Physiological-Model-Constrained Noninvasive Reconstruction of Volumetric Myocardial Transmembrane Potentials
Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocar...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 57; no. 2; pp. 296 - 315 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.02.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium. |
---|---|
AbstractList | Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium. Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium.Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac arrhythmia. Compared to body surface potential (BSP) recordings and electrophysiological information reconstructed on heart surfaces, volumetric myocardial transmembrane potential (TMP) dynamics is of greater clinical importance in exhibiting arrhythmic details and arrythmogenic substrates inside the myocardium. This paper presents a physiological-model-constrained statistical framework to reconstruct volumetric TMP dynamics inside the 3-D myocardium from noninvasive BSP recordings. General knowledge of volumetric TMP activity is incorporated through the modeling of cardiac electrophysiological system, and is used to constrain TMP reconstruction. This physiological system is reformulated into a stochastic state-space representation to take into account model and data uncertainties, and nonlinear data assimilation is developed to estimate volumetric myocardial TMP dynamics from personal BSP data. Robustness of the presented framework to practical model and data errors is evaluated. Comparison of epicardial potential reconstructions with classical regularization-based approaches is performed on computational phantom regarding right bundle branch blocks. Further, phantom experiments on intramural focal activities and an initial real-data study on postmyocardial infarction demonstrate the potential of the framework in reconstructing local arrhythmic details and identifying arrhythmogenic substrates inside the myocardium. |
Author | Zhang, Heye Shi, Pengcheng Liu, Huafeng Wang, Linwei Wong, Ken C. L. |
Author_xml | – sequence: 1 givenname: Linwei surname: Wang fullname: Wang, Linwei email: maomaowlw@mail.rit.edu organization: College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, USA – sequence: 2 givenname: Heye surname: Zhang fullname: Zhang, Heye organization: Bioengineering Institute, University of Auckland, Auckland, New Zealand – sequence: 3 givenname: Ken C. L. surname: Wong fullname: Wong, Ken C. L. organization: College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, USA – sequence: 4 givenname: Huafeng surname: Liu fullname: Liu, Huafeng email: liuhf@zju.edu.cn organization: State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Pengcheng surname: Shi fullname: Shi, Pengcheng organization: College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492105$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19535316$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkltrFDEYhoNU7Lb6A0SQQRCvpuZ8uNSlWqFbi6zeDtnMN5oyk7TJTGH_vRl3W6EX7U2-HJ43p_c9QgchBkDoNcEnhGDzcf15dXpCMTaloVww8gwtiBC6pqV_gBYYE10bavghOsr5qgy55vIFOiRGsILIBeov_2yzj3387Z3t61Vsoa-XMeQxWR-grS5i8OHWZn8L1Q9w_1YmN_oYqthVv2I_DTAm76rVNjqbWm_7ap1syAMMm1KhuowjhLHM55foeVcKvNrXY_Tzy-l6eVaff__6bfnpvHack7FmlCuFBSVCU6JFp6TEWrTMSg3G2I0yxGLshBMMtOqItNhp0nLp1EYR5dgx-rDb9zrFmwny2Aw-O-j7cp045UZLpZjg0jxJKi6JIFTIp0nGhNZS80K-e0BexSmF8uBGCymJYhgX6O0emjYDtM118oNN2-bOmQK83wM2F2e68pXO53uOUm4owaJwZMe5FHNO0P3fCjdzSpo5Jc2ckmafkqJRDzTOj3b2dHa9f1T5Zqf0AHB_ksBKSCzZX7BvyDI |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1007_s11517_019_02018_6 crossref_primary_10_1016_j_hrthm_2018_10_010 crossref_primary_10_1109_TBME_2015_2395387 crossref_primary_10_1007_s11517_012_0941_5 crossref_primary_10_1016_j_micpro_2022_104627 crossref_primary_10_1080_24725579_2020_1823531 crossref_primary_10_1155_2013_276478 crossref_primary_10_1097_MD_0000000000014906 crossref_primary_10_1109_TMI_2015_2464315 crossref_primary_10_1088_1361_6420_ad9e2b crossref_primary_10_3389_fphys_2018_01946 crossref_primary_10_1002_zamm_202100217 crossref_primary_10_1109_TMI_2012_2201948 crossref_primary_10_1109_TMI_2012_2236567 crossref_primary_10_3389_fphys_2018_01305 crossref_primary_10_1109_ACCESS_2020_3005898 crossref_primary_10_1109_TBME_2022_3184473 crossref_primary_10_1109_TMI_2022_3218170 crossref_primary_10_1016_j_jelectrocard_2016_07_026 crossref_primary_10_1080_09243046_2018_1482513 crossref_primary_10_1371_journal_pone_0196916 crossref_primary_10_3390_s23187697 crossref_primary_10_1088_0031_9155_56_6_013 crossref_primary_10_1016_j_compbiomed_2012_12_003 crossref_primary_10_1109_TMI_2017_2697820 crossref_primary_10_1109_ACCESS_2024_3516495 crossref_primary_10_1109_TASE_2022_3144347 crossref_primary_10_1109_TBME_2010_2099226 crossref_primary_10_1016_j_jcp_2020_109700 crossref_primary_10_1109_TMI_2011_2105274 crossref_primary_10_1016_j_pbiomolbio_2011_07_007 crossref_primary_10_1109_TMI_2012_2234320 crossref_primary_10_1080_24725579_2024_2398592 crossref_primary_10_1016_j_compositesa_2016_01_006 crossref_primary_10_1109_TMI_2018_2880092 crossref_primary_10_1088_1361_6560_ad2e6d crossref_primary_10_1016_j_media_2018_05_007 crossref_primary_10_1016_j_media_2020_101670 crossref_primary_10_1109_TBME_2024_3382050 crossref_primary_10_1109_TMI_2015_2429134 crossref_primary_10_1155_2021_5512243 crossref_primary_10_1109_RBME_2024_3486439 crossref_primary_10_1109_TMI_2013_2295220 crossref_primary_10_1155_2014_120960 crossref_primary_10_1109_TBME_2021_3108164 crossref_primary_10_1109_TMI_2024_3377094 crossref_primary_10_3389_fphys_2018_01126 crossref_primary_10_1109_ACCESS_2022_3173176 crossref_primary_10_7498_aps_68_20190387 crossref_primary_10_1152_ajpheart_00618_2011 crossref_primary_10_1109_TBME_2016_2553641 crossref_primary_10_3389_fphys_2021_740306 crossref_primary_10_1088_0031_9155_60_8_3237 crossref_primary_10_1109_ACCESS_2021_3098925 crossref_primary_10_1109_TBME_2010_2087331 crossref_primary_10_1088_1361_6560_ad550e crossref_primary_10_1152_ajpheart_00196_2014 crossref_primary_10_1155_2012_436281 crossref_primary_10_1371_journal_pone_0163445 crossref_primary_10_1016_j_cmpb_2019_105286 crossref_primary_10_1007_s00500_023_08708_6 crossref_primary_10_1109_JBHI_2017_2768534 crossref_primary_10_1109_TMI_2019_2906600 crossref_primary_10_1109_TBME_2016_2593003 crossref_primary_10_3390_s19051214 crossref_primary_10_1016_j_heliyon_2020_e05147 crossref_primary_10_1016_j_heliyon_2018_e00554 crossref_primary_10_1007_s11517_016_1595_5 crossref_primary_10_1007_s00285_019_01419_3 crossref_primary_10_1016_j_jelectrocard_2015_08_035 crossref_primary_10_1186_s12938_018_0576_3 crossref_primary_10_1515_cdbme_2015_0096 |
Cites_doi | 10.1161/01.RES.74.6.1071 10.1109/TBME.1986.325756 10.1016/S0006-3495(61)86902-6 10.1002/9780470753767 10.1109/IEMBS.1993.978823 10.1109/TBME.1987.326079 10.1114/1.1408921 10.1016/S0022-0736(84)80063-1 10.1109/TBME.2002.803519 10.1161/01.CIR.41.6.899 10.1109/TBME.2006.878117 10.1016/S0006-3495(67)86599-8 10.1109/CIC.2007.4745449 10.1016/S1361-8415(03)00032-X 10.1109/CIC.2007.4745450 10.1109/TBME.1982.325002 10.1114/1.1318927 10.1109/TBME.2003.817637 10.1016/j.acra.2007.07.026 10.1114/1.1289467 10.1109/ICCV.1995.466848 10.1161/01.CIR.101.23.e215 10.1007/978-0-387-49963-5_4 10.1109/10.581930 10.1161/hc0402.102975 10.1109/IEMBS.2006.260169 10.1109/10.310090 10.1161/hc3601.094277 10.1109/TBME.1984.325315 10.1038/nm1011 10.1109/TBME.2002.807325 10.1109/TBME.2003.820394 10.1016/0960-0779(95)00089-5 10.1109/CIC.2007.4745452 10.1161/01.CIR.98.18.1921 10.1016/S0169-2607(97)00060-6 10.1007/978-3-642-48860-3 10.1109/10.563303 10.1161/01.RES.52.6.706 10.1109/51.646224 10.1007/978-3-540-79982-5_11 10.1109/IEMBS.1995.575076 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2009.2024531 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Engineering Research Database MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 315 |
ExternalDocumentID | 2289865121 19535316 22492105 10_1109_TBME_2009_2024531 5075606 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c441t-324770521582185f766085d3a68e99ab791a00c5c53e87f16a0c81d46c7b717c3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 09:40:56 EDT 2025 Thu Jul 10 23:05:08 EDT 2025 Fri Jul 11 10:46:50 EDT 2025 Mon Jun 30 09:09:25 EDT 2025 Thu Apr 03 07:04:05 EDT 2025 Mon Jul 21 09:14:45 EDT 2025 Tue Jul 01 02:15:38 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Heart Human Body surface Volumetric analysis Computer simulation Image processing Biological model Electrophysiology Action potential Inverse problem cardiac electrophysiological imaging Electrodiagnosis myocardial transmembrane potential (TMP) Body surface potential (BSP) inverse problem of ECG (IECG) Electrocardiography Myocardium Physiology Circulatory system Membrane potential data assimilation Surface potential Biomedical engineering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-324770521582185f766085d3a68e99ab791a00c5c53e87f16a0c81d46c7b717c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 19535316 |
PQID | 856617300 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_867735469 pubmed_primary_19535316 proquest_miscellaneous_733588684 proquest_miscellaneous_746151256 crossref_citationtrail_10_1109_TBME_2009_2024531 ieee_primary_5075606 proquest_journals_856617300 pascalfrancis_primary_22492105 crossref_primary_10_1109_TBME_2009_2024531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-01 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2010 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ristic (ref36) 2004 ref53 ref52 ref55 ref11 ref54 ref10 ref16 ref19 cheng (ref22) 2001 ref51 wang (ref14) 2008; 1 ref50 plonsey (ref1) 1969 henriquez (ref28) 1993; 21 goldberger (ref46) 2000; 101 ref45 ref48 nielsen (ref18) 1991; 260 ref42 ref41 ref44 ref43 cerqueira (ref47) 2002; 105 ref49 liu (ref27) 2003 ref8 zhang (ref12) 2005 ref7 ref9 julier (ref38) 1997 ref4 ref3 ref6 ref5 ref40 ref34 nash (ref17) 1998 ref31 ref30 anderson (ref35) 1979 ref33 ref32 ref2 ref39 zhang (ref13) 2008 ref24 ref23 julier (ref37) 2000; 47 ref26 ref25 ref20 wang (ref15) 2009 ref21 ref29 |
References_xml | – ident: ref24 doi: 10.1161/01.RES.74.6.1071 – year: 2008 ident: ref13 article-title: a meshfree method for simulating myocardial electrical activity – volume: 21 start-page: 1 year: 1993 ident: ref28 article-title: simulating the electrical behaviour of cardiac tissue using the bidomain model publication-title: Crit Rev Biomed Eng – year: 1969 ident: ref1 publication-title: Bioelectric Phenomena – ident: ref3 doi: 10.1109/TBME.1986.325756 – ident: ref23 doi: 10.1016/S0006-3495(61)86902-6 – ident: ref34 doi: 10.1002/9780470753767 – year: 2004 ident: ref36 publication-title: Beyond the Kalman Filter Particle Filters for Tracking Applications – ident: ref54 doi: 10.1109/IEMBS.1993.978823 – ident: ref33 doi: 10.1109/TBME.1987.326079 – ident: ref6 doi: 10.1114/1.1408921 – start-page: 182 year: 1997 ident: ref38 article-title: a new extension of the kalman filter to nonlinear systems publication-title: Int Symp Aerosp /Defense Sens Simulation and Controls – ident: ref2 doi: 10.1016/S0022-0736(84)80063-1 – ident: ref7 doi: 10.1109/TBME.2002.803519 – ident: ref39 doi: 10.1161/01.CIR.41.6.899 – ident: ref9 doi: 10.1109/TBME.2006.878117 – year: 1998 ident: ref17 – volume: 260 start-page: 1365h year: 1991 ident: ref18 article-title: mathematical model of geometry and fibrous structure of the heart publication-title: Amer J Physiol – ident: ref32 doi: 10.1016/S0006-3495(67)86599-8 – ident: ref49 doi: 10.1109/CIC.2007.4745449 – volume: 47 start-page: 1445 year: 2000 ident: ref37 article-title: the scaled unscented transform publication-title: Int J Numer Methods Eng – ident: ref51 doi: 10.1016/S1361-8415(03)00032-X – year: 2009 ident: ref15 article-title: electrocardiographic simulation on personalized hearttorso structures using coupled meshfree-bem platform publication-title: Int J Funct Inf Pers Med – ident: ref48 doi: 10.1109/CIC.2007.4745450 – ident: ref10 doi: 10.1109/TBME.1982.325002 – ident: ref30 doi: 10.1114/1.1318927 – ident: ref11 doi: 10.1109/TBME.2003.817637 – ident: ref52 doi: 10.1016/j.acra.2007.07.026 – ident: ref20 doi: 10.1114/1.1289467 – ident: ref16 doi: 10.1109/ICCV.1995.466848 – volume: 101 start-page: 215e year: 2000 ident: ref46 article-title: physiobank, physiotoolkit, and physionet components of a new research resource for complex physiological signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref45 doi: 10.1007/978-0-387-49963-5_4 – ident: ref5 doi: 10.1109/10.581930 – start-page: 349 year: 2005 ident: ref12 article-title: a meshfree method for solving cardiac electrical propagation publication-title: Proc IEEE Int Conf on Engineering in Medicine and Biol – volume: 105 start-page: 539 year: 2002 ident: ref47 article-title: standardized myocardial segmentation and nomenclature for tomographic imaging of the heart publication-title: Circulation doi: 10.1161/hc0402.102975 – year: 2003 ident: ref27 publication-title: Meshfree Methods – ident: ref53 doi: 10.1109/IEMBS.2006.260169 – ident: ref25 doi: 10.1109/10.310090 – ident: ref42 doi: 10.1161/hc3601.094277 – ident: ref4 doi: 10.1109/TBME.1984.325315 – ident: ref44 doi: 10.1038/nm1011 – ident: ref21 doi: 10.1109/TBME.2002.807325 – ident: ref8 doi: 10.1109/TBME.2003.820394 – ident: ref26 doi: 10.1016/0960-0779(95)00089-5 – ident: ref50 doi: 10.1109/CIC.2007.4745452 – ident: ref19 doi: 10.1161/01.CIR.98.18.1921 – ident: ref29 doi: 10.1016/S0169-2607(97)00060-6 – ident: ref31 doi: 10.1007/978-3-642-48860-3 – year: 2001 ident: ref22 publication-title: Non-invasive electrical imaging of the heart – ident: ref40 doi: 10.1109/10.563303 – ident: ref43 doi: 10.1161/01.RES.52.6.706 – ident: ref41 doi: 10.1109/51.646224 – year: 1979 ident: ref35 publication-title: Optimal Filtering – volume: 1 start-page: 98 year: 2008 ident: ref14 article-title: coupled meshfree-bem platform for electrocardiographic simulation: modeling and validations publication-title: Proc Int Workshop Med Imag Augmented Reality doi: 10.1007/978-3-540-79982-5_11 – ident: ref55 doi: 10.1109/IEMBS.1995.575076 |
SSID | ssj0014846 |
Score | 2.3350499 |
Snippet | Personalized noninvasive imaging of subject-specific cardiac electrical activity can guide and improve preventive diagnosis and treatment of cardiac... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 296 |
SubjectTerms | Algorithms Biological and medical sciences Body surface potential (BSP) Body Surface Potential Mapping - methods Cardiac arrhythmia cardiac electrophysiological imaging Computer Simulation data assimilation Data collection Electrocardiography Electrophysiology Fundamental and applied biological sciences. Psychology Heart Heart - anatomy & histology Heart - physiology Humans Image Processing, Computer-Assisted - methods Image reconstruction Imaging phantoms inverse problem of ECG (IECG) Membrane Potentials - physiology Models, Cardiovascular myocardial transmembrane potential (TMP) Myocardium Myocardium - metabolism Nonlinear dynamical systems Phantoms, Imaging Physiology Stochastic systems Surface reconstruction Surface treatment Uncertainty Vertebrates: cardiovascular system |
Title | Physiological-Model-Constrained Noninvasive Reconstruction of Volumetric Myocardial Transmembrane Potentials |
URI | https://ieeexplore.ieee.org/document/5075606 https://www.ncbi.nlm.nih.gov/pubmed/19535316 https://www.proquest.com/docview/856617300 https://www.proquest.com/docview/733588684 https://www.proquest.com/docview/746151256 https://www.proquest.com/docview/867735469 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5hELlAydEtk78PgJqVSGl4tCi3qLEdi5sN5V2F6n99cw42ZQiWnGzFEeKM2PPN57HB_BBCyOkLkJequBy2QSK7zYuL4poCmW4toHuO6pTfXIuv12oiy34NNXCxBhT8lmc0TDF8kPv13RVdojYBQ203oZtdNyGWq0pYiDtUJTDC9zApZNjBLPg7vDsS3U0dKYsKdAoEjuMUwJH-o45SvwqlB3ZLPEHdQOzxf3QM5mg42dQbT5-yDz5OVuv2pm_-auv4_-u7jk8HbEo-zwozwvYiotdePJHh8JdeFSNsfc9mKdk0c1ZmROJ2jwnvs_EMhEDO6Wb3V8N5cMz8mpve9OyvmM_0jFIfACsukYDSoo5Z8lUXsZL9NkXkX3vV5S8hDviJZwfH519PclHrobcI6Ba5YjLjKFCYCq8taozWiOYC6LRNjrXtAY1gHOvvBLRmq7QDfcIlaX2pkWP0otXsLPoF_ENsE445RDXxEYbKaWzQbc6qpKbLiCakhnwjchqPzYyp5XO6-TQcFeTwIlf09WjwDP4OL1yNXTxeGjyHglnmjjKJYODO3oxPS-p6SLC1Az2N4pSjwfBsrYIlwviBMiATU9xB1NYBn9sv17WRghlrbbygSmSgCei0_unUF9CoaR2GbwelPR2paOuv_33wvbh8ZASQTk672AHdSO-R6S1ag_SFvsNIkAg5g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GhLSQvFB06IbJ34fQTUaoFmxWGLeovycC5sN0i7W6n99Z1xsilFtOJmyY4Ue8aez57HB_BeCyOkTuo4VbWLZVGTf7dwcZJ4kyjDta3pvSOb6PGp_Hamzjbg45AL470PwWd-RM3gy6_bakVPZYeIXdBA6wfwEO2-SrtsrcFnIG2XlsMT3MKpk70PM-HucPo5O-pqU6bkahSBH8YpgS19yyAFhhWKjywWuERNx21xN_gMRuj4OWTr3-9iT36NVstyVF39Vdnxf-f3Ap71aJR96tTnJWz4-RY8_aNG4RY8ynrv-zbMQrjo-rSMiUZtFhPjZ-CZ8DWb0NvuRUER8YzutTfVaVnbsJ_hICRGAJZdogkl1ZyxYCzP_Tne2uee_WiXFL6Ee2IHTo-Ppl_Gcc_WEFcIqZYxIjNjKBWYUm-taozWCOdqUWjrnStKgzrAeaUqJbw1TaILXiFYlroyJd4pK_EKNuft3L8G1ginHCIbX2gjpXS21qX2KuWmqRFPyQj4WmR51Zcyp5nO8nCl4S4ngRPDpst7gUfwYfjkd1fH477B2yScYWAvlwgObunF0J9S2UUEqhHsrxUl74-CRW4RMCfEChABG3pxD5NjBhe2XS1yI4SyVlt5zxBJ0BPx6d1DqDKhUFK7CHY7Jb2Zaa_re_-e2Dt4PJ5mJ_nJ18n3fXjSBUhQxM4b2EQ98W8Rdy3Lg7DdrgFSTiQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiological-model-constrained+noninvasive+reconstruction+of+volumetric+myocardial+transmembrane+potentials&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Linwei&rft.au=Zhang%2C+Heye&rft.au=Wong%2C+Ken+C+L&rft.au=Liu%2C+Huafeng&rft.date=2010-02-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=57&rft.issue=2&rft.spage=296&rft_id=info:doi/10.1109%2FTBME.2009.2024531&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |