Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates

Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the...

Full description

Saved in:
Bibliographic Details
Published inClinical science (1979) Vol. 121; no. 4; pp. 169 - 177
Main Authors Lim, Ee L., Hollingsworth, Kieren G., Smith, Fiona E., Thelwall, Peter E., Taylor, Roy
Format Journal Article
LanguageEnglish
Published London Portland Press 01.08.2011
Portland Press Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic–hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2±0.8 compared with 4.8±0.6 mg·kgffm−1·min−1; P<0.01; control 6.6±0.5 mg·kgffm−1·min−1; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0±0.8 compared with 1.9±1.1 mmol/l; P<0.05; control, 4.0±0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4±0.7 compared with 7.1±0.5 μmol·g−1·min−1; P<0.05; controls 8.6±0.8 μmol·g−1·min−1). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
AbstractList Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal and this is an important phenomenon. The mechanism has been assumed to be enhancement of glucose storage as glycogen, but no direct measurement has tested this concept nor its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with 13C-glucose infusion were performed on type 2 diabetes subjects and matched controls with measurement of glycogen synthesis by 13C magnetic resonance spectroscopy (MRS) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near-normal in diabetic subjects after acipimox (6.2 ± 0.8 vs. 4.8 ± 0.6 mg/kgffm/min; P<0.01; control 6.6 ± 0.5 mg/kgffm/min). The increment in muscle glycogen concentration was two-fold higher in controls compared with the diabetic group and acipimox administration to the diabetic group did not increase this (2.0 ± 0.8 vs. 1.9 ± 1.1 mmol/l; P<0.05; control 4.0 ± 0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFA (8.4 ± 0.7 vs. 7.1 ± 0.5 mmol/g/min; P<0.05; controls 8.6 ± 0.8 mmol/g/min). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2 ± 0.8 compared with 4.8 ± 0.6 mg·kgffm⁻¹·min⁻¹; P<0.01; control 6.6 ± 0.5 mg·kgffm⁻¹·min⁻¹; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0 ± 0.8 compared with 1.9 ± 1.1 mmol/l; P<0.05; control, 4.0 ± 0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4 ± 0.7 compared with 7.1 ± 0.5 μmol·g⁻¹·min⁻¹; P<0.05; controls 8.6 ± 0.8 μmol·g⁻¹·min⁻¹). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2 ± 0.8 compared with 4.8 ± 0.6 mg·kgffm⁻¹·min⁻¹; P<0.01; control 6.6 ± 0.5 mg·kgffm⁻¹·min⁻¹; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0 ± 0.8 compared with 1.9 ± 1.1 mmol/l; P<0.05; control, 4.0 ± 0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4 ± 0.7 compared with 7.1 ± 0.5 μmol·g⁻¹·min⁻¹; P<0.05; controls 8.6 ± 0.8 μmol·g⁻¹·min⁻¹). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2 ± 0.8 compared with 4.8 ± 0.6 mg·kgffm⁻¹·min⁻¹; P<0.01; control 6.6 ± 0.5 mg·kgffm⁻¹·min⁻¹; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0 ± 0.8 compared with 1.9 ± 1.1 mmol/l; P<0.05; control, 4.0 ± 0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4 ± 0.7 compared with 7.1 ± 0.5 μmol·g⁻¹·min⁻¹; P<0.05; controls 8.6 ± 0.8 μmol·g⁻¹·min⁻¹). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic–hyperinsulinaemic clamps with [ 13 C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13 C MRS (magnetic resonance spectroscopy) of muscle. 31 P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2±0.8 compared with 4.8±0.6 mg·kg ffm −1 ·min −1 ; P <0.01; control 6.6±0.5 mg·kg ffm −1 ·min −1 ; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0±0.8 compared with 1.9±1.1 mmol/l; P <0.05; control, 4.0±0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4±0.7 compared with 7.1±0.5 μmol·g −1 ·min −1 ; P <0.05; controls 8.6±0.8 μmol·g −1 ·min −1 ). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic–hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2±0.8 compared with 4.8±0.6 mg·kgffm−1·min−1; P<0.01; control 6.6±0.5 mg·kgffm−1·min−1; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0±0.8 compared with 1.9±1.1 mmol/l; P<0.05; control, 4.0±0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4±0.7 compared with 7.1±0.5 μmol·g−1·min−1; P<0.05; controls 8.6±0.8 μmol·g−1·min−1). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
Author Taylor, Roy
Hollingsworth, Kieren G.
Smith, Fiona E.
Lim, Ee L.
Thelwall, Peter E.
Author_xml – sequence: 1
  givenname: Ee L.
  surname: Lim
  fullname: Lim, Ee L.
  organization: Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, U.K
– sequence: 2
  givenname: Kieren G.
  surname: Hollingsworth
  fullname: Hollingsworth, Kieren G.
  organization: Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, U.K
– sequence: 3
  givenname: Fiona E.
  surname: Smith
  fullname: Smith, Fiona E.
  organization: Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, U.K
– sequence: 4
  givenname: Peter E.
  surname: Thelwall
  fullname: Thelwall, Peter E.
  organization: Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, U.K
– sequence: 5
  givenname: Roy
  surname: Taylor
  fullname: Taylor, Roy
  organization: Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24404509$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21388348$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00694291$$DView record in HAL
BookMark eNptks1u1DAQgC1URLeFCw-AckEIpIDHdhznUqlaAa20EgfK2XIcZ2Pk2CFOisLT8Cw8GY52aaFCPtjyfPP5Z-YMnfjgDULPAb8FzMi77WeCAWMO8AhtgJU4FyXlJ2iDgdG8IARO0VmMXzEmNI0n6JQAFYIysUHLte9sbScbfBbazNkhuCXamFmf3SyD-fWTZI1VtZlMzHwYe-Xsj7Tcu1mHaFIsDiEql323UxfmKdOd8nuzpvdz1M4kctFhb3wWFz91ZnWPKtmeosetctE8O87n6MuH9zfbq3z36eP19nKXa8ZgyokBgAZ4oymnTVvwtiQc66oEXHPTYl7VdduWjAioWU1LI3iDBaMl1FQU2NBzdHHwDnPdm0YbP43KyWG0vRoXGZSV_0a87eQ-3EoKJcMFTYLXB0H3IO3qcifXvfT1FSMV3EJiXx0PG8O32cRJ9jZq45zyJsxRCl6A4Fys1hd_X-tO_Kc0CXh5BFTUyrWj8trGe44xzApcJe7NgdNjiHE07R0CWK79Ie_7I8H4AaztpNbqp6db97-U3x2Ivc8
CODEN CSCIAE
CitedBy_id crossref_primary_10_1016_j_ejphar_2018_10_056
crossref_primary_10_1080_17446651_2016_1239525
crossref_primary_10_3390_nu11071526
crossref_primary_10_1111_jfbc_14390
crossref_primary_10_1152_ajpendo_00278_2011
crossref_primary_10_2337_db12_0073
crossref_primary_10_3390_nu14235045
crossref_primary_10_2337_dc16_0619
crossref_primary_10_1152_ajpendo_00376_2015
crossref_primary_10_1080_13813455_2017_1415359
crossref_primary_10_1152_physrev_00015_2017
crossref_primary_10_1007_s00125_013_3127_2
crossref_primary_10_1016_j_molmet_2018_03_012
crossref_primary_10_1530_JOE_13_0397
crossref_primary_10_3390_nu14245325
crossref_primary_10_2337_dc12_1805
crossref_primary_10_3923_pjn_2014_415_421
Cites_doi 10.2337/diabetes.54.11.3148
10.2337/diabetes.51.10.2944
10.1038/nm0410-400
10.1016/j.cell.2007.12.035
10.2337/db10-0519
10.1016/j.amjcard.2006.01.055
10.1371/journal.pmed.0040154
10.1152/ajpendo.00756.2009
10.1016/0026-0495(92)90148-4
10.1371/journal.pmed.0020233
10.1056/NEJM199001253220403
10.1172/JCI118742
10.1016/S0010-4825(01)00006-3
10.2337/db08-0391
10.1002/nbm.1519
10.2337/diab.39.11.1381
10.2337/db07-1828
10.1172/JCI115432
10.2337/diabetes.54.1.8
10.2337/db07-1781
10.1056/NEJMoa031314
10.1210/jcem-71-5-1220
10.2337/diabetes.55.01.06.db05-1286
10.2337/dc08-0303
10.1530/EJE-07-0756
10.2337/diab.41.11.1400
10.2337/diacare.28.1.225-a
10.1073/pnas.86.12.4489
10.2337/db07-0144
10.1006/jmre.1999.1835
10.1073/pnas.1332551100
10.1172/JCI113489
10.1016/j.yjmcc.2009.02.015
10.1007/s00125-006-0475-1
ContentType Journal Article
Copyright 2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
2011 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2011 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1042/CS20100611
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Inhibition of lipolysis and glycogen synthesis
EISSN 1470-8736
EndPage 177
ExternalDocumentID PMC3174053
oai_HAL_hal_00694291v1
21388348
24404509
10_1042_CS20100611
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 073561
GroupedDBID ---
0R~
0VX
29B
2WC
4.4
5GY
5RE
5VS
6J9
AAYXX
ABCQX
ABJNI
ACGFO
ACGFS
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GX1
H13
HZ~
L7B
MV1
O9-
P2P
P6G
RHI
RPO
SV3
TR2
WH7
.55
.GJ
3O-
53G
AABGO
AAHRG
AFFNX
AFFVI
AI.
IQODW
MVM
NTEUP
OHT
VH1
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c441t-2e111d16dc363df56f7260c9710b6ef069bbff74281b4b37e86d084371b3850e3
ISSN 0143-5221
1470-8736
IngestDate Thu Aug 21 14:01:47 EDT 2025
Fri May 09 12:28:01 EDT 2025
Fri Jul 11 13:03:06 EDT 2025
Thu Jan 02 22:09:02 EST 2025
Wed Apr 02 07:36:40 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Endocrinopathy
Type 2 diabetes
Glycogen
Rate
Lipids
Metabolic diseases
magnetic resonance spectroscopy
muscle glycogen
non-esterified fatty acid
NMR spectrometry
Change
Glucose
Fatty acids
Lipolysis
Medicine
glucose disposal
Synthesis
Inhibitor
Muscle
Inhibition
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-2e111d16dc363df56f7260c9710b6ef069bbff74281b4b37e86d084371b3850e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hal.science/hal-00694291
PMID 21388348
PQID 865186683
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3174053
hal_primary_oai_HAL_hal_00694291v1
proquest_miscellaneous_865186683
pubmed_primary_21388348
pascalfrancis_primary_24404509
crossref_primary_10_1042_CS20100611
crossref_citationtrail_10_1042_CS20100611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Clinical science (1979)
PublicationTitleAlternate Clin Sci (Lond)
PublicationYear 2011
Publisher Portland Press
Portland Press Ltd
Publisher_xml – name: Portland Press
– name: Portland Press Ltd
References Schrauwen-Hinderling (2021113010191495800_B28) 2007; 50
Kelley (2021113010191495800_B21) 1988; 81
Huptas (2021113010191495800_B39) 2006; 98
Hoeks (2021113010191495800_B32) 2010; 59
Consoli (2021113010191495800_B22) 1992; 41
Chibalin (2021113010191495800_B26) 2008; 132
Mitrakou (2021113010191495800_B23) 1990; 39
Bajaj (2021113010191495800_B3) 2005; 54
Vaag (2021113010191495800_B18) 1991; 88
Lindegaard (2021113010191495800_B19) 2007; 56
Phielix (2021113010191495800_B29) 2008; 57
Petersen (2021113010191495800_B8) 2004; 350
Vanhamme (2021113010191495800_B13) 1999; 140
Capaldo (2021113010191495800_B24) 1990; 71
Mignault (2021113010191495800_B9) 2005; 28
Vaag (2021113010191495800_B25) 1991; 34
Fulcher (2021113010191495800_B1) 1992; 41
Erion (2021113010191495800_B27) 2010; 16
DeFronzo (2021113010191495800_B10) 1979; 237
Roden (2021113010191495800_B4) 1996; 97
Trenell (2021113010191495800_B30) 2008; 31
Jue (2021113010191495800_B15) 1989; 86
Brehm (2021113010191495800_B35) 2010; 299
Molina (2021113010191495800_B36) 2009; 58
Ritov (2021113010191495800_B6) 2005; 54
Naressi (2021113010191495800_B12) 2001; 31
Yang (2021113010191495800_B37) 2009; 46
Szendroedi (2021113010191495800_B7) 2007; 4
Ravikumar (2021113010191495800_B20) 2008; 57
Petersen (2021113010191495800_B33) 2005; 2
Wolfe (2021113010191495800_B17) 1984; 9
Brehm (2021113010191495800_B34) 2006; 55
De Feyter (2021113010191495800_B31) 2008; 158
Vaag (2021113010191495800_B2) 1991; 88
Rizza (2021113010191495800_B11) 1981; 240
Lim (2021113010191495800_B14) 2010; 23
Stump (2021113010191495800_B38) 2003; 100
Shulman (2021113010191495800_B16) 1990; 322
Kelley (2021113010191495800_B5) 2002; 51
7018254 - Am J Physiol. 1981 Jun;240(6):E630-9
1918378 - J Clin Invest. 1991 Oct;88(4):1282-90
19249309 - J Mol Cell Cardiol. 2009 Jun;46(6):919-26
20442322 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E33-8
2121568 - Diabetes. 1990 Nov;39(11):1381-90
19581419 - Diabetes. 2009 Oct;58(10):2303-15
18535187 - Diabetes. 2008 Sep;57(9):2288-95
2229281 - J Clin Endocrinol Metab. 1990 Nov;71(5):1220-3
18267070 - Cell. 2008 Feb 8;132(3):375-86
20376053 - Nat Med. 2010 Apr;16(4):400-2
6427541 - Lab Res Methods Biol Med. 1984;9:1-287
18678616 - Diabetes. 2008 Nov;57(11):2943-9
20623795 - NMR Biomed. 2010 Oct;23(8):952-7
15616258 - Diabetes Care. 2005 Jan;28(1):225-7
20573749 - Diabetes. 2010 Sep;59(9):2117-25
8675698 - J Clin Invest. 1996 Jun 15;97(12):2859-65
14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71
16249438 - Diabetes. 2005 Nov;54(11):3148-53
16089501 - PLoS Med. 2005 Sep;2(9):e233
2734301 - Proc Natl Acad Sci U S A. 1989 Jun;86(12):4489-91
17093944 - Diabetologia. 2007 Jan;50(1):113-20
10479554 - J Magn Reson. 1999 Sep;140(1):120-30
16380486 - Diabetes. 2006 Jan;55(1):136-40
16784923 - Am J Cardiol. 2006 Jul 1;98(1):66-9
382871 - Am J Physiol. 1979 Sep;237(3):E214-23
11334636 - Comput Biol Med. 2001 Jul;31(4):269-86
17601993 - Diabetes. 2007 Aug;56(8):2070-7
18426822 - Eur J Endocrinol. 2008 May;158(5):643-53
12808136 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996-8001
15616005 - Diabetes. 2005 Jan;54(1):8-14
17472434 - PLoS Med. 2007 May;4(5):e154
3130396 - J Clin Invest. 1988 May;81(5):1563-71
2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8
1736040 - Metabolism. 1992 Feb;41(2):176-9
18487474 - Diabetes Care. 2008 Aug;31(8):1644-9
12351431 - Diabetes. 2002 Oct;51(10):2944-50
1397716 - Diabetes. 1992 Nov;41(11):1400-8
References_xml – volume: 54
  start-page: 3148
  year: 2005
  ident: 2021113010191495800_B3
  article-title: Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty acyl-CoAs and insulin action in type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.11.3148
– volume: 51
  start-page: 2944
  year: 2002
  ident: 2021113010191495800_B5
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
– volume: 16
  start-page: 400
  year: 2010
  ident: 2021113010191495800_B27
  article-title: Diacylglycerol-mediated insulin resistance
  publication-title: Nat. Med.
  doi: 10.1038/nm0410-400
– volume: 34
  start-page: A70
  year: 1991
  ident: 2021113010191495800_B25
  article-title: Defective insulin activation of glycogen synthase in skeletal muscle in first degree relatives to patients with type 2 (non-insulin dependent) diabetes mellitus
  publication-title: Diabetologia
– volume: 132
  start-page: 375
  year: 2008
  ident: 2021113010191495800_B26
  article-title: Downregulation of diacylglycerol kinase δ contributes to hyperglycemia-induced insulin resistance
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.035
– volume: 59
  start-page: 2117
  year: 2010
  ident: 2021113010191495800_B32
  article-title: Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db10-0519
– volume: 98
  start-page: 66
  year: 2006
  ident: 2021113010191495800_B39
  article-title: Effect of atorvastatin (10 mg/day) on glucose metabolism in patients with the metabolic syndrome
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2006.01.055
– volume: 4
  start-page: e154
  year: 2007
  ident: 2021113010191495800_B7
  article-title: Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0040154
– volume: 299
  start-page: E33
  year: 2010
  ident: 2021113010191495800_B35
  article-title: Acute elevation of plasma lipids does not affect ATP synthesis in human skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00756.2009
– volume: 41
  start-page: 176
  year: 1992
  ident: 2021113010191495800_B22
  article-title: Skeletal muscle is a major site of lactate uptake and release during hyperinsulinemia
  publication-title: Metab. Clin. Exp.
  doi: 10.1016/0026-0495(92)90148-4
– volume: 2
  start-page: e233
  year: 2005
  ident: 2021113010191495800_B33
  article-title: Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0020233
– volume: 322
  start-page: 223
  year: 1990
  ident: 2021113010191495800_B16
  article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199001253220403
– volume: 97
  start-page: 2859
  year: 1996
  ident: 2021113010191495800_B4
  article-title: Mechanism of free fatty acid-induced insulin resistance in humans
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118742
– volume: 240
  start-page: E630
  year: 1981
  ident: 2021113010191495800_B11
  article-title: Dose–response characteristics for effects of insulin on production and utilization of glucose in man
  publication-title: Am. J. Physiol.
– volume: 31
  start-page: 269
  year: 2001
  ident: 2021113010191495800_B12
  article-title: Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/S0010-4825(01)00006-3
– volume: 57
  start-page: 2943
  year: 2008
  ident: 2021113010191495800_B29
  article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db08-0391
– volume: 23
  start-page: 952
  year: 2010
  ident: 2021113010191495800_B14
  article-title: Measuring the acute effect of insulin infusion on ATP turnover rate in human skeletal muscle using phosphorus-31 magnetic resonance saturation transfer spectroscopy
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1519
– volume: 39
  start-page: 1381
  year: 1990
  ident: 2021113010191495800_B23
  article-title: Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM
  publication-title: Diabetes
  doi: 10.2337/diab.39.11.1381
– volume: 9
  start-page: 1
  year: 1984
  ident: 2021113010191495800_B17
  article-title: Tracers in metabolic research: radioisotope and stable isotope/mass spectrometry methods
  publication-title: Lab. Res. Methods Biol. Med.
– volume: 57
  start-page: 2288
  year: 2008
  ident: 2021113010191495800_B20
  article-title: Pioglitazone decreases fasting and postprandial endogenous glucose production in proportion to decrease in hepatic triglyceride content
  publication-title: Diabetes
  doi: 10.2337/db07-1828
– volume: 88
  start-page: 1282
  year: 1991
  ident: 2021113010191495800_B2
  article-title: Effect of the antilipolytic nicotinic acid analogue acipimox on whole-body and skeletal muscle glucose metabolism in patients with non-insulin-dependent diabetes mellitus
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115432
– volume: 54
  start-page: 8
  year: 2005
  ident: 2021113010191495800_B6
  article-title: Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.1.8
– volume: 88
  start-page: 1282
  year: 1991
  ident: 2021113010191495800_B18
  article-title: Effect of the antilipolytic nicotinic acid analogue acipimox on whole-body and skeletal muscle glucose metabolism in patients with non-insulin-dependent diabetes mellitus
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115432
– volume: 58
  start-page: 2303
  year: 2009
  ident: 2021113010191495800_B36
  article-title: Mitochondrial networking protects β-cells from nutrient-induced apoptosis
  publication-title: Diabetes
  doi: 10.2337/db07-1781
– volume: 350
  start-page: 664
  year: 2004
  ident: 2021113010191495800_B8
  article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa031314
– volume: 71
  start-page: 1220
  year: 1990
  ident: 2021113010191495800_B24
  article-title: Glucose and gluconeogenic substrate exchange by the forearm skeletal muscle in hyperglycemic and insulin-treated type II diabetic patients
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-71-5-1220
– volume: 55
  start-page: 136
  year: 2006
  ident: 2021113010191495800_B34
  article-title: Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/diabetes.55.01.06.db05-1286
– volume: 237
  start-page: E214
  year: 1979
  ident: 2021113010191495800_B10
  article-title: Glucose clamp technique: a method for quantifying insulin secretion and resistance
  publication-title: Am. J. Physiol.
– volume: 31
  start-page: 1644
  year: 2008
  ident: 2021113010191495800_B30
  article-title: Increased daily walking improves lipid oxidation without changes in mitochondrial function in type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc08-0303
– volume: 158
  start-page: 643
  year: 2008
  ident: 2021113010191495800_B31
  article-title: Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction
  publication-title: Eur. J. Endocrinol.
  doi: 10.1530/EJE-07-0756
– volume: 41
  start-page: 1400
  year: 1992
  ident: 2021113010191495800_B1
  article-title: Metabolic effects of suppressions of non-esterified fatty acid levels with acipimox in obese NIDDM subjects
  publication-title: Diabetes
  doi: 10.2337/diab.41.11.1400
– volume: 28
  start-page: 225
  year: 2005
  ident: 2021113010191495800_B9
  article-title: Evaluation of the Portable HealthWear Armband: a device to measure total daily energy expenditure in free-living type 2 diabetic individuals
  publication-title: Diabetes Care
  doi: 10.2337/diacare.28.1.225-a
– volume: 86
  start-page: 4489
  year: 1989
  ident: 2021113010191495800_B15
  article-title: Direct observation of glycogen synthesis in human muscle with 13C NMR
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.86.12.4489
– volume: 56
  start-page: 2070
  year: 2007
  ident: 2021113010191495800_B19
  article-title: Inhibition of lipolysis stimulates peripheral glucose uptake but has no effect on endogenous glucose production in HIV lipodystrophy
  publication-title: Diabetes
  doi: 10.2337/db07-0144
– volume: 140
  start-page: 120
  year: 1999
  ident: 2021113010191495800_B13
  article-title: Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1999.1835
– volume: 100
  start-page: 7996
  year: 2003
  ident: 2021113010191495800_B38
  article-title: Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1332551100
– volume: 81
  start-page: 1563
  year: 1988
  ident: 2021113010191495800_B21
  article-title: Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI113489
– volume: 46
  start-page: 919
  year: 2009
  ident: 2021113010191495800_B37
  article-title: Insulin stimulates Akt translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2009.02.015
– volume: 50
  start-page: 113
  year: 2007
  ident: 2021113010191495800_B28
  article-title: Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0475-1
– reference: 20376053 - Nat Med. 2010 Apr;16(4):400-2
– reference: 15616258 - Diabetes Care. 2005 Jan;28(1):225-7
– reference: 10479554 - J Magn Reson. 1999 Sep;140(1):120-30
– reference: 20442322 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E33-8
– reference: 16089501 - PLoS Med. 2005 Sep;2(9):e233
– reference: 6427541 - Lab Res Methods Biol Med. 1984;9:1-287
– reference: 8675698 - J Clin Invest. 1996 Jun 15;97(12):2859-65
– reference: 18267070 - Cell. 2008 Feb 8;132(3):375-86
– reference: 17472434 - PLoS Med. 2007 May;4(5):e154
– reference: 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71
– reference: 1736040 - Metabolism. 1992 Feb;41(2):176-9
– reference: 2121568 - Diabetes. 1990 Nov;39(11):1381-90
– reference: 1397716 - Diabetes. 1992 Nov;41(11):1400-8
– reference: 12351431 - Diabetes. 2002 Oct;51(10):2944-50
– reference: 16784923 - Am J Cardiol. 2006 Jul 1;98(1):66-9
– reference: 16249438 - Diabetes. 2005 Nov;54(11):3148-53
– reference: 18487474 - Diabetes Care. 2008 Aug;31(8):1644-9
– reference: 18426822 - Eur J Endocrinol. 2008 May;158(5):643-53
– reference: 15616005 - Diabetes. 2005 Jan;54(1):8-14
– reference: 11334636 - Comput Biol Med. 2001 Jul;31(4):269-86
– reference: 1918378 - J Clin Invest. 1991 Oct;88(4):1282-90
– reference: 382871 - Am J Physiol. 1979 Sep;237(3):E214-23
– reference: 17601993 - Diabetes. 2007 Aug;56(8):2070-7
– reference: 17093944 - Diabetologia. 2007 Jan;50(1):113-20
– reference: 18678616 - Diabetes. 2008 Nov;57(11):2943-9
– reference: 12808136 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996-8001
– reference: 19581419 - Diabetes. 2009 Oct;58(10):2303-15
– reference: 18535187 - Diabetes. 2008 Sep;57(9):2288-95
– reference: 7018254 - Am J Physiol. 1981 Jun;240(6):E630-9
– reference: 2734301 - Proc Natl Acad Sci U S A. 1989 Jun;86(12):4489-91
– reference: 20573749 - Diabetes. 2010 Sep;59(9):2117-25
– reference: 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8
– reference: 2229281 - J Clin Endocrinol Metab. 1990 Nov;71(5):1220-3
– reference: 16380486 - Diabetes. 2006 Jan;55(1):136-40
– reference: 3130396 - J Clin Invest. 1988 May;81(5):1563-71
– reference: 19249309 - J Mol Cell Cardiol. 2009 Jun;46(6):919-26
– reference: 20623795 - NMR Biomed. 2010 Oct;23(8):952-7
SSID ssj0023232
Score 2.1033895
Snippet Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been...
Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal and this is an important phenomenon. The mechanism has been...
SourceID pubmedcentral
hal
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 169
SubjectTerms Adenosine Triphosphate - metabolism
Biological and medical sciences
Blood Glucose - metabolism
Breath Tests - methods
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Diabetes. Impaired glucose tolerance
Double-Blind Method
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fatty Acids, Nonesterified - blood
Female
General aspects
Glucose Clamp Technique
Glycogen - biosynthesis
Human health and pathology
Humans
Hypolipidemic Agents - pharmacology
Hypolipidemic Agents - therapeutic use
Insulin - blood
Life Sciences
Lipolysis - drug effects
Magnetic Resonance Spectroscopy - methods
Male
Medical sciences
Middle Aged
Muscles - metabolism
Pyrazines - pharmacology
Pyrazines - therapeutic use
Title Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates
URI https://www.ncbi.nlm.nih.gov/pubmed/21388348
https://www.proquest.com/docview/865186683
https://hal.science/hal-00694291
https://pubmed.ncbi.nlm.nih.gov/PMC3174053
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7cFEqhlN51j7C0fSlBjVdaraRHE5I6RUmgdojfhKRdYYErm9gObf5O_2hntNJKcg09XowsrQ48n-fSNzOEfAATFTMlhZUFLrd4YGdWDHbFSjNPKV9JV3pYKHx2LkaX_MvUnfZ6P1uspc06-ZTe7qwr-R-pwj6QK1bJ_oNkzUVhB2yDfOETJAyffyXj02KWJ3nt883z5UI3GMmLg8lWarVA33Se38JmzVKXOVK2Yk1TR3qyLgLGs79tVnArWPkjXcDdsa8BOIp4aewssWp7tEed0sq0dFlZ4AWtFAMoyFLlqoMm030Rhqfnn8dXF18no1LZ5Fh32Ez6GoNOLQ-cYK6yqZeYjI7Dq2EYGm5xdUi2M7GtxAUyZee6IqLhmugUpwPhsa6bNjq6-pp3CoO0zmV61ktlvpmeCvObZQDlhB2Hx_j2H3wY1ti_-p3_llk0ZEUbWyi6WCR614ZYpKwonxoeEXik5RQ889h1D1xuHzZ363g9d2bIuX2wjFcgnUzPT9kV4GzzdFuOz-QReVhFLHSo4feY9FTxhNw7qzgZT8n3BoV0kVGDQpoXFFFIbVqjkDYopBUKaY1CWqGQahTi2RqFtEYhNSikJQqfkcuT48nRyKrmeVgpON1ry1ZgWCUTMnWEIzNXZB5E02kATm4iVDYQQZJkmQcBMUt44njKF3Lgc8djieO7A-U8J3vFolAvCYWghqeuSHhsD7hKRSClz4QbcDAoEFMEffKx_r2jtGp2jzNX5lFJuuB21MimT96btUvd4mXnqncgNrMAu7KPhmGE-7DbN7h17AYW7XekapbXGOoTWos5Aj2OL-fiQi02q8gXLvae9J0-eaGl3pzMHN93uN8nXgcPnYfpHinyWdkqHqIDiMicV396rtfkfvMXfUP21tcb9Ra87XWyX6L9F2_A1WM
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+lipolysis+in+Type+2+diabetes+normalizes+glucose+disposal+without+change+in+muscle+glycogen+synthesis+rates&rft.jtitle=Clinical+science+%281979%29&rft.au=LIM%2C+Ee+L&rft.au=HOLLINGSWORTH%2C+Kieren+G&rft.au=SMITH%2C+Fiona+E&rft.au=THELWALL%2C+Peter+E&rft.date=2011-08-01&rft.pub=Portland+Press&rft.issn=0143-5221&rft.volume=121&rft.issue=3-4&rft.spage=169&rft.epage=177&rft_id=info:doi/10.1042%2FCS20100611&rft.externalDBID=n%2Fa&rft.externalDocID=24404509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-5221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-5221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-5221&client=summon