Physiological-Model-Constrained Noninvasive Reconstruction of Volumetric Myocardial Transmembrane Potentials

Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 57; no. 2; pp. 296 - 315
Main Authors Wang, Linwei, Zhang, Heye, Wong, Ken C. L., Liu, Huafeng, Shi, Pengcheng
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium.
AbstractList Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium.
Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium.Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium.
Author Zhang, Heye
Shi, Pengcheng
Liu, Huafeng
Wang, Linwei
Wong, Ken C. L.
Author_xml – sequence: 1
  givenname: Linwei
  surname: Wang
  fullname: Wang, Linwei
  email: maomaowlw@mail.rit.edu
  organization: College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, USA
– sequence: 2
  givenname: Heye
  surname: Zhang
  fullname: Zhang, Heye
  organization: Bioengineering Institute, University of Auckland, Auckland, New Zealand
– sequence: 3
  givenname: Ken C. L.
  surname: Wong
  fullname: Wong, Ken C. L.
  organization: College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, USA
– sequence: 4
  givenname: Huafeng
  surname: Liu
  fullname: Liu, Huafeng
  email: liuhf@zju.edu.cn
  organization: State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Pengcheng
  surname: Shi
  fullname: Shi, Pengcheng
  organization: College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492105$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19535316$$D View this record in MEDLINE/PubMed
BookMark eNqFkltrFDEYhoNU7Lb6A0SQQRCvpuZ8uNSlWqFbi6zeDtnMN5oyk7TJTGH_vRl3W6EX7U2-HJ43p_c9QgchBkDoNcEnhGDzcf15dXpCMTaloVww8gwtiBC6pqV_gBYYE10bavghOsr5qgy55vIFOiRGsILIBeov_2yzj3387Z3t61Vsoa-XMeQxWR-grS5i8OHWZn8L1Q9w_1YmN_oYqthVv2I_DTAm76rVNjqbWm_7ap1syAMMm1KhuowjhLHM55foeVcKvNrXY_Tzy-l6eVaff__6bfnpvHack7FmlCuFBSVCU6JFp6TEWrTMSg3G2I0yxGLshBMMtOqItNhp0nLp1EYR5dgx-rDb9zrFmwny2Aw-O-j7cp045UZLpZjg0jxJKi6JIFTIp0nGhNZS80K-e0BexSmF8uBGCymJYhgX6O0emjYDtM118oNN2-bOmQK83wM2F2e68pXO53uOUm4owaJwZMe5FHNO0P3fCjdzSpo5Jc2ckmafkqJRDzTOj3b2dHa9f1T5Zqf0AHB_ksBKSCzZX7BvyDI
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s11517_019_02018_6
crossref_primary_10_1016_j_hrthm_2018_10_010
crossref_primary_10_1109_TBME_2015_2395387
crossref_primary_10_1007_s11517_012_0941_5
crossref_primary_10_1016_j_micpro_2022_104627
crossref_primary_10_1080_24725579_2020_1823531
crossref_primary_10_1155_2013_276478
crossref_primary_10_1097_MD_0000000000014906
crossref_primary_10_1109_TMI_2015_2464315
crossref_primary_10_1088_1361_6420_ad9e2b
crossref_primary_10_3389_fphys_2018_01946
crossref_primary_10_1002_zamm_202100217
crossref_primary_10_1109_TMI_2012_2201948
crossref_primary_10_1109_TMI_2012_2236567
crossref_primary_10_3389_fphys_2018_01305
crossref_primary_10_1109_ACCESS_2020_3005898
crossref_primary_10_1109_TBME_2022_3184473
crossref_primary_10_1109_TMI_2022_3218170
crossref_primary_10_1016_j_jelectrocard_2016_07_026
crossref_primary_10_1080_09243046_2018_1482513
crossref_primary_10_1371_journal_pone_0196916
crossref_primary_10_3390_s23187697
crossref_primary_10_1088_0031_9155_56_6_013
crossref_primary_10_1016_j_compbiomed_2012_12_003
crossref_primary_10_1109_TMI_2017_2697820
crossref_primary_10_1109_ACCESS_2024_3516495
crossref_primary_10_1109_TASE_2022_3144347
crossref_primary_10_1109_TBME_2010_2099226
crossref_primary_10_1016_j_jcp_2020_109700
crossref_primary_10_1109_TMI_2011_2105274
crossref_primary_10_1016_j_pbiomolbio_2011_07_007
crossref_primary_10_1109_TMI_2012_2234320
crossref_primary_10_1080_24725579_2024_2398592
crossref_primary_10_1016_j_compositesa_2016_01_006
crossref_primary_10_1109_TMI_2018_2880092
crossref_primary_10_1088_1361_6560_ad2e6d
crossref_primary_10_1016_j_media_2018_05_007
crossref_primary_10_1016_j_media_2020_101670
crossref_primary_10_1109_TBME_2024_3382050
crossref_primary_10_1109_TMI_2015_2429134
crossref_primary_10_1155_2021_5512243
crossref_primary_10_1109_RBME_2024_3486439
crossref_primary_10_1109_TMI_2013_2295220
crossref_primary_10_1155_2014_120960
crossref_primary_10_1109_TBME_2021_3108164
crossref_primary_10_1109_TMI_2024_3377094
crossref_primary_10_3389_fphys_2018_01126
crossref_primary_10_1109_ACCESS_2022_3173176
crossref_primary_10_7498_aps_68_20190387
crossref_primary_10_1152_ajpheart_00618_2011
crossref_primary_10_1109_TBME_2016_2553641
crossref_primary_10_3389_fphys_2021_740306
crossref_primary_10_1088_0031_9155_60_8_3237
crossref_primary_10_1109_ACCESS_2021_3098925
crossref_primary_10_1109_TBME_2010_2087331
crossref_primary_10_1088_1361_6560_ad550e
crossref_primary_10_1152_ajpheart_00196_2014
crossref_primary_10_1155_2012_436281
crossref_primary_10_1371_journal_pone_0163445
crossref_primary_10_1016_j_cmpb_2019_105286
crossref_primary_10_1007_s00500_023_08708_6
crossref_primary_10_1109_JBHI_2017_2768534
crossref_primary_10_1109_TMI_2019_2906600
crossref_primary_10_1109_TBME_2016_2593003
crossref_primary_10_3390_s19051214
crossref_primary_10_1016_j_heliyon_2020_e05147
crossref_primary_10_1016_j_heliyon_2018_e00554
crossref_primary_10_1007_s11517_016_1595_5
crossref_primary_10_1007_s00285_019_01419_3
crossref_primary_10_1016_j_jelectrocard_2015_08_035
crossref_primary_10_1186_s12938_018_0576_3
crossref_primary_10_1515_cdbme_2015_0096
Cites_doi 10.1161/01.RES.74.6.1071
10.1109/TBME.1986.325756
10.1016/S0006-3495(61)86902-6
10.1002/9780470753767
10.1109/IEMBS.1993.978823
10.1109/TBME.1987.326079
10.1114/1.1408921
10.1016/S0022-0736(84)80063-1
10.1109/TBME.2002.803519
10.1161/01.CIR.41.6.899
10.1109/TBME.2006.878117
10.1016/S0006-3495(67)86599-8
10.1109/CIC.2007.4745449
10.1016/S1361-8415(03)00032-X
10.1109/CIC.2007.4745450
10.1109/TBME.1982.325002
10.1114/1.1318927
10.1109/TBME.2003.817637
10.1016/j.acra.2007.07.026
10.1114/1.1289467
10.1109/ICCV.1995.466848
10.1161/01.CIR.101.23.e215
10.1007/978-0-387-49963-5_4
10.1109/10.581930
10.1161/hc0402.102975
10.1109/IEMBS.2006.260169
10.1109/10.310090
10.1161/hc3601.094277
10.1109/TBME.1984.325315
10.1038/nm1011
10.1109/TBME.2002.807325
10.1109/TBME.2003.820394
10.1016/0960-0779(95)00089-5
10.1109/CIC.2007.4745452
10.1161/01.CIR.98.18.1921
10.1016/S0169-2607(97)00060-6
10.1007/978-3-642-48860-3
10.1109/10.563303
10.1161/01.RES.52.6.706
10.1109/51.646224
10.1007/978-3-540-79982-5_11
10.1109/IEMBS.1995.575076
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2009.2024531
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
Engineering Research Database
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 315
ExternalDocumentID 2289865121
19535316
22492105
10_1109_TBME_2009_2024531
5075606
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c441t-324770521582185f766085d3a68e99ab791a00c5c53e87f16a0c81d46c7b717c3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 09:40:56 EDT 2025
Thu Jul 10 23:05:08 EDT 2025
Fri Jul 11 10:46:50 EDT 2025
Mon Jun 30 09:09:25 EDT 2025
Thu Apr 03 07:04:05 EDT 2025
Mon Jul 21 09:14:45 EDT 2025
Tue Jul 01 02:15:38 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Heart
Human
Body surface
Volumetric analysis
Computer simulation
Image processing
Biological model
Electrophysiology
Action potential
Inverse problem
cardiac electrophysiological imaging
Electrodiagnosis
myocardial transmembrane potential (TMP)
Body surface potential (BSP)
inverse problem of ECG (IECG)
Electrocardiography
Myocardium
Physiology
Circulatory system
Membrane potential
data assimilation
Surface potential
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-324770521582185f766085d3a68e99ab791a00c5c53e87f16a0c81d46c7b717c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19535316
PQID 856617300
PQPubID 23462
PageCount 20
ParticipantIDs proquest_miscellaneous_867735469
pubmed_primary_19535316
proquest_miscellaneous_733588684
proquest_miscellaneous_746151256
crossref_citationtrail_10_1109_TBME_2009_2024531
ieee_primary_5075606
proquest_journals_856617300
pascalfrancis_primary_22492105
crossref_primary_10_1109_TBME_2009_2024531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ristic (ref36) 2004
ref53
ref52
ref55
ref11
ref54
ref10
ref16
ref19
cheng (ref22) 2001
ref51
wang (ref14) 2008; 1
ref50
plonsey (ref1) 1969
henriquez (ref28) 1993; 21
goldberger (ref46) 2000; 101
ref45
ref48
nielsen (ref18) 1991; 260
ref42
ref41
ref44
ref43
cerqueira (ref47) 2002; 105
ref49
liu (ref27) 2003
ref8
zhang (ref12) 2005
ref7
ref9
julier (ref38) 1997
ref4
ref3
ref6
ref5
ref40
ref34
nash (ref17) 1998
ref31
ref30
anderson (ref35) 1979
ref33
ref32
ref2
ref39
zhang (ref13) 2008
ref24
ref23
julier (ref37) 2000; 47
ref26
ref25
ref20
wang (ref15) 2009
ref21
ref29
References_xml – ident: ref24
  doi: 10.1161/01.RES.74.6.1071
– year: 2008
  ident: ref13
  article-title: a meshfree method for simulating myocardial electrical activity
– volume: 21
  start-page: 1
  year: 1993
  ident: ref28
  article-title: simulating the electrical behaviour of cardiac tissue using the bidomain model
  publication-title: Crit Rev Biomed Eng
– year: 1969
  ident: ref1
  publication-title: Bioelectric Phenomena
– ident: ref3
  doi: 10.1109/TBME.1986.325756
– ident: ref23
  doi: 10.1016/S0006-3495(61)86902-6
– ident: ref34
  doi: 10.1002/9780470753767
– year: 2004
  ident: ref36
  publication-title: Beyond the Kalman Filter Particle Filters for Tracking Applications
– ident: ref54
  doi: 10.1109/IEMBS.1993.978823
– ident: ref33
  doi: 10.1109/TBME.1987.326079
– ident: ref6
  doi: 10.1114/1.1408921
– start-page: 182
  year: 1997
  ident: ref38
  article-title: a new extension of the kalman filter to nonlinear systems
  publication-title: Int Symp Aerosp /Defense Sens Simulation and Controls
– ident: ref2
  doi: 10.1016/S0022-0736(84)80063-1
– ident: ref7
  doi: 10.1109/TBME.2002.803519
– ident: ref39
  doi: 10.1161/01.CIR.41.6.899
– ident: ref9
  doi: 10.1109/TBME.2006.878117
– year: 1998
  ident: ref17
– volume: 260
  start-page: 1365h
  year: 1991
  ident: ref18
  article-title: mathematical model of geometry and fibrous structure of the heart
  publication-title: Amer J Physiol
– ident: ref32
  doi: 10.1016/S0006-3495(67)86599-8
– ident: ref49
  doi: 10.1109/CIC.2007.4745449
– volume: 47
  start-page: 1445
  year: 2000
  ident: ref37
  article-title: the scaled unscented transform
  publication-title: Int J Numer Methods Eng
– ident: ref51
  doi: 10.1016/S1361-8415(03)00032-X
– year: 2009
  ident: ref15
  article-title: electrocardiographic simulation on personalized hearttorso structures using coupled meshfree-bem platform
  publication-title: Int J Funct Inf Pers Med
– ident: ref48
  doi: 10.1109/CIC.2007.4745450
– ident: ref10
  doi: 10.1109/TBME.1982.325002
– ident: ref30
  doi: 10.1114/1.1318927
– ident: ref11
  doi: 10.1109/TBME.2003.817637
– ident: ref52
  doi: 10.1016/j.acra.2007.07.026
– ident: ref20
  doi: 10.1114/1.1289467
– ident: ref16
  doi: 10.1109/ICCV.1995.466848
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref46
  article-title: physiobank, physiotoolkit, and physionet components of a new research resource for complex physiological signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref45
  doi: 10.1007/978-0-387-49963-5_4
– ident: ref5
  doi: 10.1109/10.581930
– start-page: 349
  year: 2005
  ident: ref12
  article-title: a meshfree method for solving cardiac electrical propagation
  publication-title: Proc IEEE Int Conf on Engineering in Medicine and Biol
– volume: 105
  start-page: 539
  year: 2002
  ident: ref47
  article-title: standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– year: 2003
  ident: ref27
  publication-title: Meshfree Methods
– ident: ref53
  doi: 10.1109/IEMBS.2006.260169
– ident: ref25
  doi: 10.1109/10.310090
– ident: ref42
  doi: 10.1161/hc3601.094277
– ident: ref4
  doi: 10.1109/TBME.1984.325315
– ident: ref44
  doi: 10.1038/nm1011
– ident: ref21
  doi: 10.1109/TBME.2002.807325
– ident: ref8
  doi: 10.1109/TBME.2003.820394
– ident: ref26
  doi: 10.1016/0960-0779(95)00089-5
– ident: ref50
  doi: 10.1109/CIC.2007.4745452
– ident: ref19
  doi: 10.1161/01.CIR.98.18.1921
– ident: ref29
  doi: 10.1016/S0169-2607(97)00060-6
– ident: ref31
  doi: 10.1007/978-3-642-48860-3
– year: 2001
  ident: ref22
  publication-title: Non-invasive electrical imaging of the heart
– ident: ref40
  doi: 10.1109/10.563303
– ident: ref43
  doi: 10.1161/01.RES.52.6.706
– ident: ref41
  doi: 10.1109/51.646224
– year: 1979
  ident: ref35
  publication-title: Optimal Filtering
– volume: 1
  start-page: 98
  year: 2008
  ident: ref14
  article-title: coupled meshfree-bem platform for electrocardiographic simulation: modeling and validations
  publication-title: Proc Int Workshop Med Imag Augmented Reality
  doi: 10.1007/978-3-540-79982-5_11
– ident: ref55
  doi: 10.1109/IEMBS.1995.575076
SSID ssj0014846
Score 2.3350499
Snippet Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 296
SubjectTerms Algorithms
Biological and medical sciences
Body surface potential (BSP)
Body Surface Potential Mapping - methods
Cardiac arrhythmia
cardiac electrophysiological imaging
Computer Simulation
data assimilation
Data collection
Electrocardiography
Electrophysiology
Fundamental and applied biological sciences. Psychology
Heart
Heart - anatomy & histology
Heart - physiology
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging phantoms
inverse problem of ECG (IECG)
Membrane Potentials - physiology
Models, Cardiovascular
myocardial transmembrane potential (TMP)
Myocardium
Myocardium - metabolism
Nonlinear dynamical systems
Phantoms, Imaging
Physiology
Stochastic systems
Surface reconstruction
Surface treatment
Uncertainty
Vertebrates: cardiovascular system
Title Physiological-Model-Constrained Noninvasive Reconstruction of Volumetric Myocardial Transmembrane Potentials
URI https://ieeexplore.ieee.org/document/5075606
https://www.ncbi.nlm.nih.gov/pubmed/19535316
https://www.proquest.com/docview/856617300
https://www.proquest.com/docview/733588684
https://www.proquest.com/docview/746151256
https://www.proquest.com/docview/867735469
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5hELlAydEtk78PgJqVSGl4tCi3qLEdi5sN5V2F6n99cw42ZQiWnGzFEeKM2PPN57HB_BBCyOkLkJequBy2QSK7zYuL4poCmW4toHuO6pTfXIuv12oiy34NNXCxBhT8lmc0TDF8kPv13RVdojYBQ203oZtdNyGWq0pYiDtUJTDC9zApZNjBLPg7vDsS3U0dKYsKdAoEjuMUwJH-o45SvwqlB3ZLPEHdQOzxf3QM5mg42dQbT5-yDz5OVuv2pm_-auv4_-u7jk8HbEo-zwozwvYiotdePJHh8JdeFSNsfc9mKdk0c1ZmROJ2jwnvs_EMhEDO6Wb3V8N5cMz8mpve9OyvmM_0jFIfACsukYDSoo5Z8lUXsZL9NkXkX3vV5S8hDviJZwfH519PclHrobcI6Ba5YjLjKFCYCq8taozWiOYC6LRNjrXtAY1gHOvvBLRmq7QDfcIlaX2pkWP0otXsLPoF_ENsE445RDXxEYbKaWzQbc6qpKbLiCakhnwjchqPzYyp5XO6-TQcFeTwIlf09WjwDP4OL1yNXTxeGjyHglnmjjKJYODO3oxPS-p6SLC1Az2N4pSjwfBsrYIlwviBMiATU9xB1NYBn9sv17WRghlrbbygSmSgCei0_unUF9CoaR2GbwelPR2paOuv_33wvbh8ZASQTk672AHdSO-R6S1ag_SFvsNIkAg5g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GhLSQvFB06IbJ34fQTUaoFmxWGLeovycC5sN0i7W6n99Z1xsilFtOJmyY4Ue8aez57HB_BeCyOkTuo4VbWLZVGTf7dwcZJ4kyjDta3pvSOb6PGp_Hamzjbg45AL470PwWd-RM3gy6_bakVPZYeIXdBA6wfwEO2-SrtsrcFnIG2XlsMT3MKpk70PM-HucPo5O-pqU6bkahSBH8YpgS19yyAFhhWKjywWuERNx21xN_gMRuj4OWTr3-9iT36NVstyVF39Vdnxf-f3Ap71aJR96tTnJWz4-RY8_aNG4RY8ynrv-zbMQrjo-rSMiUZtFhPjZ-CZ8DWb0NvuRUER8YzutTfVaVnbsJ_hICRGAJZdogkl1ZyxYCzP_Tne2uee_WiXFL6Ee2IHTo-Ppl_Gcc_WEFcIqZYxIjNjKBWYUm-taozWCOdqUWjrnStKgzrAeaUqJbw1TaILXiFYlroyJd4pK_EKNuft3L8G1ginHCIbX2gjpXS21qX2KuWmqRFPyQj4WmR51Zcyp5nO8nCl4S4ngRPDpst7gUfwYfjkd1fH477B2yScYWAvlwgObunF0J9S2UUEqhHsrxUl74-CRW4RMCfEChABG3pxD5NjBhe2XS1yI4SyVlt5zxBJ0BPx6d1DqDKhUFK7CHY7Jb2Zaa_re_-e2Dt4PJ5mJ_nJ18n3fXjSBUhQxM4b2EQ98W8Rdy3Lg7DdrgFSTiQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiological-model-constrained+noninvasive+reconstruction+of+volumetric+myocardial+transmembrane+potentials&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Linwei&rft.au=Zhang%2C+Heye&rft.au=Wong%2C+Ken+C+L&rft.au=Liu%2C+Huafeng&rft.date=2010-02-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=57&rft.issue=2&rft.spage=296&rft_id=info:doi/10.1109%2FTBME.2009.2024531&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon