Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer

Objective To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features. Methods This retrospective study involved analys...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 30; no. 3; pp. 1297 - 1305
Main Authors Lin, Yu-Chun, Lin, Chia-Hung, Lu, Hsin-Ying, Chiang, Hsin-Ju, Wang, Ho-Kai, Huang, Yu-Ting, Ng, Shu-Hang, Hong, Ji-Hong, Yen, Tzu-Chen, Lai, Chyong-Huey, Lin, Gigin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features. Methods This retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB–IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed. Results Combining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods ( p  < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70–0.99). Conclusion U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings. Summary U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. Key Points • U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images. • Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization. • First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.
AbstractList To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features. This retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB-IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed. Combining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods (p < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70-0.99). U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings. U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. • U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images. • Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization. • First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.
Objective To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features. Methods This retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB–IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed. Results Combining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods ( p  < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70–0.99). Conclusion U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings. Summary U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. Key Points • U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images. • Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization. • First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.
ObjectiveTo develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features.MethodsThis retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB–IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed.ResultsCombining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods (p < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70–0.99).ConclusionU-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings.SummaryU-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images.Key Points• U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images.• Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization.• First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.
To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features.OBJECTIVETo develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features.This retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB-IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed.METHODSThis retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB-IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed.Combining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods (p < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70-0.99).RESULTSCombining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods (p < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70-0.99).U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings. U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images.CONCLUSIONU-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings. U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images.• U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images. • Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization. • First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.KEY POINTS• U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images. • Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization. • First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.
Author Huang, Yu-Ting
Ng, Shu-Hang
Lin, Gigin
Yen, Tzu-Chen
Lin, Yu-Chun
Lu, Hsin-Ying
Chiang, Hsin-Ju
Lai, Chyong-Huey
Lin, Chia-Hung
Hong, Ji-Hong
Wang, Ho-Kai
Author_xml – sequence: 1
  givenname: Yu-Chun
  surname: Lin
  fullname: Lin, Yu-Chun
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University
– sequence: 2
  givenname: Chia-Hung
  surname: Lin
  fullname: Lin, Chia-Hung
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou
– sequence: 3
  givenname: Hsin-Ying
  surname: Lu
  fullname: Lu, Hsin-Ying
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou
– sequence: 4
  givenname: Hsin-Ju
  surname: Chiang
  fullname: Chiang, Hsin-Ju
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou
– sequence: 5
  givenname: Ho-Kai
  surname: Wang
  fullname: Wang, Ho-Kai
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou
– sequence: 6
  givenname: Yu-Ting
  surname: Huang
  fullname: Huang, Yu-Ting
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University
– sequence: 7
  givenname: Shu-Hang
  surname: Ng
  fullname: Ng, Shu-Hang
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University
– sequence: 8
  givenname: Ji-Hong
  surname: Hong
  fullname: Hong, Ji-Hong
  organization: Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University
– sequence: 9
  givenname: Tzu-Chen
  surname: Yen
  fullname: Yen, Tzu-Chen
  organization: Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital and Chang Gung University
– sequence: 10
  givenname: Chyong-Huey
  surname: Lai
  fullname: Lai, Chyong-Huey
  organization: Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Clinical Trial Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University
– sequence: 11
  givenname: Gigin
  orcidid: 0000-0001-7246-1058
  surname: Lin
  fullname: Lin, Gigin
  email: giginlin@cgmh.org.tw
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31712961$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS3Uim4LX4BDZYkLl1D_SxwfUQsUqRIXOFuzzmTlKrEX20H01K-OtylF6qEn2-Pfmxm9d0qOQgxIyDvOPnLG9EVmTErWMG4a1qlON_IV2XAlRcNZr47IhhnZN9oYdUJOc75ljBmu9GtyIrnmwnR8Q-6vEPd0QkjBhx0dY6LjMk13FJYSZyg40LLMtZpxN2MoUHwMFMJA8U9J4B6ecaQz7AIW72jCHAMEhzTB4OPsXaYjQlnqB_WBOky_vYOJugOU3pDjEaaMbx_PM_Lzy-cfl9fNzfev3y4_3TROKV4aITsuoBUtN6JnCEJr5QxI0RrtHJpuQKZRbftW6la1vB23UmkxOtMfLlqekQ9r332KvxbMxc4-O5wmCBiXbIXkqtrTdbKi75-ht3FJoW5XqdZwaSTrK3X-SC3bGQe7T36GdGf_WVsBsQIuxZwTjk8IZ_aQn13zszU_-5CfPczun4mcXz2vZvvpZalcpbnOCTtM_9d-QfUXUriu-Q
CitedBy_id crossref_primary_10_3390_diagnostics12102446
crossref_primary_10_1155_2022_6347307
crossref_primary_10_3389_fonc_2020_614201
crossref_primary_10_3389_fimmu_2022_859323
crossref_primary_10_3389_fonc_2022_851367
crossref_primary_10_1007_s00330_021_07735_x
crossref_primary_10_1007_s00330_023_10495_5
crossref_primary_10_3389_fonc_2024_1399296
crossref_primary_10_1016_j_acra_2024_10_007
crossref_primary_10_3802_jgo_2023_34_e87
crossref_primary_10_1259_bjr_20201342
crossref_primary_10_1088_1361_6560_ac60b9
crossref_primary_10_3389_fonc_2022_881931
crossref_primary_10_1038_s41571_022_00707_0
crossref_primary_10_1080_00051144_2023_2196114
crossref_primary_10_1186_s13244_022_01356_8
crossref_primary_10_1007_s10278_025_01464_z
crossref_primary_10_1093_noajnl_vdac141
crossref_primary_10_1088_2057_1976_ad5207
crossref_primary_10_1016_j_acra_2025_02_006
crossref_primary_10_1016_j_rcl_2021_07_001
crossref_primary_10_15212_RADSCI_2022_0006
crossref_primary_10_1007_s12094_024_03637_8
crossref_primary_10_3389_fonc_2022_852308
crossref_primary_10_1038_s41598_023_39240_0
crossref_primary_10_3390_cancers14102372
crossref_primary_10_1002_mp_14517
crossref_primary_10_1186_s12880_023_01064_9
crossref_primary_10_3389_fonc_2023_1081529
crossref_primary_10_1177_02841851241252951
crossref_primary_10_1002_jmri_29161
crossref_primary_10_1177_15330338221139164
crossref_primary_10_1007_s00330_021_07690_7
crossref_primary_10_3390_diagnostics11111964
crossref_primary_10_1016_j_ejrad_2021_109600
crossref_primary_10_1186_s41747_025_00557_2
crossref_primary_10_6009_jjrt_2023_2154
crossref_primary_10_1016_j_bspc_2022_103832
crossref_primary_10_1186_s12880_022_00905_3
crossref_primary_10_1007_s00259_023_06399_7
crossref_primary_10_1007_s10278_022_00620_z
crossref_primary_10_1117_1_JMI_11_4_044505
crossref_primary_10_1016_j_ejrad_2024_111735
crossref_primary_10_1002_widm_1550
crossref_primary_10_1088_1361_6560_ac6fab
crossref_primary_10_1109_JPHOT_2020_3013193
crossref_primary_10_3390_diagnostics13213381
crossref_primary_10_1016_j_ibmed_2021_100026
crossref_primary_10_1038_s41598_023_27883_y
crossref_primary_10_1097_RLI_0000000000001004
crossref_primary_10_1038_s41598_021_93792_7
crossref_primary_10_1002_jmri_27565
crossref_primary_10_1016_j_ejrad_2021_109631
crossref_primary_10_1200_CCI_20_00049
crossref_primary_10_1016_j_clon_2024_03_003
crossref_primary_10_1007_s00330_023_09827_2
crossref_primary_10_1148_ryai_210205
crossref_primary_10_1007_s11042_021_11015_7
crossref_primary_10_4236_jcc_2023_1112005
crossref_primary_10_3389_fonc_2023_1191519
crossref_primary_10_1109_JBHI_2022_3181791
crossref_primary_10_1007_s11547_023_01643_4
crossref_primary_10_1259_bjr_20201314
crossref_primary_10_1002_jmri_27162
crossref_primary_10_1016_j_critrevonc_2022_103808
Cites_doi 10.1016/j.radonc.2008.10.023
10.1080/0284186X.2017.1285499
10.1002/mp.12918
10.1002/ijgo.12749
10.1016/j.neunet.2018.01.005
10.1109/TPAMI.2016.2572683
10.1148/radiol.2017161299
10.1038/s41598-017-05728-9
10.1007/s10278-018-0160-1
10.1002/jmri.26337
10.1016/j.radonc.2010.10.004
10.1002/jmri.25583
10.1148/radiol.2015151169
10.1097/RLI.0000000000000484
10.1007/s11307-017-1073-y
10.1002/jmri.26192
10.1002/mp.13240
10.1002/jmri.25981
10.1007/s00330-018-5651-4
10.1371/journal.pone.0195798
10.1158/1078-0432.CCR-17-3445
10.1148/radiol.12120315
10.1186/s12880-015-0068-x
10.18632/oncotarget.21374
ContentType Journal Article
Copyright European Society of Radiology 2019
European Radiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: European Society of Radiology 2019
– notice: European Radiology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOI 10.1007/s00330-019-06467-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database (ProQuest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 1305
ExternalDocumentID 31712961
10_1007_s00330_019_06467_3
Genre Journal Article
GrantInformation_xml – fundername: Chang Gung Medical Foundation
  grantid: CMRPG3I014, CIRPG3D0163 1
– fundername: Ministry of Science and Technology (Taiwan)
  grantid: MOST 106-2314-B-182A-016-MY2
– fundername: Chang Gung Medical Fundation
  grantid: CPRPG3G0021-3, CIRPG3H0011
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c441t-23612a52519280ea2774c9a32597cce96de07e4b853754515fb3472fc98b34773
IEDL.DBID U2A
ISSN 0938-7994
1432-1084
IngestDate Fri Jul 11 16:34:43 EDT 2025
Fri Jul 25 19:04:17 EDT 2025
Mon Jul 21 05:50:50 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Tue Jul 01 03:08:10 EDT 2025
Fri Feb 21 02:33:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Diffusion-weighted imaging
Deep learning
Uterine cervical neoplasm
Apparent diffusion coefficient
Radiomics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-23612a52519280ea2774c9a32597cce96de07e4b853754515fb3472fc98b34773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7246-1058
PMID 31712961
PQID 2359139308
PQPubID 54162
PageCount 9
ParticipantIDs proquest_miscellaneous_2314009663
proquest_journals_2359139308
pubmed_primary_31712961
crossref_primary_10_1007_s00330_019_06467_3
crossref_citationtrail_10_1007_s00330_019_06467_3
springer_journals_10_1007_s00330_019_06467_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Dimopoulos, De Vos, Berger (CR4) 2009; 91
Alkadi, Taher, El-baz, Werghi (CR16) 2018; 32
Shelhamer, Long, Darrell (CR18) 2017; 39
Lin, Lin, Hong (CR5) 2017; 46
Gillies, Kinahan, Hricak (CR10) 2016; 278
Blanc-Durand, Van Der Gucht, Schaefer, Itti, Prior (CR13) 2018; 13
Perkuhn, Stavrinou, Thiele (CR14) 2018; 53
Schob, Meyer, Pazaitis (CR6) 2017; 19
Liu, Zhang, Cheng (CR7) 2019; 49
Wang, Lu, Qin (CR19) 2018; 45
Huang, Chang, Yeh, Lin, Huang, Wang, Lu, Ng, Yen, Lai (CR24) 2018; 48
Torheim, Malinen, Hole (CR11) 2017; 56
Sala, Rockall, Freeman, Mitchell, Reinhold (CR1) 2013; 266
Meng, Zhu, Zhu (CR8) 2017; 8
Lin, Yang, Lin (CR9) 2019; 29
Jalaguier-Coudray, Villard-Mahjoub, Delouche (CR25) 2017; 284
Ronneberger, Fischer, Brox (CR17) 2015
Zhu, Wei, Gao (CR26) 2019; 49
Bhatla, Berek, Cuello Fredes (CR2) 2019; 145
Trebeschi, van Griethuysen, Lambregts (CR15) 2017; 7
Dolz, Xu, Rony (CR23) 2018; 45
Cui, Mao, Jiang, Liu, Xiong (CR12) 2018; 2018
Arcos-Garcia, Alvarez-Garcia, Soria-Morillo (CR20) 2018; 99
Taha, Hanbury (CR22) 2015; 15
Lu, Hsu, Hsieh (CR21) 2018; 24
Ma, Zhu, Grigsby (CR3) 2011; 98
E Shelhamer (6467_CR18) 2017; 39
YC Lin (6467_CR5) 2017; 46
S Trebeschi (6467_CR15) 2017; 7
RJ Gillies (6467_CR10) 2016; 278
Yu-Ting Huang (6467_CR24) 2018; 48
CF Lu (6467_CR21) 2018; 24
E Sala (6467_CR1) 2013; 266
N Bhatla (6467_CR2) 2019; 145
Y Zhu (6467_CR26) 2019; 49
Paul Blanc-Durand (6467_CR13) 2018; 13
M Perkuhn (6467_CR14) 2018; 53
T Torheim (6467_CR11) 2017; 56
Y Liu (6467_CR7) 2019; 49
J Meng (6467_CR8) 2017; 8
A Arcos-Garcia (6467_CR20) 2018; 99
AA Taha (6467_CR22) 2015; 15
A Jalaguier-Coudray (6467_CR25) 2017; 284
J Dolz (6467_CR23) 2018; 45
JC Dimopoulos (6467_CR4) 2009; 91
S Cui (6467_CR12) 2018; 2018
Olaf Ronneberger (6467_CR17) 2015
DJ Ma (6467_CR3) 2011; 98
S Schob (6467_CR6) 2017; 19
G Lin (6467_CR9) 2019; 29
J Wang (6467_CR19) 2018; 45
Ruba Alkadi (6467_CR16) 2018; 32
References_xml – volume: 91
  start-page: 166
  year: 2009
  end-page: 172
  ident: CR4
  article-title: Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: application of the GYN GEC-ESTRO recommendations
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.10.023
– volume: 56
  start-page: 806
  year: 2017
  end-page: 812
  ident: CR11
  article-title: Autodelineation of cervical cancers using multiparametric magnetic resonance imaging and machine learning
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2017.1285499
– volume: 45
  start-page: 2560
  year: 2018
  end-page: 2564
  ident: CR19
  article-title: Technical note: a deep learning-based autosegmentation of rectal tumors in MR images
  publication-title: Med Phys
  doi: 10.1002/mp.12918
– volume: 145
  start-page: 129
  year: 2019
  end-page: 135
  ident: CR2
  article-title: Revised FIGO staging for carcinoma of the cervix uteri
  publication-title: Int J Gynaecol Obstet
  doi: 10.1002/ijgo.12749
– volume: 99
  start-page: 158
  year: 2018
  end-page: 165
  ident: CR20
  article-title: Deep neural network for traffic sign recognition systems: an analysis of spatial transformers and stochastic optimisation methods
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.005
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: CR18
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2572683
– volume: 284
  start-page: 432
  year: 2017
  end-page: 442
  ident: CR25
  article-title: Value of dynamic contrast-enhanced and diffusion-weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: a retrospective observational study
  publication-title: Radiology
  doi: 10.1148/radiol.2017161299
– volume: 7
  start-page: 5301
  year: 2017
  ident: CR15
  article-title: Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05728-9
– volume: 32
  start-page: 793
  issue: 5
  year: 2018
  end-page: 807
  ident: CR16
  article-title: A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-018-0160-1
– volume: 8
  start-page: 92442
  year: 2017
  end-page: 92453
  ident: CR8
  article-title: Whole-lesion ADC histogram and texture analysis in predicting recurrence of cervical cancer treated with CCRT
  publication-title: Oncotarget
– volume: 49
  start-page: 1149
  year: 2019
  end-page: 1156
  ident: CR26
  article-title: Fully automatic segmentation on prostate MR images based on cascaded fully convolution network
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26337
– volume: 98
  start-page: 139
  year: 2011
  end-page: 142
  ident: CR3
  article-title: Tumor volume discrepancies between FDG-PET and MRI for cervical cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2010.10.004
– volume: 46
  start-page: 483
  year: 2017
  end-page: 489
  ident: CR5
  article-title: Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25583
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: CR10
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 53
  start-page: 647
  year: 2018
  end-page: 654
  ident: CR14
  article-title: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000484
– volume: 19
  start-page: 953
  year: 2017
  end-page: 962
  ident: CR6
  article-title: ADC histogram analysis of cervical cancer aids detecting lymphatic metastases-a preliminary study
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-017-1073-y
– volume: 49
  start-page: 280
  year: 2019
  end-page: 290
  ident: CR7
  article-title: Radiomics analysis of apparent diffusion coefficient in cervical cancer: a preliminary study on histological grade evaluation
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26192
– volume: 45
  start-page: 5482
  year: 2018
  end-page: 5493
  ident: CR23
  article-title: Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks
  publication-title: Med Phys
  doi: 10.1002/mp.13240
– volume: 2018
  start-page: 4940593
  year: 2018
  ident: CR12
  article-title: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network
  publication-title: J Healthc Eng
– volume: 48
  start-page: 622
  issue: 3
  year: 2018
  end-page: 631
  ident: CR24
  article-title: Diagnostic accuracy of 3.0T diffusion-weighted MRI for patients with uterine carcinosarcoma: Assessment of tumor extent and lymphatic metastasis
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.25981
– volume: 29
  start-page: 556
  year: 2019
  end-page: 565
  ident: CR9
  article-title: Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5651-4
– volume: 13
  start-page: e0195798
  issue: 4
  year: 2018
  ident: CR13
  article-title: Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0195798
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR17
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lecture Notes in Computer Science
– volume: 24
  start-page: 4429
  year: 2018
  end-page: 4436
  ident: CR21
  article-title: Machine learning-based radiomics for molecular subtyping of gliomas
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3445
– volume: 266
  start-page: 717
  year: 2013
  end-page: 740
  ident: CR1
  article-title: The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know
  publication-title: Radiology
  doi: 10.1148/radiol.12120315
– volume: 15
  start-page: 29
  year: 2015
  ident: CR22
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 45
  start-page: 2560
  year: 2018
  ident: 6467_CR19
  publication-title: Med Phys
  doi: 10.1002/mp.12918
– volume: 91
  start-page: 166
  year: 2009
  ident: 6467_CR4
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.10.023
– volume: 29
  start-page: 556
  year: 2019
  ident: 6467_CR9
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5651-4
– volume: 49
  start-page: 1149
  year: 2019
  ident: 6467_CR26
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26337
– volume: 49
  start-page: 280
  year: 2019
  ident: 6467_CR7
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26192
– volume: 46
  start-page: 483
  year: 2017
  ident: 6467_CR5
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25583
– volume: 19
  start-page: 953
  year: 2017
  ident: 6467_CR6
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-017-1073-y
– volume: 99
  start-page: 158
  year: 2018
  ident: 6467_CR20
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.005
– volume: 45
  start-page: 5482
  year: 2018
  ident: 6467_CR23
  publication-title: Med Phys
  doi: 10.1002/mp.13240
– volume: 266
  start-page: 717
  year: 2013
  ident: 6467_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.12120315
– volume: 39
  start-page: 640
  year: 2017
  ident: 6467_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2572683
– volume: 284
  start-page: 432
  year: 2017
  ident: 6467_CR25
  publication-title: Radiology
  doi: 10.1148/radiol.2017161299
– volume: 278
  start-page: 563
  year: 2016
  ident: 6467_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 13
  start-page: e0195798
  issue: 4
  year: 2018
  ident: 6467_CR13
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0195798
– start-page: 234
  volume-title: Lecture Notes in Computer Science
  year: 2015
  ident: 6467_CR17
– volume: 24
  start-page: 4429
  year: 2018
  ident: 6467_CR21
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3445
– volume: 53
  start-page: 647
  year: 2018
  ident: 6467_CR14
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000484
– volume: 2018
  start-page: 4940593
  year: 2018
  ident: 6467_CR12
  publication-title: J Healthc Eng
– volume: 145
  start-page: 129
  year: 2019
  ident: 6467_CR2
  publication-title: Int J Gynaecol Obstet
  doi: 10.1002/ijgo.12749
– volume: 7
  start-page: 5301
  year: 2017
  ident: 6467_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05728-9
– volume: 48
  start-page: 622
  issue: 3
  year: 2018
  ident: 6467_CR24
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.25981
– volume: 56
  start-page: 806
  year: 2017
  ident: 6467_CR11
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2017.1285499
– volume: 8
  start-page: 92442
  year: 2017
  ident: 6467_CR8
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21374
– volume: 32
  start-page: 793
  issue: 5
  year: 2018
  ident: 6467_CR16
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-018-0160-1
– volume: 15
  start-page: 29
  year: 2015
  ident: 6467_CR22
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 98
  start-page: 139
  year: 2011
  ident: 6467_CR3
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2010.10.004
SSID ssj0009147
Score 2.5478106
Snippet Objective To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR)...
To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the...
ObjectiveTo develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR)...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1297
SubjectTerms Adult
Aged
Aged, 80 and over
Automation
Cancer
Carcinoma - diagnostic imaging
Carcinoma - pathology
Carcinoma, Squamous Cell - diagnostic imaging
Carcinoma, Squamous Cell - pathology
Cervical cancer
Cervix
Correlation coefficient
Correlation coefficients
Deep Learning
Diagnostic Radiology
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Feature extraction
Female
Ground truth
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Localization
Machine learning
Magnetic resonance imaging
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Monitoring
Neuroradiology
Order parameters
Patients
Performance evaluation
Radiology
Radiomics
Reproducibility
Reproducibility of Results
Resonance
Retrospective Studies
Robustness
Telemedicine
Training
Tumor Burden
Tumors
Ultrasound
Uterine Cervical Neoplasms - diagnostic imaging
Uterine Cervical Neoplasms - pathology
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2aFEIupR9J6iQtKuTWmKwleSWfSmkbQqE9JbA3I8vjJZC1N2vvoaf89cxotbuUkNyMJduDRxq90WjeAJzJQmeVqxUhNy1TnXubukw2qdVe2Rxt7jCwff4dX93o35N8Ejfc-niscm0Tg6GuO8975BdS5cxgqUb22_w-5apRHF2NJTR24DVTl_GoNhOzJd3NQoExctptaopCx6SZkDrHRcz4SBbn4LOxUP8vTE_Q5pNIaViALt_Cm4gcxfeVqt_BK2zfw96fGBv_AA8_EeciVoGYCgKjgvfW_wm3HDrCpViLYTmjuz1OZzHjqBWurQXZ58Uqv0F0jZi5acuZjYIc8Y7pOFAsXH3L2cu9aDAQgfbithU-mBkSyXOnxQHcXP66_nGVxvIKqScMNKRMuyJdzqmr0o7QSVKXL5wih8h4j8W4xpFBXdGCbghnZXlTKW1k4wvLF0Ydwm7btfgRhCKnSRWW2ozVOZKZUIa836riqCD5uwlk639b-sg9ziUw7soNa3LQR0n6KIM-SpXA180z8xXzxou9T9cqK-Ms7MvtmEngy6aZ5g8HRVyL3ZL7kIs5YvkTOFqpevM5wlYEh8ZZAudr3W9f_rwsxy_LcgL7kp32cJDtFHaHxRI_EbIZqs9h-D4CAqvxGQ
  priority: 102
  providerName: ProQuest
Title Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer
URI https://link.springer.com/article/10.1007/s00330-019-06467-3
https://www.ncbi.nlm.nih.gov/pubmed/31712961
https://www.proquest.com/docview/2359139308
https://www.proquest.com/docview/2314009663
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9NAFL24uyC-iN9G1zKCbxpo5qMzeWy13UWxiFioT2EymZSFbbI06YNP-9f33mmSRVYFX5qSTNMhtzNzTu-ccwHe8VQmuS0EIjfJY6mciW3Cy9hIJ4zyRlkf3D6Xk_OV_LxW604U1vS73fuUZJipB7EblR2jTVSkmqfhLY7gRCF3p41cKz69tdpNQlkxpOom1mkqO6nMn-_x-3J0B2PeyY-GZWfxCB52eJFNDwF-DPd89QTuf-0y4k_h-pP3V6yr_bBhCEEZ_aP-i9l9WyMa9QVr91s82_jNttMZVcxWBcNZeXdQNbC6ZFu7qUjPyJB-12TC4dnOFhekWW5Y6YP9Z8MuKubC5IJdctRo9wxWi_mPj-dxV1Qhdoh82pjMVrhVJFjlZuwtxyC51AqkQdo5n04KP9Ze5riMa0RXiSpzITUvXWrojRbP4biqK_8SmECqJFKD17SRyuPkIDRy3jynXCCy3AiS_tlmrnMcp8IXl9nglRzikWE8shCPTETwfvjM1cFv45-tT_uQZd3YazIuFHmdirGJ4O1wGUcNpUJs5es9tUFiOab-R_DiEOrh6xBRIQiaJBF86GN_e_O_9-XV_zV_DQ84Ufewne0Ujtvd3r9BfNPmIzjSa42vZnE2gpPpYjZb0vHs55c5Hmfz5bfvo_CTvwHfT_Rv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVF4lUMBIcIKoie1skkOFEGXZ0seplXoLjjNZVeomyyYr1BP_iN_IjJPsClX01lu08SajjD3zjcffDMA7meowN4Ui5KalryOb-CaUpZ9oq5IIk8igq_Z5Mpqc6e_n0fkG_Bm4MHyscrCJzlAXteU98l2pIq5gqYLk0_ynz12jOLs6tNDopsUhXv2ikK3ZO9gn_b6Xcvz19MvE77sK-JZcf-tztRFpImZsyiRAI0lKmxpFcUBsLaajAoMYdU5-LCZ4EUZlrnQsS5smfBEreu4duKsVeXJmpo-_rYv8hq6hWZCSEYnTVPckHUfV46ZpfASMOf9snNS_jvAaur2WmXUOb7wFD3ukKj53U-sRbGD1GO4d97n4J_B7H3Eu-q4TU0HgV_Be_pUwy7YmHIyFaJcz-rXB6axnOFXCVIUgf7Do-BSiLsXMTCtmUgoK_Gsu_4FiYYoLZks3okRXeLQRF5WwzqyRSJYHLZ7C2a18-GewWdUVPgehKEhTaUL34kRHSGZJxRRt5zlnISm-9iAcvm1m-1rn3HLjMltVaXb6yEgfmdNHpjz4sPrPvKv0cePonUFlWb_qm2w9Rz14u7pN65WTMKbCesljKKQNWH4PtjtVr15HWI7g1yj04OOg-_XD_y_Li5tleQP3J6fHR9nRwcnhS3ggecPAHaLbgc12scRXhKra_LWbygJ-3Pba-QtdSStS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTpp4QfwmbICR4AmiJbbTJA8IAV21MagmxKS9Bcdxqkk06ZJUaE_8X_x13DlOKzSxt71FjZucfOfzdznfdwCveCrDXBUCkZvkvox04quQl34itUgik0TKWLbP2fjwVH4-i8624M9QC0PHKgefaB11UWv6Rr7PRUQMliJI9kt3LOJkMn2_vPCpgxRlWod2Gr2JHJvLXxi-te-OJqjr15xPD75_OvRdhwFfIwzofGIe4Sqi6k2eBEZxlFinSmBMEGtt0nFhgtjIHPe0GKFGGJW5kDEvdZrQRSzwubdgO6aoaATbHw9mJ982lL-hbW8WpOhS4jSVrmTHFu5RCzU6EEYMAOSqxL_b4hWseyVPa7e_6V2443Ar-9Ab2j3YMtV92PnqMvMP4PfEmCVzPSjmDKEwowm8ZGrV1YiKTcG61QJ_bc184eqdKqaqguEUN311BatLtlDziuoqWWMoSECTZI0qzql2umWlsTSkLTuvmLZODkXSNKh5CKc3MvWPYFTVlXkCTGDIJtIE78WJjAw6KRFj7J3nlJPEaNuDcJjbTDvmc2rA8TNbczZbfWSoj8zqIxMevFn_Z9nzflw7em9QWeZ8QJttLNaDl-vbuHopJaMqU69oDAa4AcnvweNe1evXIbJDMDYOPXg76H7z8P_L8vR6WV7ADq6b7MvR7HgXbnP6emBP1O3BqGtW5hlCrC5_7myZwY-bXj5_AcAXMOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+fully+automated+tumor+segmentation+and+extraction+of+magnetic+resonance+radiomics+features+in+cervical+cancer&rft.jtitle=European+radiology&rft.au=Lin%2C+Yu-Chun&rft.au=Lin%2C+Chia-Hung&rft.au=Lu%2C+Hsin-Ying&rft.au=Chiang%2C+Hsin-Ju&rft.date=2020-03-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=30&rft.issue=3&rft.spage=1297&rft_id=info:doi/10.1007%2Fs00330-019-06467-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon