Embedded EEG Feature Selection for Multi-Dimension Emotion Recognition via Local and Global Label Relevance
Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 514 - 526 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
IEEE |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively. |
---|---|
AbstractList | Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively.Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively. Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively. |
Author | Zhuo, Li Zhang, Hui Li, Xiaoguang Xu, Xueyuan Wei, Fulin Jia, Tianyuan Wu, Xia |
Author_xml | – sequence: 1 givenname: Xueyuan surname: Xu fullname: Xu, Xueyuan organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Fulin orcidid: 0000-0003-1962-0675 surname: Wei fullname: Wei, Fulin organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 3 givenname: Tianyuan surname: Jia fullname: Jia, Tianyuan organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 4 givenname: Li orcidid: 0000-0002-9937-2669 surname: Zhuo fullname: Zhuo, Li organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 5 givenname: Hui orcidid: 0000-0001-8012-4684 surname: Zhang fullname: Zhang, Hui organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 6 givenname: Xiaoguang orcidid: 0000-0002-7307-6263 surname: Li fullname: Li, Xiaoguang organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 7 givenname: Xia orcidid: 0000-0002-2377-6093 surname: Wu fullname: Wu, Xia organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38236674$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhqOqVb_gD3BAkbhwyeKvxM4RtelSaSlSW87W2JlUXpy4OEkl_j3O7pZDD5zm1fiZVzN-L7LjIQyYZR8oWVFK6i-Pdw_3zYoRJlacl6VQ6ig7p2WpCsIoOV40F4XgjJxlF-O4JYTKqpSn2RlXjFeVFOfZr6Y32LbY5k2zzm8Qpjli_oAe7eTCkHch5t9nP7ni2vU4jEuv6cPu7R5teBrcTr84yDfBgs9haPO1DybJDRj0CfP4AoPFd9lJB37E94d6mf28aR6vvhWbH-vbq6-bwgpBp4KitNgJA6KTpAa0xEpjuDAKFBcSBDNGqFoKWikGRra8Vh0jleFdW1ak4pfZ7d63DbDVz9H1EP_oAE7vGiE-aYiTsx511ZGuNlLUyUuUkgIHlQqaUgrGCSSvz3uv5xh-zzhOunejRe9hwDCPmtU0bVIqyRL66Q26DXMc0qULpSohuRKJ-nigZtNj-2-910gSoPaAjWEcI3baugmWT54iOK8p0Uv6epe-XtLXh_TTKHsz-ur-n6G_QhyvpQ |
CitedBy_id | crossref_primary_10_1007_s10462_024_11029_1 crossref_primary_10_3389_fnbot_2024_1481746 crossref_primary_10_1080_10255842_2024_2369257 crossref_primary_10_1109_JBHI_2024_3404146 crossref_primary_10_1109_TSMC_2024_3458949 crossref_primary_10_1016_j_measurement_2024_116046 crossref_primary_10_1109_ACCESS_2024_3482192 crossref_primary_10_1109_ACCESS_2024_3459866 |
Cites_doi | 10.1109/JBHI.2017.2688239 10.1016/j.patcog.2020.107344 10.1109/TCDS.2019.2949306 10.1016/j.jksuci.2019.11.003 10.1109/TIM.2023.3277985 10.1007/978-3-540-79039-6_106 10.1109/NER.2013.6695876 10.1007/3-540-57868-4_57 10.1016/j.compbiomed.2021.105048 10.1109/MLSP.2018.8517037 10.1109/TAFFC.2020.3006847 10.1016/j.patcog.2019.06.003 10.1016/j.inffus.2018.11.019 10.1109/EMBC44109.2020.9176682 10.1109/TAFFC.2017.2768030 10.1016/j.neuropsychologia.2020.107506 10.1016/j.knosys.2020.106365 10.3390/s19132999 10.1109/TAFFC.2021.3068496 10.1109/ICCV.2019.00124 10.1109/TBCAS.2021.3089132 10.1109/TNSRE.2023.3253866 10.1109/LSP.2003.821662 10.1109/BMEI.2008.254 10.1109/TKDE.2015.2426703 10.1109/TAFFC.2019.2936198 10.1109/TAFFC.2014.2339834 10.1137/1.9781611974973.58 10.1016/j.eswa.2019.113024 10.24963/ijcai.2020/416 10.24963/ijcai.2020/348 10.1109/TBME.2010.2048568 10.1109/T-AFFC.2011.15 10.1109/TITB.2009.2034649 10.1109/TNNLS.2020.3027745 10.1016/j.patcog.2006.12.019 10.1109/TNNLS.2020.2991336 10.1007/s12652-020-02338-8 10.1109/ICASSP40776.2020.9054457 10.1109/18.61115 10.1007/978-3-642-24571-8_58 10.1007/s11432-016-9021-9 10.1007/s00702-008-0157-x 10.1142/S0219720005001004 10.1109/TNSRE.2022.3233109 10.1109/TAFFC.2017.2714671 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3355488 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 526 |
ExternalDocumentID | oai_doaj_org_article_6f0f9b7491684571a3a8571eb574230a 38236674 10_1109_TNSRE_2024_3355488 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AAYXX ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIE RIG RNS CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD AASAJ AAWTH F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 RIA 7X8 |
ID | FETCH-LOGICAL-c441t-1e7cef4ba4f709aec0c7bb34b8a8347a42bb489741682ab7d398f206b3fd56063 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:28:39 EDT 2025 Thu Jul 10 22:42:51 EDT 2025 Fri Jul 25 07:07:54 EDT 2025 Wed Feb 19 01:58:20 EST 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 00:43:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-1e7cef4ba4f709aec0c7bb34b8a8347a42bb489741682ab7d398f206b3fd56063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8012-4684 0000-0002-7307-6263 0000-0002-9937-2669 0000-0003-1962-0675 0000-0002-2377-6093 |
OpenAccessLink | https://doaj.org/article/6f0f9b7491684571a3a8571eb574230a |
PMID | 38236674 |
PQID | 2918647384 |
PQPubID | 85423 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f0f9b7491684571a3a8571eb574230a proquest_miscellaneous_2919745872 proquest_journals_2918647384 pubmed_primary_38236674 crossref_citationtrail_10_1109_TNSRE_2024_3355488 crossref_primary_10_1109_TNSRE_2024_3355488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE |
References | ref13 ref12 ref15 ref53 ref52 ref11 ref10 Jian (ref18) ref17 ref16 ref19 Li (ref48) ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 Cai (ref36) ref31 ref30 ref33 ref2 ref1 ref39 ref38 Nie (ref34) ref24 ref23 ref26 ref25 ref20 ref22 ref21 Fleuret (ref32) 2004; 5 ref28 ref27 ref29 Hou (ref14) |
References_xml | – ident: ref21 doi: 10.1109/JBHI.2017.2688239 – ident: ref42 doi: 10.1016/j.patcog.2020.107344 – ident: ref50 doi: 10.1109/TCDS.2019.2949306 – ident: ref45 doi: 10.1016/j.jksuci.2019.11.003 – ident: ref51 doi: 10.1109/TIM.2023.3277985 – ident: ref27 doi: 10.1007/978-3-540-79039-6_106 – ident: ref4 doi: 10.1109/NER.2013.6695876 – ident: ref31 doi: 10.1007/3-540-57868-4_57 – start-page: 1813 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref34 article-title: Efficient and robust feature selection via joint ℓ2,1-norms minimization – ident: ref52 doi: 10.1016/j.compbiomed.2021.105048 – ident: ref46 doi: 10.1109/MLSP.2018.8517037 – ident: ref8 doi: 10.1109/TAFFC.2020.3006847 – start-page: 1627 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref18 article-title: Multi-label informed feature selection – ident: ref38 doi: 10.1016/j.patcog.2019.06.003 – ident: ref15 doi: 10.1016/j.inffus.2018.11.019 – ident: ref44 doi: 10.1109/EMBC44109.2020.9176682 – ident: ref7 doi: 10.1109/TAFFC.2017.2768030 – ident: ref9 doi: 10.1016/j.neuropsychologia.2020.107506 – ident: ref39 doi: 10.1016/j.knosys.2020.106365 – ident: ref49 doi: 10.3390/s19132999 – ident: ref13 doi: 10.1109/TAFFC.2021.3068496 – ident: ref10 doi: 10.1109/ICCV.2019.00124 – start-page: 1240 volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell. ident: ref36 article-title: Exact top-k feature selection via ℓ2,0-norm constraint – ident: ref53 doi: 10.1109/TBCAS.2021.3089132 – volume: 5 start-page: 1531 issue: 11 year: 2004 ident: ref32 article-title: Fast binary feature selection with conditional mutual information publication-title: J. Mach. Learn. Res. – ident: ref2 doi: 10.1109/TNSRE.2023.3253866 – ident: ref30 doi: 10.1109/LSP.2003.821662 – ident: ref25 doi: 10.1109/BMEI.2008.254 – ident: ref19 doi: 10.1109/TKDE.2015.2426703 – start-page: 1 volume-title: Proc. Workshop Neuro-Physiol. Methods IR Res. (SIGIR) ident: ref48 article-title: EEG based emotion identification using unsupervised deep feature learning – ident: ref29 doi: 10.1109/TAFFC.2019.2936198 – ident: ref11 doi: 10.1109/TAFFC.2014.2339834 – ident: ref35 doi: 10.1137/1.9781611974973.58 – ident: ref41 doi: 10.1016/j.eswa.2019.113024 – ident: ref23 doi: 10.1109/TAFFC.2014.2339834 – ident: ref37 doi: 10.24963/ijcai.2020/416 – ident: ref40 doi: 10.24963/ijcai.2020/348 – ident: ref5 doi: 10.1109/TBME.2010.2048568 – ident: ref22 doi: 10.1109/T-AFFC.2011.15 – ident: ref3 doi: 10.1109/TITB.2009.2034649 – ident: ref16 doi: 10.1109/TNNLS.2020.3027745 – ident: ref43 doi: 10.1016/j.patcog.2006.12.019 – ident: ref17 doi: 10.1109/TNNLS.2020.2991336 – ident: ref47 doi: 10.1007/s12652-020-02338-8 – ident: ref12 doi: 10.1109/ICASSP40776.2020.9054457 – start-page: 1324 volume-title: Proc. 22nd Int. Joint Conf. Artif. Intell. ident: ref14 article-title: Feature selection via joint embedding learning and sparse regression – ident: ref26 doi: 10.1109/18.61115 – ident: ref6 doi: 10.1007/978-3-642-24571-8_58 – ident: ref20 doi: 10.1007/s11432-016-9021-9 – ident: ref28 doi: 10.1007/s00702-008-0157-x – ident: ref33 doi: 10.1142/S0219720005001004 – ident: ref1 doi: 10.1109/TNSRE.2022.3233109 – ident: ref24 doi: 10.1109/TAFFC.2017.2714671 |
SSID | ssj0017657 |
Score | 2.4909825 |
Snippet | Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 514 |
SubjectTerms | Databases, Factual EEG Electroencephalogram Electroencephalography Electroencephalography - methods Emotion recognition Emotions Feature selection global relevance Humans Labels multi-dimension emotional labels Multidimensional methods Recognition, Psychology |
Title | Embedded EEG Feature Selection for Multi-Dimension Emotion Recognition via Local and Global Label Relevance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38236674 https://www.proquest.com/docview/2918647384 https://www.proquest.com/docview/2919745872 https://doaj.org/article/6f0f9b7491684571a3a8571eb574230a |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy5VebQNLxmpcEEpTuzYzpFHKELAYVkkbpadOFLFEhDs8vuZsZOFHkovnBI5E8nxjDPfeOxvCPnJlYbomGdpzazEIzkutWAaqdRWu5pzXwa2_csreXYjzm-L23elvnBPWKQHjgN3IFvWlk4JgDFaFCqz3Gq4eFdgjpEFaAQ-bwim-vyBkoUajsiw8mB8dT2qIBjMxS-ODjbUWXlzQ4Gt_98QM7ia06_kS48R6WHs2zJZ8N0K2X3PB0zHkQyA7tHRX1Tbq-Suunce_iYNrarfFBHe7MnT61DuBgQogFQaTt2mJ0jsj4tltIq1fOho2E0E9y9_LL1AR0dt19BYGoBeWOcnIDbxYefAGrk5rcbHZ2lfUSGtAfZM08yr2rfCWdEqVlpfs1o5x4UDzXChQEvOCV0iStO5darhpW5zJh1vG4BGkn8ji91D538QqiW0NC7zjdYiY0jynVvZ5BC-6LbIfUKyYYBN3Y8BVr2YmBB2sNIEpRhUiumVkpD9-TuPkWzjQ-kj1NtcEomyQwOYj-nNx_zPfBKyOWjd9LP32eRlpqVQXIuE7Mwfw7zDZIrt_MMsyMA4FVrlCfkerWXeE8ytSqnE-mf0cIMs4VfHZZ9Nsjh9mvktAEJTtx1s_hWd0QEg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+EEG+Feature+Selection+for+Multi-Dimension+Emotion+Recognition+via+Local+and+Global+Label+Relevance&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Xueyuan&rft.au=Wei%2C+Fulin&rft.au=Jia%2C+Tianyuan&rft.au=Zhuo%2C+Li&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=514&rft_id=info:doi/10.1109%2FTNSRE.2024.3355488&rft_id=info%3Apmid%2F38236674&rft.externalDocID=38236674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |