Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture
Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk...
Saved in:
Published in | Annals of botany Vol. 129; no. 3; pp. 315 - 330 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
11.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.
We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.
Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.
While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources. |
---|---|
AbstractList | Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.BACKGROUND AND AIMSAlthough root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.METHODSWe utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.KEY RESULTSSoils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.CONCLUSIONSWhile lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources. Background and Aims: Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. Methods: We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Key Results: Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. Conclusions: While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources. Abstract Background and Aims Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. Methods We utilize the functional–structural plant model ‘OpenSimRoot’ to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Key Results Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. Conclusions While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources. Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources. |
Author | Lynch, Jonathan P Black, Christopher K Schäfer, Ernst D Rangarajan, Harini Strock, Christopher F |
AuthorAffiliation | Department of Plant Science, The Pennsylvania State University , University Park, PA 16802 , USA |
AuthorAffiliation_xml | – name: Department of Plant Science, The Pennsylvania State University , University Park, PA 16802 , USA |
Author_xml | – sequence: 1 givenname: Christopher F orcidid: 0000-0003-1432-8130 surname: Strock fullname: Strock, Christopher F organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: Harini surname: Rangarajan fullname: Rangarajan, Harini organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 3 givenname: Christopher K surname: Black fullname: Black, Christopher K organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 4 givenname: Ernst D surname: Schäfer fullname: Schäfer, Ernst D organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 5 givenname: Jonathan P orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34850823$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1837703$$D View this record in Osti.gov |
BookMark | eNqNks2LFDEQxYOsuLOrJ-8SPAnSbuWjO-mLIItfsOBl7iGdqd6OdCdtklnZ_96MMysqHjwFKr969Yp6F-QsxICEPGfwhkEvrmwcrhZnByblI7KppbbRvIczsgEBbaNEJ8_JRc5fAYB3PXtCzoXULWguNiRvJ4wJi3d2pnjndxgc0jLZQlOMha4YsCRbfAzUDn725Z76UDBZVzL97stEc_QzdXFZa-mAJbz1C2ZaIrXjiK7Q4A8SSJ1dyz7hU_J4tHPGZ6f3kmw_vN9ef2puvnz8fP3upnFSstJwGIXqdKt2oBzqDqxCZEzz0TGugLFW96wbEIcBxCiZ6qSUfFDWjjvnenFJ3h5l1_2w4M5hqC5msya_2HRvovXmz5_gJ3Mb74zWou3ag8DLo0DMxZvsfEE3uRhC3ckwLZQCUaFXpykpfttjLmbx2eE824Bxnw3vOgZc9y38BwotFyC4rOiL373_Mv1wuAqwI-BSzDnhaKq9n2eqq_jZMDCHcJgaDnMKR-15_VfPg-y_6B8wKr8P |
CitedBy_id | crossref_primary_10_1093_jxb_erad421 crossref_primary_10_1016_j_scitotenv_2024_177677 crossref_primary_10_51801_turkjrfs_1466889 crossref_primary_10_1139_cjss_2023_0099 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_3390_agronomy12061482 crossref_primary_10_1016_j_eja_2024_127393 crossref_primary_10_3390_f15081369 crossref_primary_10_1016_j_catena_2024_108515 crossref_primary_10_1016_j_catena_2023_107780 crossref_primary_10_1016_j_fcr_2022_108547 crossref_primary_10_1016_j_catena_2023_107140 crossref_primary_10_34016_pjbt_2023_20_01_793 crossref_primary_10_1093_aob_mcae201 crossref_primary_10_1007_s12517_023_11509_8 crossref_primary_10_1007_s11104_024_06573_2 crossref_primary_10_1007_s11104_023_06301_2 |
Cites_doi | 10.1016/j.eja.2011.01.003 10.1046/j.1469-8137.1998.00242.x 10.1016/j.ecolmodel.2006.08.010 10.1007/s11104-013-1769-y 10.1016/0098-8472(93)90053-I 10.1007/s11738-014-1691-9 10.1007/s11104-007-9341-2 10.1093/aob/mcab074 10.1002/pld3.310 10.1071/FP13224 10.1002/jsfa.4424 10.1093/aob/mcs031 10.1023/B:PLSO.0000016540.47134.03 10.1097/00010694-196309000-00001 10.1016/j.still.2019.104293 10.1093/aob/mcy092 10.1007/s11104-013-1662-8 10.3389/fpls.2020.01247 10.1111/j.1399-3054.1988.tb09155.x 10.1007/BF00017091 10.1093/jxb/erv241 10.1371/journal.pone.0128914 10.1023/A:1004257516696 10.1111/j.1469-8137.1991.tb00993.x 10.1111/j.1399-3054.1982.tb00268.x 10.2136/vzj2007.0115 10.1093/jxb/erz293 10.1007/s11104-018-3656-z 10.1002/9780470995563 10.1007/BF00009928 10.1023/A:1022891519039 10.1093/jxb/eraa165 10.1111/nph.14641 10.1111/j.1469-8137.1994.tb04255.x 10.1093/aob/mcw122 10.1104/pp.114.241711 10.1023/A:1026140122848 10.1016/j.still.2015.08.004 10.1071/SR12306 10.1093/aob/mcs118 10.1111/j.1475-2743.2009.00236.x 10.1093/aob/mcab104 10.1093/jxb/erq350 10.1111/pce.13875 10.2136/vzj2015.09.0126 10.1016/j.envexpbot.2013.03.003 10.2136/vzj2017.02.0040 10.1071/FP15194 10.3389/fpls.2019.01358 10.1073/pnas.2012087118 10.1023/A:1004276724310 10.1104/pp.17.01583 10.1093/jxb/28.1.96 10.1093/jxb/erx439 10.1007/s11104-021-05010-y 10.19103/AS.2020.0075.02 10.1097/00010694-196908000-00006 10.1680/geot.2011.61.4.313 10.1007/BF02182917 10.1007/BF00010082 10.1016/j.fcr.2012.09.018 10.1093/jxb/erj003 10.1046/j.1365-2389.2001.00357.x 10.1104/pp.113.233916 10.1098/rstb.1990.0175 10.1007/BF02370873 10.1016/S0016-7061(03)00097-1 10.1111/j.1600-0706.2013.01073.x 10.2134/agronj2002.0096 10.1016/j.still.2004.08.009 10.1046/j.1365-2389.2002.00429.x 10.1104/pp.17.00357 10.1016/0167-1987(83)90027-2 10.1111/pce.14175 10.1104/pp.111.175489 10.1093/aob/mcm251 10.1016/S0022-1694(01)00466-8 10.1007/BF00010420 10.1046/j.1469-8137.2000.00595.x 10.1016/j.fcr.2007.03.014 10.1093/aob/mcw112 10.2136/sssaj1975.03615995003900050040x 10.2135/cropsci1998.0011183X003800030026x 10.1034/j.1399-3054.1999.100304.x 10.1111/j.1469-8137.1990.tb00918.x 10.1016/0021-8634(69)90126-7 10.1111/tpj.14722 10.1016/j.envexpbot.2012.01.010 10.1104/pp.17.00648 10.1046/j.1469-8137.2003.00860.x 10.1016/j.still.2019.04.008 10.1051/forest:2000140 10.1046/j.1365-2389.2000.00319.x 10.1093/aob/mcs293 10.1093/jxb/erp345 10.1093/jxb/erv007 10.1097/00010694-196607000-00002 10.1080/00380768.1990.10416917 10.1007/BF02376780 10.1071/FP03046 10.1111/pce.13197 10.2136/sssaj2014.01.0005 10.1093/jxb/ery048 10.1093/jxb/erv121 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI 5PM |
DOI | 10.1093/aob/mcab144 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 330 |
ExternalDocumentID | PMC8835659 1837703 34850823 10_1093_aob_mcab144 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: PEN04582 – fundername: ; grantid: DE-AR0000821 – fundername: ; grantid: ID 602757 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAXTN AAYXX ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CITATION COF CS3 CZ4 DAKXR DILTD D~K E3Z EBD EBS EDH EE~ EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RPM RUSNO RW1 RXO SV3 TCN TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM AACTN ADRIX AFXEN CGR CUY CVF ECM EIF NPM RIG 7X8 7S9 L.6 AABJS AABMN AAESY AAIYJ AANRK AAPBV ABPTK ADEIU ADORX ADQLU AELNO AIKOY AZQFJ BYORX CASEJ DPORF DPPUQ OTOTI PQEST UMP 5PM |
ID | FETCH-LOGICAL-c441t-20f376857d07ce860a7ee1182fc12701158916beebb03f41764442b7aafdcc93 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 14:06:08 EDT 2025 Fri May 19 00:49:15 EDT 2023 Wed Jul 02 04:48:34 EDT 2025 Fri Jul 11 03:28:09 EDT 2025 Wed Feb 19 02:25:41 EST 2025 Thu Apr 24 23:02:46 EDT 2025 Tue Jul 01 03:04:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | OpenSimRoot soil impedance Zea mays bulk density Axial roots lateral roots leaching nitrate soil compaction root system architectural models soil strength root elongation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-20f376857d07ce860a7ee1182fc12701158916beebb03f41764442b7aafdcc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AR0000821 |
ORCID | 0000-0003-1432-8130 0000-0002-7265-9790 0000000272659790 0000000314328130 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8835659 |
PMID | 34850823 |
PQID | 2605230324 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835659 osti_scitechconnect_1837703 proquest_miscellaneous_2661028950 proquest_miscellaneous_2605230324 pubmed_primary_34850823 crossref_citationtrail_10_1093_aob_mcab144 crossref_primary_10_1093_aob_mcab144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-11 |
PublicationDateYYYYMMDD | 2022-02-11 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United Kingdom – name: US |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Taylor (2022021117345005700_CIT0093) 1966; 102 Atwell (2022021117345005700_CIT0005) 1990; 115 Pfeifer (2022021117345005700_CIT0067) 2014; 41 Barber (2022021117345005700_CIT0007) 1995 Postma (2022021117345005700_CIT0070) 2014; 166 Logsdon (2022021117345005700_CIT0053) 1987; 99 Dunbabin (2022021117345005700_CIT0031) 2013; 372 Lambers (2022021117345005700_CIT0051) 1996; 187 Fan (2022021117345005700_CIT0033) 2003; 30 Ahrens (2022021117345005700_CIT0004) 2005 Batey (2022021117345005700_CIT0009) 2009; 25 Bingham (2022021117345005700_CIT0017) 2011; 34 Yamaguchi (2022021117345005700_CIT0109) 1990; 36 Grzesiak (2022021117345005700_CIT0039) 2014; 36 Lynch (2022021117345005700_CIT0056) 1997; 188 Colombi (2022021117345005700_CIT0023) 2019; 191 Van Der Werf (2022021117345005700_CIT0099) 1988; 72 Postma (2022021117345005700_CIT0068) 2021 Pritchard (2022021117345005700_CIT0072) 1994; 127 Lipiec (2022021117345005700_CIT0052) 2003; 116 Colombi (2022021117345005700_CIT0025) 2017; 174 Gregory (2022021117345005700_CIT0037) 2006 Galindo-Castaneda (2022021117345005700_CIT0034) 2018; 41 Merotto (2022021117345005700_CIT0058) 1999; 23 Pages (2022021117345005700_CIT0064) 2000; 57 Iijima (2022021117345005700_CIT0045) 2003; 160 Bengough (2022021117345005700_CIT0013) 1991; 131 Valentine (2022021117345005700_CIT0098) 2012; 110 Acuna (2022021117345005700_CIT0002) 2012; 138 Varney (2022021117345005700_CIT0102) 1991; 118 Nielsen (2022021117345005700_CIT0062) 1998; 139 Lynch (2022021117345005700_CIT0055) 2018; 69 Yang (2022021117345005700_CIT0110) 2000; 51 Shishkova (2022021117345005700_CIT0086) 2008; 101 Strock (2022021117345005700_CIT0089) 2021; 44 Clark (2022021117345005700_CIT0020) 2003; 255 Richard (2022021117345005700_CIT0075) 2001; 52 Tracy (2022021117345005700_CIT0095) 2011; 91 Thorup-Kristensen (2022021117345005700_CIT0094) 2016; 118 Schneider (2022021117345005700_CIT0085) 2021; 5 Bengough (2022021117345005700_CIT0014) 2006; 57 Taylor (2022021117345005700_CIT0091) 1963; 96 White (2022021117345005700_CIT0105) 2014; 123 Nielsen (2022021117345005700_CIT0063) 2001; 52 de Moraes (2022021117345005700_CIT0061) 2019; 10 Vanhees (2022021117345005700_CIT0100) 2020; 71 Bushamuka (2022021117345005700_CIT0018) 1998; 38 Coelho (2022021117345005700_CIT0022) 2013; 371 Vos (2022021117345005700_CIT0104) 2010; 61 Javaux (2022021117345005700_CIT0046) 2008; 7 Tracy (2022021117345005700_CIT0096) 2012; 110 Diggle (2022021117345005700_CIT0029) 1988; 105 Hartmann (2022021117345005700_CIT0041) 2018; 17 Dathe (2022021117345005700_CIT0028) 2016; 118 Postma (2022021117345005700_CIT0071) 2017; 215 Abdalla (2022021117345005700_CIT0001) 1969; 14 Laker (2022021117345005700_CIT0050) 2001 Strock (2022021117345005700_CIT0088) 2018; 176 Croser (2022021117345005700_CIT0027) 1999; 107 Schneider (2022021117345005700_CIT0082) 2017; 174 Clausnitzer (2022021117345005700_CIT0021) 1994; 164 Keller (2022021117345005700_CIT0048) 2019; 194 de Moraes (2022021117345005700_CIT0060) 2018; 428 Benes (2022021117345005700_CIT0011) 2020; 103 Saengwilai (2022021117345005700_CIT0080) 2021; 128 Whiteley (2022021117345005700_CIT0106) 1984; 77 Schneider (2022021117345005700_CIT0083) 2020; 11 Yang (2022021117345005700_CIT0111) 2019; 70 Misra (2022021117345005700_CIT0059) 1997; 188 York (2022021117345005700_CIT0112) 2015; 66 Lynch (2022021117345005700_CIT0054) 2013; 112 Schaap (2022021117345005700_CIT0081) 2001; 251 Barber (2022021117345005700_CIT0008) 1981 Gao (2022021117345005700_CIT0035) 2016; 155 Lynch (2022021117345005700_CIT0057) 2021; 466 Postma (2022021117345005700_CIT0069) 2011; 156 Saengwilai (2022021117345005700_CIT0079) 2014; 166 Hamza (2022021117345005700_CIT0040) 2005; 82 Bengough (2022021117345005700_CIT0015) 2011; 62 Romero (2022021117345005700_CIT0076) 2011; 61 Ahmed (2022021117345005700_CIT0003) 2018; 69 Bingham (2022021117345005700_CIT0016) 2003; 250 Šimunek (2022021117345005700_CIT0087) 1995 Rangarajan (2022021117345005700_CIT0073) 2018; 122 Tracy (2022021117345005700_CIT0097) 2013; 91 Vanhees (2022021117345005700_CIT0101) 2021 Beaudette (2022021117345005700_CIT0010) 2021 Grzesiak (2022021117345005700_CIT0038) 2013; 88 Hettiaratchi (2022021117345005700_CIT0043) 1990; 329 Suzuki (2022021117345005700_CIT0090) 2013; 51 Colombi (2022021117345005700_CIT0024) 2016; 43 Kirby (2022021117345005700_CIT0049) 2002; 53 Pages (2022021117345005700_CIT0065) 2004; 258 Dunbabin (2022021117345005700_CIT0030) 2007; 104 Hernandez-Ramirez (2022021117345005700_CIT0042) 2014; 78 Voorhees (2022021117345005700_CIT0103) 1975; 39 Perkins (2022021117345005700_CIT0066) 2021; 128 Ruiz (2022021117345005700_CIT0078) 2016; 15 Ehlers (2022021117345005700_CIT0032) 1983; 3 Schneider (2022021117345005700_CIT0084) 2021; 118 Costa (2022021117345005700_CIT0026) 2002; 94 Wu (2022021117345005700_CIT0108) 2007; 200 Ruiz (2022021117345005700_CIT0077) 2015; 10 Iijima (2022021117345005700_CIT0044) 2000; 145 R Core Team (2022021117345005700_CIT0074) 2019 Bengough (2022021117345005700_CIT0012) 1990; 123 Zobel (2022021117345005700_CIT0114) 2007; 297 Taylor (2022021117345005700_CIT0092) 1969; 108 Atwell (2022021117345005700_CIT0006) 1993; 33 Jones (2022021117345005700_CIT0047) 1991 Chimungu (2022021117345005700_CIT0019) 2015; 66 Zhan (2022021117345005700_CIT0113) 2015; 66 Goss (2022021117345005700_CIT0036) 1977; 28 Whiteley (2022021117345005700_CIT0107) 1982; 54 |
References_xml | – volume: 34 start-page: 181 year: 2011 ident: 2022021117345005700_CIT0017 article-title: Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2011.01.003 – volume: 139 start-page: 647 year: 1998 ident: 2022021117345005700_CIT0062 article-title: Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris) publication-title: New Phytologist doi: 10.1046/j.1469-8137.1998.00242.x – volume: 200 start-page: 343 year: 2007 ident: 2022021117345005700_CIT0108 article-title: SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling-model description publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2006.08.010 – volume: 372 start-page: 93 year: 2013 ident: 2022021117345005700_CIT0031 article-title: Modelling root–soil interactions using three-dimensional models of root growth, architecture and function publication-title: Plant and Soil doi: 10.1007/s11104-013-1769-y – volume: 33 start-page: 27 year: 1993 ident: 2022021117345005700_CIT0006 article-title: Response of roots to mechanical impedance publication-title: Environmental and Experimental Botany doi: 10.1016/0098-8472(93)90053-I – year: 2021 ident: 2022021117345005700_CIT0010 – volume: 36 start-page: 3249 year: 2014 ident: 2022021117345005700_CIT0039 article-title: Interspecific differences in root architecture among maize and triticale genotypes grown under drought, waterlogging and soil compaction publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-014-1691-9 – volume: 297 start-page: 243 year: 2007 ident: 2022021117345005700_CIT0114 article-title: Fine root diameters can change in response to changes in nutrient concentrations publication-title: Plant and Soil doi: 10.1007/s11104-007-9341-2 – volume: 128 start-page: 453 year: 2021 ident: 2022021117345005700_CIT0066 article-title: Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings publication-title: Annals of Botany doi: 10.1093/aob/mcab074 – volume: 5 start-page: e00310 year: 2021 ident: 2022021117345005700_CIT0085 article-title: Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress publication-title: Plant Direct doi: 10.1002/pld3.310 – volume: 23 start-page: 197 year: 1999 ident: 2022021117345005700_CIT0058 article-title: Wheat root growth as affected by soil strength publication-title: Revista Brasileira de Ciencia Do Solo – volume: 41 start-page: 581 year: 2014 ident: 2022021117345005700_CIT0067 article-title: Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation publication-title: Functional Plant Biology doi: 10.1071/FP13224 – volume: 91 start-page: 1528 year: 2011 ident: 2022021117345005700_CIT0095 article-title: Soil compaction: a review of past and present techniques for investigating effects on root growth publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.4424 – volume: 110 start-page: 511 year: 2012 ident: 2022021117345005700_CIT0096 article-title: Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography publication-title: Annals of Botany doi: 10.1093/aob/mcs031 – volume: 258 start-page: 103 year: 2004 ident: 2022021117345005700_CIT0065 article-title: Root Typ: a generic model to depict and analyse the root system architecture publication-title: Plant and Soil doi: 10.1023/B:PLSO.0000016540.47134.03 – volume: 96 start-page: 153 year: 1963 ident: 2022021117345005700_CIT0091 article-title: Penetration of cotton seedlings taproots as influenced by bulk density, moisture content and strength of soil publication-title: Soil Science doi: 10.1097/00010694-196309000-00001 – volume: 194 start-page: 12 year: 2019 ident: 2022021117345005700_CIT0048 article-title: Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning publication-title: Soil & Tillage Research doi: 10.1016/j.still.2019.104293 – volume: 122 start-page: 485 year: 2018 ident: 2022021117345005700_CIT0073 article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals of Botany doi: 10.1093/aob/mcy092 – volume: 371 start-page: 81 year: 2013 ident: 2022021117345005700_CIT0022 article-title: The involvement of gibberellin signalling in the effect of soil resistance to root penetration on leaf elongation and tiller number in wheat publication-title: Plant and Soil doi: 10.1007/s11104-013-1662-8 – volume: 11 start-page: 1247 year: 2020 ident: 2022021117345005700_CIT0083 article-title: Spatio-temporal variation in water uptake in seminal and nodal root systems of barley plants grown in soil publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.01247 – start-page: 382 volume-title: Modeling waste water renovation: land treatment year: 1981 ident: 2022021117345005700_CIT0008 article-title: Nitrogen uptake model for agronomic crops. – volume: 72 start-page: 483 year: 1988 ident: 2022021117345005700_CIT0099 article-title: Respiratory energy costs for the maintenance of biomass for growth and for ion uptake in roots of Carex diandra and Carex acutiformis publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1988.tb09155.x – volume: 187 start-page: 251 year: 1996 ident: 2022021117345005700_CIT0051 article-title: Carbon use in root respiration as affected by elevated atmospheric O2 publication-title: Plant and Soil doi: 10.1007/BF00017091 – volume: 66 start-page: 5493 year: 2015 ident: 2022021117345005700_CIT0112 article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv241 – volume: 10 start-page: e0128914 year: 2015 ident: 2022021117345005700_CIT0077 article-title: Soil penetration by earthworms and plant roots – mechanical energetics of bioturbation of compacted soils publication-title: PLoS One doi: 10.1371/journal.pone.0128914 – volume: 188 start-page: 161 year: 1997 ident: 2022021117345005700_CIT0059 article-title: Maximum axial growth pressures of the lateral roots of pea and eucalypt publication-title: Plant and Soil doi: 10.1023/A:1004257516696 – volume: 52 start-page: 329 year: 2001 ident: 2022021117345005700_CIT0063 article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes publication-title: Journal of Experimental Botany – volume: 118 start-page: 535 year: 1991 ident: 2022021117345005700_CIT0102 article-title: The branch roots of Zea. 2. Developmental loss of the apical meristem in field-grown roots publication-title: New Phytologist doi: 10.1111/j.1469-8137.1991.tb00993.x – volume: 54 start-page: 333 year: 1982 ident: 2022021117345005700_CIT0107 article-title: The buckling of plant-roots publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1982.tb00268.x – volume: 7 start-page: 1079 year: 2008 ident: 2022021117345005700_CIT0046 article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake publication-title: Vadose Zone Journal doi: 10.2136/vzj2007.0115 – volume: 70 start-page: 5311 year: 2019 ident: 2022021117345005700_CIT0111 article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erz293 – volume: 428 start-page: 67 year: 2018 ident: 2022021117345005700_CIT0060 article-title: Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil publication-title: Plant and Soil doi: 10.1007/s11104-018-3656-z – volume-title: Plant roots: growth and interaction with soils year: 2006 ident: 2022021117345005700_CIT0037 doi: 10.1002/9780470995563 – volume: 123 start-page: 73 year: 1990 ident: 2022021117345005700_CIT0012 article-title: The resistance experienced by roots growing in a pressurized cell – a reappraisal publication-title: Plant and Soil doi: 10.1007/BF00009928 – volume: 250 start-page: 273 year: 2003 ident: 2022021117345005700_CIT0016 article-title: Morphological plasticity of wheat and barley roots in response to spatial variation in soil strength publication-title: Plant and Soil doi: 10.1023/A:1022891519039 – volume: 71 start-page: 4243 year: 2020 ident: 2022021117345005700_CIT0100 article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eraa165 – volume: 215 start-page: 1274 year: 2017 ident: 2022021117345005700_CIT0071 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytologist doi: 10.1111/nph.14641 – volume: 127 start-page: 3 year: 1994 ident: 2022021117345005700_CIT0072 article-title: The control of cell expansion in roots publication-title: New Phytologist doi: 10.1111/j.1469-8137.1994.tb04255.x – volume: 118 start-page: 573 year: 2016 ident: 2022021117345005700_CIT0094 article-title: Root system-based limits to agricultural productivity and efficiency: the farming systems context publication-title: Annals of Botany doi: 10.1093/aob/mcw122 – volume: 166 start-page: 726 year: 2014 ident: 2022021117345005700_CIT0079 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize publication-title: Plant Physiology doi: 10.1104/pp.114.241711 – volume: 255 start-page: 93 year: 2003 ident: 2022021117345005700_CIT0020 article-title: How do roots penetrate strong soil? publication-title: Plant and Soil doi: 10.1023/A:1026140122848 – volume: 155 start-page: 190 year: 2016 ident: 2022021117345005700_CIT0035 article-title: A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field publication-title: Soil & Tillage Research doi: 10.1016/j.still.2015.08.004 – volume: 51 start-page: 311 year: 2013 ident: 2022021117345005700_CIT0090 article-title: Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage publication-title: Soil Research doi: 10.1071/SR12306 – volume: 110 start-page: 259 year: 2012 ident: 2022021117345005700_CIT0098 article-title: Soil strength and macropore volume limit root elongation rates in many UK agricultural soils publication-title: Annals of Botany doi: 10.1093/aob/mcs118 – volume: 25 start-page: 335 year: 2009 ident: 2022021117345005700_CIT0009 article-title: Soil compaction and soil management - a review publication-title: Soil Use and Management doi: 10.1111/j.1475-2743.2009.00236.x – start-page: 717 volume-title: . year: 2005 ident: 2022021117345005700_CIT0004 article-title: ParaView: an end-user tool for large data visualization – volume: 128 start-page: 849 year: 2021 ident: 2022021117345005700_CIT0080 article-title: Root hair phenotypes influence nitrogen acquisition in maize publication-title: Annals of Botany doi: 10.1093/aob/mcab104 – volume: 62 start-page: 59 year: 2011 ident: 2022021117345005700_CIT0015 article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erq350 – volume-title: Soil nutrient bioavailability: a mechanistic approach year: 1995 ident: 2022021117345005700_CIT0007 – volume: 44 start-page: 49 year: 2021 ident: 2022021117345005700_CIT0089 article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress publication-title: Plant, Cell & Environment doi: 10.1111/pce.13875 – volume: 15 start-page: 14 year: 2016 ident: 2022021117345005700_CIT0078 article-title: Experimental evaluation of earthworm and plant root soil penetration-cavity expansion models using cone penetrometer analogs publication-title: Vadose Zone Journal doi: 10.2136/vzj2015.09.0126 – volume: 91 start-page: 38 year: 2013 ident: 2022021117345005700_CIT0097 article-title: Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.) publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2013.03.003 – volume: 17 start-page: 16 year: 2018 ident: 2022021117345005700_CIT0041 article-title: Implementation and application of a root growth module in HYDRUS publication-title: Vadose Zone Journal doi: 10.2136/vzj2017.02.0040 – volume: 43 start-page: 114 year: 2016 ident: 2022021117345005700_CIT0024 article-title: Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions publication-title: Functional Plant Biology doi: 10.1071/FP15194 – volume: 10 start-page: 18 year: 2019 ident: 2022021117345005700_CIT0061 article-title: Mechanical and hydric stress effects on maize root system development at different soil compaction levels publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.01358 – volume: 118 start-page: e2012087118 year: 2021 ident: 2022021117345005700_CIT0084 article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.2012087118 – volume: 188 start-page: 139 year: 1997 ident: 2022021117345005700_CIT0056 article-title: SimRoot: modeling and visualization of root systems publication-title: Plant and Soil doi: 10.1023/A:1004276724310 – volume: 176 start-page: 691 year: 2018 ident: 2022021117345005700_CIT0088 article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition publication-title: Plant Physiology doi: 10.1104/pp.17.01583 – volume: 28 start-page: 96 year: 1977 ident: 2022021117345005700_CIT0036 article-title: Effects of mechanical impedance on root-growth in barley (Hordeum vulgare L).1. Effects on elongation and branching of seminal root axes publication-title: Journal of Experimental Botany doi: 10.1093/jxb/28.1.96 – volume: 69 start-page: 1199 year: 2018 ident: 2022021117345005700_CIT0003 article-title: Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erx439 – volume: 466 start-page: 21 year: 2021 ident: 2022021117345005700_CIT0057 article-title: Root anatomy and soil resource capture publication-title: Plant and Soil doi: 10.1007/s11104-021-05010-y – start-page: 3 volume-title: Understanding and improving crop root function year: 2021 ident: 2022021117345005700_CIT0068 article-title: Advances in root architectural modeling. doi: 10.19103/AS.2020.0075.02 – volume: 108 start-page: 113 year: 1969 ident: 2022021117345005700_CIT0092 article-title: Root elongation rates of cotton and peanuts as a function of soil strength and soil water content publication-title: Soil Science doi: 10.1097/00010694-196908000-00006 – volume: 61 start-page: 313 year: 2011 ident: 2022021117345005700_CIT0076 article-title: An insight into the water retention properties of compacted clayey soils publication-title: Geotechnique doi: 10.1680/geot.2011.61.4.313 – volume: 77 start-page: 131 year: 1984 ident: 2022021117345005700_CIT0106 article-title: Displacement of soil aggregates by elongating roots and emerging shoots of crop plants publication-title: Plant and Soil doi: 10.1007/BF02182917 – volume: 164 start-page: 299 year: 1994 ident: 2022021117345005700_CIT0021 article-title: Simultaneous modeling of transient 3-dimensional root-growth and soil-water flow publication-title: Plant and Soil doi: 10.1007/BF00010082 – volume: 138 start-page: 1 year: 2012 ident: 2022021117345005700_CIT0002 article-title: Temporal variation in root penetration ability of wheat genotypes through thin wax layers in contrasting water regimes and in the field publication-title: Field Crops Research doi: 10.1016/j.fcr.2012.09.018 – volume: 57 start-page: 437 year: 2006 ident: 2022021117345005700_CIT0014 article-title: Root responses to soil physical conditions; growth dynamics from field to cell publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erj003 – volume: 52 start-page: 49 year: 2001 ident: 2022021117345005700_CIT0075 article-title: Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties publication-title: European Journal of Soil Science doi: 10.1046/j.1365-2389.2001.00357.x – volume: 166 start-page: 590 year: 2014 ident: 2022021117345005700_CIT0070 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology doi: 10.1104/pp.113.233916 – volume-title: R: a language and environment for statistical computing. year: 2019 ident: 2022021117345005700_CIT0074 – volume: 329 start-page: 343 year: 1990 ident: 2022021117345005700_CIT0043 article-title: Soil compaction and plant-root growth publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.1990.0175 – volume: 99 start-page: 267 year: 1987 ident: 2022021117345005700_CIT0053 article-title: Root-growth as influenced by aggregate size publication-title: Plant and Soil doi: 10.1007/BF02370873 – volume: 116 start-page: 107 year: 2003 ident: 2022021117345005700_CIT0052 article-title: Quantification of compaction effects on soil physical properties and crop growth publication-title: Geoderma doi: 10.1016/S0016-7061(03)00097-1 – volume: 123 start-page: 385 year: 2014 ident: 2022021117345005700_CIT0105 article-title: Ecologists should not use statistical significance tests to interpret simulation model results publication-title: Oikos doi: 10.1111/j.1600-0706.2013.01073.x – volume: 94 start-page: 96 year: 2002 ident: 2022021117345005700_CIT0026 article-title: Root morphology of contrasting maize genotypes publication-title: Agronomy Journal doi: 10.2134/agronj2002.0096 – volume: 82 start-page: 121 year: 2005 ident: 2022021117345005700_CIT0040 article-title: Soil compaction in cropping systems – a review of the nature, causes and possible solutions publication-title: Soil & Tillage Research doi: 10.1016/j.still.2004.08.009 – year: 1995 ident: 2022021117345005700_CIT0087 – volume: 53 start-page: 119 year: 2002 ident: 2022021117345005700_CIT0049 article-title: Influence of soil strength on root growth: experiments and analysis using a critical-state model publication-title: European Journal of Soil Science doi: 10.1046/j.1365-2389.2002.00429.x – volume: 174 start-page: 2289 year: 2017 ident: 2022021117345005700_CIT0025 article-title: Root tip shape governs root elongation rate under increased soil strength publication-title: Plant Physiology doi: 10.1104/pp.17.00357 – volume: 3 start-page: 261 year: 1983 ident: 2022021117345005700_CIT0032 article-title: Penetration resistance and root growth of oats in tilled and untilled loess soil publication-title: Soil & Tillage Research doi: 10.1016/0167-1987(83)90027-2 – year: 2021 ident: 2022021117345005700_CIT0101 article-title: Genotypic variation in soil penetration by maize roots is negatively related to ethylene-induced thickening publication-title: Plant, Cell & Environment doi: 10.1111/pce.14175 – volume: 156 start-page: 1190 year: 2011 ident: 2022021117345005700_CIT0069 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology doi: 10.1104/pp.111.175489 – volume: 101 start-page: 319 year: 2008 ident: 2022021117345005700_CIT0086 article-title: Determinate root growth and meristem maintenance in angiosperms publication-title: Annals of Botany doi: 10.1093/aob/mcm251 – volume: 251 start-page: 163 year: 2001 ident: 2022021117345005700_CIT0081 article-title: ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(01)00466-8 – volume: 131 start-page: 59 year: 1991 ident: 2022021117345005700_CIT0013 article-title: Penetrometer resistance, root penetration resistance and root elongation rate in 2 sandy loam soils publication-title: Plant and Soil doi: 10.1007/BF00010420 – volume: 145 start-page: 477 year: 2000 ident: 2022021117345005700_CIT0044 article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand publication-title: New Phytologist doi: 10.1046/j.1469-8137.2000.00595.x – volume: 104 start-page: 44 year: 2007 ident: 2022021117345005700_CIT0030 article-title: Simulating the role of rooting traits in crop–weed competition publication-title: Field Crops Research doi: 10.1016/j.fcr.2007.03.014 – start-page: 125 volume-title: Proceedings of the 75th Annual Congress of the South African Sugar Technologists’ Association year: 2001 ident: 2022021117345005700_CIT0050 article-title: Soil compaction: effects and amelioration. – volume: 118 start-page: 401 year: 2016 ident: 2022021117345005700_CIT0028 article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions publication-title: Annals of Botany doi: 10.1093/aob/mcw112 – volume: 39 start-page: 948 year: 1975 ident: 2022021117345005700_CIT0103 article-title: Soil strength and aeration effects on root elongation publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1975.03615995003900050040x – volume: 38 start-page: 776 year: 1998 ident: 2022021117345005700_CIT0018 article-title: Differential genotypic and root type penetration of compacted soil layers publication-title: Crop Science doi: 10.2135/cropsci1998.0011183X003800030026x – volume: 107 start-page: 277 year: 1999 ident: 2022021117345005700_CIT0027 article-title: The effect of mechanical impedance on root growth in pea (Pisum sativum). I. Rates of cell flux, mitosis, and strain during recovery publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.1999.100304.x – volume: 115 start-page: 29 year: 1990 ident: 2022021117345005700_CIT0005 article-title: The effect of soil compaction on wheat during early tillering publication-title: New Phytologist doi: 10.1111/j.1469-8137.1990.tb00918.x – volume: 14 start-page: 236 year: 1969 ident: 2022021117345005700_CIT0001 article-title: Mechanics of root growth in granular media publication-title: Journal of Agricultural Engineering Research doi: 10.1016/0021-8634(69)90126-7 – volume: 103 start-page: 21 year: 2020 ident: 2022021117345005700_CIT0011 article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement publication-title: The Plant Journal doi: 10.1111/tpj.14722 – volume: 88 start-page: 2 year: 2013 ident: 2022021117345005700_CIT0038 article-title: Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2012.01.010 – volume: 174 start-page: 2333 year: 2017 ident: 2022021117345005700_CIT0082 article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K publication-title: Plant Physiology doi: 10.1104/pp.17.00648 – volume: 160 start-page: 127 year: 2003 ident: 2022021117345005700_CIT0045 article-title: Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00860.x – volume: 191 start-page: 156 year: 2019 ident: 2022021117345005700_CIT0023 article-title: Developing strategies to recover crop productivity after soil compaction – a plant eco-physiological perspective publication-title: Soil & Tillage Research doi: 10.1016/j.still.2019.04.008 – volume: 57 start-page: 535 year: 2000 ident: 2022021117345005700_CIT0064 article-title: How to include organ interactions in models of the root system architecture? The concept of endogenous environment publication-title: Annals of Forest Science doi: 10.1051/forest:2000140 – volume: 51 start-page: 517 year: 2000 ident: 2022021117345005700_CIT0110 article-title: A mono-component model of carbon mineralization with a dynamic rate constant publication-title: European Journal of Soil Science doi: 10.1046/j.1365-2389.2000.00319.x – volume: 112 start-page: 347 year: 2013 ident: 2022021117345005700_CIT0054 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany doi: 10.1093/aob/mcs293 – volume: 61 start-page: 2101 year: 2010 ident: 2022021117345005700_CIT0104 article-title: Functional–structural plant modelling: a new versatile tool in crop science publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erp345 – volume: 66 start-page: 2055 year: 2015 ident: 2022021117345005700_CIT0113 article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv007 – volume: 102 start-page: 18 year: 1966 ident: 2022021117345005700_CIT0093 article-title: Soil strength–root penetration relations for medium- to coarse-textured soil materials publication-title: Soil Science doi: 10.1097/00010694-196607000-00002 – volume: 36 start-page: 483 year: 1990 ident: 2022021117345005700_CIT0109 article-title: Quantitative observation on the root-system of various crops growing in the field publication-title: Soil Science and Plant Nutrition doi: 10.1080/00380768.1990.10416917 – start-page: 91 volume-title: Modeling plant and soil systems year: 1991 ident: 2022021117345005700_CIT0047 article-title: Simulation of root growth. – volume: 105 start-page: 169 year: 1988 ident: 2022021117345005700_CIT0029 article-title: ROOTMAP – a model in 3-dimensional coordinates of the growth and structure of fibrous root systems publication-title: Plant and Soil doi: 10.1007/BF02376780 – volume: 30 start-page: 493 year: 2003 ident: 2022021117345005700_CIT0033 article-title: Physiological roles for aerenchyma in phosphorus-stressed roots publication-title: Functional Plant Biology doi: 10.1071/FP03046 – volume: 41 start-page: 1579 year: 2018 ident: 2022021117345005700_CIT0034 article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize publication-title: Plant, Cell & Environment doi: 10.1111/pce.13197 – volume: 78 start-page: 1392 year: 2014 ident: 2022021117345005700_CIT0042 article-title: Root responses to alterations in macroporosity and penetrability in a silt loam soil publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2014.01.0005 – volume: 69 start-page: 3279 year: 2018 ident: 2022021117345005700_CIT0055 article-title: Rightsizing root phenotypes for drought resistance publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ery048 – volume: 66 start-page: 3151 year: 2015 ident: 2022021117345005700_CIT0019 article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays) publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv121 |
SSID | ssj0002691 |
Score | 2.4564157 |
Snippet | Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and... Background and Aims: Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil... Abstract Background and Aims Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 315 |
SubjectTerms | biomass bulk density carbon corn lateral roots Nitrates Nitrogen Original Plant Roots root systems rooting Soil - chemistry soil compaction soil strength Zea mays |
Title | Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34850823 https://www.proquest.com/docview/2605230324 https://www.proquest.com/docview/2661028950 https://www.osti.gov/biblio/1837703 https://pubmed.ncbi.nlm.nih.gov/PMC8835659 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFKFeEG9CAS1ST1ROHb_WOTaFKkIqQihIvVm763Ub1NhR4hzgL_KnmPGOH2kDgl6syLGzSebz7Dy_YexQYLYnijLsbnedANlbpTSZI0wK1kjgpX6VwT__HE2_BZ8uwote71enamlTqqH-ubOv5C5ShXMgV-yS_Q_JNh8KJ-A1yBeOIGE4_quMmy5EQ-NBwZIEnx_sYaQkzg2x4h5ZOu4fFT0ENkZRV9u6mF_bOnQ7MhznNCws64O0vMbwyCObxJGWy5p9ZHiLfFkVZa1UqhrhFWnZDnVBW0L8VeaXciW_29DrVGIOqYkKYDzx5p1tJFZfVYn9IKMunRUYt1SzTJELcHpxjkobufhDR2RHAYIucoRvWc6HxipoMAkdTP5uaXAKmsy7Hn6lj33bK0pbu29TQLd2DcuoJQsFx4WWamQpKTsIWi4qCPlBHGJqst08m5LGL-enMVizUTi-x_Y88FlA6e6dTD5MzhrDwIvsAMf6Z1G7KKx-DGsf08r77EG9zJat1C9A5-_yg26W83bso9kj9pAcG35iUfqY9Uz-hN2fVMB4ytYdqPIaqhyhyhGqvANVTlDlDVQ5QpUjVHkLVU5Q5WXBLVQ5QZUTVJ-x2dnH2enUoXkfjgajvIRHO4PtLg5F6gpt4siVwhh0gDON9RHgu8TgzChjlHL9LBgJsOUDTwkps1Trsf-c9fMiNy8ZT7EffKRUEBqcxyZkPHYVOApKjWM_Fd6Ava__2EQTFz6OZLlObE2Gn4BAEhLIgB02Fy8tBczuyw5QQglYrki_rLFOTZcJbJkCdtUBe1cLLgEFjlk5mZtis04woOCBIekFf7smQkdgHLoD9sIKu_kqNVgGTGzBoLkACeS338nnVxWRPAH21Z3vPGD77YP9mvXL1ca8ASO9VG8J_L8BSqHxbw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+evidence+that+root+penetration+ability+interacts+with+soil+compaction+regimes+to+affect+nitrate+capture&rft.jtitle=Annals+of+botany&rft.au=Strock%2C+Christopher+F&rft.au=Rangarajan%2C+Harini&rft.au=Black%2C+Christopher+K&rft.au=Sch%C3%A4fer%2C+Ernst+D&rft.date=2022-02-11&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=129&rft.issue=3&rft.spage=315&rft.epage=330&rft_id=info:doi/10.1093%2Faob%2Fmcab144&rft_id=info%3Apmid%2F34850823&rft.externalDocID=PMC8835659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |