. Further investigations revealing the major quantitative trait locus (QTLs) and candidate genes associated with desirable Zn phenotypes would allow better understanding of Zn use mechanisms in barley. |
Audience | Academic |
Author | Shabala, Sergey Penrose, Beth Zhou, Meixue Khan, Waleed Amjad Cuin, Tracey Ann |
Author_xml | – sequence: 1 givenname: Waleed Amjad surname: Khan fullname: Khan, Waleed Amjad – sequence: 2 givenname: Sergey surname: Shabala fullname: Shabala, Sergey – sequence: 3 givenname: Tracey Ann surname: Cuin fullname: Cuin, Tracey Ann – sequence: 4 givenname: Meixue surname: Zhou fullname: Zhou, Meixue – sequence: 5 givenname: Beth surname: Penrose fullname: Penrose, Beth |
BookMark | eNp9kV9rHCEUxaWk0E3aL1AoDPSlL5Peq6POPC6hfwnkJYG8iTqadZnVVGcL6aevu1MaGkoQEeX87j3Xc0pOYoqOkLcI5wggPxZEhK4Fii1woLJlL8gKuWQtByZOyAqA0RbkcPuKnJayhcMdxYp8X_90ce9K41NuTEj1mIMPVs8hxSb55leItgmxMTpP7uEo2-x3OjY6jnWHnZ6ajdPTvHlNXno9Fffmz3lGbj5_ur742l5effl2sb5sbdfh3DKORruxNyMXYjRaGxTGmMFQhAEYgvOeit7ZYRgEA8qsAWqsccZbY3vPzsiHpe59Tj-q9VntQrFumnR0aV8UFUxwKXpkVfr-iXSb9jlWd4pySRnvJIVH1Z2enArRpzlreyiq1kJyjhKHrqrO_6Oqa3S7YGscPtT3fwC6ADanUrLz6j7X78oPCkEdUlNLaqqmpo6pqYPj_glkw3wMo3YL0_MoW9BS-8Q7lx-HfZZ6t1DbMqf812LXizoCIPsNzG-1zw |
CitedBy_id | crossref_primary_10_3390_ijms241814333 crossref_primary_10_3390_agronomy12112839 crossref_primary_10_3390_ijerph20053943 |
Cites_doi | 10.1007/s11192-015-1765-5 10.1007/s11157-016-9390-1 10.1093/oxfordjournals.molbev.a026330 10.1016/j.fcr.2015.09.007 10.1104/pp.011825 10.3389/fpls.2019.00426 10.1016/S0378-4290(99)00028-3 10.1104/pp.108.128967 10.1007/s11104-007-9466-3 10.1007/0-387-27421-9_14 10.1631/jzus.B1000291 10.1016/j.jcs.2009.09.004 10.1016/j.jtemb.2018.02.009 10.1007/s11104-012-1332-2 10.1186/s12870-019-1741-y 10.1021/jf101197h 10.3389/fpls.2014.00030 10.1007/978-3-662-44406-1_9 10.1093/ajcn/75.6.1062 10.1104/pp.101.2.619 10.1371/journal.pone.0225018 10.1111/ppl.12697 10.4269/ajtmh.2004.71.55 10.1038/ejcn.2008.9 10.3389/fpls.2017.00281 10.1002/jpln.200390015 10.1371/journal.pone.0050568 10.1007/s10725-018-0418-0 10.1093/jxb/erm142 10.17226/10026 10.18637/jss.v036.i03 10.1016/j.plantsci.2016.05.001 10.1590/S0100-204X2002001200013 10.1071/AR99045 10.1002/9780470960707.ch16 10.4014/jmb.1609.09021 10.1016/j.fcr.2017.05.023 10.1093/jxb/ery236 10.1007/bf00012018 10.1007/s11104-012-1369-2 10.3168/jds.2008-1232 10.1016/j.gfs.2016.12.001 10.3389/fnbeh.2014.00443 10.1073/pnas.1800442115 10.1023/a:1018318005103 10.1080/00103620600822952 10.3389/fpls.2016.01137 10.1111/ejss.12437 10.1134/S1021443708030175 10.1042/BJ20040074 10.1186/s43014-020-0020-5 10.1079/PNS19980045 10.1007/s11104-015-2684-1 10.3390/plants9020140 10.1007/s11104-015-2430-8 10.1515/sab-2017-0003 10.1094/cfw-51-0004 10.1016/j.jcs.2007.04.006 10.1016/S1002-0160(17)60442-9 10.1890/11-0423.1 10.1017/S1368980017003202 10.1080/00103620600710454 10.2527/jas1980.514966x 10.1016/j.tplants.2009.01.001 10.1016/j.abb.2016.04.010 10.1021/bk-2011-1089.ch001 10.1615/JEnvironPatholToxicolOncol.v25.i3.40 10.1007/978-94-011-0878-2_5 10.1104/pp.112.197798 10.1016/j.apgeochem.2019.03.017 10.1007/978-94-015-8909-3_12 10.1007/s11192-020-03387-8 10.1071/ar01085 10.1016/j.jcs.2013.09.001 10.1081/CSS-120002762 10.1590/S0103-90162005000300010 10.1007/s10534-013-9643-1 10.1007/978-94-017-2685-6_24 10.1093/ajcn/80.5.1185 10.11604/pamj.2013.15.120.2535 10.3390/agronomy9050250 10.1080/01904160903150974 10.1016/B978-1-891127-79-3.50010-X 10.1093/jn/130.5.1500S 10.1631/jzus.B0710640 10.1080/00103624.2018.1499769 10.1080/01904169809365558 10.1007/s11104-012-1272-x 10.1016/j.scitotenv.2011.11.029 10.1093/jn/130.5.1437S 10.1007/s11270-017-3507-1 10.1002/fsn3.1127 10.1023/b:Plso.0000047741.52700.29 10.1111/nph.12468 10.1071/ar01088 10.1016/B978-0-08-100596-5.03425-9 10.1016/B978-0-12-384905-2.00012-1 10.1111/j.1469-8137.2007.01996.x 10.3389/fpls.2020.00188 10.1007/s11104-012-1346-9 10.21608/agro.2017.1841.1078 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-021-05027-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 119 |
ExternalDocumentID | A675517194 10_1007_s11104_021_05027_3 48694301 |
GeographicLocations | Australia China |
GeographicLocations_xml | – name: China – name: Australia |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JLS JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 2~F 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABBHK ABQSL ABULA ABXSQ ACBXY ACHIC ACKIV ADINQ ADULT ADYPR AEBTG AEFIE AEKMD AEUPB AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW AQVQM BBWZM BDATZ CAG COF DATOO EJD EN4 FINBP FSGXE GQ6 H13 IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SA0 SBY SCLPG T16 TEORI UZXMN VFIZW WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-351baed8bd566dbaab16bbb9b21090310eff268ec99963023cb02bcbebfcbc8f3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Thu Jul 10 23:36:46 EDT 2025 Fri Jul 25 19:23:49 EDT 2025 Tue Jun 17 21:26:16 EDT 2025 Tue Jun 10 20:19:48 EDT 2025 Tue Jul 01 01:47:13 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Fri Feb 21 02:47:58 EST 2025 Thu Jun 19 19:54:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Biofortification meta-analysis Barley Micronutrients Hordeum vulgare Zinc |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-351baed8bd566dbaab16bbb9b21090310eff268ec99963023cb02bcbebfcbc8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0945-6165 |
PQID | 2572354720 |
PQPubID | 54098 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2636576813 proquest_journals_2572354720 gale_infotracmisc_A675517194 gale_infotracacademiconefile_A675517194 crossref_primary_10_1007_s11104_021_05027_3 crossref_citationtrail_10_1007_s11104_021_05027_3 springer_journals_10_1007_s11104_021_05027_3 jstor_primary_48694301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210901 20210900 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210901 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | SloupVJankovskáINechybováSPeřinkováPLangrováIZinc in the animal organism: a ReviewSci Agric Bohem2017481310.1515/sab-2017-0003 VeluGOrtiz-MonasterioICakmakIHaoYSinghRPBiofortification strategies to increase grain zinc and iron concentrations in wheatJ Cereal Sci2014593653721:CAS:528:DC%2BC3sXhs1SksLvI10.1016/j.jcs.2013.09.001 AndreyGThe role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soilsAppl Geochem2019104931011:CAS:528:DC%2BC1MXmtlWmt7c%3D10.1016/j.apgeochem.2019.03.017 CakmakIEnrichment of cereal grains with zinc: Agronomic or genetic biofortification?Plant Soil20083021171:CAS:528:DC%2BD1cXltVKn10.1007/s11104-007-9466-3 CakmakIKutmanUBAgronomic biofortification of cereals with zinc: a reviewEur J Soil Sci20186917218010.1111/ejss.12437 Marschner P, Rengel Z (2012) Chapter 12 - Nutrient availability in soils. In: Marschner P (ed) Marschner's mineral nutrition of higher plants. 3rd edn. Academic Press, San Diego, pp 315–330. https://doi.org/10.1016/B978-0-12-384905-2.00012-1 BehallKMScholfieldDJHallfrischJDiets containing barley significantly reduce lipids in mildly hypercholesterolemic men and womenAm J Clin Nutr200480118511931:CAS:528:DC%2BD2cXhtVSnt73E10.1093/ajcn/80.5.118515531664 CakmakIMorphological and physiological differences in the response of cereals to zinc deficiencyEuphytica19981003493571:CAS:528:DyaK1cXivFWqs7g%3D10.1023/a:1018318005103 ImtiazMAllowayBJKhanPMemonMYSiddiquiSUHAslamMShahSKHZinc deficiency in selected cultivars of wheat and barley as tested in solution cultureCommun Soil Sci Plant Anal200637170317211:CAS:528:DC%2BD28Xms1ajt78%3D10.1080/00103620600710454 Baik B-K (2014) Chapter 10 - Processing of barley grain for food and feed. In: Shewry PR, Ullrich SE (eds) Barley (Second Edition). AACC International Press, pp 233–268. https://doi.org/10.1016/B978-1-891127-79-3.50010-X GürelFÖztürkZNUçarlıCRoselliniDBarley genes as tools to confer abiotic stress tolerance in cropsFront Plant Sci201671137113710.3389/fpls.2016.01137275363054971604 ClemensSDeinleinUAhmadiHHorethSUraguchiSNicotianamine is a major player in plant Zn homeostasisBiometals2013266236321:CAS:528:DC%2BC3sXht1ShsbfK10.1007/s10534-013-9643-123775667 Baron VS, Okine E, Campbell A (2000) Optimizing yield and quality of cereal silage. In: Proceedings of the 2000 western canadian dairy seminar Lacombe, Canada Sadeghzadeh B, Rengel Z (2011) Zinc in soils and crop nutrition. In: The molecular and physiological basis of nutrient use efficiency in crops. John Wiley & Sons, UK. https://doi.org/10.1002/9780470960707.ch16 TjStomphJiangWStruikPCZinc biofortification of cereals: rice differs from wheat and barleyTrends in Plant Science2009141231241:CAS:528:DC%2BD1MXjtF2lt7g%3D10.1016/j.tplants.2009.01.001 CopeCMMackenzieAMWildeDSinclairLAEffects of level and form of dietary zinc on dairy cow performance and healthJ Dairy Sci200992212821351:CAS:528:DC%2BD1MXlsFyms78%3D10.3168/jds.2008-123219389970 Chattha MU et al (2017) Biofortification of wheat cultivars to combat zinc deficiency Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00281 GuptaNRamHKumarBMechanism of zinc absorption in plants: uptake, transport, translocation and accumulationRev Environ Sci Biotechnol201615891091:CAS:528:DC%2BC28XitFaqtLo%3D10.1007/s11157-016-9390-1 Rezaul KarimMDTianDZhangY-QChenF-JZouC-QFine roots for uptake and translocation of zinc into young leaves as important traits for zinc efficiency of maize genotypesCommun Soil Sci Plant Anal201849234523561:CAS:528:DC%2BC1cXhtlOisLbI10.1080/00103624.2018.1499769 NiyigabaETwizerimanaAMugenziINgnadongWAYeYPWuBMHaiJBWinter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizersAgron201992501:CAS:528:DC%2BC1MXisVOjs7rN10.3390/agronomy9050250 GencYMcDonaldGKGrahamRDDifferential expression of zinc efficiency during the growing season of barleyPlant Soil20042632732821:CAS:528:DC%2BD2cXpsF2lur4%3D10.1023/b:Plso.0000047741.52700.29 HagmeyerSHaderspeckJCGrabruckerAMBehavioral impairments in animal models for zinc deficiencyFront Behav Neurosci2015844344310.3389/fnbeh.2014.00443256103794285094 Dresios J, Chan Y-L, Wool IG (2005) Ribosomal zinc fnger proteins: The structure and the function of yeast YL37a. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Springer US, Boston, pp 91–98. https://doi.org/10.1007/0-387-27421-9_14 NewmanCWNewmanRKA brief history of barley foodsCereal Foods World2006514710.1094/cfw-51-0004 MacDonaldRSThe role of zinc in growth and cell proliferationJ Nutr20001301500150810.1093/jn/130.5.1500S ManzekeGMMapfumoPMtambanengweFChikowoRTendayiTCakmakISoil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of ZimbabwePlant Soil201236157691:CAS:528:DC%2BC38Xhs1yntbbP10.1007/s11104-012-1332-2 ZhuJLiuWA tale of two databases: the use of Web of Science and Scopus in academic papersScientometrics202012332133510.1007/s11192-020-03387-8 WangZContribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilizationPlant Growth Regul2018861591671:CAS:528:DC%2BC1cXhtFGgtLnM10.1007/s10725-018-0418-0 HegelundJNSchillerMKicheyTHansenTHPedasPHustedSSchjoerringJKBarley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc bindingPlant Physiol2012159112511371:CAS:528:DC%2BC38XhtVGlsbjJ10.1104/pp.112.197798225821323387699 Ali MB, Salem E, Sayed MA-EA (2017) Genetic variability of barley (Hordeum vulgare L.) genotypes in phytoremediation of heavy metals-contaminated soil. Egypt J Agron 39:383–399. https://doi.org/10.21608/agro.2017.1841.1078 ChenWRFengYChaoYEGenomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiencyRuss J Plant Physiol2008554004091:CAS:528:DC%2BD1cXlvVClsrc%3D10.1134/S1021443708030175 SadeghzadehBRengelZLiCDifferential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solutionJ Plant Nutr200932174417671:CAS:528:DC%2BD1MXhtFSns7fM10.1080/01904160903150974 GencYMcDonaldGKGrahamRDA soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plantsAust J Agric Res2002534094211:CAS:528:DC%2BD38XjtlWisr8%3D10.1071/ar01088 Liu D-Y, Liu Y-M, Zhang W, Chen X-P, Zou C-Q (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00426 BrownKHPeersonJMRiveraJAllenLHEffect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trialsAm J Clin Nutr200275106210711:CAS:528:DC%2BD38XktlSmtrs%3D10.1093/ajcn/75.6.106212036814 MongeonPPaul-HusAThe journal coverage of Web of Science and Scopus: a comparative analysisScientometrics201610621322810.1007/s11192-015-1765-5 HacisalihogluGHartJJWangYHCakmakIKochianLVZinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheatPlant Physiol20031315956021:CAS:528:DC%2BD3sXhtlyjsrs%3D10.1104/pp.01182512586883166835 WangLShahAMLiuYJinLWangZXueBPengQRelationship between true digestibility of dietary phosphorus and gastrointestinal bacteria of goatsPLoS One202015e0225018e02250181:CAS:528:DC%2BB3cXhtFGksbbN10.1371/journal.pone.0225018324421737244181 HosnedlovaBTravnicekJSochMCurrent view of the significance of zinc for ruminants: a reviewAgric Trop Subtrop2007405764 ZouCQBiofortification of wheat with zinc through zinc fertilization in seven countriesPlant Soil20123611191301:CAS:528:DC%2BC38Xhs1yntbbK10.1007/s11104-012-1369-2 McCallKAHuangC-cFierkeCAFunction and mechanism of zinc metalloenzymesJ Nutr20001301437144610.1093/jn/130.5.1437S SchulteDThe international barley sequencing consortium—at the threshold of efficient access to the barley genomePlant Physiol20091491421471:CAS:528:DC%2BD1MXjt1Wqsb0%3D10.1104/pp.108.128967191267062613708 Kishor PBK, Rajesh K, Reddy PS, Seiler C, Sreenivasulu N (2014) Drought stress tolerance mechanisms in barley and Its relevance to cereals. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 161–179. https://doi.org/10.1007/978-3-662-44406-1_9 Fischer WalkerCLEzzatiMBlackREGlobal and regional child mortality and burden of disease attributable to zinc deficiencyEur J Clin Nutr20086359110.1038/ejcn.2008.918270521 WangZLiuQPanFYuanLYinXEffects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheatField Crops Res2015184586410.1016/j.fcr.2015.09.007 SamtiyaMAlukoREDhewaTPlant food anti-nutritional factors and their reduction strategies: an overviewFood Production, Processing and Nutrition20202610.1186/s43014-020-0020-5 de ValençaAWBakeABrouwerIDGillerKEAgronomic biofortification of crops to fight hidden hunger in sub-Saharan AfricaGlob Food Sec20171281410.1016/j.gfs.2016.12.001 Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. Food Agric Org BroadleyMRWhitePJHammondJPZelkoILuxAZinc in plantsNew Phytol20071736777021:CAS:528:DC%2BD2sXjvFGgsL8%3D10.1111/j.1469-8137.2007.01996.x17286818 FageriaNKInfluence of micronutrients on dry matter yield and interaction with other nutrients in annual cropsPesqui Agropecu Bras2002371765177210.1590/S0100-204X2002001200013 Institute of Medicine Panel on Micronutrients (2001) In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, USA. https://doi.org/10.17226/10026 United Nations Organization (2001) Nutrition throughout life cycle. 4th report on the world nutrition situation. Collaboration with International Food Policy Research Institute, Geneva Raboy V (1997) Accumula 5027_CR99 5027_CR10 C-y Wu (5027_CR107) 2011; 12 Z Wang (5027_CR103) 2015; 184 Y Genc (5027_CR40) 2002; 53 S Saha (5027_CR90) 2017; 210 AW de Valença (5027_CR29) 2017; 12 S Hussain (5027_CR56) 2016; 399 MJ Lajeunesse (5027_CR65) 2011; 92 CL Doolette (5027_CR30) 2018; 69 5027_CR22 RJ Cousins (5027_CR28) 1998; 57 A Coccina (5027_CR26) 2019; 19 S Frassinetti (5027_CR36) 2006; 25 5027_CR106 5027_CR105 CM Cope (5027_CR27) 2009; 92 YG Zhu (5027_CR109) 2002; 53 E Niyigaba (5027_CR79) 2019; 9 A Singh (5027_CR95) 2019; 29 L Bohn (5027_CR13) 2008; 9 WA Norvell (5027_CR80) 1993; 101 Stomph Tj (5027_CR97) 2009; 14 5027_CR31 5027_CR8 5027_CR9 5027_CR6 P Lombnaes (5027_CR68) 2003; 166 5027_CR5 M Kalayci (5027_CR60) 1999; 63 5027_CR2 5027_CR3 LI Olsen (5027_CR82) 2014; 5 5027_CR1 MR Karaman (5027_CR61) 2010; 8 J Zhu (5027_CR108) 2020; 123 RS MacDonald (5027_CR69) 2000; 130 B Sadeghzadeh (5027_CR89) 2009; 32 G Hacisalihoglu (5027_CR50) 2003; 131 CW Newman (5027_CR78) 2006; 51 H Ekiz (5027_CR32) 1998; 21 NK Fageria (5027_CR34) 2002; 37 Z Wang (5027_CR104) 2018; 86 5027_CR44 5027_CR42 RB Saper (5027_CR92) 2009; 79 C Noulas (5027_CR81) 2018; 49 LE Caulfield (5027_CR21) 2004; 71 GM Manzeke (5027_CR70) 2012; 361 G Andrey (5027_CR4) 2019; 104 A Badr (5027_CR7) 2000; 17 I Cakmak (5027_CR19) 1998; 100 Y Genc (5027_CR41) 2004; 263 AW Peck (5027_CR83) 2008; 47 J Tiong (5027_CR98) 2014; 201 ÂMC Furlani (5027_CR37) 2005; 62 WR Chen (5027_CR23) 2008; 55 JN Hegelund (5027_CR54) 2012; 159 W Viechtbauer (5027_CR101) 2010; 36 KS Eom (5027_CR33) 2016; 26 KM Behall (5027_CR11) 2004; 80 ZA Bhutta (5027_CR12) 1999; 135 Y Genc (5027_CR39) 1999; 51 F Gürel (5027_CR49) 2016; 7 HF Mayland (5027_CR74) 1980; 51 5027_CR58 RD Graham (5027_CR45) 1992; 146 5027_CR67 5027_CR66 V Raboy (5027_CR85) 2020; 9 V Castro-Alba (5027_CR20) 2019; 7 5027_CR63 S Hagmeyer (5027_CR51) 2015; 8 MD Rezaul Karim (5027_CR87) 2018; 49 S Clemens (5027_CR25) 2013; 26 D Schulte (5027_CR94) 2009; 149 KH Brown (5027_CR15) 2002; 75 M Imtiaz (5027_CR57) 2006; 37 L Wang (5027_CR102) 2020; 15 I Cakmak (5027_CR18) 2018; 69 KL Harding (5027_CR52) 2018; 21 SS Chou (5027_CR24) 2004; 383 JN Hegelund (5027_CR53) 2012; 361 5027_CR72 5027_CR71 A Gitto (5027_CR43) 2018; 164 UC Gupta (5027_CR48) 2006; 37 V Sloup (5027_CR96) 2017; 48 G Velu (5027_CR100) 2014; 59 CL Fischer Walker (5027_CR35) 2008; 63 B Hosnedlova (5027_CR55) 2007; 40 H-u Rehman (5027_CR86) 2012; 361 PFD Scheelbeek (5027_CR93) 2018; 115 S Martos (5027_CR73) 2016; 249 B Kenbaev (5027_CR62) 2002; 33 5027_CR88 C Griffey (5027_CR46) 2010; 51 M Samtiya (5027_CR91) 2020; 2 5027_CR84 EJM Joy (5027_CR59) 2015; 389 I Cakmak (5027_CR16) 2008; 302 I Cakmak (5027_CR17) 2010; 58 KA McCall (5027_CR75) 2000; 130 N Gupta (5027_CR47) 2016; 15 P Mongeon (5027_CR76) 2016; 106 CQ Zou (5027_CR110) 2012; 361 Y Genc (5027_CR38) 2007; 58 MR Broadley (5027_CR14) 2007; 173 I Muhammad (5027_CR77) 2012; 416 A Krężel (5027_CR64) 2016; 611 |
References_xml | – reference: ManzekeGMMapfumoPMtambanengweFChikowoRTendayiTCakmakISoil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of ZimbabwePlant Soil201236157691:CAS:528:DC%2BC38Xhs1yntbbP10.1007/s11104-012-1332-2 – reference: Marschner H (1993) Zinc uptake from soils. In: Robson AD (ed) Zinc in soils and plants, The university of western Australia. Springer Netherlands, Dordrecht, pp 59–77. https://doi.org/10.1007/978-94-011-0878-2_5 – reference: CakmakIEnrichment of cereal grains with zinc: Agronomic or genetic biofortification?Plant Soil20083021171:CAS:528:DC%2BD1cXltVKn10.1007/s11104-007-9466-3 – reference: SchulteDThe international barley sequencing consortium—at the threshold of efficient access to the barley genomePlant Physiol20091491421471:CAS:528:DC%2BD1MXjt1Wqsb0%3D10.1104/pp.108.128967191267062613708 – reference: SinghAShivayYSEffects of green manures and zinc fertilizer sources on DTPA-extractable zinc in soil and zinc content in basmati rice plants at different growth stagesPedosphere20192950451510.1016/S1002-0160(17)60442-9 – reference: SloupVJankovskáINechybováSPeřinkováPLangrováIZinc in the animal organism: a ReviewSci Agric Bohem2017481310.1515/sab-2017-0003 – reference: WangLShahAMLiuYJinLWangZXueBPengQRelationship between true digestibility of dietary phosphorus and gastrointestinal bacteria of goatsPLoS One202015e0225018e02250181:CAS:528:DC%2BB3cXhtFGksbbN10.1371/journal.pone.0225018324421737244181 – reference: de ValençaAWBakeABrouwerIDGillerKEAgronomic biofortification of crops to fight hidden hunger in sub-Saharan AfricaGlob Food Sec20171281410.1016/j.gfs.2016.12.001 – reference: KaramanMRKandemirNSahinSCobanSStrategies to select genetic variations of barley (Hordeum vulgare L.) cultivars for agronomic zinc utilization charactersJ Food Agric Environ20108395399 – reference: GürelFÖztürkZNUçarlıCRoselliniDBarley genes as tools to confer abiotic stress tolerance in cropsFront Plant Sci201671137113710.3389/fpls.2016.01137275363054971604 – reference: Genc Y, McDonald GK, Rengel Z, Graham RD Genotypic variation in the response of barley to zinc deficiency. In: Proceedings of the sixth international symposium on genetics and molecular biology of plant nutrition, Dordrecht, 1999b. Plant nutrition — Molecular biology and genetics. Springer Netherlands, pp 205–221 – reference: CousinsRJA role of zinc in the regulation of gene expressionProc Nutr Soc1998573073111:CAS:528:DyaK1cXks1aku7g%3D10.1079/PNS19980045 – reference: Welch R, Webb M, Loneragan J (1982) Zinc in membrane function and its role in phosphorus toxicity. Paper presented at the Proceedings of the ninth plant nutrition colloquium, Warwick, England – reference: ChenWRFengYChaoYEGenomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiencyRuss J Plant Physiol2008554004091:CAS:528:DC%2BD1cXlvVClsrc%3D10.1134/S1021443708030175 – reference: FageriaNKInfluence of micronutrients on dry matter yield and interaction with other nutrients in annual cropsPesqui Agropecu Bras2002371765177210.1590/S0100-204X2002001200013 – reference: MongeonPPaul-HusAThe journal coverage of Web of Science and Scopus: a comparative analysisScientometrics201610621322810.1007/s11192-015-1765-5 – reference: VeluGOrtiz-MonasterioICakmakIHaoYSinghRPBiofortification strategies to increase grain zinc and iron concentrations in wheatJ Cereal Sci2014593653721:CAS:528:DC%2BC3sXhs1SksLvI10.1016/j.jcs.2013.09.001 – reference: LajeunesseMJOn the meta-analysis of response ratios for studies with correlated and multi-group designsEcology2011922049205510.1890/11-0423.1 – reference: PeckAWMcDonaldGKGrahamRDZinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.)J Cereal Sci2008472662741:CAS:528:DC%2BD1cXislaksbs%3D10.1016/j.jcs.2007.04.006 – reference: DooletteCLFoliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciationJ Exp Bot201869446944811:CAS:528:DC%2BC1MXpt1OntL8%3D10.1093/jxb/ery236299311176093386 – reference: EkizHBagciSAKiralASEkerSGultekinIAlkanACakmakIEffects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soilsJ Plant Nutr199821224522561:CAS:528:DyaK1cXmslemtbg%3D10.1080/01904169809365558 – reference: Liu D-Y, Liu Y-M, Zhang W, Chen X-P, Zou C-Q (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00426 – reference: NorvellWAWelchRMGrowth and nutrient uptake by barley (Hordeum vulgare L. cv Herta): studies using an N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid-buffered nutrient solution technique (II. role of zinc in the uptake and root leakage of mineral nutrients)Plant Physiol19931016196251:CAS:528:DyaK3sXhs1ygs7o%3D10.1104/pp.101.2.61912231717160611 – reference: MartosSGallegoBCabotCLluganyMBarcelóJPoschenriederCZinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thalianaPlant Sci201624913241:CAS:528:DC%2BC28Xot12hsbw%3D10.1016/j.plantsci.2016.05.00127297986 – reference: ViechtbauerWConducting meta-analyses in R with the metaforJournal of Statistical Software20103614810.18637/jss.v036.i03 – reference: BohnLMeyerASRasmussenSKPhytate: impact on environment and human nutrition. A challenge for molecular breedingJ Zhejiang Univ Sci B2008916519110.1631/jzus.B0710640183576202266880 – reference: Awika JM (2011) Major cereal grains production and use around the world. In: Advances in cereal science: implications to food processing and health promotion, vol 1089. ACS Symposium Series. American Chemical Society, Washington, DC, pp 1-13. https://doi.org/10.1021/bk-2011-1089.ch001 – reference: SadeghzadehBRengelZLiCDifferential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solutionJ Plant Nutr200932174417671:CAS:528:DC%2BD1MXhtFSns7fM10.1080/01904160903150974 – reference: RehmanH-uAzizTFarooqMWakeelARengelZZinc nutrition in rice production systems: a reviewPlant Soil20123612032261:CAS:528:DC%2BC38Xhs1yntbbI10.1007/s11104-012-1346-9 – reference: KalayciMTorunBEkerSAydinMOzturkLCakmakIGrain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouseField Crops Res199963879810.1016/S0378-4290(99)00028-3 – reference: Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. Food Agric Org – reference: ImtiazMAllowayBJKhanPMemonMYSiddiquiSUHAslamMShahSKHZinc deficiency in selected cultivars of wheat and barley as tested in solution cultureCommun Soil Sci Plant Anal200637170317211:CAS:528:DC%2BD28Xms1ajt78%3D10.1080/00103620600710454 – reference: HagmeyerSHaderspeckJCGrabruckerAMBehavioral impairments in animal models for zinc deficiencyFront Behav Neurosci2015844344310.3389/fnbeh.2014.00443256103794285094 – reference: GencYMcDonaldGKGrahamRDA soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plantsAust J Agric Res2002534094211:CAS:528:DC%2BD38XjtlWisr8%3D10.1071/ar01088 – reference: Raboy V (1997) Accumulation and Storage of Phosphate and Minerals. In: Larkins BA, Vasil IK (eds) Cellular and Molecular Biology of Plant Seed Development. Springer Netherlands, Dordrecht, pp 441–477. https://doi.org/10.1007/978-94-015-8909-3_12 – reference: FurlaniÂMCFurlaniPRMedaARDuarteAPEfficiency of maize cultivars for zinc uptake and useSci Agric2005622642731:CAS:528:DC%2BD2MXms1aqtLw%3D10.1590/S0103-90162005000300010 – reference: CakmakIBiofortification and localization of zinc in wheat grainJ Agric Food Chem201058909291021:CAS:528:DC%2BC3cXptlWgt7w%3D10.1021/jf101197h23654236 – reference: Alloway BJ (2008) Zinc in soils and crop nutrition. International fertilizer industry association and international zinc association, Brussels, Belgium and Paris – reference: Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting PLoS One 7. https://doi.org/10.1371/journal.pone.0050568 – reference: NoulasCTziouvalekasMKaryotisTZinc in soils, water and food cropsJ Trace Elem Med Biol2018492522601:CAS:528:DC%2BC1cXjs1Wgt7c%3D10.1016/j.jtemb.2018.02.00929472130 – reference: GrahamRDAscherJSHynesSCSelecting zinc-efficient cereal genotypes for soils of low zinc statusPlant Soil19921462412501:CAS:528:DyaK3sXitFWqtLc%3D10.1007/bf00012018 – reference: BadrAOn the origin and domestication history of barley (Hordeum vulgare)Mol Biol Evol2000174995101:CAS:528:DC%2BD3cXisVSgt7w%3D10.1093/oxfordjournals.molbev.a02633010742042 – reference: Fischer WalkerCLEzzatiMBlackREGlobal and regional child mortality and burden of disease attributable to zinc deficiencyEur J Clin Nutr20086359110.1038/ejcn.2008.918270521 – reference: EomKSCheongJSLeeSJStructural analyses of zinc finger domains for specific Interactions with DNAJ Microbiol Biotechnol201626201920291:CAS:528:DC%2BC1cXhtlWmt7rM10.4014/jmb.1609.0902127713215 – reference: GencYMcDonaldGKGrahamRDEffect of seed zinc content on early growth of barley (Hordeum vulgare L.) under low and adequate soil zinc supplyAust J Agric Res199951374610.1071/AR99045 – reference: ChouSSCleggMSMommaTYNilesBJDuffyJYDastonGPKeenCLAlterations in protein kinase C activity and processing during zinc-deficiency-induced cell deathBiochem J200438363711:CAS:528:DC%2BD2cXnslOqsL8%3D10.1042/BJ20040074151986391134044 – reference: LombnaesPSinghBRVarietal tolerance to zinc deficiency in wheat and barely grown in chelator-buffered nutrient solution and its effect on uptake of Cu, Fe, and MnJ Plant Nutr Soil Sci200316676831:CAS:528:DC%2BD3sXit1Wnsr0%3D10.1002/jpln.200390015 – reference: Bain LE, Awah PK, Geraldine N, Kindong NP, Sigal Y, Bernard N, Tanjeko AT (2013) Malnutrition in sub-saharan africa: burden, causes and prospects. Pan Afr Med J 15:120–120. https://doi.org/10.11604/pamj.2013.15.120.2535 – reference: GuptaNRamHKumarBMechanism of zinc absorption in plants: uptake, transport, translocation and accumulationRev Environ Sci Biotechnol201615891091:CAS:528:DC%2BC28XitFaqtLo%3D10.1007/s11157-016-9390-1 – reference: Liu D-Y, Zhang W, Liu Y-M, Chen X-P, Zou C-Q (2020) Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00188 – reference: BehallKMScholfieldDJHallfrischJDiets containing barley significantly reduce lipids in mildly hypercholesterolemic men and womenAm J Clin Nutr200480118511931:CAS:528:DC%2BD2cXhtVSnt73E10.1093/ajcn/80.5.118515531664 – reference: HardingKLAguayoVMWebbPHidden hunger in south Asia: a review of recent trends and persistent challengesPublic Health Nutr20182178579510.1017/S136898001700320229256361 – reference: WuC-yFengYShohagMJILuL-lWeiY-yGaoCYangX-eCharacterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotypeJ Zhejiang Univ Sci B2011124084181:CAS:528:DC%2BC3MXlslaht7g%3D10.1631/jzus.B1000291215284963087098 – reference: BroadleyMRWhitePJHammondJPZelkoILuxAZinc in plantsNew Phytol20071736777021:CAS:528:DC%2BD2sXjvFGgsL8%3D10.1111/j.1469-8137.2007.01996.x17286818 – reference: MuhammadIPuschenreiterMWenzelWWCadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plantsSci Total Environ20124164905001:CAS:528:DC%2BC38XhsV2jtLs%3D10.1016/j.scitotenv.2011.11.02922177029 – reference: Marschner P, Rengel Z (2012) Chapter 12 - Nutrient availability in soils. In: Marschner P (ed) Marschner's mineral nutrition of higher plants. 3rd edn. Academic Press, San Diego, pp 315–330. https://doi.org/10.1016/B978-0-12-384905-2.00012-1 – reference: CaulfieldLERichardSABlackREUndernutrition as an underlying cause of malaria morbidity and mortality in children less than five years oldAm J Trop Med Hyg200471556310.4269/ajtmh.2004.71.55 – reference: Castro-AlbaVLazarteCEBergenståhlBGranfeldtYPhytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailabilityFood Sci Nutr20197285428651:CAS:528:DC%2BC1MXhvVOitrrN10.1002/fsn3.1127315725796766547 – reference: CakmakIMorphological and physiological differences in the response of cereals to zinc deficiencyEuphytica19981003493571:CAS:528:DyaK1cXivFWqs7g%3D10.1023/a:1018318005103 – reference: ZhuJLiuWA tale of two databases: the use of Web of Science and Scopus in academic papersScientometrics202012332133510.1007/s11192-020-03387-8 – reference: GencYMcDonaldGKGrahamRDDifferential expression of zinc efficiency during the growing season of barleyPlant Soil20042632732821:CAS:528:DC%2BD2cXpsF2lur4%3D10.1023/b:Plso.0000047741.52700.29 – reference: HosnedlovaBTravnicekJSochMCurrent view of the significance of zinc for ruminants: a reviewAgric Trop Subtrop2007405764 – reference: HegelundJNSchillerMKicheyTHansenTHPedasPHustedSSchjoerringJKBarley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc bindingPlant Physiol2012159112511371:CAS:528:DC%2BC38XhtVGlsbjJ10.1104/pp.112.197798225821323387699 – reference: HussainSRengelZMohammadiSAEbadi-SegherlooAMaqsoodMAMapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare)Plant Soil20163991932081:CAS:528:DC%2BC2MXhs1SltL3K10.1007/s11104-015-2684-1 – reference: Rezaul KarimMDTianDZhangY-QChenF-JZouC-QFine roots for uptake and translocation of zinc into young leaves as important traits for zinc efficiency of maize genotypesCommun Soil Sci Plant Anal201849234523561:CAS:528:DC%2BC1cXhtlOisLbI10.1080/00103624.2018.1499769 – reference: BhuttaZAPrevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trialsZinc Investigators' Collaborative Group. J Pediatr19991356896971:CAS:528:DC%2BD3cXls1yhsA%3D%3D – reference: Institute of Medicine Panel on Micronutrients (2001) In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, USA. https://doi.org/10.17226/10026 – reference: WangZContribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilizationPlant Growth Regul2018861591671:CAS:528:DC%2BC1cXhtFGgtLnM10.1007/s10725-018-0418-0 – reference: ZouCQBiofortification of wheat with zinc through zinc fertilization in seven countriesPlant Soil20123611191301:CAS:528:DC%2BC38Xhs1yntbbK10.1007/s11104-012-1369-2 – reference: Baik B-K (2014) Chapter 10 - Processing of barley grain for food and feed. In: Shewry PR, Ullrich SE (eds) Barley (Second Edition). AACC International Press, pp 233–268. https://doi.org/10.1016/B978-1-891127-79-3.50010-X – reference: KrężelAMaretWThe biological inorganic chemistry of zinc ionsArch Biochem Biophys20166113191:CAS:528:DC%2BC28XnslGrtLs%3D10.1016/j.abb.2016.04.010271172345120989 – reference: Sadeghzadeh B, Rengel Z (2011) Zinc in soils and crop nutrition. In: The molecular and physiological basis of nutrient use efficiency in crops. John Wiley & Sons, UK. https://doi.org/10.1002/9780470960707.ch16 – reference: Baron VS, Okine E, Campbell A (2000) Optimizing yield and quality of cereal silage. In: Proceedings of the 2000 western canadian dairy seminar Lacombe, Canada – reference: Chattha MU et al (2017) Biofortification of wheat cultivars to combat zinc deficiency Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00281 – reference: SaperRBRashRZinc: an essential micronutrientAm Fam Physician200979768772201410962820120 – reference: Ali MB, Salem E, Sayed MA-EA (2017) Genetic variability of barley (Hordeum vulgare L.) genotypes in phytoremediation of heavy metals-contaminated soil. Egypt J Agron 39:383–399. https://doi.org/10.21608/agro.2017.1841.1078 – reference: MaylandHFRosenauRCFlorenceARGrazing cow and calf responses to zinc supplementationJ Anim Sci1980519669741:CAS:528:DyaL3cXmtVaqtb0%3D10.2527/jas1980.514966x7462120 – reference: Gonzalez A, Gil-Diaz MM, Pinilla P, Lobo MC (2017) Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. Water Air Soil Pollut 228. https://doi.org/10.1007/s11270-017-3507-1 – reference: GuptaUCKalraYPResidual effect of copper and zinc from fertilizers on plant concentration, phytotoxicity, and crop yield responseCommun Soil Sci Plant Anal200637250525111:CAS:528:DC%2BD28XhtFelsL7F10.1080/00103620600822952 – reference: BrownKHPeersonJMRiveraJAllenLHEffect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trialsAm J Clin Nutr200275106210711:CAS:528:DC%2BD38XktlSmtrs%3D10.1093/ajcn/75.6.106212036814 – reference: TjStomphJiangWStruikPCZinc biofortification of cereals: rice differs from wheat and barleyTrends in Plant Science2009141231241:CAS:528:DC%2BD1MXjtF2lt7g%3D10.1016/j.tplants.2009.01.001 – reference: ZhuYGSmithFASmithSEPhosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand cultureAust J Agric Res2002532112161:CAS:528:DC%2BD38Xit1amtLs%3D10.1071/ar01085 – reference: HegelundJNPedasPHustedSSchillerMSchjoerringJKZinc fluxes into developing barley grains: use of stable Zn isotopes to separate root uptake from remobilization in plants with contrasting Zn statusPlant Soil20123612412501:CAS:528:DC%2BC38Xhs1yntbnJ10.1007/s11104-012-1272-x – reference: ScheelbeekPFDEffect of environmental changes on vegetable and legume yields and nutritional qualityProceedings of the National Academy of Sciences2018115680468091:CAS:528:DC%2BC1cXhvFentbnP10.1073/pnas.1800442115 – reference: WangZLiuQPanFYuanLYinXEffects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheatField Crops Res2015184586410.1016/j.fcr.2015.09.007 – reference: CakmakIKutmanUBAgronomic biofortification of cereals with zinc: a reviewEur J Soil Sci20186917218010.1111/ejss.12437 – reference: RaboyVLow phytic acid Crops: Observations Based On Four Decades of ResearchPlants (Basel)202091401:CAS:528:DC%2BB3cXhtlequ7%2FP10.3390/plants9020140 – reference: KenbaevBSadeBResponse of field-grown barley cultivars grown on zinc-deficient soil to zinc applicationCommun Soil Sci Plant Anal2002335335441:CAS:528:DC%2BD38XislCqsL4%3D10.1081/CSS-120002762 – reference: NiyigabaETwizerimanaAMugenziINgnadongWAYeYPWuBMHaiJBWinter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizersAgron201992501:CAS:528:DC%2BC1MXisVOjs7rN10.3390/agronomy9050250 – reference: FrassinettiSBronzettiGCaltavuturoLCiniMCroceCDThe role of zinc in life: a reviewJ Environ Pathol Toxicol Oncol2006255976101:CAS:528:DC%2BD28XhtFOrtrnF10.1615/JEnvironPatholToxicolOncol.v25.i3.40 – reference: OlsenLIPalmgrenMGMany rivers to cross: the journey of zinc from soil to seedFront Plant Sci20145303010.3389/fpls.2014.00030245751043921580 – reference: Dresios J, Chan Y-L, Wool IG (2005) Ribosomal zinc fnger proteins: The structure and the function of yeast YL37a. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Springer US, Boston, pp 91–98. https://doi.org/10.1007/0-387-27421-9_14 – reference: CopeCMMackenzieAMWildeDSinclairLAEffects of level and form of dietary zinc on dairy cow performance and healthJ Dairy Sci200992212821351:CAS:528:DC%2BD1MXlsFyms78%3D10.3168/jds.2008-123219389970 – reference: GriffeyCBrooksWKurantzMThomasonWTaylorFObertDMoreauRFloresRSohnMHicksKGrain composition of Virginia winter barley and implications for use in feed, food, and biofuels productionJ Cereal Sci20105141491:CAS:528:DC%2BC3cXnsVyltA%3D%3D10.1016/j.jcs.2009.09.004 – reference: HacisalihogluGHartJJWangYHCakmakIKochianLVZinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheatPlant Physiol20031315956021:CAS:528:DC%2BD3sXhtlyjsrs%3D10.1104/pp.01182512586883166835 – reference: NewmanCWNewmanRKA brief history of barley foodsCereal Foods World2006514710.1094/cfw-51-0004 – reference: GencYHuangCYLangridgePA study of the role of root morphological traits in growth of barley in zinc-deficient soilJ Exp Bot200758277527841:CAS:528:DC%2BD2sXhtFWitLnO10.1093/jxb/erm14217609531 – reference: SahaSAgronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailabilityField Crops Res2017210526010.1016/j.fcr.2017.05.023 – reference: SamtiyaMAlukoREDhewaTPlant food anti-nutritional factors and their reduction strategies: an overviewFood Production, Processing and Nutrition20202610.1186/s43014-020-0020-5 – reference: ClemensSDeinleinUAhmadiHHorethSUraguchiSNicotianamine is a major player in plant Zn homeostasisBiometals2013266236321:CAS:528:DC%2BC3sXht1ShsbfK10.1007/s10534-013-9643-123775667 – reference: Astley S, Finglas P (2016) Nutrition and Health. In: Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03425-9 – reference: McCallKAHuangC-cFierkeCAFunction and mechanism of zinc metalloenzymesJ Nutr20001301437144610.1093/jn/130.5.1437S – reference: CoccinaACavagnaroTRPellegrinoEErcoliLMcLaughlinMJWatts-WilliamsSJThe mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grainBMC Plant Biol20191913310.1186/s12870-019-1741-y309671086456977 – reference: AndreyGThe role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soilsAppl Geochem2019104931011:CAS:528:DC%2BC1MXmtlWmt7c%3D10.1016/j.apgeochem.2019.03.017 – reference: TiongJHvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supplyNew Phytol20142011311431:CAS:528:DC%2BC3sXhvVGktLnP10.1111/nph.1246824033183 – reference: GittoAFrickeWZinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expressionPhysiol Plant20181641761901:CAS:528:DC%2BC1cXht1aktbjO10.1111/ppl.1269729381217 – reference: MacDonaldRSThe role of zinc in growth and cell proliferationJ Nutr20001301500150810.1093/jn/130.5.1500S – reference: Kishor PBK, Rajesh K, Reddy PS, Seiler C, Sreenivasulu N (2014) Drought stress tolerance mechanisms in barley and Its relevance to cereals. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 161–179. https://doi.org/10.1007/978-3-662-44406-1_9 – reference: JoyEJMSteinAJYoungSDAnderELWattsMJBroadleyMRZinc-enriched fertilisers as a potential public health intervention in AfricaPlant Soil20153891241:CAS:528:DC%2BC2MXjvF2ht7w%3D10.1007/s11104-015-2430-8 – reference: United Nations Organization (2001) Nutrition throughout life cycle. 4th report on the world nutrition situation. Collaboration with International Food Policy Research Institute, Geneva – volume: 106 start-page: 213 year: 2016 ident: 5027_CR76 publication-title: Scientometrics doi: 10.1007/s11192-015-1765-5 – volume: 15 start-page: 89 year: 2016 ident: 5027_CR47 publication-title: Rev Environ Sci Biotechnol doi: 10.1007/s11157-016-9390-1 – volume: 17 start-page: 499 year: 2000 ident: 5027_CR7 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026330 – volume: 184 start-page: 58 year: 2015 ident: 5027_CR103 publication-title: Field Crops Res doi: 10.1016/j.fcr.2015.09.007 – volume: 131 start-page: 595 year: 2003 ident: 5027_CR50 publication-title: Plant Physiol doi: 10.1104/pp.011825 – ident: 5027_CR10 – ident: 5027_CR66 doi: 10.3389/fpls.2019.00426 – ident: 5027_CR3 – volume: 63 start-page: 87 year: 1999 ident: 5027_CR60 publication-title: Field Crops Res doi: 10.1016/S0378-4290(99)00028-3 – volume: 149 start-page: 142 year: 2009 ident: 5027_CR94 publication-title: Plant Physiol doi: 10.1104/pp.108.128967 – ident: 5027_CR99 – volume: 302 start-page: 1 year: 2008 ident: 5027_CR16 publication-title: Plant Soil doi: 10.1007/s11104-007-9466-3 – ident: 5027_CR31 doi: 10.1007/0-387-27421-9_14 – volume: 12 start-page: 408 year: 2011 ident: 5027_CR107 publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.B1000291 – volume: 51 start-page: 41 year: 2010 ident: 5027_CR46 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2009.09.004 – volume: 49 start-page: 252 year: 2018 ident: 5027_CR81 publication-title: J Trace Elem Med Biol doi: 10.1016/j.jtemb.2018.02.009 – volume: 361 start-page: 57 year: 2012 ident: 5027_CR70 publication-title: Plant Soil doi: 10.1007/s11104-012-1332-2 – volume: 19 start-page: 133 year: 2019 ident: 5027_CR26 publication-title: BMC Plant Biol doi: 10.1186/s12870-019-1741-y – volume: 58 start-page: 9092 year: 2010 ident: 5027_CR17 publication-title: J Agric Food Chem doi: 10.1021/jf101197h – volume: 5 start-page: 30 year: 2014 ident: 5027_CR82 publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00030 – ident: 5027_CR63 doi: 10.1007/978-3-662-44406-1_9 – volume: 75 start-page: 1062 year: 2002 ident: 5027_CR15 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/75.6.1062 – volume: 101 start-page: 619 year: 1993 ident: 5027_CR80 publication-title: Plant Physiol doi: 10.1104/pp.101.2.619 – volume: 135 start-page: 689 year: 1999 ident: 5027_CR12 publication-title: Zinc Investigators' Collaborative Group. J Pediatr – volume: 15 start-page: e0225018 year: 2020 ident: 5027_CR102 publication-title: PLoS One doi: 10.1371/journal.pone.0225018 – volume: 40 start-page: 57 year: 2007 ident: 5027_CR55 publication-title: Agric Trop Subtrop – volume: 164 start-page: 176 year: 2018 ident: 5027_CR43 publication-title: Physiol Plant doi: 10.1111/ppl.12697 – volume: 71 start-page: 55 year: 2004 ident: 5027_CR21 publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2004.71.55 – volume: 63 start-page: 591 year: 2008 ident: 5027_CR35 publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2008.9 – ident: 5027_CR22 doi: 10.3389/fpls.2017.00281 – volume: 166 start-page: 76 year: 2003 ident: 5027_CR68 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200390015 – ident: 5027_CR106 doi: 10.1371/journal.pone.0050568 – ident: 5027_CR1 – volume: 86 start-page: 159 year: 2018 ident: 5027_CR104 publication-title: Plant Growth Regul doi: 10.1007/s10725-018-0418-0 – volume: 58 start-page: 2775 year: 2007 ident: 5027_CR38 publication-title: J Exp Bot doi: 10.1093/jxb/erm142 – ident: 5027_CR58 doi: 10.17226/10026 – volume: 36 start-page: 1 year: 2010 ident: 5027_CR101 publication-title: Journal of Statistical Software doi: 10.18637/jss.v036.i03 – volume: 249 start-page: 13 year: 2016 ident: 5027_CR73 publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.05.001 – volume: 37 start-page: 1765 year: 2002 ident: 5027_CR34 publication-title: Pesqui Agropecu Bras doi: 10.1590/S0100-204X2002001200013 – volume: 51 start-page: 37 year: 1999 ident: 5027_CR39 publication-title: Aust J Agric Res doi: 10.1071/AR99045 – ident: 5027_CR88 doi: 10.1002/9780470960707.ch16 – volume: 26 start-page: 2019 year: 2016 ident: 5027_CR33 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1609.09021 – volume: 210 start-page: 52 year: 2017 ident: 5027_CR90 publication-title: Field Crops Res doi: 10.1016/j.fcr.2017.05.023 – volume: 69 start-page: 4469 year: 2018 ident: 5027_CR30 publication-title: J Exp Bot doi: 10.1093/jxb/ery236 – volume: 146 start-page: 241 year: 1992 ident: 5027_CR45 publication-title: Plant Soil doi: 10.1007/bf00012018 – volume: 361 start-page: 119 year: 2012 ident: 5027_CR110 publication-title: Plant Soil doi: 10.1007/s11104-012-1369-2 – volume: 92 start-page: 2128 year: 2009 ident: 5027_CR27 publication-title: J Dairy Sci doi: 10.3168/jds.2008-1232 – volume: 12 start-page: 8 year: 2017 ident: 5027_CR29 publication-title: Glob Food Sec doi: 10.1016/j.gfs.2016.12.001 – volume: 8 start-page: 443 year: 2015 ident: 5027_CR51 publication-title: Front Behav Neurosci doi: 10.3389/fnbeh.2014.00443 – volume: 115 start-page: 6804 year: 2018 ident: 5027_CR93 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1800442115 – volume: 100 start-page: 349 year: 1998 ident: 5027_CR19 publication-title: Euphytica doi: 10.1023/a:1018318005103 – volume: 37 start-page: 2505 year: 2006 ident: 5027_CR48 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103620600822952 – volume: 7 start-page: 1137 year: 2016 ident: 5027_CR49 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01137 – volume: 69 start-page: 172 year: 2018 ident: 5027_CR18 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12437 – volume: 55 start-page: 400 year: 2008 ident: 5027_CR23 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443708030175 – volume: 383 start-page: 63 year: 2004 ident: 5027_CR24 publication-title: Biochem J doi: 10.1042/BJ20040074 – volume: 2 start-page: 6 year: 2020 ident: 5027_CR91 publication-title: Food Production, Processing and Nutrition doi: 10.1186/s43014-020-0020-5 – volume: 57 start-page: 307 year: 1998 ident: 5027_CR28 publication-title: Proc Nutr Soc doi: 10.1079/PNS19980045 – volume: 399 start-page: 193 year: 2016 ident: 5027_CR56 publication-title: Plant Soil doi: 10.1007/s11104-015-2684-1 – volume: 8 start-page: 395 year: 2010 ident: 5027_CR61 publication-title: J Food Agric Environ – volume: 9 start-page: 140 year: 2020 ident: 5027_CR85 publication-title: Plants (Basel) doi: 10.3390/plants9020140 – volume: 389 start-page: 1 year: 2015 ident: 5027_CR59 publication-title: Plant Soil doi: 10.1007/s11104-015-2430-8 – volume: 48 start-page: 13 year: 2017 ident: 5027_CR96 publication-title: Sci Agric Bohem doi: 10.1515/sab-2017-0003 – ident: 5027_CR105 – volume: 51 start-page: 4 year: 2006 ident: 5027_CR78 publication-title: Cereal Foods World doi: 10.1094/cfw-51-0004 – volume: 47 start-page: 266 year: 2008 ident: 5027_CR83 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2007.04.006 – volume: 29 start-page: 504 year: 2019 ident: 5027_CR95 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60442-9 – volume: 92 start-page: 2049 year: 2011 ident: 5027_CR65 publication-title: Ecology doi: 10.1890/11-0423.1 – volume: 21 start-page: 785 year: 2018 ident: 5027_CR52 publication-title: Public Health Nutr doi: 10.1017/S1368980017003202 – volume: 37 start-page: 1703 year: 2006 ident: 5027_CR57 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103620600710454 – volume: 51 start-page: 966 year: 1980 ident: 5027_CR74 publication-title: J Anim Sci doi: 10.2527/jas1980.514966x – volume: 14 start-page: 123 year: 2009 ident: 5027_CR97 publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2009.01.001 – volume: 611 start-page: 3 year: 2016 ident: 5027_CR64 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2016.04.010 – ident: 5027_CR6 doi: 10.1021/bk-2011-1089.ch001 – volume: 25 start-page: 597 year: 2006 ident: 5027_CR36 publication-title: J Environ Pathol Toxicol Oncol doi: 10.1615/JEnvironPatholToxicolOncol.v25.i3.40 – ident: 5027_CR71 doi: 10.1007/978-94-011-0878-2_5 – volume: 159 start-page: 1125 year: 2012 ident: 5027_CR54 publication-title: Plant Physiol doi: 10.1104/pp.112.197798 – volume: 104 start-page: 93 year: 2019 ident: 5027_CR4 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2019.03.017 – ident: 5027_CR84 doi: 10.1007/978-94-015-8909-3_12 – volume: 123 start-page: 321 year: 2020 ident: 5027_CR108 publication-title: Scientometrics doi: 10.1007/s11192-020-03387-8 – volume: 53 start-page: 211 year: 2002 ident: 5027_CR109 publication-title: Aust J Agric Res doi: 10.1071/ar01085 – volume: 59 start-page: 365 year: 2014 ident: 5027_CR100 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2013.09.001 – volume: 33 start-page: 533 year: 2002 ident: 5027_CR62 publication-title: Commun Soil Sci Plant Anal doi: 10.1081/CSS-120002762 – volume: 62 start-page: 264 year: 2005 ident: 5027_CR37 publication-title: Sci Agric doi: 10.1590/S0103-90162005000300010 – volume: 26 start-page: 623 year: 2013 ident: 5027_CR25 publication-title: Biometals doi: 10.1007/s10534-013-9643-1 – ident: 5027_CR42 doi: 10.1007/978-94-017-2685-6_24 – volume: 80 start-page: 1185 year: 2004 ident: 5027_CR11 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/80.5.1185 – ident: 5027_CR9 doi: 10.11604/pamj.2013.15.120.2535 – volume: 9 start-page: 250 year: 2019 ident: 5027_CR79 publication-title: Agron doi: 10.3390/agronomy9050250 – volume: 32 start-page: 1744 year: 2009 ident: 5027_CR89 publication-title: J Plant Nutr doi: 10.1080/01904160903150974 – ident: 5027_CR8 doi: 10.1016/B978-1-891127-79-3.50010-X – volume: 130 start-page: 1500 year: 2000 ident: 5027_CR69 publication-title: J Nutr doi: 10.1093/jn/130.5.1500S – volume: 9 start-page: 165 year: 2008 ident: 5027_CR13 publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.B0710640 – volume: 49 start-page: 2345 year: 2018 ident: 5027_CR87 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2018.1499769 – volume: 21 start-page: 2245 year: 1998 ident: 5027_CR32 publication-title: J Plant Nutr doi: 10.1080/01904169809365558 – volume: 361 start-page: 241 year: 2012 ident: 5027_CR53 publication-title: Plant Soil doi: 10.1007/s11104-012-1272-x – volume: 416 start-page: 490 year: 2012 ident: 5027_CR77 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.11.029 – volume: 130 start-page: 1437 year: 2000 ident: 5027_CR75 publication-title: J Nutr doi: 10.1093/jn/130.5.1437S – ident: 5027_CR44 doi: 10.1007/s11270-017-3507-1 – volume: 7 start-page: 2854 year: 2019 ident: 5027_CR20 publication-title: Food Sci Nutr doi: 10.1002/fsn3.1127 – volume: 263 start-page: 273 year: 2004 ident: 5027_CR41 publication-title: Plant Soil doi: 10.1023/b:Plso.0000047741.52700.29 – volume: 201 start-page: 131 year: 2014 ident: 5027_CR98 publication-title: New Phytol doi: 10.1111/nph.12468 – volume: 79 start-page: 768 year: 2009 ident: 5027_CR92 publication-title: Am Fam Physician – volume: 53 start-page: 409 year: 2002 ident: 5027_CR40 publication-title: Aust J Agric Res doi: 10.1071/ar01088 – ident: 5027_CR5 doi: 10.1016/B978-0-08-100596-5.03425-9 – ident: 5027_CR72 doi: 10.1016/B978-0-12-384905-2.00012-1 – volume: 173 start-page: 677 year: 2007 ident: 5027_CR14 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.01996.x – ident: 5027_CR67 doi: 10.3389/fpls.2020.00188 – volume: 361 start-page: 203 year: 2012 ident: 5027_CR86 publication-title: Plant Soil doi: 10.1007/s11104-012-1346-9 – ident: 5027_CR2 doi: 10.21608/agro.2017.1841.1078 |
SSID | ssj0003216 |
Score | 2.3651094 |
Snippet | Background and aims
Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient... Background and aims Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient... Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient soils. This work... Background and aimsZinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient... BACKGROUND AND AIMS : Zinc (Zn) deficiency in humans is of worldwide concern and is primarily associated with a plant-based diet of crops grown in Zn-deficient... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | Agriculture animal and human health Animal health Barley Bioaccumulation biofortification Biomedical and Life Sciences Cultivars Ecology Fertilization Gene mapping genotype Genotypes Grain Growth Hordeum vulgare Life Sciences Measurement Meta-analysis Nutrient deficiency Phenotypes Plant breeding Plant Physiology Plant Sciences plant-based diet Quantitative trait loci REGULAR ARTICLE Selective breeding Shoots soil Soil Science & Conservation Substrates Translocation Zinc Zinc in the body |
Subtitle | a meta-analysis |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0VNCH41w9XD2PCIIPGth8NG1968kdh6BPLiz4EDJpKgteK3d7D-tf7ySb7rKigg-lhU4mbacz-Q2ZD4DXTnamVrXgAk3Ftek6jqJUvK5962lQaFPnuU-fzeVcf1wUi5wUdjNGu49bkslS75LdaKXSPIYUzApypri6C_cK8t1jINdcNlv7q2RqeBov-KysFzlV5s889pajbJQ3gYl7kPO3XdK0-FwcwWFGjazZiPkx3An9BB41365z5YwwgftnA-G89QQenKdC1Osn8LUhS0acGQFThsuBTikyKAmDDR37uew9W_YM45b7OpGlnn3M9S0dyyuac5Mo-Z45dhVWjrtcxOQpzC_Ov3y45LmZAveEeFYxYh9daCtsCcC16BwKg4g1yhiaSSAvdJ00VfDRA4qdhDzOJHoM2Hn0VaeO4aAf-vAMWIkCVaHaQPqsNVZVrZ2sCIh5ukQZpiDGb2p9rjQeG158t7sayVEOluRgkxysmsLb7Zgfmzob_6R-E0VloxISZ-9yLgE9XyxnZRtygwpRilpP4WSPkpTH790-TsLezqkrEwvSCxo3St9mrb6xZN6kKnQpZ1N4tb0dWcZItT4Mt0RjlIk-nKCHfDf-NTsWf3-n5_9H_gIeyvQfx3C3EzhYXd-Gl4SPVnia1OEXUU4Cxw priority: 102 providerName: Springer Nature |
Title | Avenues for biofortification of zinc in barley for human and animal health |
URI | https://www.jstor.org/stable/48694301 https://link.springer.com/article/10.1007/s11104-021-05027-3 https://www.proquest.com/docview/2572354720 https://www.proquest.com/docview/2636576813 |
Volume | 466 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEA9e64M-iJ4eV-8sEQQfNNgku9usL7LV1kPxELFQ8WHJZLNS8Hbvo_dw_vXOZNOWCt7DkkA-N5OZ_JJMZhh7YVWd5TqXQkJmRJLVtQA51iLPXeWwkK-C57kvp9nJPPm0SBfxwO0qqlWuZWIQ1FXr6Iz8DU4tpdNkrEbvzi8EeY2i29XoQmOP9VEEG9Nj_cn09Ou3jSzWKjg_pYgYjfNFfDbTPZ7DlS8RpKIwSnFzJvTO0hQFdKekuAM__7kxDQvR7CF7EBEkLzqSP2J3fLPP7he_LqMVDb_P7k5axHw3j9nPAmUZ1scRmnJYthgE3aBADt7W_M-ycXzZcKBL95uQLXjt47ap8FueYUvdU8m33PIzv7LCRjMmT9h8Nv3-_kREdwrCIeZZkc4-WF8ZqBDCVWAtyAwAclCknIkwz9e1yox3tAciX0IORgoceKgdOFPrA9Zr2sYfMj4GCTrVlUeOThIwJk-sMgjFHEZB-QGT65EsXbQ1Ti4vfpdbK8k0-iWOfhlGv9QD9mpT5ryztHFr7pdEoJLYEGt2Nr4mwP6RQauywI1QKscyTwbseCcnso_bST4IJN60mZiMTNJLLLemeRn5-qrczsIBe75JpipJV63x7TXmyXRGuziJnXy9nivbKv7_T09vb_GI3VNhtpKC2zHrrS6v_TNERCsYsn4x-TCZUfjxx-fpMLLBkO3NVfEXE40IXw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKhXQX0QrRZPq66g-KCLyW6ylwgiV2252vYQaeHAh5jZbOTAJrW9IueP8jc6s0nuOMG-9SEkkN3Z3MzsfNzOB8DzXJUm1WkoQzSJjExZSgwHWqapLSxNcoXvPHc4NqPj6NMknqzBny4XhsMqO5noBXVRW_6P_A2xltJxNFDB-9OfkrtG8elq10KjYYt9N_9FLtv5u72PRN8XSu3uHH0YybargLSk-mccuo65KxIsyJIpMM8xNIiYouIYRbJ2XFkqkzjLrgC31LEYKLTosLRok1IT3GuwHmkTqB6sb--MP39ZyH6tfLNVfpDBIJ20aTpNsh5p2khySEQQkzMo9YoqbBVCExS5Yu7-c0LrFd_uHbjdWqxi2LDYXVhz1QbcGn4_a6t2uA24vl2TjTm_B1-HJDsJniBTWOC0ppuPRfLkF3Upfk8rK6aVQD7kn_thvkugyKuCrukJrdSkZr4VuThxs1zmbdmU-3B8JYjehF5VV-4BiAGGqGNdOJIgUYRJkka5Ssj0s_SIyvUh7DCZ2ba2ObfY-JEtqzIz9jPCfuaxn-k-vFrMOW0qe1w6-iUTKONtT5Bt3mYv0PdxAa1sSI5XHA7CNOrD1spI2q525fWmJ_FizSgxXAI_pHkdzbNWjpxnS67vw7PFawbJsXGVqy9ojNGGvcaQPvJ1xytLEP__TQ8vX_Ep3BgdHR5kB3vj_UdwU3nO5eC6LejNzi7cY7LGZvik3QICvl31rvsLShxD1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxNBcKipiD6IVovRqisoPujS3O59CiKpbWithiIWAj6cN3t7ErB3tU2R-NP8dc7s7SVEsG99OO7gdmcvs_OZnQ-A54Wq4kxngQwwTmUYV5XEINEyy0xpaJItXee5T-N4_zj8MIkma_Cny4XhsMpOJjpBXTaG_yPfJtJSOgoTNdiufFjE0e7o3elPyR2k-KS1a6fRksihnf8i9-387cEu7fULpUZ7X97vS99hQBoyA2Ycxo6FLVMsyaopsSgwiBExQ8XximT52KpScWoNuwXcXsfgQKFBi5VBk1aa4F6D9YS9oh6s7-yNjz4v9IBWrvEqP8hBkk18yk6buEdaN5QcHjGIyDGUekUteuXQBkiumL7_nNY6JTi6A7e99SqGLbndhTVbb8Ct4fczX8HDbsD1nYbszfk9-DokOUrwBJnFAqcN3VxckiMF0VTi97Q2YloL5AP_uRvmOgaKoi7pmp7QSm2a5htRiBM7K2ThS6jch-MrQfQm9Oqmtg9AJBigjnRpSZqEIaZpFhYqJTPQ0CMq24egw2RufJ1zbrfxI19WaGbs54T93GE_1314tZhz2lb5uHT0S96gnEUAQTaFz2Sg7-NiWvmQnLAoSIIs7MPWykhiXbPyetNt8WLNMI25HH5A87o9z71MOc-XHNCHZ4vXDJLj5GrbXNCYWMfsQQb0ka87WlmC-P9venj5ik_hBnFb_vFgfPgIbipHuBxntwW92dmFfUyG2QyfeA4Q8O2qme4vidNICg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Avenues+for+biofortification+of+zinc+in+barley+for+human+and+animal+health%3A+a+meta-analysis&rft.jtitle=Plant+and+soil&rft.au=Khan%2C+Waleed+Amjad&rft.au=Shabala+Sergey&rft.au=Cuin%2C+Tracey+Ann&rft.au=Zhou+Meixue&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=466&rft.issue=1-2&rft.spage=101&rft.epage=119&rft_id=info:doi/10.1007%2Fs11104-021-05027-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |