FusionSense: Emotion Classification Using Feature Fusion of Multimodal Data and Deep Learning in a Brain-Inspired Spiking Neural Network

Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin te...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 18; p. 5328
Main Authors Tan, Clarence, Ceballos, Gerardo, Kasabov, Nikola, Puthanmadam Subramaniyam, Narayan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 17.09.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20185328

Cover

Loading…
Abstract Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.
AbstractList Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.
Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.
Author Tan, Clarence
Ceballos, Gerardo
Kasabov, Nikola
Puthanmadam Subramaniyam, Narayan
AuthorAffiliation 2 School of Electrical Engineering, University of Los Andes, Merida 5101, Venezuela; gerardoacv@gmail.com
3 Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; narayan.subramaniyam@tuni.fi
1 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; nkasabov@aut.ac.nz
4 Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
AuthorAffiliation_xml – name: 1 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; nkasabov@aut.ac.nz
– name: 4 Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
– name: 2 School of Electrical Engineering, University of Los Andes, Merida 5101, Venezuela; gerardoacv@gmail.com
– name: 3 Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; narayan.subramaniyam@tuni.fi
Author_xml – sequence: 1
  givenname: Clarence
  orcidid: 0000-0003-1276-9522
  surname: Tan
  fullname: Tan, Clarence
– sequence: 2
  givenname: Gerardo
  surname: Ceballos
  fullname: Ceballos, Gerardo
– sequence: 3
  givenname: Nikola
  surname: Kasabov
  fullname: Kasabov, Nikola
– sequence: 4
  givenname: Narayan
  surname: Puthanmadam Subramaniyam
  fullname: Puthanmadam Subramaniyam, Narayan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32957655$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9APsIh1J-xwwEJtl1YaSmH0rM169iL28RO7YSq_4CfTXa3rFrEyZ6Z933G1sxxcRBisEXxmuD3jNX4NFNMlGBUPSuOCKe8VJTig0f3w-I452uMKWNMvSgOGa2FrIQ4Kn7Px-xjuLQh2w_ovIvDFKFZCzl75w1sw6vswxrNLQxjsmjnQNGhb2M7-C420KIzGABBaNCZtT1aWkhh4_EBAfqcwIdyEXLvk23QZe9vNrULO6bJeWGHu5huXhbPHbTZvno4T4qr-fmP2ddy-f3LYvZpWRrOyVBSkFzVnGBXSeMkUYwJKh2WHBsGjRCcNY2T2GFSrYSyuKaVca6uHa8YXyl2Uix23CbCte6T7yDd6whebxMxrTWkwZvWagGmcgqA145xXNGVdIYoWbGGSFpRMbE-7lj9uOpsY2wYph89gT6tBP9Tr-MvLYUkpN4A3j4AUrwdbR5057OxbQvBxjFryjlXUmDMJ-mbx732Tf6OchK82wlMijkn6_YSgvVmTfR-TSbt6T9a44ftrKdn-vY_jj-1fb6T
CitedBy_id crossref_primary_10_1007_s10462_023_10575_4
crossref_primary_10_34133_icomputing_0089
crossref_primary_10_3389_fnbot_2024_1442080
crossref_primary_10_1016_j_engappai_2024_109415
crossref_primary_10_1016_j_bspc_2024_106608
crossref_primary_10_1016_j_engappai_2025_110004
crossref_primary_10_4103_jmss_jmss_59_22
crossref_primary_10_3389_fnhum_2023_1280241
crossref_primary_10_3390_sci6010010
crossref_primary_10_1007_s11227_022_04665_3
crossref_primary_10_1016_j_knosys_2024_112587
crossref_primary_10_3390_s21093240
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_1016_j_rico_2023_100362
crossref_primary_10_1016_j_bspc_2024_106204
crossref_primary_10_1371_journal_pone_0269176
crossref_primary_10_1109_TCSS_2024_3420445
crossref_primary_10_1007_s10489_024_05777_4
crossref_primary_10_1108_ACI_03_2022_0080
crossref_primary_10_3389_fnins_2023_1200701
crossref_primary_10_1007_s10278_023_00776_2
crossref_primary_10_1002_widm_1563
crossref_primary_10_1016_j_bspc_2023_105921
crossref_primary_10_7717_peerj_cs_2610
crossref_primary_10_3389_fnhum_2024_1471634
crossref_primary_10_3390_s23094532
Cites_doi 10.1007/978-3-642-24571-8_16
10.1109/FG.2015.7284873
10.1109/JPROC.2003.817122
10.1016/j.ins.2014.06.028
10.1007/978-3-642-42051-1_9
10.1023/B:JONB.0000023655.25550.be
10.1016/j.neulet.2003.10.063
10.1145/2647868.2654984
10.1093/oso/9780195112719.002.0002
10.1007/11848035_70
10.1109/TBME.1985.325532
10.1109/CVPR.2016.23
10.1016/j.compind.2017.04.005
10.1145/632716.632878
10.1145/2659522.2659531
10.1007/s11063-020-10322-8
10.1016/j.neucom.2017.06.050
10.1109/ICCSP.2014.6949798
10.1007/978-3-319-25207-0_14
10.1016/S0925-2312(01)00658-0
10.1109/TITS.2005.848368
10.1145/1500879.1500888
10.1109/CVPR.2014.233
10.1016/j.neunet.2019.09.036
10.1109/ACII.2017.8273639
10.3758/BF03333870
10.1007/s00530-010-0182-0
10.1016/j.conb.2010.03.007
10.1177/2096595819896200
10.1016/S0272-7358(02)00130-7
10.1109/FG.2011.5771357
10.1007/978-3-642-33212-8_21
10.1109/IJCNN.2012.6252439
10.1007/978-3-642-33783-3_58
10.1109/ICASSP.2016.7472669
10.3233/ICA-2007-14301
10.1016/j.csl.2010.10.001
10.1007/978-3-662-57715-8
10.1109/ACII.2009.5349496
10.1016/j.patcog.2010.09.020
10.1109/T-AFFC.2010.1
10.1109/CVPR.2014.241
10.1007/978-1-4615-4831-7_19
10.1007/0-387-27890-7_11
10.1007/s00421-004-1055-z
10.1145/2659522.2659528
10.1016/j.neunet.2010.04.009
10.1093/cercor/bhn003
10.1038/nature14539
10.1109/PlatCon.2017.7883728
10.1145/2813524.2813533
10.1145/355017.355042
10.1007/s11042-013-1450-8
10.1007/BF01115465
10.1016/j.neunet.2015.09.011
10.1038/78829
10.1109/WACV.2016.7477679
10.1511/2001.28.344
10.1109/FG.2013.6553717
10.1109/ACCESS.2017.2676238
10.1007/s12193-016-0222-y
10.1016/j.ijpsycho.2003.12.001
10.1126/sciadv.aat4752
10.1007/978-4-431-67901-1_5
10.1109/CVPR.2016.369
10.1007/BF00990296
10.1109/IJCNN.2014.6889620
10.1080/02699939208411068
10.1145/2818346.2830593
10.1145/2993148.2997632
10.1016/j.inffus.2017.02.003
10.1109/TMM.2006.870737
10.1016/j.physleta.2004.12.078
10.1037/0033-295X.99.3.550
10.21437/Interspeech.2004-322
10.1016/j.neucom.2017.08.043
10.1038/nrn2575
10.1109/T-AFFC.2011.25
10.1007/s11042-014-1869-6
10.1155/2017/1945630
10.1162/neco.1997.9.2.279
10.1016/j.imavis.2012.10.002
10.1109/ICME.2014.6890166
10.1109/72.991428
10.1016/j.jcss.2004.04.001
10.1371/journal.pone.0124674
10.1007/s11063-010-9149-6
10.1109/TPAMI.2010.50
10.1016/j.neunet.2012.11.014
10.1037/h0077714
10.1109/BIBE.2014.26
10.1145/2851581.2890247
10.1109/ICCV.2015.341
10.1109/ACII.2013.90
10.1155/2014/749604
10.1631/FITEE.1400323
10.1109/CVPR.2017.212
10.1016/S0921-8890(02)00372-X
10.1016/j.neunet.2014.01.006
10.1016/S0167-6393(03)00099-2
10.1016/j.cviu.2015.09.015
10.1109/SSCI.2017.8285365
10.1109/ICCV.2015.421
10.1016/j.neunet.2014.10.005
10.1109/34.954607
10.1113/expphysiol.2008.042424
10.3390/fi11050105
10.1007/978-3-319-43665-4_19
10.1080/00332747.1969.11023575
10.1145/2522848.2531745
10.1007/978-94-010-0674-3
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s20185328
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5ac6f8aa49f34062b7fc18763d172625
PMC7571195
32957655
10_3390_s20185328
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c441t-2a7489410f67cf71833527f0740c3ad5543ddf70f016b58e0926cff99f4634b83
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:14 EDT 2025
Thu Aug 21 14:08:51 EDT 2025
Fri Jul 11 04:23:47 EDT 2025
Wed Feb 19 02:03:54 EST 2025
Thu Apr 24 22:58:21 EDT 2025
Tue Jul 01 03:55:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Evolving Spiking Neural Networks (eSNNs)
Spatio-temporal data
facial emotion recognition
multimodal data
NeuCube
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-2a7489410f67cf71833527f0740c3ad5543ddf70f016b58e0926cff99f4634b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1276-9522
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20185328
PMID 32957655
PQID 2444875004
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5ac6f8aa49f34062b7fc18763d172625
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7571195
proquest_miscellaneous_2444875004
pubmed_primary_32957655
crossref_primary_10_3390_s20185328
crossref_citationtrail_10_3390_s20185328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200917
PublicationDateYYYYMMDD 2020-09-17
PublicationDate_xml – month: 9
  year: 2020
  text: 20200917
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_94
ref_93
Kamel (ref_33) 2011; 44
ref_14
ref_13
ref_12
ref_11
(ref_49) 1989; 13
Adeli (ref_92) 2007; 14
ref_99
ref_130
ref_10
ref_98
Song (ref_115) 2000; 3
ref_133
ref_132
ref_96
Wysoski (ref_95) 2010; 23
Kasabov (ref_101) 2016; 78
ref_19
ref_17
Soleymani (ref_107) 2011; 3
ref_16
ref_15
ref_128
Homma (ref_62) 2008; 93
ref_127
ref_129
Nwe (ref_37) 2003; 41
Kasabov (ref_18) 2014; 52
ref_24
ref_23
Picard (ref_34) 2001; 23
ref_120
ref_122
ref_121
ref_124
ref_29
Koelstra (ref_116) 2013; 31
ref_28
Calvo (ref_1) 2010; 1
ref_27
ref_26
Trivedi (ref_131) 2008; 31
Danelakis (ref_7) 2015; 74
ref_72
Kory (ref_74) 2015; 47
ref_71
ref_70
Maass (ref_87) 2004; 69
ref_76
Pan (ref_112) 1985; BME-32
Liu (ref_103) 2010; 20
Yeasin (ref_9) 2006; 8
Huang (ref_125) 2016; 147
Edwards (ref_2) 2002; 22
Huang (ref_40) 2015; 16
Albornoz (ref_39) 2011; 25
Walk (ref_48) 1984; 22
ref_82
ref_81
ref_80
LeCun (ref_83) 2015; 521
Fong (ref_3) 2003; 42
Bohte (ref_89) 2002; 48
Simard (ref_114) 2005; 336
Sun (ref_32) 2017; 267
Coulson (ref_51) 2004; 28
ref_86
Kasabov (ref_100) 2015; 294
Granholm (ref_68) 2004; 52
ref_50
Maass (ref_88) 1997; 9
ref_56
ref_55
ref_54
Meftah (ref_91) 2010; 32
ref_53
Uddin (ref_25) 2017; 5
Plutchik (ref_6) 2001; 89
ref_59
ref_61
ref_60
Russell (ref_4) 1980; 39
ref_69
Ekman (ref_20) 1992; 6
ref_67
ref_66
ref_65
Thayer (ref_63) 1997; 11
ref_64
Bullmore (ref_104) 2009; 10
Koelstra (ref_117) 2010; 32
Bohte (ref_90) 2002; 13
Chen (ref_106) 2008; 18
(ref_123) 2017; 11
Poria (ref_8) 2015; 63
ref_119
ref_118
ref_36
ref_35
ref_111
ref_110
ref_30
ref_113
Hjortskov (ref_58) 2004; 92
Pantic (ref_75) 2003; 91
ref_38
Atrey (ref_78) 2010; 16
Cibau (ref_41) 2013; 16
Hu (ref_126) 2019; 5
ref_108
Poria (ref_79) 2017; 37
ref_109
ref_47
ref_46
ref_45
ref_44
Zeng (ref_31) 2018; 273
ref_43
ref_42
Wang (ref_77) 2014; 72
Wang (ref_84) 2018; 4
Stam (ref_105) 2004; 355
Taherkhani (ref_85) 2019; 122
ref_102
Ekman (ref_52) 1969; 32
Healey (ref_57) 2005; 6
Ekman (ref_22) 1976; 1
Ekman (ref_21) 1992; 99
ref_5
Kasabov (ref_97) 2013; 41
Zhang (ref_73) 2017; 92
References_xml – ident: ref_129
  doi: 10.1007/978-3-642-24571-8_16
– ident: ref_11
  doi: 10.1109/FG.2015.7284873
– volume: 91
  start-page: 1370
  year: 2003
  ident: ref_75
  article-title: Toward an affect-sensitive multimodal human-computer interaction
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.817122
– volume: 294
  start-page: 565
  year: 2015
  ident: ref_100
  article-title: Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.06.028
– ident: ref_99
  doi: 10.1007/978-3-642-42051-1_9
– volume: 28
  start-page: 117
  year: 2004
  ident: ref_51
  article-title: Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence
  publication-title: J. Nonverbal Behav.
  doi: 10.1023/B:JONB.0000023655.25550.be
– volume: 355
  start-page: 25
  year: 2004
  ident: ref_105
  article-title: Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’network?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2003.10.063
– ident: ref_46
  doi: 10.1145/2647868.2654984
– ident: ref_108
– ident: ref_50
  doi: 10.1093/oso/9780195112719.002.0002
– ident: ref_66
  doi: 10.1007/11848035_70
– ident: ref_71
– volume: BME-32
  start-page: 230
  year: 1985
  ident: ref_112
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– ident: ref_94
– ident: ref_132
  doi: 10.1109/CVPR.2016.23
– volume: 92
  start-page: 84
  year: 2017
  ident: ref_73
  article-title: Respiration-based emotion recognition with deep learning
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2017.04.005
– ident: ref_59
  doi: 10.1145/632716.632878
– ident: ref_80
  doi: 10.1145/2659522.2659531
– ident: ref_86
  doi: 10.1007/s11063-020-10322-8
– volume: 267
  start-page: 385
  year: 2017
  ident: ref_32
  article-title: An efficient unconstrained facial expression recognition algorithm based on Stack Binarized Auto-encoders and Binarized Neural Networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.050
– ident: ref_53
  doi: 10.1109/ICCSP.2014.6949798
– ident: ref_81
  doi: 10.1007/978-3-319-25207-0_14
– ident: ref_56
– volume: 48
  start-page: 17
  year: 2002
  ident: ref_89
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– volume: 16
  start-page: 934
  year: 2013
  ident: ref_41
  article-title: Speech emotion recognition using a deep autoencoder
  publication-title: Anales de la XV Reunion de Procesamiento de la Informacion y Control
– volume: 6
  start-page: 156
  year: 2005
  ident: ref_57
  article-title: Detecting stress during real-world driving tasks using physiological sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2005.848368
– ident: ref_67
  doi: 10.1145/1500879.1500888
– ident: ref_10
– ident: ref_24
  doi: 10.1109/CVPR.2014.233
– volume: 122
  start-page: 253
  year: 2019
  ident: ref_85
  article-title: A review of learning in biologically plausible spiking neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.09.036
– ident: ref_72
  doi: 10.1109/ACII.2017.8273639
– volume: 22
  start-page: 437
  year: 1984
  ident: ref_48
  article-title: Emotion and dance in dynamic light displays
  publication-title: Bull. Psychon. Soc.
  doi: 10.3758/BF03333870
– volume: 16
  start-page: 345
  year: 2010
  ident: ref_78
  article-title: Multimodal fusion for multimedia analysis: A survey
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-010-0182-0
– volume: 20
  start-page: 288
  year: 2010
  ident: ref_103
  article-title: Neuromorphic sensory systems
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.03.007
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_126
  article-title: Ten challenges for EEG-based affective computing
  publication-title: Brain Sci. Adv.
  doi: 10.1177/2096595819896200
– volume: 22
  start-page: 789
  year: 2002
  ident: ref_2
  article-title: Emotion recognition via facial expression and affective prosody in schizophrenia: A methodological review
  publication-title: Clin. Psychol. Rev.
  doi: 10.1016/S0272-7358(02)00130-7
– ident: ref_5
  doi: 10.1109/FG.2011.5771357
– ident: ref_98
  doi: 10.1007/978-3-642-33212-8_21
– ident: ref_17
  doi: 10.1109/IJCNN.2012.6252439
– ident: ref_30
  doi: 10.1007/978-3-642-33783-3_58
– ident: ref_45
  doi: 10.1109/ICASSP.2016.7472669
– volume: 14
  start-page: 187
  year: 2007
  ident: ref_92
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-2007-14301
– volume: 25
  start-page: 556
  year: 2011
  ident: ref_39
  article-title: Spoken emotion recognition using hierarchical classifiers
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2010.10.001
– ident: ref_96
  doi: 10.1007/978-3-662-57715-8
– ident: ref_61
  doi: 10.1109/ACII.2009.5349496
– volume: 44
  start-page: 572
  year: 2011
  ident: ref_33
  article-title: Survey on speech emotion recognition: Features, classification schemes, and databases
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.09.020
– volume: 1
  start-page: 18
  year: 2010
  ident: ref_1
  article-title: Affect detection: An interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.1
– ident: ref_111
  doi: 10.1109/CVPR.2014.241
– ident: ref_93
  doi: 10.1007/978-1-4615-4831-7_19
– ident: ref_23
  doi: 10.1007/0-387-27890-7_11
– volume: 92
  start-page: 84
  year: 2004
  ident: ref_58
  article-title: The effect of mental stress on heart rate variability and blood pressure during computer work
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-004-1055-z
– ident: ref_76
  doi: 10.1145/2659522.2659528
– volume: 23
  start-page: 819
  year: 2010
  ident: ref_95
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.04.009
– volume: 18
  start-page: 2374
  year: 2008
  ident: ref_106
  article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhn003
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_83
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 11
  start-page: 304
  year: 1997
  ident: ref_63
  article-title: Cardiorespiratory differentiation of musically-induced emotions
  publication-title: J. Psychophysiol.
– ident: ref_47
  doi: 10.1109/PlatCon.2017.7883728
– ident: ref_36
– ident: ref_82
  doi: 10.1145/2813524.2813533
– ident: ref_19
– ident: ref_109
– ident: ref_69
  doi: 10.1145/355017.355042
– volume: 72
  start-page: 1257
  year: 2014
  ident: ref_77
  article-title: Hybrid video emotional tagging using users’ EEG and video content
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-013-1450-8
– ident: ref_55
– volume: 1
  start-page: 56
  year: 1976
  ident: ref_22
  article-title: Measuring facial movement
  publication-title: Environ. Psychol. Nonverbal Behav.
  doi: 10.1007/BF01115465
– ident: ref_26
– ident: ref_113
– volume: 47
  start-page: 1
  year: 2015
  ident: ref_74
  article-title: A review and meta-analysis of multimodal affect detection systems
  publication-title: ACM Comput. Surv. CSUR
– volume: 31
  start-page: 607
  year: 2008
  ident: ref_131
  article-title: Head pose estimation in computer vision: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 78
  start-page: 1
  year: 2016
  ident: ref_101
  article-title: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.09.011
– volume: 3
  start-page: 919
  year: 2000
  ident: ref_115
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/78829
– ident: ref_122
  doi: 10.1109/WACV.2016.7477679
– volume: 89
  start-page: 344
  year: 2001
  ident: ref_6
  article-title: The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice
  publication-title: Am. Sci.
  doi: 10.1511/2001.28.344
– ident: ref_128
  doi: 10.1109/FG.2013.6553717
– volume: 5
  start-page: 4525
  year: 2017
  ident: ref_25
  article-title: Facial expression recognition utilizing local direction-based robust features and deep belief network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2676238
– ident: ref_35
– volume: 11
  start-page: 9
  year: 2017
  ident: ref_123
  article-title: SVM-based feature selection methods for emotion recognition from multimodal data
  publication-title: J. Multimodal User Interfaces
  doi: 10.1007/s12193-016-0222-y
– volume: 52
  start-page: 1
  year: 2004
  ident: ref_68
  article-title: Pupillometric measures of cognitive and emotional processes
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2003.12.001
– volume: 4
  start-page: eaat4752
  year: 2018
  ident: ref_84
  article-title: Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat4752
– ident: ref_64
  doi: 10.1007/978-4-431-67901-1_5
– ident: ref_28
  doi: 10.1109/CVPR.2016.369
– ident: ref_118
– volume: 13
  start-page: 247
  year: 1989
  ident: ref_49
  article-title: The contribution of general features of body movement to the attribution of emotions
  publication-title: J. Nonverbal Behav.
  doi: 10.1007/BF00990296
– ident: ref_130
  doi: 10.1109/IJCNN.2014.6889620
– volume: 6
  start-page: 169
  year: 1992
  ident: ref_20
  article-title: An argument for basic emotions
  publication-title: Cognit. Emot.
  doi: 10.1080/02699939208411068
– ident: ref_29
  doi: 10.1145/2818346.2830593
– ident: ref_14
  doi: 10.1145/2993148.2997632
– volume: 37
  start-page: 98
  year: 2017
  ident: ref_79
  article-title: A review of affective computing: From unimodal analysis to multimodal fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.003
– volume: 8
  start-page: 500
  year: 2006
  ident: ref_9
  article-title: Recognition of facial expressions and measurement of levels of interest from video
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2006.870737
– volume: 336
  start-page: 8
  year: 2005
  ident: ref_114
  article-title: Fastest learning in small-world neural networks
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.12.078
– volume: 99
  start-page: 550
  year: 1992
  ident: ref_21
  article-title: Are there basic emotions?
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.99.3.550
– ident: ref_38
  doi: 10.21437/Interspeech.2004-322
– ident: ref_110
– volume: 273
  start-page: 643
  year: 2018
  ident: ref_31
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.043
– volume: 10
  start-page: 186
  year: 2009
  ident: ref_104
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 3
  start-page: 42
  year: 2011
  ident: ref_107
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: ref_124
– volume: 74
  start-page: 5577
  year: 2015
  ident: ref_7
  article-title: A survey on facial expression recognition in 3D video sequences
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-1869-6
– ident: ref_44
  doi: 10.1155/2017/1945630
– volume: 9
  start-page: 279
  year: 1997
  ident: ref_88
  article-title: Fast sigmoidal networks via spiking neurons
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.2.279
– volume: 31
  start-page: 164
  year: 2013
  ident: ref_116
  article-title: Fusion of facial expressions and EEG for implicit affective tagging
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2012.10.002
– ident: ref_65
  doi: 10.1109/ICME.2014.6890166
– volume: 13
  start-page: 426
  year: 2002
  ident: ref_90
  article-title: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991428
– volume: 69
  start-page: 593
  year: 2004
  ident: ref_87
  article-title: On the computational power of circuits of spiking neurons
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2004.04.001
– ident: ref_127
  doi: 10.1371/journal.pone.0124674
– volume: 32
  start-page: 131
  year: 2010
  ident: ref_91
  article-title: Segmentation and edge detection based on spiking neural network model
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-010-9149-6
– volume: 32
  start-page: 1940
  year: 2010
  ident: ref_117
  article-title: A dynamic texture-based approach to recognition of facial actions and their temporal models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.50
– volume: 41
  start-page: 188
  year: 2013
  ident: ref_97
  article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.11.014
– volume: 39
  start-page: 1161
  year: 1980
  ident: ref_4
  article-title: A circumplex model of affect
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/h0077714
– ident: ref_70
  doi: 10.1109/BIBE.2014.26
– ident: ref_120
  doi: 10.1145/2851581.2890247
– ident: ref_27
  doi: 10.1109/ICCV.2015.341
– ident: ref_42
  doi: 10.1109/ACII.2013.90
– ident: ref_43
  doi: 10.1155/2014/749604
– volume: 16
  start-page: 358
  year: 2015
  ident: ref_40
  article-title: Speech emotion recognition with unsupervised feature learning
  publication-title: Front. Inf. Technol. Electr. Eng.
  doi: 10.1631/FITEE.1400323
– ident: ref_54
  doi: 10.1109/CVPR.2017.212
– volume: 42
  start-page: 143
  year: 2003
  ident: ref_3
  article-title: A survey of socially interactive robots
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(02)00372-X
– ident: ref_12
– volume: 52
  start-page: 62
  year: 2014
  ident: ref_18
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.006
– volume: 41
  start-page: 603
  year: 2003
  ident: ref_37
  article-title: Speech emotion recognition using hidden Markov models
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(03)00099-2
– volume: 147
  start-page: 114
  year: 2016
  ident: ref_125
  article-title: Multi-modal emotion analysis from facial expressions and electroencephalogram
  publication-title: Comput. Vision Image Underst.
  doi: 10.1016/j.cviu.2015.09.015
– ident: ref_119
  doi: 10.1109/SSCI.2017.8285365
– ident: ref_15
– ident: ref_133
  doi: 10.1109/ICCV.2015.421
– volume: 63
  start-page: 104
  year: 2015
  ident: ref_8
  article-title: Towards an intelligent framework for multimodal affective data analysis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.005
– ident: ref_60
– volume: 23
  start-page: 1175
  year: 2001
  ident: ref_34
  article-title: Toward machine emotional intelligence: Analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– volume: 93
  start-page: 1011
  year: 2008
  ident: ref_62
  article-title: Breathing rhythms and emotions
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2008.042424
– ident: ref_121
  doi: 10.3390/fi11050105
– ident: ref_16
  doi: 10.1007/978-3-319-43665-4_19
– volume: 32
  start-page: 88
  year: 1969
  ident: ref_52
  article-title: Nonverbal leakage and clues to deception
  publication-title: Psychiatry
  doi: 10.1080/00332747.1969.11023575
– ident: ref_13
  doi: 10.1145/2522848.2531745
– ident: ref_102
  doi: 10.1007/978-94-010-0674-3
SSID ssj0023338
Score 2.4772222
Snippet Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5328
SubjectTerms Brain - diagnostic imaging
Deep Learning
Electroencephalography
Emotions
Evolving Spiking Neural Networks (eSNNs)
facial emotion recognition
Humans
multimodal data
NeuCube
Neural Networks, Computer
Spatio-temporal data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIN-WlAzGwRCS2EydsvCpgYAEktsiJbagEaVXa_8DP5s5OqxYhsbDGtmydz7nviy_fMXZSx4aEyXLkJlZGUuVppI3Eg1fxIjEY06z22RYP2e2zvH9JX2ZKfVFOWJAHDoY7S3WduVxrWTiBwYdXytUJyagZDL0I3untizFvQqZaqiWQeQUdIYGk_uwTwxzGJSq5PhN9vEj_b8jyZ4LkTMTprrKVFirCRVjiGluwzTpbnhEQ3GBf3TF97XpELmrP4SaU5AFf6JJSgLzVwWcFAGG98dBCGAF9B_7f24--wTmu9UiDbgxcWzuAVnP1FXoNaLikIhLRXUNX8tbA46BHX9eBVD1w5ENII99kz92bp6vbqK2tENUIgEYR1yQ7I5PYZSRMlPh_r5RDQBHXQhsEGcIYp2KHkLBKcxsXPKudKwonMyGrXGyxxabf2B0GNRpWVNzahBuZuLzSKlWuyBTHllRVHXY6sXlZt8LjVP_ivUQCQttTTrenw46nXQdBbeO3Tpe0cdMOJJDtH6DblK3blH-5TYcdTba9xANFtyS6sf3xZ4l4h0gcvjw6bDu4wXQqwQvkZymOVnMOMreW-Zam9-ZFu9EmpK63-x-L32NLnGg_VbJQ-2xxNBzbA8RGo-rQH4NvJJwMnA
  priority: 102
  providerName: Directory of Open Access Journals
Title FusionSense: Emotion Classification Using Feature Fusion of Multimodal Data and Deep Learning in a Brain-Inspired Spiking Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/32957655
https://www.proquest.com/docview/2444875004
https://pubmed.ncbi.nlm.nih.gov/PMC7571195
https://doaj.org/article/5ac6f8aa49f34062b7fc18763d172625
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0K7B8R7w6MyiAOXQOI4cbISQpRtWZCoEEul3iIntpdKu0m3Dwn-AT97Z5w0alFPXHJIbCXyeDLfZ4-_AXhdBpqEyVLkJkb4Qqaxr7RAxyt4FmqMaUa5bItRcj4WXyfxZA_WNTbbAVzspHZUT2o8v3r7--bPB3T498Q4kbK_W2AQw6jD0304xIAkyT-_iW4zgUdIwxpRoe3mR3An4hkCbjrntxGVnHj_LsT5b-LkRiQa3oO7LYRkHxub34c9Uz2A4w1hwYfwd7iiVbAL5KjmlA2aUj3MFcCk1CBnDeayBRhhwNXcsKYHqy1zZ3Kva43vOFNLxVSl2ZkxM9ZqsV6yacUU61NxCf9LRVv1RrOL2ZRW3RmpfWDPUZNe_gjGw8HPT-d-W3PBLxEYLX2uSI5GhIFNSLAodGeypEWgEZSR0gg-Iq2tDCxCxSJOTZDxpLQ2y6xIIlGk0WM4qOrKnAArcYyjghsTci1CmxZKxtJmieT4JJaFB2_WY56XrSA51cW4ypGYkKXyzlIevOqazhoVjl2N-mS4rgEJZ7sb9fwyb_0wj1WZ2FQpkdkIsQwvpC1DUuXTiOSQC3rwcm32HB2Ndk9UZerVIkccROQOfyoePGmmQfeq9TTyQG5NkK1v2X5STX85MW8cE1Lde_rfPZ_BEac1ACprIZ_DwXK-Mi8QKC2LHuzLicRrOvzcg8P-YPT9R88tOvScg9wCSMIX3g
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FusionSense%3A+Emotion+Classification+Using+Feature+Fusion+of+Multimodal+Data+and+Deep+Learning+in+a+Brain-Inspired+Spiking+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tan%2C+Clarence&rft.au=Ceballos%2C+Gerardo&rft.au=Kasabov%2C+Nikola&rft.au=Puthanmadam+Subramaniyam%2C+Narayan&rft.date=2020-09-17&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185328&rft_id=info%3Apmid%2F32957655&rft.externalDocID=PMC7571195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon