Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture

Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 129; no. 3; pp. 315 - 330
Main Authors Strock, Christopher F, Rangarajan, Harini, Black, Christopher K, Schäfer, Ernst D, Lynch, Jonathan P
Format Journal Article
LanguageEnglish
Published England Oxford University Press 11.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.
AbstractList Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.BACKGROUND AND AIMSAlthough root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.METHODSWe utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.KEY RESULTSSoils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.CONCLUSIONSWhile lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.
Background and Aims: Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. Methods: We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Key Results: Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. Conclusions: While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.
Abstract Background and Aims Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. Methods We utilize the functional–structural plant model ‘OpenSimRoot’ to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Key Results Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. Conclusions While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.
Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.
Author Lynch, Jonathan P
Black, Christopher K
Schäfer, Ernst D
Rangarajan, Harini
Strock, Christopher F
AuthorAffiliation Department of Plant Science, The Pennsylvania State University , University Park, PA 16802 , USA
AuthorAffiliation_xml – name: Department of Plant Science, The Pennsylvania State University , University Park, PA 16802 , USA
Author_xml – sequence: 1
  givenname: Christopher F
  orcidid: 0000-0003-1432-8130
  surname: Strock
  fullname: Strock, Christopher F
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 2
  givenname: Harini
  surname: Rangarajan
  fullname: Rangarajan, Harini
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 3
  givenname: Christopher K
  surname: Black
  fullname: Black, Christopher K
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 4
  givenname: Ernst D
  surname: Schäfer
  fullname: Schäfer, Ernst D
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 5
  givenname: Jonathan P
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34850823$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1837703$$D View this record in Osti.gov
BookMark eNqNks2LFDEQxYOsuLOrJ-8SPAnSbuWjO-mLIItfsOBl7iGdqd6OdCdtklnZ_96MMysqHjwFKr969Yp6F-QsxICEPGfwhkEvrmwcrhZnByblI7KppbbRvIczsgEBbaNEJ8_JRc5fAYB3PXtCzoXULWguNiRvJ4wJi3d2pnjndxgc0jLZQlOMha4YsCRbfAzUDn725Z76UDBZVzL97stEc_QzdXFZa-mAJbz1C2ZaIrXjiK7Q4A8SSJ1dyz7hU_J4tHPGZ6f3kmw_vN9ef2puvnz8fP3upnFSstJwGIXqdKt2oBzqDqxCZEzz0TGugLFW96wbEIcBxCiZ6qSUfFDWjjvnenFJ3h5l1_2w4M5hqC5msya_2HRvovXmz5_gJ3Mb74zWou3ag8DLo0DMxZvsfEE3uRhC3ckwLZQCUaFXpykpfttjLmbx2eE824Bxnw3vOgZc9y38BwotFyC4rOiL373_Mv1wuAqwI-BSzDnhaKq9n2eqq_jZMDCHcJgaDnMKR-15_VfPg-y_6B8wKr8P
CitedBy_id crossref_primary_10_1093_jxb_erad421
crossref_primary_10_1016_j_scitotenv_2024_177677
crossref_primary_10_51801_turkjrfs_1466889
crossref_primary_10_1139_cjss_2023_0099
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_3390_agronomy12061482
crossref_primary_10_1016_j_eja_2024_127393
crossref_primary_10_3390_f15081369
crossref_primary_10_1016_j_catena_2024_108515
crossref_primary_10_1016_j_catena_2023_107780
crossref_primary_10_1016_j_fcr_2022_108547
crossref_primary_10_1016_j_catena_2023_107140
crossref_primary_10_34016_pjbt_2023_20_01_793
crossref_primary_10_1093_aob_mcae201
crossref_primary_10_1007_s12517_023_11509_8
crossref_primary_10_1007_s11104_024_06573_2
crossref_primary_10_1007_s11104_023_06301_2
Cites_doi 10.1016/j.eja.2011.01.003
10.1046/j.1469-8137.1998.00242.x
10.1016/j.ecolmodel.2006.08.010
10.1007/s11104-013-1769-y
10.1016/0098-8472(93)90053-I
10.1007/s11738-014-1691-9
10.1007/s11104-007-9341-2
10.1093/aob/mcab074
10.1002/pld3.310
10.1071/FP13224
10.1002/jsfa.4424
10.1093/aob/mcs031
10.1023/B:PLSO.0000016540.47134.03
10.1097/00010694-196309000-00001
10.1016/j.still.2019.104293
10.1093/aob/mcy092
10.1007/s11104-013-1662-8
10.3389/fpls.2020.01247
10.1111/j.1399-3054.1988.tb09155.x
10.1007/BF00017091
10.1093/jxb/erv241
10.1371/journal.pone.0128914
10.1023/A:1004257516696
10.1111/j.1469-8137.1991.tb00993.x
10.1111/j.1399-3054.1982.tb00268.x
10.2136/vzj2007.0115
10.1093/jxb/erz293
10.1007/s11104-018-3656-z
10.1002/9780470995563
10.1007/BF00009928
10.1023/A:1022891519039
10.1093/jxb/eraa165
10.1111/nph.14641
10.1111/j.1469-8137.1994.tb04255.x
10.1093/aob/mcw122
10.1104/pp.114.241711
10.1023/A:1026140122848
10.1016/j.still.2015.08.004
10.1071/SR12306
10.1093/aob/mcs118
10.1111/j.1475-2743.2009.00236.x
10.1093/aob/mcab104
10.1093/jxb/erq350
10.1111/pce.13875
10.2136/vzj2015.09.0126
10.1016/j.envexpbot.2013.03.003
10.2136/vzj2017.02.0040
10.1071/FP15194
10.3389/fpls.2019.01358
10.1073/pnas.2012087118
10.1023/A:1004276724310
10.1104/pp.17.01583
10.1093/jxb/28.1.96
10.1093/jxb/erx439
10.1007/s11104-021-05010-y
10.19103/AS.2020.0075.02
10.1097/00010694-196908000-00006
10.1680/geot.2011.61.4.313
10.1007/BF02182917
10.1007/BF00010082
10.1016/j.fcr.2012.09.018
10.1093/jxb/erj003
10.1046/j.1365-2389.2001.00357.x
10.1104/pp.113.233916
10.1098/rstb.1990.0175
10.1007/BF02370873
10.1016/S0016-7061(03)00097-1
10.1111/j.1600-0706.2013.01073.x
10.2134/agronj2002.0096
10.1016/j.still.2004.08.009
10.1046/j.1365-2389.2002.00429.x
10.1104/pp.17.00357
10.1016/0167-1987(83)90027-2
10.1111/pce.14175
10.1104/pp.111.175489
10.1093/aob/mcm251
10.1016/S0022-1694(01)00466-8
10.1007/BF00010420
10.1046/j.1469-8137.2000.00595.x
10.1016/j.fcr.2007.03.014
10.1093/aob/mcw112
10.2136/sssaj1975.03615995003900050040x
10.2135/cropsci1998.0011183X003800030026x
10.1034/j.1399-3054.1999.100304.x
10.1111/j.1469-8137.1990.tb00918.x
10.1016/0021-8634(69)90126-7
10.1111/tpj.14722
10.1016/j.envexpbot.2012.01.010
10.1104/pp.17.00648
10.1046/j.1469-8137.2003.00860.x
10.1016/j.still.2019.04.008
10.1051/forest:2000140
10.1046/j.1365-2389.2000.00319.x
10.1093/aob/mcs293
10.1093/jxb/erp345
10.1093/jxb/erv007
10.1097/00010694-196607000-00002
10.1080/00380768.1990.10416917
10.1007/BF02376780
10.1071/FP03046
10.1111/pce.13197
10.2136/sssaj2014.01.0005
10.1093/jxb/ery048
10.1093/jxb/erv121
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company.
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company.
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OTOTI
5PM
DOI 10.1093/aob/mcab144
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 330
ExternalDocumentID PMC8835659
1837703
34850823
10_1093_aob_mcab144
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: PEN04582
– fundername: ;
  grantid: DE-AR0000821
– fundername: ;
  grantid: ID 602757
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAXTN
AAYXX
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TCN
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AACTN
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
7S9
L.6
AABJS
AABMN
AAESY
AAIYJ
AANRK
AAPBV
ABPTK
ADEIU
ADORX
ADQLU
AELNO
AIKOY
AZQFJ
BYORX
CASEJ
DPORF
DPPUQ
OTOTI
PQEST
UMP
5PM
ID FETCH-LOGICAL-c441t-20f376857d07ce860a7ee1182fc12701158916beebb03f41764442b7aafdcc93
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 14:06:08 EDT 2025
Fri May 19 00:49:15 EDT 2023
Wed Jul 02 04:48:34 EDT 2025
Fri Jul 11 03:28:09 EDT 2025
Wed Feb 19 02:25:41 EST 2025
Thu Apr 24 23:02:46 EDT 2025
Tue Jul 01 03:04:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords OpenSimRoot
soil impedance
Zea mays
bulk density
Axial roots
lateral roots
leaching
nitrate
soil compaction
root system architectural models
soil strength
root elongation
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-20f376857d07ce860a7ee1182fc12701158916beebb03f41764442b7aafdcc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AR0000821
ORCID 0000-0003-1432-8130
0000-0002-7265-9790
0000000272659790
0000000314328130
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8835659
PMID 34850823
PQID 2605230324
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835659
osti_scitechconnect_1837703
proquest_miscellaneous_2661028950
proquest_miscellaneous_2605230324
pubmed_primary_34850823
crossref_citationtrail_10_1093_aob_mcab144
crossref_primary_10_1093_aob_mcab144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-11
PublicationDateYYYYMMDD 2022-02-11
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United Kingdom
– name: US
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Taylor (2022021117345005700_CIT0093) 1966; 102
Atwell (2022021117345005700_CIT0005) 1990; 115
Pfeifer (2022021117345005700_CIT0067) 2014; 41
Barber (2022021117345005700_CIT0007) 1995
Postma (2022021117345005700_CIT0070) 2014; 166
Logsdon (2022021117345005700_CIT0053) 1987; 99
Dunbabin (2022021117345005700_CIT0031) 2013; 372
Lambers (2022021117345005700_CIT0051) 1996; 187
Fan (2022021117345005700_CIT0033) 2003; 30
Ahrens (2022021117345005700_CIT0004) 2005
Batey (2022021117345005700_CIT0009) 2009; 25
Bingham (2022021117345005700_CIT0017) 2011; 34
Yamaguchi (2022021117345005700_CIT0109) 1990; 36
Grzesiak (2022021117345005700_CIT0039) 2014; 36
Lynch (2022021117345005700_CIT0056) 1997; 188
Colombi (2022021117345005700_CIT0023) 2019; 191
Van Der Werf (2022021117345005700_CIT0099) 1988; 72
Postma (2022021117345005700_CIT0068) 2021
Pritchard (2022021117345005700_CIT0072) 1994; 127
Lipiec (2022021117345005700_CIT0052) 2003; 116
Colombi (2022021117345005700_CIT0025) 2017; 174
Gregory (2022021117345005700_CIT0037) 2006
Galindo-Castaneda (2022021117345005700_CIT0034) 2018; 41
Merotto (2022021117345005700_CIT0058) 1999; 23
Pages (2022021117345005700_CIT0064) 2000; 57
Iijima (2022021117345005700_CIT0045) 2003; 160
Bengough (2022021117345005700_CIT0013) 1991; 131
Valentine (2022021117345005700_CIT0098) 2012; 110
Acuna (2022021117345005700_CIT0002) 2012; 138
Varney (2022021117345005700_CIT0102) 1991; 118
Nielsen (2022021117345005700_CIT0062) 1998; 139
Lynch (2022021117345005700_CIT0055) 2018; 69
Yang (2022021117345005700_CIT0110) 2000; 51
Shishkova (2022021117345005700_CIT0086) 2008; 101
Strock (2022021117345005700_CIT0089) 2021; 44
Clark (2022021117345005700_CIT0020) 2003; 255
Richard (2022021117345005700_CIT0075) 2001; 52
Tracy (2022021117345005700_CIT0095) 2011; 91
Thorup-Kristensen (2022021117345005700_CIT0094) 2016; 118
Schneider (2022021117345005700_CIT0085) 2021; 5
Bengough (2022021117345005700_CIT0014) 2006; 57
Taylor (2022021117345005700_CIT0091) 1963; 96
White (2022021117345005700_CIT0105) 2014; 123
Nielsen (2022021117345005700_CIT0063) 2001; 52
de Moraes (2022021117345005700_CIT0061) 2019; 10
Vanhees (2022021117345005700_CIT0100) 2020; 71
Bushamuka (2022021117345005700_CIT0018) 1998; 38
Coelho (2022021117345005700_CIT0022) 2013; 371
Vos (2022021117345005700_CIT0104) 2010; 61
Javaux (2022021117345005700_CIT0046) 2008; 7
Tracy (2022021117345005700_CIT0096) 2012; 110
Diggle (2022021117345005700_CIT0029) 1988; 105
Hartmann (2022021117345005700_CIT0041) 2018; 17
Dathe (2022021117345005700_CIT0028) 2016; 118
Postma (2022021117345005700_CIT0071) 2017; 215
Abdalla (2022021117345005700_CIT0001) 1969; 14
Laker (2022021117345005700_CIT0050) 2001
Strock (2022021117345005700_CIT0088) 2018; 176
Croser (2022021117345005700_CIT0027) 1999; 107
Schneider (2022021117345005700_CIT0082) 2017; 174
Clausnitzer (2022021117345005700_CIT0021) 1994; 164
Keller (2022021117345005700_CIT0048) 2019; 194
de Moraes (2022021117345005700_CIT0060) 2018; 428
Benes (2022021117345005700_CIT0011) 2020; 103
Saengwilai (2022021117345005700_CIT0080) 2021; 128
Whiteley (2022021117345005700_CIT0106) 1984; 77
Schneider (2022021117345005700_CIT0083) 2020; 11
Yang (2022021117345005700_CIT0111) 2019; 70
Misra (2022021117345005700_CIT0059) 1997; 188
York (2022021117345005700_CIT0112) 2015; 66
Lynch (2022021117345005700_CIT0054) 2013; 112
Schaap (2022021117345005700_CIT0081) 2001; 251
Barber (2022021117345005700_CIT0008) 1981
Gao (2022021117345005700_CIT0035) 2016; 155
Lynch (2022021117345005700_CIT0057) 2021; 466
Postma (2022021117345005700_CIT0069) 2011; 156
Saengwilai (2022021117345005700_CIT0079) 2014; 166
Hamza (2022021117345005700_CIT0040) 2005; 82
Bengough (2022021117345005700_CIT0015) 2011; 62
Romero (2022021117345005700_CIT0076) 2011; 61
Ahmed (2022021117345005700_CIT0003) 2018; 69
Bingham (2022021117345005700_CIT0016) 2003; 250
Šimunek (2022021117345005700_CIT0087) 1995
Rangarajan (2022021117345005700_CIT0073) 2018; 122
Tracy (2022021117345005700_CIT0097) 2013; 91
Vanhees (2022021117345005700_CIT0101) 2021
Beaudette (2022021117345005700_CIT0010) 2021
Grzesiak (2022021117345005700_CIT0038) 2013; 88
Hettiaratchi (2022021117345005700_CIT0043) 1990; 329
Suzuki (2022021117345005700_CIT0090) 2013; 51
Colombi (2022021117345005700_CIT0024) 2016; 43
Kirby (2022021117345005700_CIT0049) 2002; 53
Pages (2022021117345005700_CIT0065) 2004; 258
Dunbabin (2022021117345005700_CIT0030) 2007; 104
Hernandez-Ramirez (2022021117345005700_CIT0042) 2014; 78
Voorhees (2022021117345005700_CIT0103) 1975; 39
Perkins (2022021117345005700_CIT0066) 2021; 128
Ruiz (2022021117345005700_CIT0078) 2016; 15
Ehlers (2022021117345005700_CIT0032) 1983; 3
Schneider (2022021117345005700_CIT0084) 2021; 118
Costa (2022021117345005700_CIT0026) 2002; 94
Wu (2022021117345005700_CIT0108) 2007; 200
Ruiz (2022021117345005700_CIT0077) 2015; 10
Iijima (2022021117345005700_CIT0044) 2000; 145
R Core Team (2022021117345005700_CIT0074) 2019
Bengough (2022021117345005700_CIT0012) 1990; 123
Zobel (2022021117345005700_CIT0114) 2007; 297
Taylor (2022021117345005700_CIT0092) 1969; 108
Atwell (2022021117345005700_CIT0006) 1993; 33
Jones (2022021117345005700_CIT0047) 1991
Chimungu (2022021117345005700_CIT0019) 2015; 66
Zhan (2022021117345005700_CIT0113) 2015; 66
Goss (2022021117345005700_CIT0036) 1977; 28
Whiteley (2022021117345005700_CIT0107) 1982; 54
References_xml – volume: 34
  start-page: 181
  year: 2011
  ident: 2022021117345005700_CIT0017
  article-title: Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2011.01.003
– volume: 139
  start-page: 647
  year: 1998
  ident: 2022021117345005700_CIT0062
  article-title: Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris)
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.1998.00242.x
– volume: 200
  start-page: 343
  year: 2007
  ident: 2022021117345005700_CIT0108
  article-title: SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling-model description
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2006.08.010
– volume: 372
  start-page: 93
  year: 2013
  ident: 2022021117345005700_CIT0031
  article-title: Modelling root–soil interactions using three-dimensional models of root growth, architecture and function
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1769-y
– volume: 33
  start-page: 27
  year: 1993
  ident: 2022021117345005700_CIT0006
  article-title: Response of roots to mechanical impedance
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/0098-8472(93)90053-I
– year: 2021
  ident: 2022021117345005700_CIT0010
– volume: 36
  start-page: 3249
  year: 2014
  ident: 2022021117345005700_CIT0039
  article-title: Interspecific differences in root architecture among maize and triticale genotypes grown under drought, waterlogging and soil compaction
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-014-1691-9
– volume: 297
  start-page: 243
  year: 2007
  ident: 2022021117345005700_CIT0114
  article-title: Fine root diameters can change in response to changes in nutrient concentrations
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9341-2
– volume: 128
  start-page: 453
  year: 2021
  ident: 2022021117345005700_CIT0066
  article-title: Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcab074
– volume: 5
  start-page: e00310
  year: 2021
  ident: 2022021117345005700_CIT0085
  article-title: Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress
  publication-title: Plant Direct
  doi: 10.1002/pld3.310
– volume: 23
  start-page: 197
  year: 1999
  ident: 2022021117345005700_CIT0058
  article-title: Wheat root growth as affected by soil strength
  publication-title: Revista Brasileira de Ciencia Do Solo
– volume: 41
  start-page: 581
  year: 2014
  ident: 2022021117345005700_CIT0067
  article-title: Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation
  publication-title: Functional Plant Biology
  doi: 10.1071/FP13224
– volume: 91
  start-page: 1528
  year: 2011
  ident: 2022021117345005700_CIT0095
  article-title: Soil compaction: a review of past and present techniques for investigating effects on root growth
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.4424
– volume: 110
  start-page: 511
  year: 2012
  ident: 2022021117345005700_CIT0096
  article-title: Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs031
– volume: 258
  start-page: 103
  year: 2004
  ident: 2022021117345005700_CIT0065
  article-title: Root Typ: a generic model to depict and analyse the root system architecture
  publication-title: Plant and Soil
  doi: 10.1023/B:PLSO.0000016540.47134.03
– volume: 96
  start-page: 153
  year: 1963
  ident: 2022021117345005700_CIT0091
  article-title: Penetration of cotton seedlings taproots as influenced by bulk density, moisture content and strength of soil
  publication-title: Soil Science
  doi: 10.1097/00010694-196309000-00001
– volume: 194
  start-page: 12
  year: 2019
  ident: 2022021117345005700_CIT0048
  article-title: Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning
  publication-title: Soil & Tillage Research
  doi: 10.1016/j.still.2019.104293
– volume: 122
  start-page: 485
  year: 2018
  ident: 2022021117345005700_CIT0073
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcy092
– volume: 371
  start-page: 81
  year: 2013
  ident: 2022021117345005700_CIT0022
  article-title: The involvement of gibberellin signalling in the effect of soil resistance to root penetration on leaf elongation and tiller number in wheat
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1662-8
– volume: 11
  start-page: 1247
  year: 2020
  ident: 2022021117345005700_CIT0083
  article-title: Spatio-temporal variation in water uptake in seminal and nodal root systems of barley plants grown in soil
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.01247
– start-page: 382
  volume-title: Modeling waste water renovation: land treatment
  year: 1981
  ident: 2022021117345005700_CIT0008
  article-title: Nitrogen uptake model for agronomic crops.
– volume: 72
  start-page: 483
  year: 1988
  ident: 2022021117345005700_CIT0099
  article-title: Respiratory energy costs for the maintenance of biomass for growth and for ion uptake in roots of Carex diandra and Carex acutiformis
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1988.tb09155.x
– volume: 187
  start-page: 251
  year: 1996
  ident: 2022021117345005700_CIT0051
  article-title: Carbon use in root respiration as affected by elevated atmospheric O2
  publication-title: Plant and Soil
  doi: 10.1007/BF00017091
– volume: 66
  start-page: 5493
  year: 2015
  ident: 2022021117345005700_CIT0112
  article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv241
– volume: 10
  start-page: e0128914
  year: 2015
  ident: 2022021117345005700_CIT0077
  article-title: Soil penetration by earthworms and plant roots – mechanical energetics of bioturbation of compacted soils
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128914
– volume: 188
  start-page: 161
  year: 1997
  ident: 2022021117345005700_CIT0059
  article-title: Maximum axial growth pressures of the lateral roots of pea and eucalypt
  publication-title: Plant and Soil
  doi: 10.1023/A:1004257516696
– volume: 52
  start-page: 329
  year: 2001
  ident: 2022021117345005700_CIT0063
  article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes
  publication-title: Journal of Experimental Botany
– volume: 118
  start-page: 535
  year: 1991
  ident: 2022021117345005700_CIT0102
  article-title: The branch roots of Zea. 2. Developmental loss of the apical meristem in field-grown roots
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1991.tb00993.x
– volume: 54
  start-page: 333
  year: 1982
  ident: 2022021117345005700_CIT0107
  article-title: The buckling of plant-roots
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1982.tb00268.x
– volume: 7
  start-page: 1079
  year: 2008
  ident: 2022021117345005700_CIT0046
  article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2007.0115
– volume: 70
  start-page: 5311
  year: 2019
  ident: 2022021117345005700_CIT0111
  article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erz293
– volume: 428
  start-page: 67
  year: 2018
  ident: 2022021117345005700_CIT0060
  article-title: Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil
  publication-title: Plant and Soil
  doi: 10.1007/s11104-018-3656-z
– volume-title: Plant roots: growth and interaction with soils
  year: 2006
  ident: 2022021117345005700_CIT0037
  doi: 10.1002/9780470995563
– volume: 123
  start-page: 73
  year: 1990
  ident: 2022021117345005700_CIT0012
  article-title: The resistance experienced by roots growing in a pressurized cell – a reappraisal
  publication-title: Plant and Soil
  doi: 10.1007/BF00009928
– volume: 250
  start-page: 273
  year: 2003
  ident: 2022021117345005700_CIT0016
  article-title: Morphological plasticity of wheat and barley roots in response to spatial variation in soil strength
  publication-title: Plant and Soil
  doi: 10.1023/A:1022891519039
– volume: 71
  start-page: 4243
  year: 2020
  ident: 2022021117345005700_CIT0100
  article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eraa165
– volume: 215
  start-page: 1274
  year: 2017
  ident: 2022021117345005700_CIT0071
  article-title: OpenSimRoot: widening the scope and application of root architectural models
  publication-title: New Phytologist
  doi: 10.1111/nph.14641
– volume: 127
  start-page: 3
  year: 1994
  ident: 2022021117345005700_CIT0072
  article-title: The control of cell expansion in roots
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1994.tb04255.x
– volume: 118
  start-page: 573
  year: 2016
  ident: 2022021117345005700_CIT0094
  article-title: Root system-based limits to agricultural productivity and efficiency: the farming systems context
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcw122
– volume: 166
  start-page: 726
  year: 2014
  ident: 2022021117345005700_CIT0079
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.241711
– volume: 255
  start-page: 93
  year: 2003
  ident: 2022021117345005700_CIT0020
  article-title: How do roots penetrate strong soil?
  publication-title: Plant and Soil
  doi: 10.1023/A:1026140122848
– volume: 155
  start-page: 190
  year: 2016
  ident: 2022021117345005700_CIT0035
  article-title: A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field
  publication-title: Soil & Tillage Research
  doi: 10.1016/j.still.2015.08.004
– volume: 51
  start-page: 311
  year: 2013
  ident: 2022021117345005700_CIT0090
  article-title: Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage
  publication-title: Soil Research
  doi: 10.1071/SR12306
– volume: 110
  start-page: 259
  year: 2012
  ident: 2022021117345005700_CIT0098
  article-title: Soil strength and macropore volume limit root elongation rates in many UK agricultural soils
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs118
– volume: 25
  start-page: 335
  year: 2009
  ident: 2022021117345005700_CIT0009
  article-title: Soil compaction and soil management - a review
  publication-title: Soil Use and Management
  doi: 10.1111/j.1475-2743.2009.00236.x
– start-page: 717
  volume-title: .
  year: 2005
  ident: 2022021117345005700_CIT0004
  article-title: ParaView: an end-user tool for large data visualization
– volume: 128
  start-page: 849
  year: 2021
  ident: 2022021117345005700_CIT0080
  article-title: Root hair phenotypes influence nitrogen acquisition in maize
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcab104
– volume: 62
  start-page: 59
  year: 2011
  ident: 2022021117345005700_CIT0015
  article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq350
– volume-title: Soil nutrient bioavailability: a mechanistic approach
  year: 1995
  ident: 2022021117345005700_CIT0007
– volume: 44
  start-page: 49
  year: 2021
  ident: 2022021117345005700_CIT0089
  article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13875
– volume: 15
  start-page: 14
  year: 2016
  ident: 2022021117345005700_CIT0078
  article-title: Experimental evaluation of earthworm and plant root soil penetration-cavity expansion models using cone penetrometer analogs
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2015.09.0126
– volume: 91
  start-page: 38
  year: 2013
  ident: 2022021117345005700_CIT0097
  article-title: Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.)
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/j.envexpbot.2013.03.003
– volume: 17
  start-page: 16
  year: 2018
  ident: 2022021117345005700_CIT0041
  article-title: Implementation and application of a root growth module in HYDRUS
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2017.02.0040
– volume: 43
  start-page: 114
  year: 2016
  ident: 2022021117345005700_CIT0024
  article-title: Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions
  publication-title: Functional Plant Biology
  doi: 10.1071/FP15194
– volume: 10
  start-page: 18
  year: 2019
  ident: 2022021117345005700_CIT0061
  article-title: Mechanical and hydric stress effects on maize root system development at different soil compaction levels
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.01358
– volume: 118
  start-page: e2012087118
  year: 2021
  ident: 2022021117345005700_CIT0084
  article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.2012087118
– volume: 188
  start-page: 139
  year: 1997
  ident: 2022021117345005700_CIT0056
  article-title: SimRoot: modeling and visualization of root systems
  publication-title: Plant and Soil
  doi: 10.1023/A:1004276724310
– volume: 176
  start-page: 691
  year: 2018
  ident: 2022021117345005700_CIT0088
  article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.01583
– volume: 28
  start-page: 96
  year: 1977
  ident: 2022021117345005700_CIT0036
  article-title: Effects of mechanical impedance on root-growth in barley (Hordeum vulgare L).1. Effects on elongation and branching of seminal root axes
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/28.1.96
– volume: 69
  start-page: 1199
  year: 2018
  ident: 2022021117345005700_CIT0003
  article-title: Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erx439
– volume: 466
  start-page: 21
  year: 2021
  ident: 2022021117345005700_CIT0057
  article-title: Root anatomy and soil resource capture
  publication-title: Plant and Soil
  doi: 10.1007/s11104-021-05010-y
– start-page: 3
  volume-title: Understanding and improving crop root function
  year: 2021
  ident: 2022021117345005700_CIT0068
  article-title: Advances in root architectural modeling.
  doi: 10.19103/AS.2020.0075.02
– volume: 108
  start-page: 113
  year: 1969
  ident: 2022021117345005700_CIT0092
  article-title: Root elongation rates of cotton and peanuts as a function of soil strength and soil water content
  publication-title: Soil Science
  doi: 10.1097/00010694-196908000-00006
– volume: 61
  start-page: 313
  year: 2011
  ident: 2022021117345005700_CIT0076
  article-title: An insight into the water retention properties of compacted clayey soils
  publication-title: Geotechnique
  doi: 10.1680/geot.2011.61.4.313
– volume: 77
  start-page: 131
  year: 1984
  ident: 2022021117345005700_CIT0106
  article-title: Displacement of soil aggregates by elongating roots and emerging shoots of crop plants
  publication-title: Plant and Soil
  doi: 10.1007/BF02182917
– volume: 164
  start-page: 299
  year: 1994
  ident: 2022021117345005700_CIT0021
  article-title: Simultaneous modeling of transient 3-dimensional root-growth and soil-water flow
  publication-title: Plant and Soil
  doi: 10.1007/BF00010082
– volume: 138
  start-page: 1
  year: 2012
  ident: 2022021117345005700_CIT0002
  article-title: Temporal variation in root penetration ability of wheat genotypes through thin wax layers in contrasting water regimes and in the field
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2012.09.018
– volume: 57
  start-page: 437
  year: 2006
  ident: 2022021117345005700_CIT0014
  article-title: Root responses to soil physical conditions; growth dynamics from field to cell
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erj003
– volume: 52
  start-page: 49
  year: 2001
  ident: 2022021117345005700_CIT0075
  article-title: Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties
  publication-title: European Journal of Soil Science
  doi: 10.1046/j.1365-2389.2001.00357.x
– volume: 166
  start-page: 590
  year: 2014
  ident: 2022021117345005700_CIT0070
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.233916
– volume-title: R: a language and environment for statistical computing.
  year: 2019
  ident: 2022021117345005700_CIT0074
– volume: 329
  start-page: 343
  year: 1990
  ident: 2022021117345005700_CIT0043
  article-title: Soil compaction and plant-root growth
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.1990.0175
– volume: 99
  start-page: 267
  year: 1987
  ident: 2022021117345005700_CIT0053
  article-title: Root-growth as influenced by aggregate size
  publication-title: Plant and Soil
  doi: 10.1007/BF02370873
– volume: 116
  start-page: 107
  year: 2003
  ident: 2022021117345005700_CIT0052
  article-title: Quantification of compaction effects on soil physical properties and crop growth
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00097-1
– volume: 123
  start-page: 385
  year: 2014
  ident: 2022021117345005700_CIT0105
  article-title: Ecologists should not use statistical significance tests to interpret simulation model results
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2013.01073.x
– volume: 94
  start-page: 96
  year: 2002
  ident: 2022021117345005700_CIT0026
  article-title: Root morphology of contrasting maize genotypes
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2002.0096
– volume: 82
  start-page: 121
  year: 2005
  ident: 2022021117345005700_CIT0040
  article-title: Soil compaction in cropping systems – a review of the nature, causes and possible solutions
  publication-title: Soil & Tillage Research
  doi: 10.1016/j.still.2004.08.009
– year: 1995
  ident: 2022021117345005700_CIT0087
– volume: 53
  start-page: 119
  year: 2002
  ident: 2022021117345005700_CIT0049
  article-title: Influence of soil strength on root growth: experiments and analysis using a critical-state model
  publication-title: European Journal of Soil Science
  doi: 10.1046/j.1365-2389.2002.00429.x
– volume: 174
  start-page: 2289
  year: 2017
  ident: 2022021117345005700_CIT0025
  article-title: Root tip shape governs root elongation rate under increased soil strength
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00357
– volume: 3
  start-page: 261
  year: 1983
  ident: 2022021117345005700_CIT0032
  article-title: Penetration resistance and root growth of oats in tilled and untilled loess soil
  publication-title: Soil & Tillage Research
  doi: 10.1016/0167-1987(83)90027-2
– year: 2021
  ident: 2022021117345005700_CIT0101
  article-title: Genotypic variation in soil penetration by maize roots is negatively related to ethylene-induced thickening
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.14175
– volume: 156
  start-page: 1190
  year: 2011
  ident: 2022021117345005700_CIT0069
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175489
– volume: 101
  start-page: 319
  year: 2008
  ident: 2022021117345005700_CIT0086
  article-title: Determinate root growth and meristem maintenance in angiosperms
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcm251
– volume: 251
  start-page: 163
  year: 2001
  ident: 2022021117345005700_CIT0081
  article-title: ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(01)00466-8
– volume: 131
  start-page: 59
  year: 1991
  ident: 2022021117345005700_CIT0013
  article-title: Penetrometer resistance, root penetration resistance and root elongation rate in 2 sandy loam soils
  publication-title: Plant and Soil
  doi: 10.1007/BF00010420
– volume: 145
  start-page: 477
  year: 2000
  ident: 2022021117345005700_CIT0044
  article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2000.00595.x
– volume: 104
  start-page: 44
  year: 2007
  ident: 2022021117345005700_CIT0030
  article-title: Simulating the role of rooting traits in crop–weed competition
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2007.03.014
– start-page: 125
  volume-title: Proceedings of the 75th Annual Congress of the South African Sugar Technologists’ Association
  year: 2001
  ident: 2022021117345005700_CIT0050
  article-title: Soil compaction: effects and amelioration.
– volume: 118
  start-page: 401
  year: 2016
  ident: 2022021117345005700_CIT0028
  article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcw112
– volume: 39
  start-page: 948
  year: 1975
  ident: 2022021117345005700_CIT0103
  article-title: Soil strength and aeration effects on root elongation
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1975.03615995003900050040x
– volume: 38
  start-page: 776
  year: 1998
  ident: 2022021117345005700_CIT0018
  article-title: Differential genotypic and root type penetration of compacted soil layers
  publication-title: Crop Science
  doi: 10.2135/cropsci1998.0011183X003800030026x
– volume: 107
  start-page: 277
  year: 1999
  ident: 2022021117345005700_CIT0027
  article-title: The effect of mechanical impedance on root growth in pea (Pisum sativum). I. Rates of cell flux, mitosis, and strain during recovery
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.1999.100304.x
– volume: 115
  start-page: 29
  year: 1990
  ident: 2022021117345005700_CIT0005
  article-title: The effect of soil compaction on wheat during early tillering
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1990.tb00918.x
– volume: 14
  start-page: 236
  year: 1969
  ident: 2022021117345005700_CIT0001
  article-title: Mechanics of root growth in granular media
  publication-title: Journal of Agricultural Engineering Research
  doi: 10.1016/0021-8634(69)90126-7
– volume: 103
  start-page: 21
  year: 2020
  ident: 2022021117345005700_CIT0011
  article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement
  publication-title: The Plant Journal
  doi: 10.1111/tpj.14722
– volume: 88
  start-page: 2
  year: 2013
  ident: 2022021117345005700_CIT0038
  article-title: Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/j.envexpbot.2012.01.010
– volume: 174
  start-page: 2333
  year: 2017
  ident: 2022021117345005700_CIT0082
  article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00648
– volume: 160
  start-page: 127
  year: 2003
  ident: 2022021117345005700_CIT0045
  article-title: Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00860.x
– volume: 191
  start-page: 156
  year: 2019
  ident: 2022021117345005700_CIT0023
  article-title: Developing strategies to recover crop productivity after soil compaction – a plant eco-physiological perspective
  publication-title: Soil & Tillage Research
  doi: 10.1016/j.still.2019.04.008
– volume: 57
  start-page: 535
  year: 2000
  ident: 2022021117345005700_CIT0064
  article-title: How to include organ interactions in models of the root system architecture? The concept of endogenous environment
  publication-title: Annals of Forest Science
  doi: 10.1051/forest:2000140
– volume: 51
  start-page: 517
  year: 2000
  ident: 2022021117345005700_CIT0110
  article-title: A mono-component model of carbon mineralization with a dynamic rate constant
  publication-title: European Journal of Soil Science
  doi: 10.1046/j.1365-2389.2000.00319.x
– volume: 112
  start-page: 347
  year: 2013
  ident: 2022021117345005700_CIT0054
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs293
– volume: 61
  start-page: 2101
  year: 2010
  ident: 2022021117345005700_CIT0104
  article-title: Functional–structural plant modelling: a new versatile tool in crop science
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erp345
– volume: 66
  start-page: 2055
  year: 2015
  ident: 2022021117345005700_CIT0113
  article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv007
– volume: 102
  start-page: 18
  year: 1966
  ident: 2022021117345005700_CIT0093
  article-title: Soil strength–root penetration relations for medium- to coarse-textured soil materials
  publication-title: Soil Science
  doi: 10.1097/00010694-196607000-00002
– volume: 36
  start-page: 483
  year: 1990
  ident: 2022021117345005700_CIT0109
  article-title: Quantitative observation on the root-system of various crops growing in the field
  publication-title: Soil Science and Plant Nutrition
  doi: 10.1080/00380768.1990.10416917
– start-page: 91
  volume-title: Modeling plant and soil systems
  year: 1991
  ident: 2022021117345005700_CIT0047
  article-title: Simulation of root growth.
– volume: 105
  start-page: 169
  year: 1988
  ident: 2022021117345005700_CIT0029
  article-title: ROOTMAP – a model in 3-dimensional coordinates of the growth and structure of fibrous root systems
  publication-title: Plant and Soil
  doi: 10.1007/BF02376780
– volume: 30
  start-page: 493
  year: 2003
  ident: 2022021117345005700_CIT0033
  article-title: Physiological roles for aerenchyma in phosphorus-stressed roots
  publication-title: Functional Plant Biology
  doi: 10.1071/FP03046
– volume: 41
  start-page: 1579
  year: 2018
  ident: 2022021117345005700_CIT0034
  article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13197
– volume: 78
  start-page: 1392
  year: 2014
  ident: 2022021117345005700_CIT0042
  article-title: Root responses to alterations in macroporosity and penetrability in a silt loam soil
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2014.01.0005
– volume: 69
  start-page: 3279
  year: 2018
  ident: 2022021117345005700_CIT0055
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery048
– volume: 66
  start-page: 3151
  year: 2015
  ident: 2022021117345005700_CIT0019
  article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays)
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv121
SSID ssj0002691
Score 2.4564157
Snippet Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and...
Background and Aims: Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil...
Abstract Background and Aims Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 315
SubjectTerms biomass
bulk density
carbon
corn
lateral roots
Nitrates
Nitrogen
Original
Plant Roots
root systems
rooting
Soil - chemistry
soil compaction
soil strength
Zea mays
Title Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture
URI https://www.ncbi.nlm.nih.gov/pubmed/34850823
https://www.proquest.com/docview/2605230324
https://www.proquest.com/docview/2661028950
https://www.osti.gov/biblio/1837703
https://pubmed.ncbi.nlm.nih.gov/PMC8835659
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFKFeEG9CAS1ST1ROHb_WOTaFKkIqQihIvVm763Ub1NhR4hzgL_KnmPGOH2kDgl6syLGzSebz7Dy_YexQYLYnijLsbnedANlbpTSZI0wK1kjgpX6VwT__HE2_BZ8uwote71enamlTqqH-ubOv5C5ShXMgV-yS_Q_JNh8KJ-A1yBeOIGE4_quMmy5EQ-NBwZIEnx_sYaQkzg2x4h5ZOu4fFT0ENkZRV9u6mF_bOnQ7MhznNCws64O0vMbwyCObxJGWy5p9ZHiLfFkVZa1UqhrhFWnZDnVBW0L8VeaXciW_29DrVGIOqYkKYDzx5p1tJFZfVYn9IKMunRUYt1SzTJELcHpxjkobufhDR2RHAYIucoRvWc6HxipoMAkdTP5uaXAKmsy7Hn6lj33bK0pbu29TQLd2DcuoJQsFx4WWamQpKTsIWi4qCPlBHGJqst08m5LGL-enMVizUTi-x_Y88FlA6e6dTD5MzhrDwIvsAMf6Z1G7KKx-DGsf08r77EG9zJat1C9A5-_yg26W83bso9kj9pAcG35iUfqY9Uz-hN2fVMB4ytYdqPIaqhyhyhGqvANVTlDlDVQ5QpUjVHkLVU5Q5WXBLVQ5QZUTVJ-x2dnH2enUoXkfjgajvIRHO4PtLg5F6gpt4siVwhh0gDON9RHgu8TgzChjlHL9LBgJsOUDTwkps1Trsf-c9fMiNy8ZT7EffKRUEBqcxyZkPHYVOApKjWM_Fd6Ava__2EQTFz6OZLlObE2Gn4BAEhLIgB02Fy8tBczuyw5QQglYrki_rLFOTZcJbJkCdtUBe1cLLgEFjlk5mZtis04woOCBIekFf7smQkdgHLoD9sIKu_kqNVgGTGzBoLkACeS338nnVxWRPAH21Z3vPGD77YP9mvXL1ca8ASO9VG8J_L8BSqHxbw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+evidence+that+root+penetration+ability+interacts+with+soil+compaction+regimes+to+affect+nitrate+capture&rft.jtitle=Annals+of+botany&rft.au=Strock%2C+Christopher+F&rft.au=Rangarajan%2C+Harini&rft.au=Black%2C+Christopher+K&rft.au=Sch%C3%A4fer%2C+Ernst+D&rft.date=2022-02-11&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=129&rft.issue=3&rft.spage=315&rft.epage=330&rft_id=info:doi/10.1093%2Faob%2Fmcab144&rft_id=info%3Apmid%2F34850823&rft.externalDocID=PMC8835659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon