Soleus muscle stability in wild hibernating black bears

Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not feeding. The present study examined atrophy sparing in the slow soleus muscle, known to be highly prone to disuse atrophy in humans and other...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 315; no. 2; pp. R369 - R379
Main Authors Riley, D A, Van Dyke, J M, Vogel, V, Curry, B D, Bain, J L W, Schuett, R, Costill, D L, Trappe, T, Minchev, K, Trappe, S
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not feeding. The present study examined atrophy sparing in the slow soleus muscle, known to be highly prone to disuse atrophy in humans and other mammals. We demonstrated histochemically that the black bear soleus is rich in slow fibers, averaging 84.0 ± 6.6%. The percentages of slow fibers in fall (87.3 ± 4.9%) and during hibernation (87.1 ± 5.6%) did not differ ( P = 0.3152) from summer. The average fiber cross-sectional area to body mass ratio (48.6 ± 11.7 µm /kg) in winter hibernating bears was not significantly different from that of summer (54.1 ± 11.8 µm /kg, P = 0.4186) and fall (47.0 ± 9.7 µm /kg, P = 0.9410) animals. The percentage of single hybrid fibers containing both slow and fast myosin heavy chains, detected biochemically, increased from 2.6 ± 3.8% in summer to 24.4 ± 24.4% ( P = 0.0244) during hibernation. The shortening velocities of individual hybrid fibers remained unchanged from that of pure slow and fast fibers, indicating low content of the minority myosins. Slow and fast fibers in winter bears exhibited elevated specific tension (kN/m ; 22%, P = 0.0161 and 11%, P = 0.0404, respectively) and maintained normalized power. The relative stability of fiber type percentage and size, fiber size-to-body mass ratio, myosin heavy chain isoform content, shortening velocity, power output, and elevated specific tension during hibernation validates the ability of the black bear to preserve the biochemical and performance characteristics of the soleus muscle during prolonged hibernation.
AbstractList Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not feeding. The present study examined atrophy sparing in the slow soleus muscle, known to be highly prone to disuse atrophy in humans and other mammals. We demonstrated histochemically that the black bear soleus is rich in slow fibers, averaging 84.0 ± 6.6%. The percentages of slow fibers in fall (87.3 ± 4.9%) and during hibernation (87.1 ± 5.6%) did not differ ( P = 0.3152) from summer. The average fiber cross-sectional area to body mass ratio (48.6 ± 11.7 µm 2 /kg) in winter hibernating bears was not significantly different from that of summer (54.1 ± 11.8 µm 2 /kg, P = 0.4186) and fall (47.0 ± 9.7 µm 2 /kg, P = 0.9410) animals. The percentage of single hybrid fibers containing both slow and fast myosin heavy chains, detected biochemically, increased from 2.6 ± 3.8% in summer to 24.4 ± 24.4% ( P = 0.0244) during hibernation. The shortening velocities of individual hybrid fibers remained unchanged from that of pure slow and fast fibers, indicating low content of the minority myosins. Slow and fast fibers in winter bears exhibited elevated specific tension (kN/m 2 ; 22%, P = 0.0161 and 11%, P = 0.0404, respectively) and maintained normalized power. The relative stability of fiber type percentage and size, fiber size-to-body mass ratio, myosin heavy chain isoform content, shortening velocity, power output, and elevated specific tension during hibernation validates the ability of the black bear to preserve the biochemical and performance characteristics of the soleus muscle during prolonged hibernation.
Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not feeding. The present study examined atrophy sparing in the slow soleus muscle, known to be highly prone to disuse atrophy in humans and other mammals. We demonstrated histochemically that the black bear soleus is rich in slow fibers, averaging 84.0 ± 6.6%. The percentages of slow fibers in fall (87.3 ± 4.9%) and during hibernation (87.1 ± 5.6%) did not differ (P = 0.3152) from summer. The average fiber cross-sectional area to body mass ratio (48.6 ± 11.7 µm2/kg) in winter hibernating bears was not significantly different from that of summer (54.1 ± 11.8 µm2/kg, P = 0.4186) and fall (47.0 ± 9.7 µm2/kg, P = 0.9410) animals. The percentage of single hybrid fibers containing both slow and fast myosin heavy chains, detected biochemically, increased from 2.6 ± 3.8% in summer to 24.4 ± 24.4% (P = 0.0244) during hibernation. The shortening velocities of individual hybrid fibers remained unchanged from that of pure slow and fast fibers, indicating low content of the minority myosins. Slow and fast fibers in winter bears exhibited elevated specific tension (kN/m2; 22%, P = 0.0161 and 11%, P = 0.0404, respectively) and maintained normalized power. The relative stability of fiber type percentage and size, fiber size-to-body mass ratio, myosin heavy chain isoform content, shortening velocity, power output, and elevated specific tension during hibernation validates the ability of the black bear to preserve the biochemical and performance characteristics of the soleus muscle during prolonged hibernation.
Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not feeding. The present study examined atrophy sparing in the slow soleus muscle, known to be highly prone to disuse atrophy in humans and other mammals. We demonstrated histochemically that the black bear soleus is rich in slow fibers, averaging 84.0 ± 6.6%. The percentages of slow fibers in fall (87.3 ± 4.9%) and during hibernation (87.1 ± 5.6%) did not differ ( P = 0.3152) from summer. The average fiber cross-sectional area to body mass ratio (48.6 ± 11.7 µm /kg) in winter hibernating bears was not significantly different from that of summer (54.1 ± 11.8 µm /kg, P = 0.4186) and fall (47.0 ± 9.7 µm /kg, P = 0.9410) animals. The percentage of single hybrid fibers containing both slow and fast myosin heavy chains, detected biochemically, increased from 2.6 ± 3.8% in summer to 24.4 ± 24.4% ( P = 0.0244) during hibernation. The shortening velocities of individual hybrid fibers remained unchanged from that of pure slow and fast fibers, indicating low content of the minority myosins. Slow and fast fibers in winter bears exhibited elevated specific tension (kN/m ; 22%, P = 0.0161 and 11%, P = 0.0404, respectively) and maintained normalized power. The relative stability of fiber type percentage and size, fiber size-to-body mass ratio, myosin heavy chain isoform content, shortening velocity, power output, and elevated specific tension during hibernation validates the ability of the black bear to preserve the biochemical and performance characteristics of the soleus muscle during prolonged hibernation.
Author Trappe, T
Vogel, V
Trappe, S
Van Dyke, J M
Bain, J L W
Riley, D A
Curry, B D
Costill, D L
Schuett, R
Minchev, K
Author_xml – sequence: 1
  givenname: D A
  surname: Riley
  fullname: Riley, D A
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
– sequence: 2
  givenname: J M
  surname: Van Dyke
  fullname: Van Dyke, J M
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
– sequence: 3
  givenname: V
  surname: Vogel
  fullname: Vogel, V
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
– sequence: 4
  givenname: B D
  surname: Curry
  fullname: Curry, B D
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
– sequence: 5
  givenname: J L W
  surname: Bain
  fullname: Bain, J L W
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
– sequence: 6
  givenname: R
  surname: Schuett
  fullname: Schuett, R
  organization: Pewaukee Veterinary Service, Pewaukee, Wisconsin
– sequence: 7
  givenname: D L
  surname: Costill
  fullname: Costill, D L
  organization: Human Performance Laboratory, Ball State University, Muncie, Indiana
– sequence: 8
  givenname: T
  surname: Trappe
  fullname: Trappe, T
  organization: Human Performance Laboratory, Ball State University, Muncie, Indiana
– sequence: 9
  givenname: K
  surname: Minchev
  fullname: Minchev, K
  organization: Human Performance Laboratory, Ball State University, Muncie, Indiana
– sequence: 10
  givenname: S
  surname: Trappe
  fullname: Trappe, S
  organization: Human Performance Laboratory, Ball State University, Muncie, Indiana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29641232$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtOwzAQRS0Eog_4ARYoEhs2KR4_8liiipdUiQWwthxnUlzcpNiJUP8elxYWrGYx594ZnQk5brsWCbkAOgOQ7EavNh6Xw4xSmtEZo1AckXFcsBRESY_JmPKMpxlAOSKTEFaRE1zwUzJiZSaAcTYm-UvncAjJegjGYRJ6XVln-21i2-TLujp5txX6Vve2XSaV0-YjqVD7cEZOGu0Cnh_mlLzd373OH9PF88PT_HaRGiGgT1klm0ZqHY9JWhc5mtLwTNSUCRBZXsuG5ybTgMCLWiIzyHRTVlgWMhemkXxKrve9G999Dhh6tbbBoHO6xW4IisUmkVMhaUSv_qGrboivu0gBFLyQVPJIsT1lfBeCx0ZtvF1rv1VA1U6rOmhVP1rVTmsMXR6qh2qN9V_k1yP_BrgNdSQ
CitedBy_id crossref_primary_10_1371_journal_pone_0263085
crossref_primary_10_1242_jeb_200832
crossref_primary_10_1007_s00360_024_01543_7
crossref_primary_10_3389_fphys_2021_634953
crossref_primary_10_1152_ajpregu_00151_2019
crossref_primary_10_3390_muscles2010003
crossref_primary_10_1186_s12983_019_0312_2
crossref_primary_10_3389_fcvm_2021_687501
Cites_doi 10.1152/physiolgenomics.00076.2001
10.2307/3808314
10.1139/z97-848
10.1152/jappl.2000.88.2.567
10.1098/rspb.1938.0050
10.2337/diab.30.1.19
10.1152/japplphysiol.00695.2004
10.1152/physrev.00008.2003
10.1242/jeb.109512
10.1152/jn.1978.41.5.1203
10.1152/jappl.1999.86.2.455
10.1016/0021-9290(88)90281-3
10.1016/0300-9629(94)90222-4
10.1016/S0165-3806(99)00167-4
10.1172/JCI106016
10.1152/jappl.1984.57.5.1472
10.1086/524391
10.1007/s00421-008-0703-0
10.1152/jappl.1992.72.6.2336
10.1007/978-3-642-29056-5_17
10.1152/jappl.1994.76.2.974
10.1242/jeb.080663
10.1111/j.1469-7793.1997.677bm.x
10.2307/1382385
10.1073/pnas.0308035101
10.1007/s00360-006-0093-8
10.2170/jjphysiol.50.41
10.1046/j.1365-2990.1998.00144.x
10.1152/ajplegacy.1973.224.2.491
10.2307/1381939
10.1016/0003-2697(83)90551-1
10.1016/j.cbpb.2006.12.020
10.1016/S0966-6362(02)00073-5
10.1242/jeb.125401
10.1016/0305-0491(91)90147-6
10.1186/1472-6793-11-13
10.1152/jappl.2000.89.2.823
10.1126/science.6494914
10.1152/jappl.1997.82.1.182
10.1086/515429
10.1113/jphysiol.2004.062166
10.1152/japplphysiol.00521.2016
10.1038/35059165
10.1111/j.1748-1716.2007.01728.x
10.1007/s00360-010-0505-7
10.1016/j.cbpa.2014.05.022
10.1016/0006-8993(79)90728-5
10.1152/japplphysiol.00560.2007
10.3357/AMHP.EC09.2015
10.1016/S0021-9258(17)39330-4
10.1242/jeb.204.18.3201
10.1126/science.1199435
10.1152/physiolgenomics.00075.2007
10.1152/jappl.1993.74.6.2949
10.2307/3802988
10.1016/0305-0491(91)90390-Y
10.1007/s00421-009-1136-0
10.2192/08GR035.1
10.1111/j.1469-7793.1999.0915u.x
10.1152/jappl.1997.82.3.807
10.1002/mus.880100612
10.1111/j.1365-201X.2005.01457.x
10.1152/jappl.2000.88.2.627
10.1123/jsr.20.3.311
10.1086/513190
10.1152/ajpregu.1991.261.5.R1214
10.2307/1382213
10.1016/j.jbiomech.2008.07.031
10.1113/jphysiol.2003.044966
10.1644/1545-1542(2004)085<0414:BSTOHB>2.0.CO;2
10.1152/jappl.1990.69.1.58
10.1113/jphysiol.1979.sp012804
10.1007/s00360-015-0891-y
10.1152/jappl.2000.89.1.143
ContentType Journal Article
Copyright Copyright American Physiological Society Aug 2018
Copyright_xml – notice: Copyright American Physiological Society Aug 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/ajpregu.00060.2018
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1490
EndPage R379
ExternalDocumentID 10_1152_ajpregu_00060_2018
29641232
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
ACIWK
ACPRK
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
CGR
CUY
CVF
DIK
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
ITBOX
KQ8
NPM
OK1
P2P
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c441t-2b5ff5aa12350d87ec9c364d0241467d5f37c6a1e138d5e2ce2af9be98574cf53
ISSN 0363-6119
IngestDate Fri Jun 28 02:26:35 EDT 2024
Thu Oct 10 20:41:47 EDT 2024
Thu Sep 12 17:27:11 EDT 2024
Wed Oct 16 00:49:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords body mass
muscle fiber
atrophy
biopsy
myosin
denning
hibernation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-2b5ff5aa12350d87ec9c364d0241467d5f37c6a1e138d5e2ce2af9be98574cf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.physiology.org/doi/pdf/10.1152/ajpregu.00060.2018
PMID 29641232
PQID 2118385053
PQPubID 48263
ParticipantIDs proquest_miscellaneous_2024470450
proquest_journals_2118385053
crossref_primary_10_1152_ajpregu_00060_2018
pubmed_primary_29641232
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology. Regulatory, integrative and comparative physiology
PublicationTitleAlternate Am J Physiol Regul Integr Comp Physiol
PublicationYear 2018
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B28
B29
B70
B71
B72
B73
B30
B74
B31
B75
B32
B76
B33
B77
B34
B78
B35
B79
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
Rogers L (B59) 1976; 41
B80
B40
B41
B42
B44
B45
B46
B48
Reiser PJ (B55) 1985; 260
Lundberg DA (B43) 1976; 51
B50
B51
B52
B53
B10
B11
B12
Nelson RA (B47) 1980; 39
Nelson RA (B49) 1975; 50
B56
B13
B57
B14
B58
B16
B17
B18
B19
Fitts RH (B15) 2001; 204
Hikida RS (B27) 1989; 60
Payne NF (B54) 1998; 86
B60
B61
B62
B63
References_xml – ident: B7
  doi: 10.1152/physiolgenomics.00076.2001
– volume: 86
  start-page: 263
  year: 1998
  ident: B54
  publication-title: Trans Wis Acad Sci Arts Lett
  contributor:
    fullname: Payne NF
– ident: B64
  doi: 10.2307/3808314
– ident: B3
  doi: 10.1139/z97-848
– ident: B56
  doi: 10.1152/jappl.2000.88.2.567
– ident: B29
  doi: 10.1098/rspb.1938.0050
– ident: B39
  doi: 10.2337/diab.30.1.19
– ident: B61
  doi: 10.1152/japplphysiol.00695.2004
– ident: B8
  doi: 10.1152/physrev.00008.2003
– ident: B30
  doi: 10.1242/jeb.109512
– ident: B73
  doi: 10.1152/jn.1978.41.5.1203
– ident: B1
  doi: 10.1152/jappl.1999.86.2.455
– ident: B19
  doi: 10.1016/0021-9290(88)90281-3
– volume: 50
  start-page: 141
  year: 1975
  ident: B49
  publication-title: Mayo Clin Proc
  contributor:
    fullname: Nelson RA
– ident: B31
  doi: 10.1016/0300-9629(94)90222-4
– ident: B32
  doi: 10.1016/S0165-3806(99)00167-4
– ident: B53
  doi: 10.1172/JCI106016
– ident: B36
  doi: 10.1152/jappl.1984.57.5.1472
– volume: 51
  start-page: 716
  year: 1976
  ident: B43
  publication-title: Mayo Clin Proc
  contributor:
    fullname: Lundberg DA
– ident: B26
  doi: 10.1086/524391
– ident: B10
  doi: 10.1007/s00421-008-0703-0
– ident: B5
  doi: 10.1152/jappl.1992.72.6.2336
– ident: B20
  doi: 10.1007/978-3-642-29056-5_17
– ident: B63
  doi: 10.1152/jappl.1994.76.2.974
– ident: B35
  doi: 10.1242/jeb.080663
– ident: B14
  doi: 10.1111/j.1469-7793.1997.677bm.x
– ident: B23
  doi: 10.2307/1382385
– ident: B45
  doi: 10.1073/pnas.0308035101
– volume: 41
  start-page: 431
  year: 1976
  ident: B59
  publication-title: Transactions North American Wildlife Natural Resources Conference
  contributor:
    fullname: Rogers L
– ident: B60
  doi: 10.1007/s00360-006-0093-8
– ident: B52
  doi: 10.2170/jjphysiol.50.41
– ident: B25
  doi: 10.1046/j.1365-2990.1998.00144.x
– ident: B50
  doi: 10.1152/ajplegacy.1973.224.2.491
– ident: B24
  doi: 10.2307/1381939
– ident: B18
  doi: 10.1016/0003-2697(83)90551-1
– ident: B41
  doi: 10.1016/j.cbpb.2006.12.020
– ident: B2
  doi: 10.1016/S0966-6362(02)00073-5
– ident: B9
  doi: 10.1242/jeb.125401
– ident: B62
  doi: 10.1016/0305-0491(91)90147-6
– ident: B38
  doi: 10.1186/1472-6793-11-13
– ident: B16
  doi: 10.1152/jappl.2000.89.2.823
– ident: B48
  doi: 10.1126/science.6494914
– ident: B6
  doi: 10.1152/jappl.1997.82.1.182
– ident: B65
  doi: 10.1086/515429
– ident: B70
  doi: 10.1113/jphysiol.2004.062166
– ident: B34
  doi: 10.1152/japplphysiol.00521.2016
– ident: B21
  doi: 10.1038/35059165
– ident: B72
  doi: 10.1111/j.1748-1716.2007.01728.x
– ident: B51
  doi: 10.1007/s00360-010-0505-7
– ident: B80
  doi: 10.1016/j.cbpa.2014.05.022
– ident: B77
  doi: 10.1016/0006-8993(79)90728-5
– ident: B68
  doi: 10.1152/japplphysiol.00560.2007
– ident: B12
  doi: 10.3357/AMHP.EC09.2015
– volume: 260
  start-page: 9077
  year: 1985
  ident: B55
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)39330-4
  contributor:
    fullname: Reiser PJ
– volume: 204
  start-page: 3201
  year: 2001
  ident: B15
  publication-title: J Exp Biol
  doi: 10.1242/jeb.204.18.3201
  contributor:
    fullname: Fitts RH
– ident: B67
  doi: 10.1126/science.1199435
– ident: B79
  doi: 10.1152/physiolgenomics.00075.2007
– ident: B46
  doi: 10.1152/jappl.1993.74.6.2949
– ident: B28
  doi: 10.2307/3802988
– ident: B37
  doi: 10.1016/0305-0491(91)90390-Y
– ident: B4
  doi: 10.1007/s00421-009-1136-0
– ident: B44
  doi: 10.2192/08GR035.1
– ident: B75
  doi: 10.1111/j.1469-7793.1999.0915u.x
– ident: B13
  doi: 10.1152/jappl.1997.82.3.807
– ident: B57
  doi: 10.1002/mus.880100612
– ident: B17
  doi: 10.1111/j.1365-201X.2005.01457.x
– ident: B76
  doi: 10.1152/jappl.2000.88.2.627
– ident: B33
  doi: 10.1123/jsr.20.3.311
– ident: B42
  doi: 10.1086/513190
– ident: B74
  doi: 10.1152/ajpregu.1991.261.5.R1214
– volume: 39
  start-page: 2955
  year: 1980
  ident: B47
  publication-title: Fed Proc
  contributor:
    fullname: Nelson RA
– volume: 60
  start-page: 664
  year: 1989
  ident: B27
  publication-title: Aviat Space Environ Med
  contributor:
    fullname: Hikida RS
– ident: B78
  doi: 10.2307/1382213
– ident: B40
  doi: 10.1016/j.jbiomech.2008.07.031
– ident: B69
  doi: 10.1113/jphysiol.2003.044966
– ident: B22
  doi: 10.1644/1545-1542(2004)085<0414:BSTOHB>2.0.CO;2
– ident: B58
  doi: 10.1152/jappl.1990.69.1.58
– ident: B11
  doi: 10.1113/jphysiol.1979.sp012804
– ident: B66
  doi: 10.1007/s00360-015-0891-y
– ident: B71
  doi: 10.1152/jappl.2000.89.1.143
SSID ssj0004343
Score 2.3652196
Snippet Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage R369
SubjectTerms Animals
Atrophy
Bears
Body mass
Body mass index
Body size
Chains
Electron Transport Complex IV - metabolism
Energy Metabolism
Female
Fibers
Glycogen - metabolism
Hibernation
Male
Mitochondria, Muscle - metabolism
Muscle Contraction
Muscle Fibers, Fast-Twitch - physiology
Muscle Fibers, Slow-Twitch - physiology
Muscle function
Muscle Strength
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Muscles
Muscular Atrophy - metabolism
Muscular Atrophy - physiopathology
Muscular Atrophy - prevention & control
Myosin
Myosin Heavy Chains - metabolism
Phenotype
Physical activity
Physical fitness
Skeletal muscle
Soleus muscle
Stability
Summer
Tension
Time Factors
Ursidae - metabolism
Ursidae - physiology
Winter
Title Soleus muscle stability in wild hibernating black bears
URI https://www.ncbi.nlm.nih.gov/pubmed/29641232
https://www.proquest.com/docview/2118385053
https://search.proquest.com/docview/2024470450
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCgPJYKMhIiEuUkLXjxD6uKKgCFUFpq94iJ7HbIppU3c2h_B3-KONHnECpRLlEkZ2dOJ5vxzPjmTFCr2STN1qAkSM0mChgf9FYFlLHKdFU8LwWqTL5zruf8p2D7MMRO5rNfk6ilvp1ldQ__ppX8j9chTbgq8mSvQFnA1FogHvgL1yBw3D9Jx5_7b6rfhWd9SvoMF4BG-lqM_lABW6iExMOYtx97XFUGU9dVAGwV1OFNOzYTEpIWG-HdbcnMP32rPrO7bYPxSVMuJFPiAu1w8dfhU2cU-8Q306iZTK0HsLLti99nc8k2h07umMXMnAYmkz1KHcSdgJEph6KBQ_xcWNmFgUT1YtG5QUt4AOss3QqianL7PSQIxO5ukdzMVmj96g7geaq_Gemnqz8dn4Bs5PYajMmfI-Pq92ww__HIhhCE61RxEjpaZSWRmlo3EK3SSGYiRv9-GVSkp660MzhI4fMLEbeXB3H79rPNSaNVW3276G73ibBSwew-2im2gdocwnA6c4u8Wv8OXB2ExUOc9hhDgfM4dMWG8zhCeawxRy2mHuIDt6_23-7E_vDN-IaNOR1TCqmNZPS5FKnDS9ULWqaZw3odGZxbZimRZ3LhVpQ3jBFzMFyWlRKcFZktWb0Edpou1Y9QTjTeZ5J0XBSqUxXGaeqkSwTsi6qnEs6R9EwKeW5q7FSXs-GOdoa5q30f41VScBOphy0eSD2MnSDpDTbX7JVXQ_PwNCzAkyYdI4eu_kOrzPBB8a4eHqjoTxDd0a8b6GN9UWvnoOOuq5eWIz8AhOvkMQ
link.rule.ids 315,786,790,27955,27956
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soleus+muscle+stability+in+wild+hibernating+black+bears&rft.jtitle=American+journal+of+physiology.+Regulatory%2C+integrative+and+comparative+physiology&rft.au=Riley%2C+D.+A.&rft.au=Van+Dyke%2C+J.+M.&rft.au=Vogel%2C+V.&rft.au=Curry%2C+B.+D.&rft.date=2018-08-01&rft.issn=0363-6119&rft.eissn=1522-1490&rft.volume=315&rft.issue=2&rft.spage=R369&rft.epage=R379&rft_id=info:doi/10.1152%2Fajpregu.00060.2018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpregu_00060_2018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6119&client=summon