Optimization and Technical Validation of the AIDE-MOI Fall Detection Algorithm in a Real-Life Setting with Older Adults

Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To minimize consequences through a short reaction time, the motion sensor “AIDE-MOI” was developed. “AIDE-MOI” senses acceleration data and ana...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 6; p. 1357
Main Authors Scheurer, Simon, Koch, Janina, Kucera, Martin, Bryn, Hȧkon, Bärtschi, Marcel, Meerstetter, Tobias, Nef, Tobias, Urwyler, Prabitha
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 18.03.2019
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19061357

Cover

Abstract Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To minimize consequences through a short reaction time, the motion sensor “AIDE-MOI” was developed. “AIDE-MOI” senses acceleration data and analyzes if an event is a fall. The threshold-based fall detection algorithm was developed using motion data of young subjects collected in a lab setup. The aim of this study was to improve and validate the existing fall detection algorithm. In the two-phase study, twenty subjects (age 86.25 ± 6.66 years) with a high risk of fall (Morse > 65 points) were recruited to record motion data in real-time using the AIDE-MOI sensor. The data collected in the first phase (59 days) was used to optimize the existing algorithm. The optimized second-generation algorithm was evaluated in a second phase (66 days). The data collected in the two phases, which recorded 31 real falls, was split-up into one-minute chunks for labelling as “fall” or “non-fall”. The sensitivity and specificity of the threshold-based algorithm improved significantly from 27.3% to 80.0% and 99.9957% (0.43) to 99.9978% (0.17 false alarms per week and subject), respectively.
AbstractList Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To minimize consequences through a short reaction time, the motion sensor “AIDE-MOI” was developed. “AIDE-MOI” senses acceleration data and analyzes if an event is a fall. The threshold-based fall detection algorithm was developed using motion data of young subjects collected in a lab setup. The aim of this study was to improve and validate the existing fall detection algorithm. In the two-phase study, twenty subjects (age 86.25 ± 6.66 years) with a high risk of fall (Morse > 65 points) were recruited to record motion data in real-time using the AIDE-MOI sensor. The data collected in the first phase (59 days) was used to optimize the existing algorithm. The optimized second-generation algorithm was evaluated in a second phase (66 days). The data collected in the two phases, which recorded 31 real falls, was split-up into one-minute chunks for labelling as “fall” or “non-fall”. The sensitivity and specificity of the threshold-based algorithm improved significantly from 27.3% to 80.0% and 99.9957% (0.43) to 99.9978% (0.17 false alarms per week and subject), respectively.
Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To minimize consequences through a short reaction time, the motion sensor "AIDE-MOI" was developed. "AIDE-MOI" senses acceleration data and analyzes if an event is a fall. The threshold-based fall detection algorithm was developed using motion data of young subjects collected in a lab setup. The aim of this study was to improve and validate the existing fall detection algorithm. In the two-phase study, twenty subjects (age 86.25 ± 6.66 years) with a high risk of fall (Morse > 65 points) were recruited to record motion data in real-time using the AIDE-MOI sensor. The data collected in the first phase (59 days) was used to optimize the existing algorithm. The optimized second-generation algorithm was evaluated in a second phase (66 days). The data collected in the two phases, which recorded 31 real falls, was split-up into one-minute chunks for labelling as "fall" or "non-fall". The sensitivity and specificity of the threshold-based algorithm improved significantly from 27.3% to 80.0% and 99.9957% (0.43) to 99.9978% (0.17 false alarms per week and subject), respectively.Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To minimize consequences through a short reaction time, the motion sensor "AIDE-MOI" was developed. "AIDE-MOI" senses acceleration data and analyzes if an event is a fall. The threshold-based fall detection algorithm was developed using motion data of young subjects collected in a lab setup. The aim of this study was to improve and validate the existing fall detection algorithm. In the two-phase study, twenty subjects (age 86.25 ± 6.66 years) with a high risk of fall (Morse > 65 points) were recruited to record motion data in real-time using the AIDE-MOI sensor. The data collected in the first phase (59 days) was used to optimize the existing algorithm. The optimized second-generation algorithm was evaluated in a second phase (66 days). The data collected in the two phases, which recorded 31 real falls, was split-up into one-minute chunks for labelling as "fall" or "non-fall". The sensitivity and specificity of the threshold-based algorithm improved significantly from 27.3% to 80.0% and 99.9957% (0.43) to 99.9978% (0.17 false alarms per week and subject), respectively.
Author Scheurer, Simon
Kucera, Martin
Urwyler, Prabitha
Bryn, Hȧkon
Koch, Janina
Meerstetter, Tobias
Bärtschi, Marcel
Nef, Tobias
AuthorAffiliation 2 Oxomed AG, 3097 Liebefeld, Switzerland
4 ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
3 Gerontechnology and Rehabilitation Group, University of Bern, 3008 Bern, Switzerland; tobias.nef@artorg.unibe.ch
5 University Neurorehabilitation Unit, Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
1 Department of Engineering and Information Technology, Bern University of Applied Sciences, 3401 Burgdorf, Switzerland; simon.scheurer@oxomed.ch (S.S.); janina.koch@oxomed.ch (J.K.); martin.kucera@bfh.ch (M.K.); haakon.bryn@gmail.com (H.B.); marcel.baertschi@gmail.com (M.B.); tm@oxon.ch (T.M.)
AuthorAffiliation_xml – name: 2 Oxomed AG, 3097 Liebefeld, Switzerland
– name: 4 ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
– name: 1 Department of Engineering and Information Technology, Bern University of Applied Sciences, 3401 Burgdorf, Switzerland; simon.scheurer@oxomed.ch (S.S.); janina.koch@oxomed.ch (J.K.); martin.kucera@bfh.ch (M.K.); haakon.bryn@gmail.com (H.B.); marcel.baertschi@gmail.com (M.B.); tm@oxon.ch (T.M.)
– name: 3 Gerontechnology and Rehabilitation Group, University of Bern, 3008 Bern, Switzerland; tobias.nef@artorg.unibe.ch
– name: 5 University Neurorehabilitation Unit, Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
Author_xml – sequence: 1
  givenname: Simon
  surname: Scheurer
  fullname: Scheurer, Simon
– sequence: 2
  givenname: Janina
  orcidid: 0000-0001-5064-5243
  surname: Koch
  fullname: Koch, Janina
– sequence: 3
  givenname: Martin
  surname: Kucera
  fullname: Kucera, Martin
– sequence: 4
  givenname: Hȧkon
  surname: Bryn
  fullname: Bryn, Hȧkon
– sequence: 5
  givenname: Marcel
  surname: Bärtschi
  fullname: Bärtschi, Marcel
– sequence: 6
  givenname: Tobias
  surname: Meerstetter
  fullname: Meerstetter, Tobias
– sequence: 7
  givenname: Tobias
  surname: Nef
  fullname: Nef, Tobias
– sequence: 8
  givenname: Prabitha
  orcidid: 0000-0002-7641-8898
  surname: Urwyler
  fullname: Urwyler, Prabitha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30889925$$D View this record in MEDLINE/PubMed
BookMark eNplkltvEzEQhVeoiF7ggT-A_Egflvq-9gtS1AtECooEhVfL651NXHnXwXao4NezTdqqhSePfM58Z6SZ4-pgjCNU1VuCPzCm8VkmGkvCRPOiOiKc8lpRig-e1IfVcc43GFPGmHpVHTKslNZUHFW3y03xg_9ji48jsmOHrsGtR-9sQD9s8N1eiD0qa0Cz-cVl_WU5R1c2BHQBBdxOnoVVTL6sB-QnCPoKNtQL3wP6BqX4cYVuJxEtQwcJzbptKPl19bK3IcOb-_ek-n51eX3-uV4sP83PZ4vacU5KTRutdNsx1uuGSQeaUUdlY0UrCJFaSMW17JnsRdtpCoI3vbQUuFBqMnSanVTzPbeL9sZskh9s-m2i9Wb3EdPK2FS8C2BsR3qrKGsx15w6sEpgiilgK6QmvZtYH_eszbYdoHMwlmTDM-hzZfRrs4q_jOQNVlxOgPf3gBR_biEXM_jsIAQ7QtxmQ4meJheC3c397mnWY8jD5ibD2d7gUsw5QW-cL7tlTdE-GILN3W2Yx9uYOk7_6XiA_u_9C3Fqt0M
CitedBy_id crossref_primary_10_1016_j_jamda_2024_105330
crossref_primary_10_3390_s21134335
crossref_primary_10_3390_s24041172
crossref_primary_10_3390_s21186205
crossref_primary_10_1093_ageing_afac205
crossref_primary_10_3390_technologies12090166
crossref_primary_10_1016_j_measurement_2022_111843
crossref_primary_10_1186_s12984_021_00918_z
crossref_primary_10_3390_s23125472
crossref_primary_10_3390_s23041880
crossref_primary_10_3390_healthcare10010172
Cites_doi 10.1007/s00391-013-0559-8
10.1093/geront/10.1_Part_1.20
10.1016/j.gaitpost.2006.09.012
10.1111/j.1532-5415.2005.53455.x
10.1017/CBO9780511722233
10.1109/EMBC.2016.7590763
10.1093/ageing/afj066
10.1016/j.eswa.2014.06.045
10.1111/jgs.13708
10.1007/s11071-015-2571-6
10.1016/j.medengphy.2016.10.014
10.3390/s141018543
10.1016/j.asoc.2015.10.062
10.1159/000362720
10.1007/978-3-319-47075-7_54
10.1109/TITB.2012.2185851
10.1519/JPT.0b013e3182abe779
10.1109/TIM.2014.2385144
10.1109/EMBC.2016.7591534
10.1007/s12652-017-0592-3
10.1371/journal.pone.0037062
10.1097/00007611-199509000-00006
10.1016/j.medengphy.2010.11.003
10.1371/journal.pone.0036556
10.1016/j.medengphy.2006.12.001
10.1111/j.1532-5415.2005.53221.x
10.1136/bmj.a2227
10.1001/jama.1993.03500010075035
10.1093/ageing/14.3.174
10.1001/jama.1963.03060120024016
10.1016/j.rehab.2011.07.962
10.1111/j.1532-5415.1995.tb07017.x
10.3390/s18072060
10.1046/j.1365-2702.2002.00578.x
10.1109/IEMBS.2008.4649396
10.3390/s140610691
10.1109/TNSRE.2014.2357806
10.3390/s18051613
10.1016/j.gaitpost.2011.11.016
10.4108/eai.28-9-2015.2261462
10.1109/IEMBS.2007.4352627
10.3109/10903127.2013.856504
10.3390/s17020307
10.18517/ijaseit.7.6.4467
10.2147/PPA.S119177
10.1016/j.dcan.2015.12.001
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s19061357
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ad1fa823b04942cea850202e0a5691fc
PMC6470846
30889925
10_3390_s19061357
Genre Journal Article
GrantInformation_xml – fundername: Age-Stiftung, Switzerland
  grantid: I-2017-057
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PJZUB
PPXIY
PUEGO
5PM
ID FETCH-LOGICAL-c441t-27989bd33f9736ce932c267a5b51169568496f36f5bd92e547f6a2e4588511d93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:54 EDT 2025
Thu Aug 21 18:22:56 EDT 2025
Thu Sep 04 16:32:57 EDT 2025
Wed Feb 19 02:34:31 EST 2025
Tue Jul 01 00:41:53 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords threshold algorithm
wearable
sensors
fall detection
healthcare
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-27989bd33f9736ce932c267a5b51169568496f36f5bd92e547f6a2e4588511d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5064-5243
0000-0002-7641-8898
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19061357
PMID 30889925
PQID 2194585539
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ad1fa823b04942cea850202e0a5691fc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6470846
proquest_miscellaneous_2194585539
pubmed_primary_30889925
crossref_citationtrail_10_3390_s19061357
crossref_primary_10_3390_s19061357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190318
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 3
  year: 2019
  text: 20190318
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_50
ref_14
ref_12
Kangas (ref_29) 2012; 35
Fleming (ref_8) 2008; 337
King (ref_5) 1995; 43
Chaudhuri (ref_10) 2014; 37
ref_52
Roa (ref_51) 2012; 16
Bloch (ref_18) 2011; 54
Mallinson (ref_6) 1985; 14
Bourke (ref_19) 2007; 26
Vallabh (ref_9) 2017; 9
Valera (ref_15) 2014; 41
Fuller (ref_2) 2000; 61
ref_21
Jin (ref_25) 2016; 84
Katz (ref_41) 1970; 10
ref_28
Yang (ref_44) 2016; 2
Lee (ref_47) 2015; 23
ref_26
Ozdemir (ref_27) 2014; 14
Bourke (ref_46) 2008; 30
Schwendimann (ref_40) 2006; 35
Lipsitz (ref_17) 2016; 64
Simpson (ref_4) 2014; 18
Thilo (ref_33) 2017; 11
Lamb (ref_43) 2005; 53
Schwickert (ref_11) 2013; 46
ref_36
ref_35
ref_32
Khan (ref_13) 2017; 39
ref_31
Baglio (ref_22) 2015; 64
Roush (ref_7) 1995; 88
Kangas (ref_20) 2007; 2007
Klenk (ref_30) 2011; 33
ref_37
Myers (ref_39) 2002; 11
Gibson (ref_24) 2016; 39
Luque (ref_23) 2014; 14
ref_45
ref_1
Kangas (ref_16) 2015; 61
ref_49
ref_48
Katz (ref_42) 1963; 185
Scarpato (ref_34) 2017; 7
Tinetti (ref_3) 1993; 269
Nasreddine (ref_38) 2005; 53
References_xml – volume: 46
  start-page: 706
  year: 2013
  ident: ref_11
  article-title: Sturzerkennung mit am Körper getragenen Sensoren: Ein systematischer Review
  publication-title: Z. Gerontol. Geriatr.
  doi: 10.1007/s00391-013-0559-8
– volume: 10
  start-page: 20
  year: 1970
  ident: ref_41
  article-title: Progress in development of the index of ADL
  publication-title: Gerontologist
  doi: 10.1093/geront/10.1_Part_1.20
– volume: 26
  start-page: 194
  year: 2007
  ident: ref_19
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.09.012
– volume: 53
  start-page: 1618
  year: 2005
  ident: ref_43
  article-title: Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2005.53455.x
– ident: ref_1
  doi: 10.1017/CBO9780511722233
– ident: ref_14
  doi: 10.1109/EMBC.2016.7590763
– volume: 35
  start-page: 311
  year: 2006
  ident: ref_40
  article-title: Evaluation of the Morse Fall Scale in hospitalised patients
  publication-title: Age Ageing
  doi: 10.1093/ageing/afj066
– volume: 41
  start-page: 7980
  year: 2014
  ident: ref_15
  article-title: Fall detection based on the gravity vector using a wide-angle camera
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.06.045
– volume: 64
  start-page: 365
  year: 2016
  ident: ref_17
  article-title: Evaluation of an Automated Falls Detection Device in Nursing Home Residents
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.13708
– volume: 84
  start-page: 1327
  year: 2016
  ident: ref_25
  article-title: Modeling of nonlinear system based on deep learning framework
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2571-6
– ident: ref_35
– volume: 39
  start-page: 12
  year: 2017
  ident: ref_13
  article-title: Review of fall detection techniques: A data availability perspective
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.10.014
– volume: 14
  start-page: 18543
  year: 2014
  ident: ref_23
  article-title: Comparison and characterization of android-based fall detection systems
  publication-title: Sensors
  doi: 10.3390/s141018543
– volume: 39
  start-page: 94
  year: 2016
  ident: ref_24
  article-title: Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.10.062
– volume: 61
  start-page: 61
  year: 2015
  ident: ref_16
  article-title: Sensitivity and false alarm rate of a fall sensor in long-term fall detection in the elderly
  publication-title: Gerontology
  doi: 10.1159/000362720
– ident: ref_28
  doi: 10.1007/978-3-319-47075-7_54
– volume: 16
  start-page: 264
  year: 2012
  ident: ref_51
  article-title: Personalization and adaptation to the medium and context in a fall detection system
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2185851
– volume: 37
  start-page: 178
  year: 2014
  ident: ref_10
  article-title: Fall Detection Devices and their Use with Older Adults: A Systematic Review
  publication-title: J. Geriatr. Phys. Tehr.
  doi: 10.1519/JPT.0b013e3182abe779
– volume: 64
  start-page: 1814
  year: 2015
  ident: ref_22
  article-title: An Event Polarized Paradigm for ADL Detection in AAL Context
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2385144
– ident: ref_49
  doi: 10.1109/EMBC.2016.7591534
– ident: ref_52
– volume: 9
  start-page: 1809
  year: 2017
  ident: ref_9
  article-title: Fall detection monitoring systems: A comprehensive review
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0592-3
– ident: ref_12
  doi: 10.1371/journal.pone.0037062
– volume: 88
  start-page: 917
  year: 1995
  ident: ref_7
  article-title: Impact of a personal emergency response system on hospital utilization by community-residing elders
  publication-title: South Med. J.
  doi: 10.1097/00007611-199509000-00006
– volume: 2007
  start-page: 1367
  year: 2007
  ident: ref_20
  article-title: Determination of simple thresholds for accelerometry-based parameters for fall detection
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 61
  start-page: 2159
  year: 2000
  ident: ref_2
  article-title: Falls in the elderly
  publication-title: Am. Fam. Phys.
– volume: 33
  start-page: 368
  year: 2011
  ident: ref_30
  article-title: Comparison of acceleration signals of simulated and real-world backward falls
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.11.003
– ident: ref_26
  doi: 10.1371/journal.pone.0036556
– volume: 30
  start-page: 84
  year: 2008
  ident: ref_46
  article-title: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.12.001
– volume: 53
  start-page: 695
  year: 2005
  ident: ref_38
  article-title: The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2005.53221.x
– volume: 337
  start-page: 1279
  year: 2008
  ident: ref_8
  article-title: Inability to get up after falling, subsequent time on floor, and summoning help: Prospective cohort study in people over 90
  publication-title: BMJ
  doi: 10.1136/bmj.a2227
– volume: 269
  start-page: 65
  year: 1993
  ident: ref_3
  article-title: Predictors and prognosis of inability to get up after falls among elderly persons
  publication-title: JAMA
  doi: 10.1001/jama.1993.03500010075035
– volume: 14
  start-page: 174
  year: 1985
  ident: ref_6
  article-title: Covert muscle injury in aged patients admitted to hospital following falls
  publication-title: Age Ageing
  doi: 10.1093/ageing/14.3.174
– volume: 185
  start-page: 914
  year: 1963
  ident: ref_42
  article-title: Studies of Illness in the Aged. The Index of Adl: A Standardized Measure of Biological and Psychosocial Function
  publication-title: JAMA
  doi: 10.1001/jama.1963.03060120024016
– volume: 54
  start-page: 391
  year: 2011
  ident: ref_18
  article-title: Evaluation under real-life conditions of a stand-alone fall detector for the elderly subjects
  publication-title: Ann. Phys. Rehabil. Med.
  doi: 10.1016/j.rehab.2011.07.962
– volume: 43
  start-page: 1146
  year: 1995
  ident: ref_5
  article-title: Falls in community-dwelling older persons
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1995.tb07017.x
– ident: ref_31
  doi: 10.3390/s18072060
– ident: ref_37
– volume: 11
  start-page: 134
  year: 2002
  ident: ref_39
  article-title: The sensitivity and specificity of the Morse Fall Scale in an acute care setting
  publication-title: J. Clin. Nurs.
  doi: 10.1046/j.1365-2702.2002.00578.x
– ident: ref_50
  doi: 10.1109/IEMBS.2008.4649396
– volume: 14
  start-page: 10691
  year: 2014
  ident: ref_27
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s140610691
– volume: 23
  start-page: 258
  year: 2015
  ident: ref_47
  article-title: Inertial sensing-based pre-impact detection of falls involving near-fall scenarios
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2357806
– ident: ref_32
  doi: 10.3390/s18051613
– volume: 35
  start-page: 500
  year: 2012
  ident: ref_29
  article-title: Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.11.016
– ident: ref_48
  doi: 10.4108/eai.28-9-2015.2261462
– ident: ref_21
  doi: 10.1109/IEMBS.2007.4352627
– volume: 18
  start-page: 185
  year: 2014
  ident: ref_4
  article-title: Epidemiology of emergency medical service responses to older people who have fallen: A prospective cohort study
  publication-title: Prehosp. Emerg. Care
  doi: 10.3109/10903127.2013.856504
– ident: ref_36
– ident: ref_45
  doi: 10.3390/s17020307
– volume: 7
  start-page: 2328
  year: 2017
  ident: ref_34
  article-title: E-health-IoT universe: A review
  publication-title: Int. J. Adv. Sci. Eng. Inf. Technol.
  doi: 10.18517/ijaseit.7.6.4467
– volume: 11
  start-page: 11
  year: 2017
  ident: ref_33
  article-title: Involvement of the end user: Exploration of older people’s needs and preferences for a wearable fall detection device–A qualitative descriptive study
  publication-title: Patient Prefer. Adherence
  doi: 10.2147/PPA.S119177
– volume: 2
  start-page: 24
  year: 2016
  ident: ref_44
  article-title: 3D depth image analysis for indoor fall detection of elderly people
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2015.12.001
SSID ssj0023338
Score 2.3220081
Snippet Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1357
SubjectTerms fall detection
healthcare
sensors
threshold algorithm
wearable
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQT3BAFAqEFmSqHrhYTezYiY9b2lWLaFcCinqL7HjcrrTNom6q_n5nkuxqF1XiwjUZ2Y5n7HnjjN8wdlAWkPsSrJA-gMilz0RpUhA-xXjIBFuqjvHm_MKcXubfrvTVWqkvygnr6YH7iTt0IYuulMoTkYmswZUaEY6E1Gljs1jT7pvadBlMDaGWwp56HiGFQf3hAt0e-i3yQWvepyPpfwpZ_p0gueZxxq_YywEq8lE_xG32DJrX7MUageAb9jDBFX87XKXkrgm8Oyqniee_EWH3BZP4PHLEeXx0dnwizidnfOxmM34MbZeG1fDR7Hp-N21vbvkUG-E_EDuK79MI_Cd0WdGcDmv5hOp58xHxdSx22OX45NfXUzGUUhA14p1WyMKW1geloi2UqQFRWy1N4bRHwGXoymBuTVQmah-sBJ0X0TgJdI0VBYJVb9lWM2_gPeO4DcRMO41QKeQQrM0dYipsCTUTa5sm7Mtyiqt64BmnchezCuMN0ka10kbC9leif3pyjaeEjkhPKwHiw-4eoJVUg5VU_7KShH1earnC9UM_RVwD8_tFhTs2fqXWyibsXa_1VVeKcsCs1AkrNuxhYyybb5rpTcfRbfIiRWj34X8Mfpc9R5hmKfMtK_fYVnt3Dx8RCrX-U2f1j219Bhk
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimization and Technical Validation of the AIDE-MOI Fall Detection Algorithm in a Real-Life Setting with Older Adults
URI https://www.ncbi.nlm.nih.gov/pubmed/30889925
https://www.proquest.com/docview/2194585539
https://pubmed.ncbi.nlm.nih.gov/PMC6470846
https://doaj.org/article/ad1fa823b04942cea850202e0a5691fc
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLf2cYED4nvhozKIAxdDYsd2fECoYy0boisaFPUWOYm9VcqSrc0E_Pc8O2m0oh645JC8OI6f7fd79vPvIfQmkSbOEqMIzQpDYppFJBGhIVkI_pAoVMI8483kVBzP4i9zPt9B6xybXQOutrp2Lp_UbFm--3395yMM-A_O4wSX_f0KjBpYJS530T4YJOF8sEncbyZQxnxCa3emi4A9DFuCoc1XN8ySZ-_fBjn_jZy8ZYrG99G9DkPiYav0B2jHVA_R3VvMgo_QrylMBZfdGUusqwL7NXSnEfwToHebSQnXFgMAxMOToxGZTE_wWJclPjKNj8-q8LA8r5eL5uISL6AQfAagknxdWIO_Gx8ujd0qLp66RN946Ig8Vo_RbDz68emYdDkWSA5AqCFUqkRlBWNWSSZyA3Aup0JqngESE-4sYayEZcLyrFDU8Fhaoalx51tBoFDsCdqr6socIAzzg4245oChitgUSsUawBaUpBNucxUG6O26idO8IyB3eTDKFBwRp42010aAXveiVy3rxjahQ6enXsARZfsb9fI87cZdqovI6oSyzPHg0NxAXQAgUxNqLlRk8wC9Wms5hYHldkt0ZeqbVQpTOfwl50wF6Gmr9f5TzAWHKcoDJDf6w0ZdNp9UiwtP3i1iGQLme_Yf332O7gA8Uy7iLUpeoL1meWNeAgRqsgHalXMJ12T8eYD2D0en384Gfjlh4Lv-X9ZXB2A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+and+Technical+Validation+of+the+AIDE-MOI+Fall+Detection+Algorithm+in+a+Real-Life+Setting+with+Older+Adults&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Scheurer%2C+Simon&rft.au=Koch%2C+Janina&rft.au=Kucera%2C+Martin&rft.au=Bryn%2C+H%C8%A7kon&rft.date=2019-03-18&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=6&rft_id=info:doi/10.3390%2Fs19061357&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon