Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China
Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil...
Saved in:
Published in | Journal of environmental management Vol. 321; p. 115859 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize–green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability.
[Display omitted]
•Long-term intercropping green manure ensuring high and stable maize yield, and increasing economic benefits by 56.39%.•Intercropping green manure reduced the relative abundance of potential plant pathogens.•Microbes affect enzyme activities and soil nutrients by affecting soil pH.•Soil microorganisms are the key driver of the potential benefits of intercropping green manure on agricultural sustainability. |
---|---|
AbstractList | Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize-green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability.Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize-green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability. Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize–green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability. [Display omitted] •Long-term intercropping green manure ensuring high and stable maize yield, and increasing economic benefits by 56.39%.•Intercropping green manure reduced the relative abundance of potential plant pathogens.•Microbes affect enzyme activities and soil nutrients by affecting soil pH.•Soil microorganisms are the key driver of the potential benefits of intercropping green manure on agricultural sustainability. Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize–green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability. |
ArticleNumber | 115859 |
Author | Gao, Haining Zhao, Yiming Ablimit, Ruxangul Meng, Xueqin An, Lizhe Li, Weikun Zhang, Jiudong Cheng, Miaomiao Chen, Yong |
Author_xml | – sequence: 1 givenname: Ruxangul orcidid: 0000-0001-6639-6106 surname: Ablimit fullname: Ablimit, Ruxangul email: rouxgl19@lzu.edu.cn organization: School of Life Sciences, Lanzhou, 730000, China – sequence: 2 givenname: Weikun surname: Li fullname: Li, Weikun organization: School of Life Sciences, Lanzhou, 730000, China – sequence: 3 givenname: Jiudong surname: Zhang fullname: Zhang, Jiudong organization: Institute of Soil, Fertilizer, and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China – sequence: 4 givenname: Haining surname: Gao fullname: Gao, Haining organization: Key Laboratory of the Hexi Corridor Resources Utilization of Gansu, Zhangye, 734000, China – sequence: 5 givenname: Yiming surname: Zhao fullname: Zhao, Yiming organization: School of Life Sciences, Lanzhou, 730000, China – sequence: 6 givenname: Miaomiao surname: Cheng fullname: Cheng, Miaomiao organization: School of Life Sciences, Lanzhou, 730000, China – sequence: 7 givenname: Xueqin surname: Meng fullname: Meng, Xueqin organization: School of Life Sciences, Lanzhou, 730000, China – sequence: 8 givenname: Lizhe surname: An fullname: An, Lizhe email: Lizhean@lzu.edu.cn organization: School of Life Sciences, Lanzhou, 730000, China – sequence: 9 givenname: Yong surname: Chen fullname: Chen, Yong email: chenyong@lzu.edu.cn organization: School of Life Sciences, Lanzhou, 730000, China |
BookMark | eNqNkc2O1DAQhC20SMwuPAKSj1wytPMzicUBrUYsIK3gAmfLsTuzPUrsYDuDhpfhVXGYPXFZDpbbUn1Vatc1u3LeIWOvBWwFiN3b4_aI7jRpty2hLLdCNF0jn7GNANkU3a6CK7aBCkRRt7J9wa5jPAJAVYp2w37fjgkDuQOfyATfkx658dO0OEpnPvjAaZqDP62K6Gnk-TFjSISRa2e5PgQyy5iWkMG4xKTJ6Z7GlbbLX2PNBRRn1IFPmn5hcQiILs9uCcjJ5fgcPM-rlBz_4kN6-Ikx8f1DtnrJng96jPjq8b5h3-8-fNt_Ku6_fvy8v70vTF2LVAjTtXXTt9iboZeVFRJQDzrPna57tHon-wGqRgOgyEfaCqC1WtjBWtnX1Q17c_HN-_1YcryaKBocR-3QL1GVreiqpq2k_A8p1N2ua0vI0ncXad4wxoCDMpR0Iu9S0DQqAWptUB3VY4NqbVBdGsx08w89B5p0OD_Jvb9wmD_sRBhUNITOoKWAJinr6QmHP6X6wJo |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_120886 crossref_primary_10_1016_j_agee_2025_109632 crossref_primary_10_1007_s11104_025_07357_y crossref_primary_10_3390_plants12020311 crossref_primary_10_1016_j_still_2024_106089 crossref_primary_10_3390_agronomy13112707 crossref_primary_10_1016_j_eja_2024_127351 crossref_primary_10_1016_j_eja_2024_127275 crossref_primary_10_1002_ldr_5437 crossref_primary_10_1002_ldr_5032 crossref_primary_10_1007_s42729_024_01867_x crossref_primary_10_1016_j_pedsph_2025_01_003 crossref_primary_10_1016_j_jia_2023_11_050 crossref_primary_10_1016_j_apsoil_2025_105874 crossref_primary_10_1016_j_agee_2023_108797 crossref_primary_10_1007_s11104_024_06775_8 crossref_primary_10_3389_fenvs_2022_1059800 crossref_primary_10_1016_j_fcr_2024_109734 crossref_primary_10_3390_agronomy12112734 crossref_primary_10_3390_agronomy14061261 crossref_primary_10_1007_s11104_023_06383_y crossref_primary_10_3390_plants11212941 crossref_primary_10_1016_j_ejsobi_2025_103711 crossref_primary_10_3390_f13111814 crossref_primary_10_3390_agronomy13061634 crossref_primary_10_3389_fmicb_2023_1310366 crossref_primary_10_3390_agronomy14030635 crossref_primary_10_3390_su15064747 crossref_primary_10_1016_j_scitotenv_2024_175382 crossref_primary_10_3390_agronomy14092001 crossref_primary_10_1016_j_scienta_2025_114001 crossref_primary_10_3390_soilsystems8040121 crossref_primary_10_1016_j_ejsobi_2024_103646 crossref_primary_10_1002_ldr_5056 crossref_primary_10_1016_j_fcr_2024_109624 crossref_primary_10_3389_fsufs_2024_1481291 crossref_primary_10_1016_j_jia_2024_10_002 crossref_primary_10_1038_s41598_023_42291_y crossref_primary_10_3390_f14061213 crossref_primary_10_1016_j_ecolind_2024_111908 crossref_primary_10_1016_j_ejsobi_2024_103685 crossref_primary_10_3390_agronomy14091913 crossref_primary_10_47172_2965_730X_SDGsReview_v5_n02_pe05022 crossref_primary_10_3389_fsufs_2024_1369571 crossref_primary_10_1016_j_agee_2024_108915 crossref_primary_10_3389_fmicb_2023_1290825 crossref_primary_10_3390_agronomy14122936 crossref_primary_10_1111_nph_19906 crossref_primary_10_1016_j_fcr_2024_109267 crossref_primary_10_3390_ijerph20021655 crossref_primary_10_1016_j_agee_2022_108190 crossref_primary_10_1007_s11104_024_06861_x crossref_primary_10_1016_j_eja_2024_127237 crossref_primary_10_1016_j_still_2024_106430 crossref_primary_10_3390_agronomy15020355 crossref_primary_10_3390_su15129563 |
Cites_doi | 10.1038/s43016-021-00253-5 10.1007/s11104-014-2214-6 10.1111/j.1469-8137.2005.01376.x 10.1016/j.agee.2017.02.019 10.3390/agronomy8040052 10.1002/fes3.261 10.1128/AEM.02294-08 10.1186/s40168-018-0544-y 10.1007/s11356-021-14127-7 10.1038/ismej.2015.261 10.1016/j.chemosphere.2021.132533 10.3389/fpls.2019.01068 10.1080/15572536.2006.11832621 10.1016/j.apsoil.2015.06.010 10.1038/s41396-019-0389-9 10.1007/s00572-010-0333-3 10.1038/nrmicro2504 10.1111/nph.15076 10.3791/50961-v 10.1038/s41579-020-0412-1 10.1016/S0167-8809(99)00028-6 10.1038/nmeth.f.303 10.1890/10-0773.1 10.1126/science.1177837 10.1016/j.eja.2020.126117 10.1016/S0038-0717(02)00297-3 10.1016/0378-3774(90)90069-B 10.1186/s40168-020-00985-9 10.1007/s00374-002-0573-2 10.1038/s41467-019-13036-1 10.1016/j.ejsobi.2015.06.005 10.1016/j.agee.2018.09.001 10.1016/j.soilbio.2019.107679 10.1016/j.soilbio.2014.09.028 10.1016/j.apsoil.2012.03.008 10.2135/cropsci2016.03.0204 10.1007/s00374-021-01586-w 10.18637/jss.v046.i11 10.1051/agro:2007057 10.1016/j.soilbio.2017.03.013 10.1016/j.apsoil.2021.104034 10.1111/j.1574-6941.2006.00251.x 10.1016/j.geoderma.2021.115287 10.1038/s41586-019-1316-y 10.1038/ismej.2011.139 10.1038/s41396-019-0501-1 10.1038/nature13609 10.1002/lom3.10035 10.1007/s11104-013-1899-2 10.1016/S1002-0160(19)60839-8 10.1007/s13593-014-0277-7 10.1146/annurev-phyto-080508-081729 10.1016/j.still.2019.104569 10.1007/978-90-481-2716-0_3 10.1038/s41579-018-0024-1 10.1038/nature10452 10.1111/1365-2664.13802 10.1016/j.apsoil.2017.01.005 10.1111/nph.14976 10.1016/j.funeco.2015.06.006 10.1111/1365-2435.13351 10.1016/j.apsoil.2015.03.006 10.1073/pnas.1116437108 10.1111/nph.12765 10.1111/j.1461-0248.2007.01139.x 10.1016/j.medmal.2007.03.004 10.1016/j.simyco.2014.12.002 10.1038/nature01014 10.1007/s10705-013-9591-8 10.1038/s41396-019-0383-2 10.1126/science.1111772 10.1016/bs.agron.2019.04.002 10.1038/s41396-020-00796-8 10.1099/ijs.0.069377-0 10.1038/s41559-019-1084-y 10.1016/j.apsoil.2021.103966 10.1007/s00253-016-7938-1 10.2134/agronj2005.0035 10.1371/journal.pone.0052069 10.1590/1983-21252018v31n410rc 10.1016/j.tplants.2012.04.001 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jenvman.2022.115859 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1095-8630 |
ExternalDocumentID | 10_1016_j_jenvman_2022_115859 S0301479722014323 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEN SEW SSH UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-1c8745b7ebcfb93d190eafafb98a4beda69bf035a00e100e9d3007da1dfdd9b43 |
IEDL.DBID | .~1 |
ISSN | 0301-4797 1095-8630 |
IngestDate | Thu Jul 10 18:43:48 EDT 2025 Tue Aug 05 09:21:34 EDT 2025 Tue Jul 01 02:32:30 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 23 02:38:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Agricultural sustainability Green manure Maize Microbial community Soil amendment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-1c8745b7ebcfb93d190eafafb98a4beda69bf035a00e100e9d3007da1dfdd9b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6639-6106 |
PQID | 2704868720 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718357399 proquest_miscellaneous_2704868720 crossref_citationtrail_10_1016_j_jenvman_2022_115859 crossref_primary_10_1016_j_jenvman_2022_115859 elsevier_sciencedirect_doi_10_1016_j_jenvman_2022_115859 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of environmental management |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Veres, Kotroczó, Fekete, Tóth, Lajtha, Townsend, Tóthmérész (bib81) 2015; 92 Zeng, Yu, Liu, Wang, Chen, Wang (bib92) 2021; 167 Wang, Bei, Li, Bao, Zhang, Schultz, Li, Li, Zhang, Bever, Zhang, Hannula (bib82) 2020; 58 Camelo, Dubeux, dos Santos, Lira, Fracetto, Fracetto, da Cunha, de Freitas (bib16) 2021; 11 Tilman, Balzer, Hill, Befort (bib75) 2011; 108 Wezel, Casagrande, Celette, Vian, Ferrer, Peigne (bib85) 2014; vol. 34 Tilman, Cassman, Matson, Naylor, Polasky (bib76) 2002; 418 Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bib12) 2013 Yu, Luo, Gou, Xu, Wang (bib91) 2021; vol. 314 Qaswar, Jing, Ahmed, Dongchu, Shujun, Lu, Cai, Lisheng, Yongmei, Jusheng, Huimin (bib62) 2020; 198 Willey (bib86) 1990; 17 Trivedi, Delgado-Baquerizo, Trivedi, Hamonts, Anderson, Singh (bib77) 2017; 111 Bedoussac, Journet, Hauggaard-Nielsen, Naudin, Corre-Hellou, Jensen, Prieur, Justes (bib9) 2015; 35 Hiiesalu, Partel, Davison, Gerhold, Metsis, Moora, Opik, Vasar, Zobel, Wilson (bib34) 2014; 203 McDonald, Price, Goodrich, Nawrocki, DeSantis, Probst, Andersen, Knight, Hugenholtz (bib57) 2012; 6 Trivedi, Leach, Tringe, Sa, Singh (bib78) 2020; 18 Ward, Challacombe, Janssen, Henrissat, Coutinho, Wu, Xie, Haft, Sait, Badger, Barabote, Bradley, Brettin, Brinkac, Bruce, Creasy, Daugherty, Davidsen, DeBoy, Detter, Dodson, Durkin, Ganapathy, Gwinn-Giglio, Han, Khouri, Kiss, Kothari, Madupu, Nelson, Nelson, Paulsen, Penn, Ren, Rosovitz, Selengut, Shrivastava, Sullivan, Tapia, Thompson, Watkins, Yang, Yu, Zafar, Zhou, Kuske (bib84) 2009; 75 Behl, Kaur, Sehgal, Singh, Sharma, Bhatia, Al-Harrasi, Bungau (bib11) 2022; 288 Han, Dong, Zhang (bib32) 2021; 165 Ravanbakhsh, Kowalchuk, Jousset (bib64) 2019; 13 Xun, Liu, Li, Ren, Xiong, Xu, Zhang, Miao, Shen, Zhang (bib88) 2021; 9 Bungau, Behl, Aleya, Bourgeade, Aloui-Sossé, Purza, Abid, Samuel (bib15) 2021; 28 Chen, Hu, He, Cui, Zhu, He (bib18) 2021; 2 Yin, Chai, Guo, Feng, Zhao, Yu, Liu, Fan, Hu, Chen (bib90) 2017 Xun, Yan, Ren, Jin, Xiong, Zhang, Cui, Xin, Zhang (bib87) 2018; 6 Amossé, Jeuffroy, Mary, David (bib5) 2013; 98 Nair, Ngouajio (bib59) 2012; 58 Banerjee, Walder, Buchi, Meyer, Held, Gattinger, Keller, Charles, van der Heijden (bib7) 2019; 13 Hines, van der Putten, De Deyn, Wagg, Voigt, Mulder, Weisser, Engel, Melian, Scheu, Birkhofer, Ebeling, Scherber, Eisenhauer (bib35) 2015; Part 1 Foley (bib27) 2005 Ma, Wang, Dsouza, Lou, He, Dai, Brookes, Xu, Gilbert (bib52) 2016; 10 Liu, Shu, Song, Shi, Li, Zhang, Li, Liu, Yuan, Zhang, Liu, Gao (bib50) 2021; 404 Marschner, Kandeler, Marschner (bib56) 2003; 35 van der Heijden, Bardgett, van Straalen (bib79) 2008; 11 Kobayashi, Crouch (bib41) 2009; 47 Li, Hu, Lin (bib49) 2021 Lombard, van der Merwe, Groenewald, Crous (bib51) 2015 Jimenez, Andreote, Chaves, Montana, Osorio-Forero, Junca, Zambrano, Baena (bib37) 2012; 7 Smith, D.J (bib69) 2008 Leinweber, Kruse, Baum, Arcand, Knight, Farrell, Eckhardt, Kiersch, Jandl (bib47) 2013 Qian, Gu, Pan, Zhang, Sun, Wang, Gao (bib63) 2015; 70 Alvey, Yang, Buerkert, Crowley (bib4) 2003; 37 Lennon, Jones (bib48) 2011; 9 Latati, Blavet, Alkama, Laoufi, Drevon, Gérard, Pansu, Ounane (bib45) 2014; 385 Strullu-Derrien, Selosse, Kenrick, Martin (bib71) 2018 Fan, Delgado-Baquerizo, Guo, Wang, Zhu, Chu (bib26) 2021; 15 Banerjee, Schlaeppi, van der Heijden (bib6) 2018; 16 Goswami, Deka (bib31) 2020; 30 Knörzer, Graeff-Hönninger, Guo, Pu, Claupein (bib40) 2009 Leifheit, Veresoglou, Lehmann, Morris, Rillig (bib46) 2014; 374 Basu, Prasad, Das, Kalam, Sayyed, Reddy, Enshasy (bib8) 2021; 13 Zhong, Huang, Feng, Xing, Weng (bib95) 2018; 268 Johnson, Spakowicz, Hong, Petersen, Demkowicz, Chen, Leopold, Hanson, Agresta, Gerstein, Sodergren, Weinstock (bib38) 2019; 10 Kragelund, Levantesi, Borger, Thelen, Eikelboom, Tandoi, Kong, van der Waarde, Krooneman, Rossetti, Thomsen, Nielsen (bib43) 2007; 59 Altieri (bib3) 1999; 74 Begum, Qin, Ahanger, Raza, Khan, Ashraf, Ahmed, Zhang (bib10) 2019; 10 Koljalg, Larsson, Abarenkov, Nilsson, Alexander, Eberhardt, Erland, Hoiland, Kjoller, Larsson, Pennanen, Sen, Taylor, Tedersoo, Vralstad, Ursing (bib42) 2005; 166 Renard, Tilman (bib65) 2019; 571 Savci (bib66) 2012; 3 Delgado-Baquerizo, Reich, Trivedi, Eldridge, Abades, Alfaro, Bastida, Berhe, Cutler, Gallardo, Garcia-Velazquez, Hart, Hayes, He, Hseu, Hu, Kirchmair, Neuhauser, Perez, Reed, Santos, Sullivan, Trivedi, Wang, Weber-Grullon, Williams, Singh (bib22) 2020; 4 Gore, Chia, Elshire, Sun, Ersoz, Hurwitz, Peiffer, McMullen, Grills, Ross-Ibarra, Ware, Buckler (bib30) 2009; 326 Malezieux, Crozat, Dupraz, Laurans, Makowski, Ozier-Lafontaine, Rapidel, de Tourdonnet, Valantin-Morison (bib54) 2009; 29 Delgado-Baquerizo, Reith, Dennis, Hamonts, Powell, Young, Singh, Bissett (bib23) 2018 Berendsen, Pieterse, Bakker (bib13) 2012; 17 Hibbett (bib33) 2006; 98 Sun, Guo, Wang, Chu (bib72) 2015; 95 Veen, Snoek, Bakx-Schotman, Wardle, van der Putten (bib80) 2019; 33 Cherr, Scholberg, McSorley (bib20) 2006; 98 Tao, Liu, Liang, Niu, Xiao, Gu, Ma, Meng, Zhang, Huang, Peng, Yin (bib74) 2017; 101 Wang, Song, Ma, Raza, Li, Howland, Huang, Shen (bib83) 2017; 112 Manoeli, Suleiman, Jacques, Antoniolli, Ad?£O, Kuramae, Roesch (bib55) 2014 Brundrett, Tedersoo (bib14) 2018; 220 Langfelder, Horvath (bib44) 2012; 46 Molotoks, Smith, Dawson (bib58) 2021; 10 Perez Castro, Cleland, Wagner, Sawad, Lipson (bib61) 2019; 13 Ai, Liang, Sun, Wang, He, Zhou, He (bib2) 2015; 80 Duchene, Vian, Celette (bib24) 2017; 240 Schnitzer, Klironomos, HilleRisLambers, Kinkel, Reich, Xiao, Rillig, Sikes, Callaway, Mangan, van Nes, Scheffer (bib67) 2011; 92 Silva, Medeiros, Santana, Araújo, Martins Filho, Moura (bib68) 2018; 31 Ju, Xing, Chen, Zhang, Zhang, Liu, Cui, Yin, Christie, Zhu, Zhang (bib39) 2009; vol. 106 Zhang, Nunan, Hirsch, Sun, Zhou, Liang (bib93) 2021; 57 Ahoyo, Baba-Moussa, Anago, Avogbe, Missihoun, Loko, Prevost, Sanni, Dramane (bib1) 2007; 37 Yang, Fan, Chai (bib89) 2018; 8 Song, Feng, Lal, Fan, Ren, Qi, Qian, Guo, Cai, Cao, Yu, Hao, Huang, Deng, Zheng, Zhang, Zhang (bib70) 2019; 157 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Pena, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Tumbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (bib17) 2010; 7 Chen, Cui, Fan, Vitousek, Zhao, Ma, Wang, Zhang, Yan, Yang, Deng, Gao, Zhang, Guo, Ren, Li, Ye, Wang, Huang, Tang, Sun, Peng, Zhang, He, Zhu, Xue, Wang, Wu, An, Wu, Ma, Zhang, Zhang (bib19) 2014; 514 Nguyen, Song, Bates, Branco, Tedersoo, Menke, Schilling, Kennedy (bib60) 2016; 20 Zhao, Chai, Zhao, Mu, Zhang, Yu, Feng, Liu, Yin, Hu (bib94) 2016; 56 Madhaiyan, Poonguzhali, Senthilkumar, Pragatheswari, Lee, Lee (bib53) 2015; 65 Sun, Zhao, Feng, Yin, Gou, Lal, Deng, Chai, Song, Zhang (bib73) 2020; 10 Foley, Ramankutty, Brauman, Cassidy, Gerber, Johnston, Mueller, O'Connell, Ray, West, Balzer, Bennett, Carpenter, Hill, Monfreda, Polasky, Rockstrom, Sheehan, Siebert, Tilman, Zaks (bib28) 2011; 478 Fan, Delgado-Baquerizo, Guo, Wang, Zhu, Chu (bib25) 2020; 141 Dafner (bib21) 2015; 13 Gianinazzi, Gollotte, Binet, van Tuinen, Redecker, Wipf (bib29) 2010; 20 Hu, Tan, Yu, Zhao, Fan, Yin, Chai, Coulter, Cao (bib36) 2020; 119 Johnson (10.1016/j.jenvman.2022.115859_bib38) 2019; 10 Trivedi (10.1016/j.jenvman.2022.115859_bib77) 2017; 111 Delgado-Baquerizo (10.1016/j.jenvman.2022.115859_bib23) 2018 Veres (10.1016/j.jenvman.2022.115859_bib81) 2015; 92 Zeng (10.1016/j.jenvman.2022.115859_bib92) 2021; 167 Yu (10.1016/j.jenvman.2022.115859_bib91) 2021; vol. 314 Zhao (10.1016/j.jenvman.2022.115859_bib94) 2016; 56 Ma (10.1016/j.jenvman.2022.115859_bib52) 2016; 10 Xun (10.1016/j.jenvman.2022.115859_bib87) 2018; 6 Jimenez (10.1016/j.jenvman.2022.115859_bib37) 2012; 7 Nair (10.1016/j.jenvman.2022.115859_bib59) 2012; 58 Chen (10.1016/j.jenvman.2022.115859_bib18) 2021; 2 Renard (10.1016/j.jenvman.2022.115859_bib65) 2019; 571 Brundrett (10.1016/j.jenvman.2022.115859_bib14) 2018; 220 Leinweber (10.1016/j.jenvman.2022.115859_bib47) 2013 Duchene (10.1016/j.jenvman.2022.115859_bib24) 2017; 240 Ju (10.1016/j.jenvman.2022.115859_bib39) 2009; vol. 106 Camelo (10.1016/j.jenvman.2022.115859_bib16) 2021; 11 Altieri (10.1016/j.jenvman.2022.115859_bib3) 1999; 74 Bungau (10.1016/j.jenvman.2022.115859_bib15) 2021; 28 Smith (10.1016/j.jenvman.2022.115859_bib69) 2008 Veen (10.1016/j.jenvman.2022.115859_bib80) 2019; 33 Wang (10.1016/j.jenvman.2022.115859_bib82) 2020; 58 Hibbett (10.1016/j.jenvman.2022.115859_bib33) 2006; 98 Gianinazzi (10.1016/j.jenvman.2022.115859_bib29) 2010; 20 Wezel (10.1016/j.jenvman.2022.115859_bib85) 2014; vol. 34 Tilman (10.1016/j.jenvman.2022.115859_bib76) 2002; 418 Foley (10.1016/j.jenvman.2022.115859_bib28) 2011; 478 Sun (10.1016/j.jenvman.2022.115859_bib72) 2015; 95 Malezieux (10.1016/j.jenvman.2022.115859_bib54) 2009; 29 Bell (10.1016/j.jenvman.2022.115859_bib12) 2013 Nguyen (10.1016/j.jenvman.2022.115859_bib60) 2016; 20 Banerjee (10.1016/j.jenvman.2022.115859_bib6) 2018; 16 Langfelder (10.1016/j.jenvman.2022.115859_bib44) 2012; 46 Liu (10.1016/j.jenvman.2022.115859_bib50) 2021; 404 Lennon (10.1016/j.jenvman.2022.115859_bib48) 2011; 9 Begum (10.1016/j.jenvman.2022.115859_bib10) 2019; 10 Qian (10.1016/j.jenvman.2022.115859_bib63) 2015; 70 Knörzer (10.1016/j.jenvman.2022.115859_bib40) 2009 Schnitzer (10.1016/j.jenvman.2022.115859_bib67) 2011; 92 van der Heijden (10.1016/j.jenvman.2022.115859_bib79) 2008; 11 Xun (10.1016/j.jenvman.2022.115859_bib88) 2021; 9 Delgado-Baquerizo (10.1016/j.jenvman.2022.115859_bib22) 2020; 4 Fan (10.1016/j.jenvman.2022.115859_bib26) 2021; 15 Song (10.1016/j.jenvman.2022.115859_bib70) 2019; 157 Zhang (10.1016/j.jenvman.2022.115859_bib93) 2021; 57 Alvey (10.1016/j.jenvman.2022.115859_bib4) 2003; 37 Hines (10.1016/j.jenvman.2022.115859_bib35) 2015; Part 1 Zhong (10.1016/j.jenvman.2022.115859_bib95) 2018; 268 Amossé (10.1016/j.jenvman.2022.115859_bib5) 2013; 98 Yin (10.1016/j.jenvman.2022.115859_bib90) 2017 Leifheit (10.1016/j.jenvman.2022.115859_bib46) 2014; 374 Wang (10.1016/j.jenvman.2022.115859_bib83) 2017; 112 Behl (10.1016/j.jenvman.2022.115859_bib11) 2022; 288 Chen (10.1016/j.jenvman.2022.115859_bib19) 2014; 514 Perez Castro (10.1016/j.jenvman.2022.115859_bib61) 2019; 13 Li (10.1016/j.jenvman.2022.115859_bib49) 2021 Madhaiyan (10.1016/j.jenvman.2022.115859_bib53) 2015; 65 Ahoyo (10.1016/j.jenvman.2022.115859_bib1) 2007; 37 Manoeli (10.1016/j.jenvman.2022.115859_bib55) 2014 Caporaso (10.1016/j.jenvman.2022.115859_bib17) 2010; 7 Dafner (10.1016/j.jenvman.2022.115859_bib21) 2015; 13 Qaswar (10.1016/j.jenvman.2022.115859_bib62) 2020; 198 Kobayashi (10.1016/j.jenvman.2022.115859_bib41) 2009; 47 Molotoks (10.1016/j.jenvman.2022.115859_bib58) 2021; 10 Foley (10.1016/j.jenvman.2022.115859_bib27) 2005 Willey (10.1016/j.jenvman.2022.115859_bib86) 1990; 17 Hu (10.1016/j.jenvman.2022.115859_bib36) 2020; 119 Cherr (10.1016/j.jenvman.2022.115859_bib20) 2006; 98 Kragelund (10.1016/j.jenvman.2022.115859_bib43) 2007; 59 Basu (10.1016/j.jenvman.2022.115859_bib8) 2021; 13 Savci (10.1016/j.jenvman.2022.115859_bib66) 2012; 3 Tao (10.1016/j.jenvman.2022.115859_bib74) 2017; 101 Gore (10.1016/j.jenvman.2022.115859_bib30) 2009; 326 Ravanbakhsh (10.1016/j.jenvman.2022.115859_bib64) 2019; 13 Silva (10.1016/j.jenvman.2022.115859_bib68) 2018; 31 Yang (10.1016/j.jenvman.2022.115859_bib89) 2018; 8 Tilman (10.1016/j.jenvman.2022.115859_bib75) 2011; 108 Koljalg (10.1016/j.jenvman.2022.115859_bib42) 2005; 166 McDonald (10.1016/j.jenvman.2022.115859_bib57) 2012; 6 Goswami (10.1016/j.jenvman.2022.115859_bib31) 2020; 30 Trivedi (10.1016/j.jenvman.2022.115859_bib78) 2020; 18 Marschner (10.1016/j.jenvman.2022.115859_bib56) 2003; 35 Hiiesalu (10.1016/j.jenvman.2022.115859_bib34) 2014; 203 Latati (10.1016/j.jenvman.2022.115859_bib45) 2014; 385 Lombard (10.1016/j.jenvman.2022.115859_bib51) 2015 Strullu-Derrien (10.1016/j.jenvman.2022.115859_bib71) 2018 Banerjee (10.1016/j.jenvman.2022.115859_bib7) 2019; 13 Ai (10.1016/j.jenvman.2022.115859_bib2) 2015; 80 Sun (10.1016/j.jenvman.2022.115859_bib73) 2020; 10 Fan (10.1016/j.jenvman.2022.115859_bib25) 2020; 141 Ward (10.1016/j.jenvman.2022.115859_bib84) 2009; 75 Berendsen (10.1016/j.jenvman.2022.115859_bib13) 2012; 17 Han (10.1016/j.jenvman.2022.115859_bib32) 2021; 165 Bedoussac (10.1016/j.jenvman.2022.115859_bib9) 2015; 35 |
References_xml | – volume: 157 start-page: 251 year: 2019 end-page: 292 ident: bib70 article-title: Optimized agronomic management as a double-win option for higher maize productivity and less global warming intensity: a case study of Northeastern China publication-title: Adv. Agron. – volume: 3 start-page: 77 year: 2012 end-page: 80 ident: bib66 article-title: An agricultural pollutant: chemical fertilizer publication-title: Int. J. Environ. Sustain Dev. – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bib17 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 13 start-page: 511 year: 2015 end-page: 520 ident: bib21 article-title: Segmented continuous-flow analyses of nutrient in seawater: intralaboratory comparison of technicon AutoAnalyzer II and bran plus luebbe continuous flow AutoAnalyzer III publication-title: Limnol Oceanogr. Methods – volume: 17 start-page: 478 year: 2012 end-page: 486 ident: bib13 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. – volume: vol. 106 year: 2009 ident: bib39 publication-title: Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems (Vol 106, Pg 3041, 2009) – volume: 418 start-page: 671 year: 2002 end-page: 677 ident: bib76 article-title: Agricultural sustainability and intensive production practices publication-title: Nature – volume: 35 start-page: 453 year: 2003 end-page: 461 ident: bib56 article-title: Structure and function of the soil microbial community in a long-term fertilizer experiment publication-title: Soil Biol. Biochem. – volume: 47 start-page: 63 year: 2009 end-page: 82 ident: bib41 article-title: Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts publication-title: Annu. Rev. Phytopathol. – volume: 13 start-page: 1776 year: 2019 end-page: 1787 ident: bib61 article-title: Soil microbial responses to drought and exotic plants shift carbon metabolism publication-title: ISME J. – year: 2018 ident: bib71 article-title: The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics publication-title: New Phytol. – volume: 268 start-page: 24 year: 2018 end-page: 33 ident: bib95 article-title: Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure publication-title: Agric. Ecosyst. Environ. – volume: 571 start-page: 257 year: 2019 end-page: 260 ident: bib65 article-title: National food production stabilized by crop diversity publication-title: Nature – volume: 288 year: 2022 ident: bib11 article-title: The dichotomy of nanotechnology as the cutting edge of agriculture: nano-farming as an asset versus nanotoxicity publication-title: Chemosphere – year: 2005 ident: bib27 article-title: Global consequences of land use: connecting issues, connecting scales publication-title: Science – volume: 33 start-page: 1524 year: 2019 end-page: 1535 ident: bib80 article-title: Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects publication-title: Funct. Ecol. – volume: 2 start-page: 233 year: 2021 end-page: 240 ident: bib18 article-title: Potential of indigenous crop microbiomes for sustainable agriculture publication-title: Nature Food – volume: 101 start-page: 1289 year: 2017 end-page: 1299 ident: bib74 article-title: Maize growth responses to soil microbes and soil properties after fertilization with different green manures publication-title: Appl. Microbiol. Biotechnol. – year: 2021 ident: bib49 article-title: The roles and performance of arbuscular mycorrhizal fungi in intercropping systems publication-title: Soil Ecol Lett – volume: 35 start-page: 911 year: 2015 end-page: 935 ident: bib9 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming publication-title: A review. Agronomy for Sustainable Development – volume: 80 start-page: 70 year: 2015 end-page: 78 ident: bib2 article-title: Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils publication-title: Soil Biol. Biochem. – volume: 20 start-page: 519 year: 2010 end-page: 530 ident: bib29 article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services publication-title: Mycorrhiza – volume: 10 year: 2019 ident: bib38 article-title: Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis publication-title: Nat. Commun. – volume: 20 start-page: 241 year: 2016 end-page: 248 ident: bib60 article-title: FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol – volume: 16 start-page: 567 year: 2018 end-page: 576 ident: bib6 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. – volume: 92 start-page: 296 year: 2011 end-page: 303 ident: bib67 article-title: Soil microbes drive the classic plant diversity-productivity pattern publication-title: Ecology – volume: 8 year: 2018 ident: bib89 article-title: Agronomic and economic benefits of pea/maize intercropping systems in relation to N fertilizer and maize density publication-title: Agronomy – volume: 166 start-page: 1063 year: 2005 end-page: 1068 ident: bib42 article-title: UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi publication-title: New Phytol. – volume: 46 start-page: 1 year: 2012 end-page: 17 ident: bib44 article-title: Fast R functions for robust correlations and hierarchical clustering publication-title: J. Stat. Software – volume: 92 start-page: 18 year: 2015 end-page: 23 ident: bib81 article-title: Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability publication-title: Appl. Soil Ecol. – volume: 56 start-page: 3286 year: 2016 end-page: 3294 ident: bib94 article-title: Interspecific competition and complementation is a function of N management in maize-pea intercropping systems publication-title: Crop Sci. – volume: 13 start-page: 3093 year: 2019 end-page: 3101 ident: bib64 article-title: Root-associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff publication-title: ISME J. – volume: 29 start-page: 43 year: 2009 end-page: 62 ident: bib54 article-title: Mixing plant species in cropping systems: concepts, tools and models publication-title: A review. Agronomy for Sustainable Development – start-page: 10 year: 2014 ident: bib55 article-title: Network topology reveals high connectance levels and few key microbial genera within soils publication-title: Frontiers – volume: 58 start-page: 496 year: 2020 end-page: 506 ident: bib82 article-title: Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping publication-title: J. Appl. Ecol. – volume: 17 start-page: 215 year: 1990 end-page: 231 ident: bib86 article-title: Agricultural water management publication-title: Agric. Water Manage.Irrig. Sugarcane Assoc. Crops – volume: 15 start-page: 550 year: 2021 end-page: 561 ident: bib26 article-title: Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment publication-title: ISME J. – volume: 70 start-page: 23 year: 2015 end-page: 30 ident: bib63 article-title: Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils publication-title: Eur. J. Soil Biol. – volume: 13 start-page: 1722 year: 2019 end-page: 1736 ident: bib7 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: ISME J. – volume: 95 start-page: 171 year: 2015 end-page: 178 ident: bib72 article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle publication-title: Appl. Soil Ecol. – volume: 98 start-page: 917 year: 2006 end-page: 925 ident: bib33 article-title: A phylogenetic overview of the Agaricomycotina publication-title: Mycologia – volume: 478 start-page: 337 year: 2011 end-page: 342 ident: bib28 article-title: Solutions for a cultivated planet publication-title: Nature – volume: 10 start-page: 1891 year: 2016 end-page: 1901 ident: bib52 article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China publication-title: ISME J. – volume: 326 start-page: 1115 year: 2009 end-page: 1117 ident: bib30 article-title: A first-generation haplotype map of maize publication-title: Science – volume: 404 year: 2021 ident: bib50 article-title: Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria publication-title: Geoderma – volume: 108 start-page: 20260 year: 2011 end-page: 20264 ident: bib75 article-title: Global food demand and the sustainable intensification of agriculture publication-title: P Natl Acad Sci USA – volume: 30 start-page: 40 year: 2020 end-page: 61 ident: bib31 article-title: Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review publication-title: Pedosphere – volume: 119 year: 2020 ident: bib36 article-title: Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas publication-title: Eur. J. Agron. – volume: 58 start-page: 45 year: 2012 end-page: 55 ident: bib59 article-title: Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system publication-title: Appl. Soil Ecol. – volume: Part 1 start-page: 161 year: 2015 end-page: 199 ident: bib35 publication-title: Towards an Integration of Biodiversity–Ecosystem Functioning and Food Web Theory to Evaluate Relationships between Multiple Ecosystem Services – year: 2018 ident: bib23 article-title: Ecological Drivers of Soil Microbial Diversity and Soil Biological Networks in the Southern Hemisphere – volume: 18 start-page: 607 year: 2020 end-page: 621 ident: bib78 article-title: Plant-microbiome interactions: from community assembly to plant health publication-title: Nat. Rev. Microbiol. – volume: 514 start-page: 486 year: 2014 end-page: 489 ident: bib19 article-title: Producing more grain with lower environmental costs publication-title: Nature – volume: 6 start-page: 610 year: 2012 end-page: 618 ident: bib57 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J. – volume: 141 year: 2020 ident: bib25 article-title: Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment publication-title: Soil Biol. Biochem. – volume: 6 start-page: 170 year: 2018 ident: bib87 article-title: Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe publication-title: Microbiome – volume: 220 start-page: 1108 year: 2018 end-page: 1115 ident: bib14 article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity publication-title: New Phytol. – volume: 98 start-page: 302 year: 2006 end-page: 319 ident: bib20 article-title: Green manure approaches to crop production: a synthesis publication-title: Agron. J. – year: 2009 ident: bib40 article-title: The rediscovery of intercropping in China: a traditional cropping system for future Chinese agriculture – a review publication-title: Climate Change, Intercropping, Pest Control and Beneficial Microorganisms – volume: 240 start-page: 148 year: 2017 end-page: 161 ident: bib24 article-title: Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms publication-title: A review. Agriculture, Ecosystems & Environment – volume: 111 start-page: 10 year: 2017 end-page: 14 ident: bib77 article-title: Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems publication-title: Soil Biol. Biochem. – volume: 10 year: 2019 ident: bib10 article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance publication-title: Front. Plant Sci. – year: 2008 ident: bib69 article-title: Mycorrhizal Symbiosis – volume: 11 start-page: 296 year: 2008 end-page: 310 ident: bib79 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. – volume: 59 start-page: 671 year: 2007 end-page: 682 ident: bib43 article-title: Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants publication-title: FEMS Microbiol. Ecol. – volume: 11 start-page: 13 year: 2021 ident: bib16 article-title: Soil microbial activity and biomass in semiarid agroforestry systems integrating forage cactus and tree legumes publication-title: Agronomy-Basel – volume: 57 start-page: 897 year: 2021 end-page: 911 ident: bib93 article-title: Theory of microbial coexistence in promoting soil–plant ecosystem health publication-title: Biol. Fertil. Soils – volume: 31 start-page: 882 year: 2018 end-page: 890 ident: bib68 article-title: Soil microbiological activity and productivity of maize fodder with legumes and manure doses publication-title: Rev Caatinga – volume: 165 year: 2021 ident: bib32 article-title: Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China publication-title: Appl. Soil Ecol. – volume: 198 year: 2020 ident: bib62 article-title: Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil publication-title: Soil Tillage Res. – volume: 112 start-page: 42 year: 2017 end-page: 50 ident: bib83 article-title: Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil publication-title: Appl. Soil Ecol. – volume: 9 year: 2021 ident: bib88 article-title: Specialized metabolic functions of keystone taxa sustain soil microbiome stability publication-title: Microbiome – volume: 167 year: 2021 ident: bib92 article-title: Nitrogen fertilization has a stronger influence than cropping pattern on AMF community in maize/soybean strip intercropping systems publication-title: Appl. Soil Ecol. – volume: 374 start-page: 523 year: 2014 end-page: 537 ident: bib46 article-title: Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis publication-title: Plant Soil – volume: 385 start-page: 181 year: 2014 end-page: 191 ident: bib45 article-title: The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil publication-title: Plant Soil – volume: vol. 34 start-page: 1 year: 2014 end-page: 20 ident: bib85 publication-title: Agroecological Practices for Sustainable Agriculture. A Review – volume: 37 start-page: 746 year: 2007 end-page: 752 ident: bib1 article-title: Incidence of infections dues to Escherichia coli strains producing extended spectrum betalactamase, in the Zou/Collines Hospital Centre (CHDZ/C) in Benin publication-title: Med. Maladies Infect. – start-page: 83 year: 2013 end-page: 151 ident: bib47 article-title: Advances in Understanding Organic Nitrogen Chemistry in Soils Using State-Of-The-Art Analytical Techniques – volume: 74 start-page: 19 year: 1999 end-page: 31 ident: bib3 article-title: The ecological role of biodiversity in agroecosystems publication-title: Agric. Ecosyst. Environ. – volume: 13 year: 2021 ident: bib8 article-title: Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects publication-title: Sustainability-Basel – volume: 28 start-page: 30528 year: 2021 end-page: 30550 ident: bib15 article-title: Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management publication-title: Environ Sci Pollut R – volume: 65 start-page: 578 year: 2015 end-page: 586 ident: bib53 article-title: Arachidicoccus rhizosphaerae gen. nov., sp nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil publication-title: Int. J. Syst. Evol. Microbiol. – volume: 75 start-page: 2046 year: 2009 end-page: 2056 ident: bib84 article-title: Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils publication-title: Appl. Environ. Microbiol. – volume: vol. 314 year: 2021 ident: bib91 publication-title: Structure of Rhizospheric Microbial Community and N Cycling Functional Gene Shifts with Reduced N Input in Sugarcane-Soybean Intercropping in South China – volume: 9 start-page: 119 year: 2011 end-page: 130 ident: bib48 article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy publication-title: Nat. Rev. Microbiol. – volume: 10 year: 2021 ident: bib58 article-title: Impacts of land use, population, and climate change on global food security publication-title: Food and Energy Security – volume: 10 year: 2020 ident: bib73 article-title: Maize‐based intercropping systems achieve higher productivity and profitability with lesser environmental footprint in a water‐scarce region of northwest China publication-title: Food and Energy Security – volume: 4 start-page: 210 year: 2020 end-page: 220 ident: bib22 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nature Ecology & Evolution – year: 2013 ident: bib12 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: JoVE – volume: 203 start-page: 233 year: 2014 end-page: 244 ident: bib34 article-title: Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass publication-title: New Phytol. – volume: 37 start-page: 73 year: 2003 end-page: 82 ident: bib4 article-title: Cereal/legume rotation effects on rhizosphere bacterial community structure in west african soils publication-title: Biol. Fertil. Soils – volume: 98 start-page: 1 year: 2013 end-page: 14 ident: bib5 article-title: Contribution of relay intercropping with legume cover crops on nitrogen dynamics in organic grain systems publication-title: Nutrient Cycl. Agroecosyst. – volume: 7 year: 2012 ident: bib37 article-title: Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes publication-title: PLoS One – start-page: 166 year: 2017 ident: bib90 article-title: Reducing carbon emissions and enhancing crop productivity through strip intercropping with im proved agricultural practices in an arid area publication-title: J. Clean. Prod. – start-page: 189 year: 2015 end-page: 245 ident: bib51 article-title: Generic concepts in Nectriaceae publication-title: Stud. Mycol. – volume: 2 start-page: 233 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib18 article-title: Potential of indigenous crop microbiomes for sustainable agriculture publication-title: Nature Food doi: 10.1038/s43016-021-00253-5 – volume: 385 start-page: 181 year: 2014 ident: 10.1016/j.jenvman.2022.115859_bib45 article-title: The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil publication-title: Plant Soil doi: 10.1007/s11104-014-2214-6 – volume: 166 start-page: 1063 year: 2005 ident: 10.1016/j.jenvman.2022.115859_bib42 article-title: UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01376.x – volume: 240 start-page: 148 year: 2017 ident: 10.1016/j.jenvman.2022.115859_bib24 article-title: Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms publication-title: A review. Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2017.02.019 – volume: 8 year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib89 article-title: Agronomic and economic benefits of pea/maize intercropping systems in relation to N fertilizer and maize density publication-title: Agronomy doi: 10.3390/agronomy8040052 – start-page: 10 year: 2014 ident: 10.1016/j.jenvman.2022.115859_bib55 article-title: Network topology reveals high connectance levels and few key microbial genera within soils publication-title: Frontiers – volume: 10 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib58 article-title: Impacts of land use, population, and climate change on global food security publication-title: Food and Energy Security doi: 10.1002/fes3.261 – volume: 75 start-page: 2046 year: 2009 ident: 10.1016/j.jenvman.2022.115859_bib84 article-title: Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02294-08 – volume: 6 start-page: 170 year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib87 article-title: Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe publication-title: Microbiome doi: 10.1186/s40168-018-0544-y – volume: 28 start-page: 30528 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib15 article-title: Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management publication-title: Environ Sci Pollut R doi: 10.1007/s11356-021-14127-7 – volume: 10 start-page: 1891 year: 2016 ident: 10.1016/j.jenvman.2022.115859_bib52 article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China publication-title: ISME J. doi: 10.1038/ismej.2015.261 – volume: 288 year: 2022 ident: 10.1016/j.jenvman.2022.115859_bib11 article-title: The dichotomy of nanotechnology as the cutting edge of agriculture: nano-farming as an asset versus nanotoxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132533 – volume: 11 start-page: 13 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib16 article-title: Soil microbial activity and biomass in semiarid agroforestry systems integrating forage cactus and tree legumes publication-title: Agronomy-Basel – volume: 10 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib10 article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01068 – volume: 98 start-page: 917 year: 2006 ident: 10.1016/j.jenvman.2022.115859_bib33 article-title: A phylogenetic overview of the Agaricomycotina publication-title: Mycologia doi: 10.1080/15572536.2006.11832621 – year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib49 article-title: The roles and performance of arbuscular mycorrhizal fungi in intercropping systems publication-title: Soil Ecol Lett – volume: 95 start-page: 171 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib72 article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.06.010 – volume: 13 start-page: 1776 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib61 article-title: Soil microbial responses to drought and exotic plants shift carbon metabolism publication-title: ISME J. doi: 10.1038/s41396-019-0389-9 – volume: 20 start-page: 519 year: 2010 ident: 10.1016/j.jenvman.2022.115859_bib29 article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services publication-title: Mycorrhiza doi: 10.1007/s00572-010-0333-3 – volume: 9 start-page: 119 year: 2011 ident: 10.1016/j.jenvman.2022.115859_bib48 article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2504 – year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib71 article-title: The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics publication-title: New Phytol. doi: 10.1111/nph.15076 – year: 2013 ident: 10.1016/j.jenvman.2022.115859_bib12 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: JoVE doi: 10.3791/50961-v – volume: 18 start-page: 607 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib78 article-title: Plant-microbiome interactions: from community assembly to plant health publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0412-1 – start-page: 166 year: 2017 ident: 10.1016/j.jenvman.2022.115859_bib90 article-title: Reducing carbon emissions and enhancing crop productivity through strip intercropping with im proved agricultural practices in an arid area publication-title: J. Clean. Prod. – volume: 74 start-page: 19 year: 1999 ident: 10.1016/j.jenvman.2022.115859_bib3 article-title: The ecological role of biodiversity in agroecosystems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(99)00028-6 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.jenvman.2022.115859_bib17 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – volume: 92 start-page: 296 year: 2011 ident: 10.1016/j.jenvman.2022.115859_bib67 article-title: Soil microbes drive the classic plant diversity-productivity pattern publication-title: Ecology doi: 10.1890/10-0773.1 – volume: 326 start-page: 1115 year: 2009 ident: 10.1016/j.jenvman.2022.115859_bib30 article-title: A first-generation haplotype map of maize publication-title: Science doi: 10.1126/science.1177837 – volume: 119 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib36 article-title: Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126117 – volume: 35 start-page: 453 year: 2003 ident: 10.1016/j.jenvman.2022.115859_bib56 article-title: Structure and function of the soil microbial community in a long-term fertilizer experiment publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00297-3 – volume: 17 start-page: 215 year: 1990 ident: 10.1016/j.jenvman.2022.115859_bib86 article-title: Agricultural water management publication-title: Agric. Water Manage.Irrig. Sugarcane Assoc. Crops doi: 10.1016/0378-3774(90)90069-B – volume: 3 start-page: 77 year: 2012 ident: 10.1016/j.jenvman.2022.115859_bib66 article-title: An agricultural pollutant: chemical fertilizer publication-title: Int. J. Environ. Sustain Dev. – volume: 9 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib88 article-title: Specialized metabolic functions of keystone taxa sustain soil microbiome stability publication-title: Microbiome doi: 10.1186/s40168-020-00985-9 – volume: 37 start-page: 73 year: 2003 ident: 10.1016/j.jenvman.2022.115859_bib4 article-title: Cereal/legume rotation effects on rhizosphere bacterial community structure in west african soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-002-0573-2 – volume: 10 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib38 article-title: Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13036-1 – volume: 70 start-page: 23 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib63 article-title: Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2015.06.005 – volume: vol. 314 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib91 – volume: 268 start-page: 24 year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib95 article-title: Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2018.09.001 – volume: 141 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib25 article-title: Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107679 – volume: Part 1 start-page: 161 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib35 – volume: 80 start-page: 70 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib2 article-title: Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.09.028 – volume: 58 start-page: 45 year: 2012 ident: 10.1016/j.jenvman.2022.115859_bib59 article-title: Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.03.008 – volume: 56 start-page: 3286 year: 2016 ident: 10.1016/j.jenvman.2022.115859_bib94 article-title: Interspecific competition and complementation is a function of N management in maize-pea intercropping systems publication-title: Crop Sci. doi: 10.2135/cropsci2016.03.0204 – volume: 57 start-page: 897 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib93 article-title: Theory of microbial coexistence in promoting soil–plant ecosystem health publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-021-01586-w – volume: 46 start-page: 1 year: 2012 ident: 10.1016/j.jenvman.2022.115859_bib44 article-title: Fast R functions for robust correlations and hierarchical clustering publication-title: J. Stat. Software doi: 10.18637/jss.v046.i11 – volume: 29 start-page: 43 year: 2009 ident: 10.1016/j.jenvman.2022.115859_bib54 article-title: Mixing plant species in cropping systems: concepts, tools and models publication-title: A review. Agronomy for Sustainable Development doi: 10.1051/agro:2007057 – year: 2008 ident: 10.1016/j.jenvman.2022.115859_bib69 – volume: 111 start-page: 10 year: 2017 ident: 10.1016/j.jenvman.2022.115859_bib77 article-title: Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.03.013 – volume: 167 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib92 article-title: Nitrogen fertilization has a stronger influence than cropping pattern on AMF community in maize/soybean strip intercropping systems publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2021.104034 – volume: 59 start-page: 671 year: 2007 ident: 10.1016/j.jenvman.2022.115859_bib43 article-title: Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2006.00251.x – volume: 404 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib50 article-title: Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115287 – volume: vol. 106 year: 2009 ident: 10.1016/j.jenvman.2022.115859_bib39 – volume: 571 start-page: 257 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib65 article-title: National food production stabilized by crop diversity publication-title: Nature doi: 10.1038/s41586-019-1316-y – volume: 6 start-page: 610 year: 2012 ident: 10.1016/j.jenvman.2022.115859_bib57 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J. doi: 10.1038/ismej.2011.139 – volume: 13 start-page: 3093 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib64 article-title: Root-associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff publication-title: ISME J. doi: 10.1038/s41396-019-0501-1 – volume: 514 start-page: 486 year: 2014 ident: 10.1016/j.jenvman.2022.115859_bib19 article-title: Producing more grain with lower environmental costs publication-title: Nature doi: 10.1038/nature13609 – volume: 13 start-page: 511 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib21 article-title: Segmented continuous-flow analyses of nutrient in seawater: intralaboratory comparison of technicon AutoAnalyzer II and bran plus luebbe continuous flow AutoAnalyzer III publication-title: Limnol Oceanogr. Methods doi: 10.1002/lom3.10035 – volume: 374 start-page: 523 year: 2014 ident: 10.1016/j.jenvman.2022.115859_bib46 article-title: Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis publication-title: Plant Soil doi: 10.1007/s11104-013-1899-2 – volume: 30 start-page: 40 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib31 article-title: Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60839-8 – volume: 10 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib73 article-title: Maize‐based intercropping systems achieve higher productivity and profitability with lesser environmental footprint in a water‐scarce region of northwest China publication-title: Food and Energy Security – volume: 35 start-page: 911 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib9 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming publication-title: A review. Agronomy for Sustainable Development doi: 10.1007/s13593-014-0277-7 – volume: 13 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib8 article-title: Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects publication-title: Sustainability-Basel – volume: 47 start-page: 63 year: 2009 ident: 10.1016/j.jenvman.2022.115859_bib41 article-title: Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080508-081729 – volume: 198 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib62 article-title: Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104569 – year: 2009 ident: 10.1016/j.jenvman.2022.115859_bib40 article-title: The rediscovery of intercropping in China: a traditional cropping system for future Chinese agriculture – a review publication-title: Climate Change, Intercropping, Pest Control and Beneficial Microorganisms doi: 10.1007/978-90-481-2716-0_3 – volume: 16 start-page: 567 year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib6 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0024-1 – year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib23 – volume: 478 start-page: 337 year: 2011 ident: 10.1016/j.jenvman.2022.115859_bib28 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 58 start-page: 496 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib82 article-title: Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13802 – volume: 112 start-page: 42 year: 2017 ident: 10.1016/j.jenvman.2022.115859_bib83 article-title: Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.01.005 – volume: 220 start-page: 1108 year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib14 article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity publication-title: New Phytol. doi: 10.1111/nph.14976 – volume: 20 start-page: 241 year: 2016 ident: 10.1016/j.jenvman.2022.115859_bib60 article-title: FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol doi: 10.1016/j.funeco.2015.06.006 – volume: vol. 34 start-page: 1 year: 2014 ident: 10.1016/j.jenvman.2022.115859_bib85 – volume: 33 start-page: 1524 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib80 article-title: Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13351 – volume: 92 start-page: 18 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib81 article-title: Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.03.006 – volume: 108 start-page: 20260 year: 2011 ident: 10.1016/j.jenvman.2022.115859_bib75 article-title: Global food demand and the sustainable intensification of agriculture publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1116437108 – volume: 203 start-page: 233 year: 2014 ident: 10.1016/j.jenvman.2022.115859_bib34 article-title: Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass publication-title: New Phytol. doi: 10.1111/nph.12765 – volume: 11 start-page: 296 year: 2008 ident: 10.1016/j.jenvman.2022.115859_bib79 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01139.x – volume: 37 start-page: 746 year: 2007 ident: 10.1016/j.jenvman.2022.115859_bib1 article-title: Incidence of infections dues to Escherichia coli strains producing extended spectrum betalactamase, in the Zou/Collines Hospital Centre (CHDZ/C) in Benin publication-title: Med. Maladies Infect. doi: 10.1016/j.medmal.2007.03.004 – start-page: 189 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib51 article-title: Generic concepts in Nectriaceae publication-title: Stud. Mycol. doi: 10.1016/j.simyco.2014.12.002 – volume: 418 start-page: 671 year: 2002 ident: 10.1016/j.jenvman.2022.115859_bib76 article-title: Agricultural sustainability and intensive production practices publication-title: Nature doi: 10.1038/nature01014 – volume: 98 start-page: 1 year: 2013 ident: 10.1016/j.jenvman.2022.115859_bib5 article-title: Contribution of relay intercropping with legume cover crops on nitrogen dynamics in organic grain systems publication-title: Nutrient Cycl. Agroecosyst. doi: 10.1007/s10705-013-9591-8 – volume: 13 start-page: 1722 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib7 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: ISME J. doi: 10.1038/s41396-019-0383-2 – start-page: 83 year: 2013 ident: 10.1016/j.jenvman.2022.115859_bib47 – year: 2005 ident: 10.1016/j.jenvman.2022.115859_bib27 article-title: Global consequences of land use: connecting issues, connecting scales publication-title: Science doi: 10.1126/science.1111772 – volume: 157 start-page: 251 year: 2019 ident: 10.1016/j.jenvman.2022.115859_bib70 article-title: Optimized agronomic management as a double-win option for higher maize productivity and less global warming intensity: a case study of Northeastern China publication-title: Adv. Agron. doi: 10.1016/bs.agron.2019.04.002 – volume: 15 start-page: 550 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib26 article-title: Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment publication-title: ISME J. doi: 10.1038/s41396-020-00796-8 – volume: 65 start-page: 578 year: 2015 ident: 10.1016/j.jenvman.2022.115859_bib53 article-title: Arachidicoccus rhizosphaerae gen. nov., sp nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.069377-0 – volume: 4 start-page: 210 year: 2020 ident: 10.1016/j.jenvman.2022.115859_bib22 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nature Ecology & Evolution doi: 10.1038/s41559-019-1084-y – volume: 165 year: 2021 ident: 10.1016/j.jenvman.2022.115859_bib32 article-title: Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2021.103966 – volume: 101 start-page: 1289 year: 2017 ident: 10.1016/j.jenvman.2022.115859_bib74 article-title: Maize growth responses to soil microbes and soil properties after fertilization with different green manures publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7938-1 – volume: 98 start-page: 302 year: 2006 ident: 10.1016/j.jenvman.2022.115859_bib20 article-title: Green manure approaches to crop production: a synthesis publication-title: Agron. J. doi: 10.2134/agronj2005.0035 – volume: 7 year: 2012 ident: 10.1016/j.jenvman.2022.115859_bib37 article-title: Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes publication-title: PLoS One doi: 10.1371/journal.pone.0052069 – volume: 31 start-page: 882 year: 2018 ident: 10.1016/j.jenvman.2022.115859_bib68 article-title: Soil microbiological activity and productivity of maize fodder with legumes and manure doses publication-title: Rev Caatinga doi: 10.1590/1983-21252018v31n410rc – volume: 17 start-page: 478 year: 2012 ident: 10.1016/j.jenvman.2022.115859_bib13 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.04.001 |
SSID | ssj0003217 |
Score | 2.5914078 |
Snippet | Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115859 |
SubjectTerms | Agricultural sustainability China community structure continuous cropping corn crop yield environmental management enzymes fertilizers field experimentation Green manure green manures Maize microbial communities Microbial community oases phylotype plant growth-promoting rhizobacteria Soil amendment soil fertility soil pH soil quality structural equation modeling sustainable agriculture vesicular arbuscular mycorrhizae |
Title | Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China |
URI | https://dx.doi.org/10.1016/j.jenvman.2022.115859 https://www.proquest.com/docview/2704868720 https://www.proquest.com/docview/2718357399 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0hONBL1UJRoRQNUq9OHHud9R4jBAoguLRI3Fbj3TVyRJwoDpXSA3-Fv8qMP4haCZB6iGQnu5GV2Zl52Z33RogfNve5ViEGjrBrIBGHASYpBuRbNo-HnNWZO3x1PRzfyIvb5HZDnHRcGC6rbGN_E9PraN2-029_zf68KPo_638DSqsoYo26iBU_pVS8ynuP6zKPOKq77vJg3kVSaxZPf9Kb-PL3FFkGNYooeBB01q_lp38idZ1-zj6Jjy1uhFHzaJ_Fhi93xHZHK652xN7pmrJGA1ufrXbF04gPxClDwbSoVZfoU9vQQpYrIMwKRbexANWsuIc5788vWGgVsHSAd4sXfQ6oOr4Vl9SuoCE5AgKF2RX5DEyx-OODOy7moWsmIQMLUiy4URgzs-gO6qMiVmiAunn3F3FzdvrrZBy0bRkCS9hpGQwsS-Rnymc2z3TsCFJ4zJGuU5SZdzjUWR7GCYahH9BLu5iAiMOBy53TmYz3xGY5K_1XAV7H1nqtHeVPQnIZ2lTS16YyjTHR2u8L2RnD2FaznFtn3JuuOG1iWhsatqFpbLgvei_T5o1ox3sT0s7S5q_VZyixvDf1uFsZhjyTj1uw9LOHykSK5QxTFYVvjaGQmihCiQf__wjfxAe-axiSh2JzuXjw3wkqLbOj2heOxNbo_HJ8_Qzr3BqK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VcigXBIWKtnwMElcnjteOvceqahWg7YVW6m013l1XjhonilOk9MBf4a8y449GIEElDpGceNexMp6Zl915bwA-2cIXOg0pcIxdg5hoHFCSUcC-ZQs1lqwu3OHzi_HkKv5ynVxvwXHPhZGyyi72tzG9idbdJ8Pu1xwuynL4rfk3kOo0ikSjLlJP4GnMXyFtDAY_NnUeKmra7spoWUZKNzSe4XQw9dX3GYkOahRx9GDsrP-WoP4I1U3-OX0BzzvgiEftvb2ELV_twk7PK653Ye9kw1njgZ3T1q_g55HsiHOKwlnZyC7xWdvyQlZrZNCKZb-ygPW8vMWFLNAvRWkVqXJIN8sHgQ6se8KV1NSusWU5IiHH2TU7Dc6ovPfBjVTz8LGwkFEUKZbSKUyoWfwOm70ikWjApnv3a7g6Pbk8ngRdX4bAMnhaBSMrGvl56nNb5Fo5xhSeCuLjjOLcOxrrvAhVQmHoR_zSTjEScTRyhXM6j9UebFfzyr8B9FpZ67V2nEAZyuVks5gvm8WZokRrvw9xbwxjO9Fy6Z1xa_rqtKnpbGjEhqa14T4MHqYtWtWOxyZkvaXNb4-f4czy2NSP_ZNh2DVlv4UqP7-rTZSKnmGWRuG_xnBMTVKGiQf_fwsfYGdyeX5mzj5ffD2EZ3KmpUu-he3V8s6_Y9y0yt83fvELLAgcGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altering+microbial+community+for+improving+soil+properties+and+agricultural+sustainability+during+a+10-year+maize-green+manure+intercropping+in+Northwest+China&rft.jtitle=Journal+of+environmental+management&rft.au=Ablimit%2C+Ruxangul&rft.au=Li%2C+Weikun&rft.au=Zhang%2C+Jiudong&rft.au=Gao%2C+Haining&rft.date=2022-11-01&rft.issn=0301-4797&rft.volume=321+p.115859-&rft_id=info:doi/10.1016%2Fj.jenvman.2022.115859&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |