Development of deep autoencoder-based anomaly detection system for HANARO

The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and indust...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 55; no. 2; pp. 475 - 483
Main Authors Ryu, Seunghyoung, Jeon, Byoungil, Seo, Hogeon, Lee, Minwoo, Shin, Jin-Won, Yu, Yonggyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2022.10.009

Cover

Loading…
Abstract The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.
AbstractList The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model KCI Citation Count: 1
The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.
Author Yu, Yonggyun
Shin, Jin-Won
Jeon, Byoungil
Seo, Hogeon
Ryu, Seunghyoung
Lee, Minwoo
Author_xml – sequence: 1
  givenname: Seunghyoung
  orcidid: 0000-0001-7969-2924
  surname: Ryu
  fullname: Ryu, Seunghyoung
  email: ashryu@kaeri.re.kr
  organization: Artificial Intelligence Application & Strategy Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, South Korea
– sequence: 2
  givenname: Byoungil
  orcidid: 0000-0001-9038-1668
  surname: Jeon
  fullname: Jeon, Byoungil
  email: bijeon@kaeri.re.kr
  organization: Artificial Intelligence Application & Strategy Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, South Korea
– sequence: 3
  givenname: Hogeon
  orcidid: 0000-0002-7655-6203
  surname: Seo
  fullname: Seo, Hogeon
  email: hogeony@kaeri.re.kr
  organization: Artificial Intelligence Application & Strategy Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, South Korea
– sequence: 4
  givenname: Minwoo
  surname: Lee
  fullname: Lee, Minwoo
  email: leemw@kaeri.re.kr
  organization: HANARO Management Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, South Korea
– sequence: 5
  givenname: Jin-Won
  surname: Shin
  fullname: Shin, Jin-Won
  email: jwshin@kaeri.re.kr
  organization: HANARO Management Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, South Korea
– sequence: 6
  givenname: Yonggyun
  orcidid: 0000-0003-2863-9650
  surname: Yu
  fullname: Yu, Yonggyun
  email: ygyu@kaeri.re.kr
  organization: Artificial Intelligence Application & Strategy Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, South Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002929635$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU1LYzEUDaJgdfwB7t564NV89SUPV8UZtSAjiIK7cJvcSOrrS0kyQv-9aetsZuHqJjf3nHtyzhk5HuOIhFwyOmWUdVer6Yhlyinn9T6ltD8iE86FbMVMvx6TCVNCtzMlxCk5y3lFaSelohOy-IUfOMTNGsfSRN84xE0Df0vE0UaHqV1CRtfAGNcwbOtzQVtCHJu8zQXXjY-puZ__mT89_iAnHoaMF1_1nLzc_n6-uW8fHu8WN_OH1krJSsu111LJrus1MtD1RJdVDVWOeebROtYtmdPUC7BSoeOsV1JqB0rPelt_cE5-HnjH5M27DSZC2Ne3aN6TmT89L0y1hMmZFnV4cRh2EVZmk8Ia0naP2DdiejOQSrADGqt7Jh2jwKWUQnAALb1fKue847TDyqUOXDbFnBN6Y0OBnRklQRjq0t3ezqxMjcLsoti1ahQVyf5D_lPyHeb6gMHq5UfAZLINNRR0IdUIqv7wDfoTFhih4Q
CitedBy_id crossref_primary_10_1016_j_net_2023_11_033
crossref_primary_10_1016_j_net_2025_103524
crossref_primary_10_1109_TIM_2023_3302386
crossref_primary_10_1016_j_ascom_2025_100929
crossref_primary_10_1016_j_rineng_2025_104158
crossref_primary_10_1016_j_nucengdes_2023_112792
crossref_primary_10_1155_stni_9455897
crossref_primary_10_1007_s11814_024_00246_7
crossref_primary_10_1016_j_nucengdes_2024_113493
crossref_primary_10_1109_TII_2023_3345461
Cites_doi 10.1016/j.ress.2022.108446
10.1016/S0378-4754(02)00018-6
10.1016/j.pnucene.2014.10.013
10.1016/j.anucene.2020.107410
10.1016/j.ress.2008.08.005
10.1016/j.anucene.2019.05.039
10.1016/j.nucengdes.2022.111949
10.1016/j.eswa.2022.116966
10.1109/ACCESS.2020.3034218
10.1016/S0893-6080(05)80023-1
10.1109/ACCESS.2022.3187426
10.1016/j.asoc.2020.106874
10.1016/j.nucengdes.2020.110699
10.5516/NET.07.2014.006
10.1007/BF00058655
10.1080/18811248.1998.9733829
10.1016/j.anucene.2020.108113
10.1109/ACCESS.2020.3026104
10.1080/00223131.2019.1611501
10.1016/j.anucene.2018.05.020
10.1016/j.eswa.2020.113699
10.1016/j.eswa.2021.115848
10.1016/j.anucene.2021.108661
ContentType Journal Article
Copyright 2023 Korean Nuclear Society
Copyright_xml – notice: 2023 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2022.10.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 483
ExternalDocumentID oai_kci_go_kr_ARTI_10114583
oai_doaj_org_article_c8914d10a2444332aa84ffb7ddfd206e
10_1016_j_net_2022_10_009
S1738573322004909
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c441t-28f84746698e1a87460b00607d1f1fecd16b1d80f3ac47ed2197448da7859c573
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Fri Feb 23 03:15:42 EST 2024
Wed Aug 27 01:19:18 EDT 2025
Tue Jul 01 01:28:32 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Tue May 16 23:59:53 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Autoencoder
Anomaly detection
Research reactor
Nuclear reactor
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-28f84746698e1a87460b00607d1f1fecd16b1d80f3ac47ed2197448da7859c573
ORCID 0000-0001-7969-2924
0000-0001-9038-1668
0000-0002-7655-6203
0000-0003-2863-9650
OpenAccessLink https://doaj.org/article/c8914d10a2444332aa84ffb7ddfd206e
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10114583
doaj_primary_oai_doaj_org_article_c8914d10a2444332aa84ffb7ddfd206e
crossref_citationtrail_10_1016_j_net_2022_10_009
crossref_primary_10_1016_j_net_2022_10_009
elsevier_sciencedirect_doi_10_1016_j_net_2022_10_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
2023-02-01
2023-02
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Jin, Kim, Ryu, Kim, Park (bib13) 2022; 222
Bae, Kim, Lee (bib2) 2021; 186
Schapire (bib39) 2003
dos Santos, Pinheiro, do Desterro, de Avellar, Schirru, dos Santos Nicolau, de Lima (bib11) 2019; 133
Lee, Arigi, Kim (bib7) 2020; 8
Messai, Mellit, Abdellani, Pavan (bib23) 2015; 79
Bergstra, Bengio (bib31) 2012; 13
Breiman (bib38) 1996; 24
Ryu, Kim, Kim, Jin, Cho, Park (bib5) 2022; 200
Radaideh, Pigg, Kozlowski, Deng, Qu (bib12) 2020; 160
Zong, Song, Min, Cheng, Lumezanu, Cho, Chen (bib36) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib29) 2011; 12
Kim, Ou, Loh, Allen, Agasie, Liu (bib24) 2020; 364
Kingma, Ba (bib25) 2014
Kim, Cho, Park (bib4) 2020; 8
Kim, Chae, Seong (bib6) 2020; 142
Nabeshima, Suzudo, Ohno, Kudo (bib18) 2002; 60
Ryu, Yim, Seo, Yu, Seo (bib34) 2022; 10
Nabeshima, Suzudo, Suzuki, Türkcan (bib21) 1998; 35
Caliva, De Ribeiro, Mylonakis, Demazi’ere, Vinai, Leontidis, Kollias (bib14) 2018
Lee, Lee, Lee (bib20) 2021; 99
Ryu, Jeon, Lee, Yu (bib28) 2021; 300
Choo, Cho, Yang, Park (bib1) 2014; 46
Kim, Jo, Kim, Park, Kim (bib3) 2021
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib27) 2019; 32
Tasakos, Ioannou, Verma, Alexandridis, Dokhane, Stafylopatis (bib22) 2021
Wolpert (bib37) 1992; 5
Santosh, Srivastava, Rao, Ghosh, Kushwaha (bib19) 2009; 94
Kim, Shim, Lim, Jeon, Choi, Kim, Yoon (bib33) 2019
Hou, Ni, Hawari (bib15) 2019; 120
Akcay, Atapour-Abarghouei, Breckon (bib35) 2018
Lee, Kim (bib16) 2022; 165
Loshchilov, Hutter (bib26) 2016
Ahn, Bae, Min, Lee (bib17) 2022; 397
Bergstra, Bardenet, Bengio, Kégl (bib30) 2011; 24
Lee, Seong, Kim (bib8) 2018; 119
Chen, Demachi (bib9) 2019; 56
Lin, Wang, Wu (bib10) 2021; 154
Snoek, Larochelle, Adams (bib32) 2012; 25
Lee (10.1016/j.net.2022.10.009_bib16) 2022; 165
Zong (10.1016/j.net.2022.10.009_bib36) 2018
Bae (10.1016/j.net.2022.10.009_bib2) 2021; 186
Kim (10.1016/j.net.2022.10.009_bib4) 2020; 8
Ryu (10.1016/j.net.2022.10.009_bib34) 2022; 10
Kim (10.1016/j.net.2022.10.009_bib6) 2020; 142
Choo (10.1016/j.net.2022.10.009_bib1) 2014; 46
Paszke (10.1016/j.net.2022.10.009_bib27) 2019; 32
Chen (10.1016/j.net.2022.10.009_bib9) 2019; 56
Nabeshima (10.1016/j.net.2022.10.009_bib18) 2002; 60
Hou (10.1016/j.net.2022.10.009_bib15) 2019; 120
Nabeshima (10.1016/j.net.2022.10.009_bib21) 1998; 35
Jin (10.1016/j.net.2022.10.009_bib13) 2022; 222
Tasakos (10.1016/j.net.2022.10.009_bib22) 2021
dos Santos (10.1016/j.net.2022.10.009_bib11) 2019; 133
Bergstra (10.1016/j.net.2022.10.009_bib31) 2012; 13
Ryu (10.1016/j.net.2022.10.009_bib28) 2021; 300
Caliva (10.1016/j.net.2022.10.009_bib14) 2018
Wolpert (10.1016/j.net.2022.10.009_bib37) 1992; 5
Ahn (10.1016/j.net.2022.10.009_bib17) 2022; 397
Radaideh (10.1016/j.net.2022.10.009_bib12) 2020; 160
Santosh (10.1016/j.net.2022.10.009_bib19) 2009; 94
Messai (10.1016/j.net.2022.10.009_bib23) 2015; 79
Kim (10.1016/j.net.2022.10.009_bib3) 2021
Loshchilov (10.1016/j.net.2022.10.009_bib26) 2016
Ryu (10.1016/j.net.2022.10.009_bib5) 2022; 200
Lee (10.1016/j.net.2022.10.009_bib7) 2020; 8
Kim (10.1016/j.net.2022.10.009_bib24) 2020; 364
Akcay (10.1016/j.net.2022.10.009_bib35) 2018
Lin (10.1016/j.net.2022.10.009_bib10) 2021; 154
Lee (10.1016/j.net.2022.10.009_bib8) 2018; 119
Pedregosa (10.1016/j.net.2022.10.009_bib29) 2011; 12
Kim (10.1016/j.net.2022.10.009_bib33) 2019
Schapire (10.1016/j.net.2022.10.009_bib39) 2003
Bergstra (10.1016/j.net.2022.10.009_bib30) 2011; 24
Kingma (10.1016/j.net.2022.10.009_bib25) 2014
Breiman (10.1016/j.net.2022.10.009_bib38) 1996; 24
Snoek (10.1016/j.net.2022.10.009_bib32) 2012; 25
Lee (10.1016/j.net.2022.10.009_bib20) 2021; 99
References_xml – volume: 8
  start-page: 196727
  year: 2020
  end-page: 196746
  ident: bib7
  article-title: Algorithm for autonomous power-increase operation using deep reinforcement learning and a rule-based system
  publication-title: IEEE Access
– year: 2016
  ident: bib26
  article-title: SGDR: Stochastic Gradient Descent with Warm Restarts
– volume: 99
  year: 2021
  ident: bib20
  article-title: A convolutional neural network model for abnormality diagnosis in a nuclear power plant
  publication-title: Appl. Soft Comput.
– volume: 160
  year: 2020
  ident: bib12
  article-title: Neural-based time series forecasting of loss of coolant accidents in nuclear power plants
  publication-title: Expert Syst. Appl.
– volume: 397
  year: 2022
  ident: bib17
  article-title: Operation validation system to prevent human errors in nuclear power plants
  publication-title: Nucl. Eng. Des.
– volume: 154
  year: 2021
  ident: bib10
  article-title: Deep learning schemes for event identification and signal reconstruction in nuclear power plants with sensor faults
  publication-title: Ann. Nucl. Energy
– year: 2014
  ident: bib25
  article-title: Adam: A Method for Stochastic Optimization
– volume: 24
  year: 2011
  ident: bib30
  article-title: Algorithms for hyperparameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 165
  year: 2022
  ident: bib16
  article-title: Design of computerized operator support system for technical specification monitoring
  publication-title: Ann. Nucl. Energy
– volume: 94
  start-page: 759
  year: 2009
  end-page: 762
  ident: bib19
  article-title: Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 8
  start-page: 177363
  year: 2020
  end-page: 177373
  ident: bib4
  article-title: Application of a deep learning technique to the development of a fast accident scenario identifier
  publication-title: IEEE Access
– volume: 120
  start-page: 219
  year: 2019
  end-page: 222
  ident: bib15
  article-title: An artificial neural network based anomaly detection algorithm for nuclear power plants
  publication-title: Transactions
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib14
  article-title: A deep learning approach to anomaly detection in nuclear reactors
  publication-title: 2018 International Joint Conference on Neural Networks (IJCNN)
– volume: 13
  year: 2012
  ident: bib31
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 300
  start-page: 89
  year: 2021
  ident: bib28
  article-title: Evaluation of deep autoencoder based anomaly detection with cold neutron source facility in HANARO
  publication-title: Transact. Korean Nuclear Soc. Virtual Autumn Meeting
– volume: 25
  year: 2012
  ident: bib32
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 200
  year: 2022
  ident: bib5
  article-title: Probabilistic deep learning model as a tool for supporting the fast simulation of a thermal–hydraulic code
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: bib36
  article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection
  publication-title: International Conference on Learning Representations
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib38
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– start-page: 258
  year: 2021
  end-page: 264
  ident: bib3
  article-title: Development of Long-Term prediction algorithm based on component states using BiLSTM and attention mechanism
  publication-title: 2021 5th International Conference on System Reliability and Safety (ICSRS)
– volume: 32
  year: 2019
  ident: bib27
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: bib33
  article-title: Rapp: novelty detection with reconstruction along projection pathway
  publication-title: International Conference on Learning Representations
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: bib37
  article-title: Stacked generalization
  publication-title: Neural Network.
– start-page: 622
  year: 2018
  end-page: 637
  ident: bib35
  article-title: Ganomaly: semisupervised anomaly detection via adversarial training
  publication-title: Asian Conference on Computer Vision
– volume: 364
  year: 2020
  ident: bib24
  article-title: RNN-Based online anomaly detection in nuclear reactors for highly imbalanced datasets with uncertainty
  publication-title: Nucl. Eng. Des.
– volume: 10
  start-page: 70428
  year: 2022
  end-page: 70439
  ident: bib34
  article-title: Quantile autoencoder with abnormality accumulation for anomaly detection of multivariate sensor data
  publication-title: IEEE Access
– volume: 186
  year: 2021
  ident: bib2
  article-title: Real-time prediction of nuclear power plant parameter trends following operator actions
  publication-title: Expert Syst. Appl.
– volume: 142
  year: 2020
  ident: bib6
  article-title: Development of a generative adversarial-network-based signal reconstruction method for nuclear power plants
  publication-title: Ann. Nucl. Energy
– volume: 46
  start-page: 501
  year: 2014
  end-page: 512
  ident: bib1
  article-title: Contribution of HANARO irradiation technologies to national nuclear R&D
  publication-title: Nucl. Eng. Technol.
– volume: 119
  start-page: 287
  year: 2018
  end-page: 299
  ident: bib8
  article-title: Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework
  publication-title: Ann. Nucl. Energy
– volume: 79
  start-page: 8
  year: 2015
  end-page: 21
  ident: bib23
  article-title: On-line fault detection of a fuel rod temperature measurement sensor in a nuclear reactor core using ANNs
  publication-title: Prog. Nucl. Energy
– volume: 133
  start-page: 400
  year: 2019
  end-page: 408
  ident: bib11
  article-title: Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant
  publication-title: Ann. Nucl. Energy
– volume: 35
  start-page: 93
  year: 1998
  end-page: 100
  ident: bib21
  article-title: Real-time nuclear power plant monitoring with neural network
  publication-title: J. Nucl. Sci. Technol.
– volume: 56
  start-page: 599
  year: 2019
  end-page: 607
  ident: bib9
  article-title: Proposal of an insider sabotage detection method for nuclear security using deep learning
  publication-title: J. Nucl. Sci. Technol.
– start-page: 3
  year: 2021
  end-page: 7
  ident: bib22
  article-title: Deep learning-based anomaly detection in nuclear reactor cores
  publication-title: Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib29
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 222
  year: 2022
  ident: bib13
  article-title: An approach to constructing effective training data for a classification model to evaluate the reliability of a passive safety system
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 60
  start-page: 233
  year: 2002
  end-page: 244
  ident: bib18
  article-title: Nuclear reactor monitoring with the combination of neural network and expert system
  publication-title: Math. Comput. Simulat.
– start-page: 149
  year: 2003
  end-page: 171
  ident: bib39
  article-title: The Boosting Approach to Machine Learning: an Overview, Nonlinear Estimation and Classification
– start-page: 1
  year: 2018
  ident: 10.1016/j.net.2022.10.009_bib14
  article-title: A deep learning approach to anomaly detection in nuclear reactors
– volume: 222
  year: 2022
  ident: 10.1016/j.net.2022.10.009_bib13
  article-title: An approach to constructing effective training data for a classification model to evaluate the reliability of a passive safety system
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108446
– volume: 24
  year: 2011
  ident: 10.1016/j.net.2022.10.009_bib30
  article-title: Algorithms for hyperparameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 149
  year: 2003
  ident: 10.1016/j.net.2022.10.009_bib39
– start-page: 258
  year: 2021
  ident: 10.1016/j.net.2022.10.009_bib3
  article-title: Development of Long-Term prediction algorithm based on component states using BiLSTM and attention mechanism
– volume: 60
  start-page: 233
  issue: 3–5
  year: 2002
  ident: 10.1016/j.net.2022.10.009_bib18
  article-title: Nuclear reactor monitoring with the combination of neural network and expert system
  publication-title: Math. Comput. Simulat.
  doi: 10.1016/S0378-4754(02)00018-6
– volume: 79
  start-page: 8
  year: 2015
  ident: 10.1016/j.net.2022.10.009_bib23
  article-title: On-line fault detection of a fuel rod temperature measurement sensor in a nuclear reactor core using ANNs
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2014.10.013
– year: 2018
  ident: 10.1016/j.net.2022.10.009_bib36
  article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection
– year: 2014
  ident: 10.1016/j.net.2022.10.009_bib25
– volume: 142
  year: 2020
  ident: 10.1016/j.net.2022.10.009_bib6
  article-title: Development of a generative adversarial-network-based signal reconstruction method for nuclear power plants
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107410
– volume: 94
  start-page: 759
  issue: 3
  year: 2009
  ident: 10.1016/j.net.2022.10.009_bib19
  article-title: Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2008.08.005
– year: 2016
  ident: 10.1016/j.net.2022.10.009_bib26
– start-page: 622
  year: 2018
  ident: 10.1016/j.net.2022.10.009_bib35
  article-title: Ganomaly: semisupervised anomaly detection via adversarial training
– start-page: 3
  year: 2021
  ident: 10.1016/j.net.2022.10.009_bib22
  article-title: Deep learning-based anomaly detection in nuclear reactor cores
– volume: 133
  start-page: 400
  year: 2019
  ident: 10.1016/j.net.2022.10.009_bib11
  article-title: Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2019.05.039
– volume: 397
  year: 2022
  ident: 10.1016/j.net.2022.10.009_bib17
  article-title: Operation validation system to prevent human errors in nuclear power plants
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2022.111949
– volume: 200
  year: 2022
  ident: 10.1016/j.net.2022.10.009_bib5
  article-title: Probabilistic deep learning model as a tool for supporting the fast simulation of a thermal–hydraulic code
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116966
– volume: 8
  start-page: 196727
  year: 2020
  ident: 10.1016/j.net.2022.10.009_bib7
  article-title: Algorithm for autonomous power-increase operation using deep reinforcement learning and a rule-based system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034218
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.net.2022.10.009_bib29
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.net.2022.10.009_bib37
  article-title: Stacked generalization
  publication-title: Neural Network.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 10
  start-page: 70428
  year: 2022
  ident: 10.1016/j.net.2022.10.009_bib34
  article-title: Quantile autoencoder with abnormality accumulation for anomaly detection of multivariate sensor data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187426
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.net.2022.10.009_bib31
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 99
  year: 2021
  ident: 10.1016/j.net.2022.10.009_bib20
  article-title: A convolutional neural network model for abnormality diagnosis in a nuclear power plant
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106874
– volume: 364
  year: 2020
  ident: 10.1016/j.net.2022.10.009_bib24
  article-title: RNN-Based online anomaly detection in nuclear reactors for highly imbalanced datasets with uncertainty
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2020.110699
– volume: 46
  start-page: 501
  issue: 4
  year: 2014
  ident: 10.1016/j.net.2022.10.009_bib1
  article-title: Contribution of HANARO irradiation technologies to national nuclear R&D
  publication-title: Nucl. Eng. Technol.
  doi: 10.5516/NET.07.2014.006
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.net.2022.10.009_bib38
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 35
  start-page: 93
  issue: 2
  year: 1998
  ident: 10.1016/j.net.2022.10.009_bib21
  article-title: Real-time nuclear power plant monitoring with neural network
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1998.9733829
– volume: 120
  start-page: 219
  issue: 1
  year: 2019
  ident: 10.1016/j.net.2022.10.009_bib15
  article-title: An artificial neural network based anomaly detection algorithm for nuclear power plants
  publication-title: Transactions
– volume: 154
  year: 2021
  ident: 10.1016/j.net.2022.10.009_bib10
  article-title: Deep learning schemes for event identification and signal reconstruction in nuclear power plants with sensor faults
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.108113
– volume: 8
  start-page: 177363
  year: 2020
  ident: 10.1016/j.net.2022.10.009_bib4
  article-title: Application of a deep learning technique to the development of a fast accident scenario identifier
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026104
– volume: 56
  start-page: 599
  issue: 7
  year: 2019
  ident: 10.1016/j.net.2022.10.009_bib9
  article-title: Proposal of an insider sabotage detection method for nuclear security using deep learning
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2019.1611501
– volume: 119
  start-page: 287
  year: 2018
  ident: 10.1016/j.net.2022.10.009_bib8
  article-title: Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2018.05.020
– volume: 160
  year: 2020
  ident: 10.1016/j.net.2022.10.009_bib12
  article-title: Neural-based time series forecasting of loss of coolant accidents in nuclear power plants
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113699
– year: 2019
  ident: 10.1016/j.net.2022.10.009_bib33
  article-title: Rapp: novelty detection with reconstruction along projection pathway
– volume: 186
  year: 2021
  ident: 10.1016/j.net.2022.10.009_bib2
  article-title: Real-time prediction of nuclear power plant parameter trends following operator actions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115848
– volume: 300
  start-page: 89
  issue: 69
  year: 2021
  ident: 10.1016/j.net.2022.10.009_bib28
  article-title: Evaluation of deep autoencoder based anomaly detection with cold neutron source facility in HANARO
  publication-title: Transact. Korean Nuclear Soc. Virtual Autumn Meeting
– volume: 25
  year: 2012
  ident: 10.1016/j.net.2022.10.009_bib32
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 32
  year: 2019
  ident: 10.1016/j.net.2022.10.009_bib27
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 165
  year: 2022
  ident: 10.1016/j.net.2022.10.009_bib16
  article-title: Design of computerized operator support system for technical specification monitoring
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108661
SSID ssj0064470
Score 2.3301249
Snippet The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 475
SubjectTerms Anomaly detection
Autoencoder
Deep learning
Nuclear reactor
Research reactor
원자력공학
Title Development of deep autoencoder-based anomaly detection system for HANARO
URI https://dx.doi.org/10.1016/j.net.2022.10.009
https://doaj.org/article/c8914d10a2444332aa84ffb7ddfd206e
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002929635
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2023, 55(2), , pp.475-483
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwyIpygvWYIJKZCkeThjQVQtiCIQlbpZjh8IWpIqSgf-PXdxUrVLWViSyHFi63z2dyefvyPkKgBM1MbEjlC-BAelEztJCrosTMd0Ig0WSIjnnZ-HUX8UPI7D8VKqL4wJs_TAVnC3kiVeoDxXAA4h15YQLDAmjZUyyncjjasvYF7jTNk1GEA-tkchYToj41-zn1lFdoHPD46h799UYV3JCiJVxP0rwLSZFWYJcnq7ZKe2FWnX9nGPbOhsn2wvMQgekMFS0A_NDVVaz6iYlznyUypdOIhSioos_xbTH3hdVqFXGbUMzhRMVtrvDrtvL4dk1Ht4v-87dXYER4IJUzo-M4AsQRQlTHuCwZOLU8iNlWc8o6XyotRTzDUdIYNYK1iaYvDFlIhZmEgQyhFpZXmmjwkFceKGXipDpcCBiYQvpUwC5QsW-kLqNnEbCXFZU4djBospb2LEvjgIlaNQsQiE2ibXi09mljdjXeU7FPuiIlJeVwWgCLxWBP6XIrRJ0Awar60HaxXArz7XtX0JA8wn8rNqFu8fOZ8UHPyJAX7j4c7yyX_08JRsYbJ6G_N9RlplMdfnYNKU6UWlvXB9emW_fufxbw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+deep+autoencoder-based+anomaly+detection+system+for+HANARO&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Ryu%2C+Seunghyoung&rft.au=Jeon%2C+Byoungil&rft.au=Seo%2C+Hogeon&rft.au=Lee%2C+Minwoo&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=1738-5733&rft.volume=55&rft.issue=2&rft.spage=475&rft.epage=483&rft_id=info:doi/10.1016%2Fj.net.2022.10.009&rft.externalDocID=S1738573322004909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon