Embedded EEG Feature Selection for Multi-Dimension Emotion Recognition via Local and Global Label Relevance

Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 514 - 526
Main Authors Xu, Xueyuan, Wei, Fulin, Jia, Tianyuan, Zhuo, Li, Zhang, Hui, Li, Xiaoguang, Wu, Xia
Format Journal Article
LanguageEnglish
Published United States The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively.
AbstractList Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively.Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively.
Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an essential role in EEG-based emotion recognition. However, current EEG-based emotion recognition studies utilize a problem transformation approach to transform multi-dimension emotional labels into single-dimension labels, and then implement commonly used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions. To tackle the problem, we propose an efficient EEG feature selection method for multi-dimension emotion recognition (EFSMDER) via local and global label relevance. First, to capture the local label correlations, EFSMDER implements orthogonal regression to map the original EEG feature space into a low-dimension space. Then, it employs the global label correlations in the original multi-dimension emotional label space to effectively construct the label information in the low-dimension space. With the aid of local and global relevance information, EFSMDER can conduct representational EEG feature subset selection. Three EEG emotional databases with multi-dimension emotional labels were used for performance comparison between EFSMDER and fourteen state-of-the-art methods, and the EFSMDER method achieves the best multi-dimension classification accuracies of 86.43, 84.80, and 97.86 percent on the DREAMER, DEAP, and HDED datasets, respectively.
Author Zhuo, Li
Zhang, Hui
Li, Xiaoguang
Xu, Xueyuan
Wei, Fulin
Jia, Tianyuan
Wu, Xia
Author_xml – sequence: 1
  givenname: Xueyuan
  surname: Xu
  fullname: Xu, Xueyuan
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Fulin
  orcidid: 0000-0003-1962-0675
  surname: Wei
  fullname: Wei, Fulin
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Tianyuan
  surname: Jia
  fullname: Jia, Tianyuan
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 4
  givenname: Li
  orcidid: 0000-0002-9937-2669
  surname: Zhuo
  fullname: Zhuo, Li
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Hui
  orcidid: 0000-0001-8012-4684
  surname: Zhang
  fullname: Zhang, Hui
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 6
  givenname: Xiaoguang
  orcidid: 0000-0002-7307-6263
  surname: Li
  fullname: Li, Xiaoguang
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 7
  givenname: Xia
  orcidid: 0000-0002-2377-6093
  surname: Wu
  fullname: Wu, Xia
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38236674$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhqOqVb_gD3BAkbhwyeKvxM4RtelSaSlSW87W2JlUXpy4OEkl_j3O7pZDD5zm1fiZVzN-L7LjIQyYZR8oWVFK6i-Pdw_3zYoRJlacl6VQ6ig7p2WpCsIoOV40F4XgjJxlF-O4JYTKqpSn2RlXjFeVFOfZr6Y32LbY5k2zzm8Qpjli_oAe7eTCkHch5t9nP7ni2vU4jEuv6cPu7R5teBrcTr84yDfBgs9haPO1DybJDRj0CfP4AoPFd9lJB37E94d6mf28aR6vvhWbH-vbq6-bwgpBp4KitNgJA6KTpAa0xEpjuDAKFBcSBDNGqFoKWikGRra8Vh0jleFdW1ak4pfZ7d63DbDVz9H1EP_oAE7vGiE-aYiTsx511ZGuNlLUyUuUkgIHlQqaUgrGCSSvz3uv5xh-zzhOunejRe9hwDCPmtU0bVIqyRL66Q26DXMc0qULpSohuRKJ-nigZtNj-2-910gSoPaAjWEcI3baugmWT54iOK8p0Uv6epe-XtLXh_TTKHsz-ur-n6G_QhyvpQ
CitedBy_id crossref_primary_10_1007_s10462_024_11029_1
crossref_primary_10_3389_fnbot_2024_1481746
crossref_primary_10_1080_10255842_2024_2369257
crossref_primary_10_1109_JBHI_2024_3404146
crossref_primary_10_1109_TSMC_2024_3458949
crossref_primary_10_1016_j_measurement_2024_116046
crossref_primary_10_1109_ACCESS_2024_3482192
crossref_primary_10_1109_ACCESS_2024_3459866
Cites_doi 10.1109/JBHI.2017.2688239
10.1016/j.patcog.2020.107344
10.1109/TCDS.2019.2949306
10.1016/j.jksuci.2019.11.003
10.1109/TIM.2023.3277985
10.1007/978-3-540-79039-6_106
10.1109/NER.2013.6695876
10.1007/3-540-57868-4_57
10.1016/j.compbiomed.2021.105048
10.1109/MLSP.2018.8517037
10.1109/TAFFC.2020.3006847
10.1016/j.patcog.2019.06.003
10.1016/j.inffus.2018.11.019
10.1109/EMBC44109.2020.9176682
10.1109/TAFFC.2017.2768030
10.1016/j.neuropsychologia.2020.107506
10.1016/j.knosys.2020.106365
10.3390/s19132999
10.1109/TAFFC.2021.3068496
10.1109/ICCV.2019.00124
10.1109/TBCAS.2021.3089132
10.1109/TNSRE.2023.3253866
10.1109/LSP.2003.821662
10.1109/BMEI.2008.254
10.1109/TKDE.2015.2426703
10.1109/TAFFC.2019.2936198
10.1109/TAFFC.2014.2339834
10.1137/1.9781611974973.58
10.1016/j.eswa.2019.113024
10.24963/ijcai.2020/416
10.24963/ijcai.2020/348
10.1109/TBME.2010.2048568
10.1109/T-AFFC.2011.15
10.1109/TITB.2009.2034649
10.1109/TNNLS.2020.3027745
10.1016/j.patcog.2006.12.019
10.1109/TNNLS.2020.2991336
10.1007/s12652-020-02338-8
10.1109/ICASSP40776.2020.9054457
10.1109/18.61115
10.1007/978-3-642-24571-8_58
10.1007/s11432-016-9021-9
10.1007/s00702-008-0157-x
10.1142/S0219720005001004
10.1109/TNSRE.2022.3233109
10.1109/TAFFC.2017.2714671
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3355488
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 526
ExternalDocumentID oai_doaj_org_article_6f0f9b7491684571a3a8571eb574230a
38236674
10_1109_TNSRE_2024_3355488
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AAYXX
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIE
RIG
RNS
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
AASAJ
AAWTH
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
RIA
7X8
ID FETCH-LOGICAL-c441t-1e7cef4ba4f709aec0c7bb34b8a8347a42bb489741682ab7d398f206b3fd56063
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:28:39 EDT 2025
Thu Jul 10 22:42:51 EDT 2025
Fri Jul 25 07:07:54 EDT 2025
Wed Feb 19 01:58:20 EST 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 00:43:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-1e7cef4ba4f709aec0c7bb34b8a8347a42bb489741682ab7d398f206b3fd56063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8012-4684
0000-0002-7307-6263
0000-0002-9937-2669
0000-0003-1962-0675
0000-0002-2377-6093
OpenAccessLink https://doaj.org/article/6f0f9b7491684571a3a8571eb574230a
PMID 38236674
PQID 2918647384
PQPubID 85423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6f0f9b7491684571a3a8571eb574230a
proquest_miscellaneous_2919745872
proquest_journals_2918647384
pubmed_primary_38236674
crossref_citationtrail_10_1109_TNSRE_2024_3355488
crossref_primary_10_1109_TNSRE_2024_3355488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References ref13
ref12
ref15
ref53
ref52
ref11
ref10
Jian (ref18)
ref17
ref16
ref19
Li (ref48)
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
Cai (ref36)
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Nie (ref34)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Fleuret (ref32) 2004; 5
ref28
ref27
ref29
Hou (ref14)
References_xml – ident: ref21
  doi: 10.1109/JBHI.2017.2688239
– ident: ref42
  doi: 10.1016/j.patcog.2020.107344
– ident: ref50
  doi: 10.1109/TCDS.2019.2949306
– ident: ref45
  doi: 10.1016/j.jksuci.2019.11.003
– ident: ref51
  doi: 10.1109/TIM.2023.3277985
– ident: ref27
  doi: 10.1007/978-3-540-79039-6_106
– ident: ref4
  doi: 10.1109/NER.2013.6695876
– ident: ref31
  doi: 10.1007/3-540-57868-4_57
– start-page: 1813
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Efficient and robust feature selection via joint ℓ2,1-norms minimization
– ident: ref52
  doi: 10.1016/j.compbiomed.2021.105048
– ident: ref46
  doi: 10.1109/MLSP.2018.8517037
– ident: ref8
  doi: 10.1109/TAFFC.2020.3006847
– start-page: 1627
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref18
  article-title: Multi-label informed feature selection
– ident: ref38
  doi: 10.1016/j.patcog.2019.06.003
– ident: ref15
  doi: 10.1016/j.inffus.2018.11.019
– ident: ref44
  doi: 10.1109/EMBC44109.2020.9176682
– ident: ref7
  doi: 10.1109/TAFFC.2017.2768030
– ident: ref9
  doi: 10.1016/j.neuropsychologia.2020.107506
– ident: ref39
  doi: 10.1016/j.knosys.2020.106365
– ident: ref49
  doi: 10.3390/s19132999
– ident: ref13
  doi: 10.1109/TAFFC.2021.3068496
– ident: ref10
  doi: 10.1109/ICCV.2019.00124
– start-page: 1240
  volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell.
  ident: ref36
  article-title: Exact top-k feature selection via ℓ2,0-norm constraint
– ident: ref53
  doi: 10.1109/TBCAS.2021.3089132
– volume: 5
  start-page: 1531
  issue: 11
  year: 2004
  ident: ref32
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J. Mach. Learn. Res.
– ident: ref2
  doi: 10.1109/TNSRE.2023.3253866
– ident: ref30
  doi: 10.1109/LSP.2003.821662
– ident: ref25
  doi: 10.1109/BMEI.2008.254
– ident: ref19
  doi: 10.1109/TKDE.2015.2426703
– start-page: 1
  volume-title: Proc. Workshop Neuro-Physiol. Methods IR Res. (SIGIR)
  ident: ref48
  article-title: EEG based emotion identification using unsupervised deep feature learning
– ident: ref29
  doi: 10.1109/TAFFC.2019.2936198
– ident: ref11
  doi: 10.1109/TAFFC.2014.2339834
– ident: ref35
  doi: 10.1137/1.9781611974973.58
– ident: ref41
  doi: 10.1016/j.eswa.2019.113024
– ident: ref23
  doi: 10.1109/TAFFC.2014.2339834
– ident: ref37
  doi: 10.24963/ijcai.2020/416
– ident: ref40
  doi: 10.24963/ijcai.2020/348
– ident: ref5
  doi: 10.1109/TBME.2010.2048568
– ident: ref22
  doi: 10.1109/T-AFFC.2011.15
– ident: ref3
  doi: 10.1109/TITB.2009.2034649
– ident: ref16
  doi: 10.1109/TNNLS.2020.3027745
– ident: ref43
  doi: 10.1016/j.patcog.2006.12.019
– ident: ref17
  doi: 10.1109/TNNLS.2020.2991336
– ident: ref47
  doi: 10.1007/s12652-020-02338-8
– ident: ref12
  doi: 10.1109/ICASSP40776.2020.9054457
– start-page: 1324
  volume-title: Proc. 22nd Int. Joint Conf. Artif. Intell.
  ident: ref14
  article-title: Feature selection via joint embedding learning and sparse regression
– ident: ref26
  doi: 10.1109/18.61115
– ident: ref6
  doi: 10.1007/978-3-642-24571-8_58
– ident: ref20
  doi: 10.1007/s11432-016-9021-9
– ident: ref28
  doi: 10.1007/s00702-008-0157-x
– ident: ref33
  doi: 10.1142/S0219720005001004
– ident: ref1
  doi: 10.1109/TNSRE.2022.3233109
– ident: ref24
  doi: 10.1109/TAFFC.2017.2714671
SSID ssj0017657
Score 2.4909825
Snippet Due to the problem of a small amount of EEG samples and relatively high dimensionality of electroencephalogram (EEG) features, feature selection plays an...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 514
SubjectTerms Databases, Factual
EEG
Electroencephalogram
Electroencephalography
Electroencephalography - methods
Emotion recognition
Emotions
Feature selection
global relevance
Humans
Labels
multi-dimension emotional labels
Multidimensional methods
Recognition, Psychology
Title Embedded EEG Feature Selection for Multi-Dimension Emotion Recognition via Local and Global Label Relevance
URI https://www.ncbi.nlm.nih.gov/pubmed/38236674
https://www.proquest.com/docview/2918647384
https://www.proquest.com/docview/2919745872
https://doaj.org/article/6f0f9b7491684571a3a8571eb574230a
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy5VebQNLxmpcEEpTuzYzpFHKELAYVkkbpadOFLFEhDs8vuZsZOFHkovnBI5E8nxjDPfeOxvCPnJlYbomGdpzazEIzkutWAaqdRWu5pzXwa2_csreXYjzm-L23elvnBPWKQHjgN3IFvWlk4JgDFaFCqz3Gq4eFdgjpEFaAQ-bwim-vyBkoUajsiw8mB8dT2qIBjMxS-ODjbUWXlzQ4Gt_98QM7ia06_kS48R6WHs2zJZ8N0K2X3PB0zHkQyA7tHRX1Tbq-Suunce_iYNrarfFBHe7MnT61DuBgQogFQaTt2mJ0jsj4tltIq1fOho2E0E9y9_LL1AR0dt19BYGoBeWOcnIDbxYefAGrk5rcbHZ2lfUSGtAfZM08yr2rfCWdEqVlpfs1o5x4UDzXChQEvOCV0iStO5darhpW5zJh1vG4BGkn8ji91D538QqiW0NC7zjdYiY0jynVvZ5BC-6LbIfUKyYYBN3Y8BVr2YmBB2sNIEpRhUiumVkpD9-TuPkWzjQ-kj1NtcEomyQwOYj-nNx_zPfBKyOWjd9LP32eRlpqVQXIuE7Mwfw7zDZIrt_MMsyMA4FVrlCfkerWXeE8ytSqnE-mf0cIMs4VfHZZ9Nsjh9mvktAEJTtx1s_hWd0QEg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+EEG+Feature+Selection+for+Multi-Dimension+Emotion+Recognition+via+Local+and+Global+Label+Relevance&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Xueyuan&rft.au=Wei%2C+Fulin&rft.au=Jia%2C+Tianyuan&rft.au=Zhuo%2C+Li&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=514&rft_id=info:doi/10.1109%2FTNSRE.2024.3355488&rft_id=info%3Apmid%2F38236674&rft.externalDocID=38236674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon