Linkage conversions in single-crystalline covalent organic frameworks
Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially s...
Saved in:
Published in | Nature chemistry Vol. 16; no. 1; pp. 114 - 121 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the
c
axis (
α
c
= +491 × 10
–6
K
–1
), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10
−2
S cm
−1
.
Covalent organic frameworks offer a highly tunable class of materials for a range of applications, although their dynamic structural transformations are challenging to analyse. Now single-crystal X-ray diffraction is shown to demonstrate single-crystal-to-single-crystal transformations of the imine linkages, showing a well-defined interpenetrating topology and affording structures that have high positive thermal expansion and anhydrous proton-conduction properties. |
---|---|
AbstractList | Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1.Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1. Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10–6 K–1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10−2 S cm−1.Covalent organic frameworks offer a highly tunable class of materials for a range of applications, although their dynamic structural transformations are challenging to analyse. Now single-crystal X-ray diffraction is shown to demonstrate single-crystal-to-single-crystal transformations of the imine linkages, showing a well-defined interpenetrating topology and affording structures that have high positive thermal expansion and anhydrous proton-conduction properties. Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (α = +491 × 10 K ), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10 S cm . Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis ( α c = +491 × 10 –6 K –1 ), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10 −2 S cm −1 . Covalent organic frameworks offer a highly tunable class of materials for a range of applications, although their dynamic structural transformations are challenging to analyse. Now single-crystal X-ray diffraction is shown to demonstrate single-crystal-to-single-crystal transformations of the imine linkages, showing a well-defined interpenetrating topology and affording structures that have high positive thermal expansion and anhydrous proton-conduction properties. |
Author | Zhang, Zhenguo Wang, Kang Li, Qian-Wen Liu, Xiaolin Wang, Hailong Yu, Baoqiu Jin, Yucheng Wu, Hui Zhou, Wei Chen, Banglin Jiang, Jianzhuang Li, Jing-Hong Lin, Rui-Biao Lu, Shanfu Fu, Zhi-Hua Yan, Zier Xu, Gang |
Author_xml | – sequence: 1 givenname: Baoqiu orcidid: 0000-0003-3379-7581 surname: Yu fullname: Yu, Baoqiu organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing – sequence: 2 givenname: Rui-Biao orcidid: 0000-0003-3267-220X surname: Lin fullname: Lin, Rui-Biao organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University – sequence: 3 givenname: Gang orcidid: 0000-0001-8562-0724 surname: Xu fullname: Xu, Gang organization: State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 4 givenname: Zhi-Hua surname: Fu fullname: Fu, Zhi-Hua organization: State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 5 givenname: Hui orcidid: 0000-0003-0296-5204 surname: Wu fullname: Wu, Hui organization: Center for Neutron Research, National Institute of Standards and Technology – sequence: 6 givenname: Wei orcidid: 0000-0002-5461-3617 surname: Zhou fullname: Zhou, Wei organization: Center for Neutron Research, National Institute of Standards and Technology – sequence: 7 givenname: Shanfu surname: Lu fullname: Lu, Shanfu organization: Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University – sequence: 8 givenname: Qian-Wen surname: Li fullname: Li, Qian-Wen organization: State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 9 givenname: Yucheng orcidid: 0000-0002-7008-4938 surname: Jin fullname: Jin, Yucheng organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing – sequence: 10 givenname: Jing-Hong surname: Li fullname: Li, Jing-Hong organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University – sequence: 11 givenname: Zhenguo surname: Zhang fullname: Zhang, Zhenguo organization: Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University – sequence: 12 givenname: Hailong orcidid: 0000-0002-0138-2966 surname: Wang fullname: Wang, Hailong email: hlwang@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing – sequence: 13 givenname: Zier surname: Yan fullname: Yan, Zier organization: Rigaku Beijing Corporation – sequence: 14 givenname: Xiaolin surname: Liu fullname: Liu, Xiaolin organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing – sequence: 15 givenname: Kang orcidid: 0000-0001-9405-5499 surname: Wang fullname: Wang, Kang organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing – sequence: 16 givenname: Banglin orcidid: 0000-0001-8707-8115 surname: Chen fullname: Chen, Banglin email: banglin.chen@fjnu.edu.cn organization: Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University – sequence: 17 givenname: Jianzhuang orcidid: 0000-0003-0454-9685 surname: Jiang fullname: Jiang, Jianzhuang email: jianzhuang@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37723258$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PAjEYhBuDEUH_gAeziRcvq_1uORqCHwmJFz033dIlhaXFdsHw7y0CmnDg1DfNM5PJTA90fPAWgBsEHxAk8jFRxJgoISYlRITQUpyBSyQYKymhg87fTWAX9FKaQcgZQfwCdIkQmGAmL8Fo7PxcT21hgl_bmFzwqXC-SM5PG1uauEmtbhrnt8RaN9a3RYhT7Z0p6qgX9jvEeboC57Vukr3ev33w-Tz6GL6W4_eXt-HTuDSUorbMcSk3gjNOB3LCjIUVp1wijEkNJcOy5pWRFg5gVZltwIngZoAQzt_aVpD0wf3OdxnD18qmVi1cMrZptLdhlRSWnBMhsRQZvTtCZ2EVfU6ncLbkPPfCMnW7p1bVwk7UMrqFjht1KCgDcgeYGFKKtlbGtbrNNbVRu0YhqLZbqN0WKm-hfrdQ2wT4SHpwPykiO1HKsJ_a-B_7hOoHwVaaFg |
CitedBy_id | crossref_primary_10_1038_s41467_024_54235_9 crossref_primary_10_1002_anie_202414566 crossref_primary_10_1021_jacs_4c05705 crossref_primary_10_1021_acs_chemmater_4c01292 crossref_primary_10_1002_ange_202423220 crossref_primary_10_1002_smll_202402486 crossref_primary_10_1021_jacs_3c13244 crossref_primary_10_1016_j_cej_2025_160788 crossref_primary_10_1016_j_jhazmat_2024_135236 crossref_primary_10_1007_s11426_023_1853_x crossref_primary_10_1039_D4QI01226G crossref_primary_10_1002_ange_202421555 crossref_primary_10_1002_adfm_202401362 crossref_primary_10_1016_j_cclet_2024_110294 crossref_primary_10_1002_ange_202423458 crossref_primary_10_1021_jacs_5c00458 crossref_primary_10_1038_s44160_024_00719_x crossref_primary_10_1002_anie_202420333 crossref_primary_10_1002_anie_202423205 crossref_primary_10_1002_anie_202421661 crossref_primary_10_1016_j_ccr_2024_216068 crossref_primary_10_1021_jacs_4c14535 crossref_primary_10_1007_s11426_024_2300_8 crossref_primary_10_1002_anie_202405313 crossref_primary_10_1016_j_matlet_2025_138372 crossref_primary_10_1021_jacs_3c09001 crossref_primary_10_1016_j_micron_2024_103595 crossref_primary_10_1002_ange_202420333 crossref_primary_10_1002_anie_202501875 crossref_primary_10_1002_ange_202423205 crossref_primary_10_1038_s41467_024_55729_2 crossref_primary_10_1021_acs_inorgchem_4c05080 crossref_primary_10_1002_ange_202401014 crossref_primary_10_1038_s41467_025_56750_9 crossref_primary_10_1039_D3CS00866E crossref_primary_10_1107_S2052252524003713 crossref_primary_10_1002_ange_202421661 crossref_primary_10_1002_aoc_70092 crossref_primary_10_1021_jacs_3c13069 crossref_primary_10_1021_acs_accounts_4c00061 crossref_primary_10_1021_jacs_3c14833 crossref_primary_10_1039_D4SC06300G crossref_primary_10_1002_anie_202419047 crossref_primary_10_1039_D4SC00656A crossref_primary_10_1002_ange_202414566 crossref_primary_10_1016_j_mattod_2024_12_003 crossref_primary_10_1016_S1872_2067_24_60196_8 crossref_primary_10_1016_j_ccr_2024_216404 crossref_primary_10_1021_acsami_4c15460 crossref_primary_10_1002_ange_202501875 crossref_primary_10_1002_asia_202401856 crossref_primary_10_1021_jacs_4c10071 crossref_primary_10_1038_s41557_024_01690_y crossref_primary_10_1021_prechem_4c00019 crossref_primary_10_1002_anie_202401014 crossref_primary_10_1039_D4QI02121E crossref_primary_10_1002_chem_202404423 crossref_primary_10_1016_j_chroma_2025_465681 crossref_primary_10_1016_j_cej_2024_151628 crossref_primary_10_1039_D4TA07994A crossref_primary_10_1002_adfm_202404289 crossref_primary_10_1016_j_ensm_2024_103931 crossref_primary_10_1021_jacs_4c16485 crossref_primary_10_1016_j_matt_2024_06_012 crossref_primary_10_1021_jacs_4c13377 crossref_primary_10_1002_ange_202405313 crossref_primary_10_1039_D4CC03708A crossref_primary_10_1039_D4NR03204G crossref_primary_10_1038_s41467_025_56307_w crossref_primary_10_1038_s41557_024_01527_8 crossref_primary_10_1021_jacs_4c06049 crossref_primary_10_1016_j_chempr_2024_03_011 crossref_primary_10_1038_s41467_024_52487_z crossref_primary_10_1002_smll_202409238 crossref_primary_10_1002_smll_202411954 crossref_primary_10_1021_jacs_4c14458 crossref_primary_10_1093_nsr_nwae396 crossref_primary_10_1021_acsami_4c06179 crossref_primary_10_1016_j_rineng_2024_103076 crossref_primary_10_1016_j_seppur_2024_129701 crossref_primary_10_1002_adfm_202422291 crossref_primary_10_1002_ange_202419047 crossref_primary_10_1021_jacs_4c08918 crossref_primary_10_1002_anie_202423458 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1002_anie_202421555 crossref_primary_10_1002_ejic_202400435 crossref_primary_10_1002_anie_202405426 crossref_primary_10_1021_jacs_4c09680 crossref_primary_10_1039_D4EE00520A crossref_primary_10_1002_ange_202403599 crossref_primary_10_1016_j_cej_2025_161018 crossref_primary_10_1021_acssuschemeng_4c05020 crossref_primary_10_1002_ange_202501391 crossref_primary_10_1016_j_ccr_2025_216507 crossref_primary_10_1016_j_cclet_2024_110590 crossref_primary_10_1021_acs_cgd_3c01427 crossref_primary_10_1002_adfm_202408778 crossref_primary_10_1021_acsami_4c11616 crossref_primary_10_1002_anie_202423220 crossref_primary_10_1016_j_chempr_2024_102398 crossref_primary_10_1002_anie_202403599 crossref_primary_10_1038_s41467_024_44899_8 crossref_primary_10_1002_ange_202405426 crossref_primary_10_1021_jacs_4c11880 crossref_primary_10_1002_anie_202501391 crossref_primary_10_1002_adfm_202415629 crossref_primary_10_1039_D4QO02211D |
Cites_doi | 10.1002/anie.202207043 10.1021/cr400392k 10.1002/anie.202101400 10.1021/ja4051668 10.1039/D0CS00552E 10.1126/science.aal1585 10.1038/nchem.2444 10.1126/science.1151442 10.1002/anie.201804753 10.1126/science.aat7679 10.1038/nchem.2008 10.1039/C4CS00093E 10.1038/s41586-019-1661-x 10.1021/jacs.0c06474 10.1039/D0CS00176G 10.1107/S2053273314019950 10.6084/m9.figshare.20446014 10.1038/s41557-020-00562-5 10.1126/science.1230444 10.1021/jacs.9b09502 10.1016/j.chempr.2018.05.003 10.1002/anie.201909977 10.1039/C8CS00155C 10.1126/science.abd6406 10.1038/s41563-021-01052-w 10.1021/acs.chemrev.9b00550 10.1038/s41557-021-00686-2 10.1039/C4CS00129J 10.1002/anie.202217240 10.1021/ja502212v 10.1039/D0CS00009D 10.1039/C8CS00978C 10.1002/anie.201800820 10.1038/s41570-017-0056 10.1038/s41557-018-0141-5 10.1021/acs.chemrev.9b00842 10.1038/natrevmats.2015.18 10.1039/C9CS00827F 10.1021/jacs.6b08377 10.1038/s41586-022-04443-4 10.1126/science.1184228 10.1021/jacs.7b11364 10.1126/science.aac8343 10.1038/nature10125 10.1021/jacs.2c03959 10.1038/s41557-019-0238-5 10.1038/s41563-021-00934-3 10.1126/science.aar7883 10.1038/nmat4611 10.1002/aenm.202102300 10.1038/nchem.1730 10.1038/s41557-022-00908-1 10.1021/cr200101d 10.1038/s41557-019-0327-5 10.1021/jacs.1c02145 10.1021/ja409033p 10.1126/science.aad4011 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41557-023-01334-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 121 |
ExternalDocumentID | 37723258 10_1038_s41557_023_01334_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22235001; 22175020; 21631003; 22101307; 22090061; 22171263; 91961115; 22178012; 22131005 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22235001 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21631003 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22178012 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22171263 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22175020 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22090061 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 91961115 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22101307 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22131005 |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGGDT AGHTU AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT NPM 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO 7X8 |
ID | FETCH-LOGICAL-c441t-15546c7656498d5ce0b64681223f08528f6bc8e090bbc2325d76c91126bcaeb03 |
IEDL.DBID | 7X7 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Fri Jul 11 05:20:45 EDT 2025 Sat Aug 23 12:21:31 EDT 2025 Thu Apr 03 07:03:00 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Tue Jul 01 03:02:15 EDT 2025 Fri Feb 21 02:38:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-15546c7656498d5ce0b64681223f08528f6bc8e090bbc2325d76c91126bcaeb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3379-7581 0000-0001-8562-0724 0000-0001-8707-8115 0000-0003-0454-9685 0000-0001-9405-5499 0000-0002-0138-2966 0000-0002-7008-4938 0000-0003-3267-220X 0000-0003-0296-5204 0000-0002-5461-3617 |
PMID | 37723258 |
PQID | 2911664335 |
PQPubID | 536302 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2866378287 proquest_journals_2911664335 pubmed_primary_37723258 crossref_citationtrail_10_1038_s41557_023_01334_7 crossref_primary_10_1038_s41557_023_01334_7 springer_journals_10_1038_s41557_023_01334_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nat. Chem |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhao (CR18) 2021; 20 Beaudoin, Maris, Wuest (CR35) 2013; 5 Yang (CR30) 2022; 61 Yamashina (CR8) 2019; 574 Kissel, Murray, Wulftange, Catalano, King (CR38) 2014; 6 Geng (CR10) 2020; 120 Lin (CR22) 2015; 349 Ramaswamy, Wong, Shimizu (CR56) 2014; 43 Ascherl (CR11) 2016; 8 Wang, Zhang, Chen, Zhang, Ma (CR20) 2020; 49 Han (CR25) 2021; 143 Wu (CR29) 2020; 142 Li (CR54) 2021; 60 Li (CR12) 2020; 12 Zhu (CR47) 2019; 58 Hu (CR40) 2021; 13 Sasmal (CR50) 2018; 57 Wang (CR23) 2018; 10 Umeyama, Horike, Inukai, Kitagawa (CR58) 2013; 135 Waller (CR46) 2016; 138 Liu (CR32) 2022; 144 Howarth (CR6) 2016; 1 Zhang (CR21) 2022; 604 Sahoo, Mondal, Pal, Mukherjee, Das (CR51) 2021; 11 Cui, Yue, Qian, Chen (CR3) 2012; 112 Jones (CR5) 2011; 474 Han (CR15) 2020; 49 Lin (CR2) 2019; 48 Yang (CR48) 2018; 57 Xu, Tao, Jiang (CR27) 2016; 15 Zhang (CR33) 2013; 135 Liu (CR45) 2018; 4 Lim, Kitagawa (CR57) 2020; 120 Li, Li, O’Keeffe, Yaghi (CR43) 2014; 114 Liu (CR13) 2019; 11 Dou (CR19) 2021; 50 CR59 Schlüter, Weber, Hofer (CR39) 2020; 49 Hao (CR55) 2023; 62 Ma (CR36) 2018; 361 Liu (CR24) 2019; 141 Chandra (CR28) 2014; 136 Jin, Hu, Zhang (CR14) 2017; 1 Koner (CR16) 2022; 14 Bonneau, O'Keeffe (CR42) 2015; 71 Gropp, Ma, Hanikel, Yaghi (CR37) 2020; 370 Segura, Royuela, Mar Ramos (CR49) 2019; 48 Liu (CR41) 2016; 351 Kim (CR52) 2018; 140 Bezzu, Helliwell, Warren, Allan, McKeown (CR7) 2010; 327 Evans (CR26) 2021; 20 Furukawa, Cordova, O’Keeffe, Yaghi (CR1) 2013; 341 Tao (CR53) 2020; 11 Gao, Li, Yin, Sun, Wang (CR31) 2020; 11 Goodwin (CR44) 2008; 319 Diercks, Yaghi (CR9) 2017; 355 Zhang, Liao, Zhou, Lin, Chen (CR4) 2014; 43 Guan (CR17) 2019; 11 Evans (CR34) 2018; 361 M Yamashina (1334_CR8) 2019; 574 D-W Lim (1334_CR57) 2020; 120 CS Diercks (1334_CR9) 2017; 355 J Li (1334_CR54) 2021; 60 M Li (1334_CR43) 2014; 114 Y Jin (1334_CR14) 2017; 1 B Han (1334_CR25) 2021; 143 X Guan (1334_CR17) 2019; 11 X Wang (1334_CR23) 2018; 10 W Liu (1334_CR24) 2019; 141 Z Wang (1334_CR20) 2020; 49 X Han (1334_CR15) 2020; 49 CG Bezzu (1334_CR7) 2010; 327 H Xu (1334_CR27) 2016; 15 Y-B Zhang (1334_CR33) 2013; 135 Y Hu (1334_CR40) 2021; 13 AL Goodwin (1334_CR44) 2008; 319 K Koner (1334_CR16) 2022; 14 K Liu (1334_CR13) 2019; 11 D Beaudoin (1334_CR35) 2013; 5 S Zhao (1334_CR18) 2021; 20 L Hao (1334_CR55) 2023; 62 C Gao (1334_CR31) 2020; 11 A-X Zhu (1334_CR47) 2019; 58 PJ Waller (1334_CR46) 2016; 138 S Lin (1334_CR22) 2015; 349 R Sahoo (1334_CR51) 2021; 11 AM Evans (1334_CR34) 2018; 361 H Furukawa (1334_CR1) 2013; 341 Y Liu (1334_CR41) 2016; 351 Q-Y Yang (1334_CR48) 2018; 57 K Geng (1334_CR10) 2020; 120 H Liu (1334_CR45) 2018; 4 S Chandra (1334_CR28) 2014; 136 AM Evans (1334_CR26) 2021; 20 S Tao (1334_CR53) 2020; 11 W Zhang (1334_CR21) 2022; 604 Y Cui (1334_CR3) 2012; 112 AD Schlüter (1334_CR39) 2020; 49 HS Sasmal (1334_CR50) 2018; 57 C Bonneau (1334_CR42) 2015; 71 R-B Lin (1334_CR2) 2019; 48 J-P Zhang (1334_CR4) 2014; 43 S Kim (1334_CR52) 2018; 140 D Umeyama (1334_CR58) 2013; 135 H Dou (1334_CR19) 2021; 50 C Gropp (1334_CR37) 2020; 370 JL Segura (1334_CR49) 2019; 48 1334_CR59 X Li (1334_CR12) 2020; 12 P Ramaswamy (1334_CR56) 2014; 43 X Wu (1334_CR29) 2020; 142 T Ma (1334_CR36) 2018; 361 L Ascherl (1334_CR11) 2016; 8 C Liu (1334_CR32) 2022; 144 JTA Jones (1334_CR5) 2011; 474 AJ Howarth (1334_CR6) 2016; 1 X Yang (1334_CR30) 2022; 61 P Kissel (1334_CR38) 2014; 6 |
References_xml | – volume: 13 start-page: 660 year: 2021 end-page: 665 ident: CR40 article-title: Single crystals of mechanically entwined helical covalent polymers publication-title: Nat. Chem. – volume: 12 start-page: 1115 year: 2020 end-page: 1122 ident: CR12 article-title: Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones publication-title: Nat. Chem. – volume: 48 start-page: 3903 year: 2019 end-page: 3945 ident: CR49 article-title: Post-synthetic modification of covalent organic frameworks publication-title: Chem. Soc. Rev. – volume: 11 year: 2020 ident: CR53 article-title: Confining H PO network in covalent organic frameworks enables proton super flow publication-title: Nat. Commun. – volume: 135 start-page: 11345 year: 2013 end-page: 11350 ident: CR58 article-title: Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer publication-title: J. Am. Chem. Soc. – volume: 319 start-page: 794 year: 2008 end-page: 797 ident: CR44 article-title: Colossal positive and negative thermal expansion in the framework material Ag [Co(CN) ] publication-title: Science – volume: 474 start-page: 367 year: 2011 end-page: 371 ident: CR5 article-title: Modular and predictable assembly of porous organic molecular crystals publication-title: Nature – volume: 361 start-page: 48 year: 2018 end-page: 52 ident: CR36 article-title: Single-crystal x-ray diffraction structures of covalent organic frameworks publication-title: Science – volume: 11 year: 2020 ident: CR31 article-title: Redox-triggered switching in three-dimensional covalent organic frameworks publication-title: Nat. Commun. – volume: 48 start-page: 1362 year: 2019 end-page: 1389 ident: CR2 article-title: Multifunctional porous hydrogen-bonded organic framework materials publication-title: Chem. Soc. Rev. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 ident: CR10 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. – volume: 8 start-page: 310 year: 2016 end-page: 316 ident: CR11 article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks publication-title: Nat. Chem. – volume: 11 start-page: 2102300 year: 2021 ident: CR51 article-title: Covalent-organic frameworks (COFs) as proton conductors publication-title: Adv. Energy Mater. – volume: 327 start-page: 1627 year: 2010 end-page: 1630 ident: CR7 article-title: Heme-like coordination chemistry within nanoporous molecular crystals publication-title: Science – volume: 1 start-page: 0056 year: 2017 ident: CR14 article-title: Tessellated multiporous two-dimensional covalent organic frameworks publication-title: Nat. Rev. Chem. – volume: 11 start-page: 994 year: 2019 end-page: 1000 ident: CR13 article-title: On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers publication-title: Nat. Chem. – volume: 138 start-page: 15519 year: 2016 end-page: 15522 ident: CR46 article-title: Chemical conversion of linkages in covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 355 start-page: eaal1585 year: 2017 ident: CR9 article-title: The atom, the molecule, and the covalent organic framework publication-title: Science – volume: 4 start-page: 1696 year: 2018 end-page: 1709 ident: CR45 article-title: Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO publication-title: Chem – volume: 112 start-page: 1126 year: 2012 end-page: 1162 ident: CR3 article-title: Luminescent functional metal–organic frameworks publication-title: Chem. Rev. – volume: 604 start-page: 72 year: 2022 end-page: 79 ident: CR21 article-title: Reconstructed covalent organic frameworks publication-title: Nature – volume: 6 start-page: 774 year: 2014 end-page: 778 ident: CR38 article-title: A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization publication-title: Nat. Chem. – volume: 140 start-page: 1077 year: 2018 end-page: 1082 ident: CR52 article-title: Achieving superprotonic conduction in metal–organic frameworks through iterative design advances publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 15018 year: 2016 ident: CR6 article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks publication-title: Nat. Rev. Mater. – volume: 14 start-page: 507 year: 2022 end-page: 514 ident: CR16 article-title: Porous covalent organic nanotubes and their assembly in loops and toroids publication-title: Nat. Chem. – volume: 349 start-page: 1208 year: 2015 end-page: 1213 ident: CR22 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO reduction in water publication-title: Science – volume: 351 start-page: 365 year: 2016 end-page: 369 ident: CR41 article-title: Weaving of organic threads into a crystalline covalent organic framework publication-title: Science – volume: 5 start-page: 830 year: 2013 end-page: 834 ident: CR35 article-title: Constructing monocrystalline covalent organic networks by polymerization publication-title: Nat. Chem. – volume: 143 start-page: 7104 year: 2021 end-page: 7113 ident: CR25 article-title: Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 14357 year: 2020 end-page: 14364 ident: CR29 article-title: Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 6570 year: 2014 end-page: 6573 ident: CR28 article-title: Phosphoric acid loaded azo (−N═N−) based covalent organic framework for proton conduction publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 722 year: 2016 end-page: 726 ident: CR27 article-title: Proton conduction in crystalline and porous covalent organic frameworks publication-title: Nat. Mater. – volume: 71 start-page: 82 year: 2015 end-page: 91 ident: CR42 article-title: High-symmetry embeddings of interpenetrating periodic nets. Essential rings and patterns of catenation publication-title: Acta Crystallogr. A – volume: 341 start-page: 1230444 year: 2013 ident: CR1 article-title: The chemistry and applications of metal–organic frameworks publication-title: Science – volume: 61 start-page: e202207043 year: 2022 ident: CR30 article-title: Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: e202217240 year: 2023 ident: CR55 article-title: Pore geometry and surface engineering of covalent organic frameworks for anhydrous proton conduction publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 17431 year: 2019 end-page: 17440 ident: CR24 article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO reduction publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5789 year: 2014 end-page: 5814 ident: CR4 article-title: Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers publication-title: Chem. Soc. Rev. – volume: 60 start-page: 12918 year: 2021 end-page: 12923 ident: CR54 article-title: Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks confinement and activation publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 1142 year: 2021 end-page: 1148 ident: CR26 article-title: Thermally conductive ultra-low- dielectric layers based on two-dimensional covalent organic frameworks publication-title: Nat. Mater. – volume: 20 start-page: 1551 year: 2021 end-page: 1558 ident: CR18 article-title: Hydrophilicity gradient in covalent organic frameworks for membrane distillation publication-title: Nat. Mater. – volume: 11 start-page: 587 year: 2019 end-page: 594 ident: CR17 article-title: Chemically stable polyarylether-based covalent organic frameworks publication-title: Nat. Chem. – volume: 49 start-page: 6248 year: 2020 end-page: 6272 ident: CR15 article-title: Chiral covalent organic frameworks: design, synthesis and property publication-title: Chem. Soc. Rev. – volume: 49 start-page: 708 year: 2020 end-page: 735 ident: CR20 article-title: Covalent organic frameworks for separation applications publication-title: Chem. Soc. Rev. – volume: 114 start-page: 1343 year: 2014 end-page: 1370 ident: CR43 article-title: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle publication-title: Chem. Rev. – volume: 43 start-page: 5913 year: 2014 end-page: 5932 ident: CR56 article-title: MOFs as proton conductors—challenges and opportunities publication-title: Chem. Soc. Rev. – volume: 49 start-page: 5140 year: 2020 end-page: 5158 ident: CR39 article-title: How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals publication-title: Chem. Soc. Rev. – volume: 57 start-page: 5684 year: 2018 end-page: 5689 ident: CR48 article-title: Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate‐opening at methane storage pressures publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1180 year: 2018 end-page: 1189 ident: CR23 article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water publication-title: Nat. Chem. – volume: 50 start-page: 986 year: 2021 end-page: 1029 ident: CR19 article-title: Microporous framework membranes for precise molecule/ion separations publication-title: Chem. Soc. Rev. – volume: 370 start-page: eabd6406 year: 2020 ident: CR37 article-title: Design of higher valency in covalent organic frameworks publication-title: Science – volume: 120 start-page: 8416 year: 2020 end-page: 8467 ident: CR57 article-title: Proton transport in metal–organic frameworks publication-title: Chem. Rev. – volume: 144 start-page: 12390 year: 2022 end-page: 12399 ident: CR32 article-title: Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 52 year: 2018 end-page: 57 ident: CR34 article-title: Seeded growth of single-crystal two-dimensional covalent organic frameworks publication-title: Science – volume: 135 start-page: 16336 year: 2013 end-page: 16339 ident: CR33 article-title: Single-crystal structure of a covalent organic framework publication-title: J. Am. Chem. Soc. – ident: CR59 – volume: 58 start-page: 18212 year: 2019 end-page: 18217 ident: CR47 article-title: Tuning the gate-opening pressure in a switching pcu coordination network, X-pcu-5-Zn, by pillar-ligand substitution publication-title: Angew. Chem. Int. Ed. – volume: 574 start-page: 511 year: 2019 end-page: 515 ident: CR8 article-title: An antiaromatic-walled nanospace publication-title: Nature – volume: 57 start-page: 10894 year: 2018 end-page: 10898 ident: CR50 article-title: Superprotonic conductivity in flexible porous covalent organic framework membranes publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: e202207043 year: 2022 ident: 1334_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207043 – volume: 114 start-page: 1343 year: 2014 ident: 1334_CR43 publication-title: Chem. Rev. doi: 10.1021/cr400392k – volume: 60 start-page: 12918 year: 2021 ident: 1334_CR54 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101400 – volume: 135 start-page: 11345 year: 2013 ident: 1334_CR58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4051668 – volume: 50 start-page: 986 year: 2021 ident: 1334_CR19 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00552E – volume: 11 year: 2020 ident: 1334_CR53 publication-title: Nat. Commun. – volume: 355 start-page: eaal1585 year: 2017 ident: 1334_CR9 publication-title: Science doi: 10.1126/science.aal1585 – volume: 8 start-page: 310 year: 2016 ident: 1334_CR11 publication-title: Nat. Chem. doi: 10.1038/nchem.2444 – volume: 319 start-page: 794 year: 2008 ident: 1334_CR44 publication-title: Science doi: 10.1126/science.1151442 – volume: 57 start-page: 10894 year: 2018 ident: 1334_CR50 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804753 – volume: 361 start-page: 48 year: 2018 ident: 1334_CR36 publication-title: Science doi: 10.1126/science.aat7679 – volume: 11 year: 2020 ident: 1334_CR31 publication-title: Nat. Commun. – volume: 6 start-page: 774 year: 2014 ident: 1334_CR38 publication-title: Nat. Chem. doi: 10.1038/nchem.2008 – volume: 43 start-page: 5913 year: 2014 ident: 1334_CR56 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00093E – volume: 574 start-page: 511 year: 2019 ident: 1334_CR8 publication-title: Nature doi: 10.1038/s41586-019-1661-x – volume: 142 start-page: 14357 year: 2020 ident: 1334_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06474 – volume: 49 start-page: 5140 year: 2020 ident: 1334_CR39 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00176G – volume: 71 start-page: 82 year: 2015 ident: 1334_CR42 publication-title: Acta Crystallogr. A doi: 10.1107/S2053273314019950 – ident: 1334_CR59 doi: 10.6084/m9.figshare.20446014 – volume: 12 start-page: 1115 year: 2020 ident: 1334_CR12 publication-title: Nat. Chem. doi: 10.1038/s41557-020-00562-5 – volume: 341 start-page: 1230444 year: 2013 ident: 1334_CR1 publication-title: Science doi: 10.1126/science.1230444 – volume: 141 start-page: 17431 year: 2019 ident: 1334_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09502 – volume: 4 start-page: 1696 year: 2018 ident: 1334_CR45 publication-title: Chem doi: 10.1016/j.chempr.2018.05.003 – volume: 58 start-page: 18212 year: 2019 ident: 1334_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909977 – volume: 48 start-page: 1362 year: 2019 ident: 1334_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00155C – volume: 370 start-page: eabd6406 year: 2020 ident: 1334_CR37 publication-title: Science doi: 10.1126/science.abd6406 – volume: 20 start-page: 1551 year: 2021 ident: 1334_CR18 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01052-w – volume: 120 start-page: 8814 year: 2020 ident: 1334_CR10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 13 start-page: 660 year: 2021 ident: 1334_CR40 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00686-2 – volume: 43 start-page: 5789 year: 2014 ident: 1334_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00129J – volume: 62 start-page: e202217240 year: 2023 ident: 1334_CR55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202217240 – volume: 136 start-page: 6570 year: 2014 ident: 1334_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502212v – volume: 49 start-page: 6248 year: 2020 ident: 1334_CR15 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00009D – volume: 48 start-page: 3903 year: 2019 ident: 1334_CR49 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00978C – volume: 57 start-page: 5684 year: 2018 ident: 1334_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800820 – volume: 1 start-page: 0056 year: 2017 ident: 1334_CR14 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0056 – volume: 10 start-page: 1180 year: 2018 ident: 1334_CR23 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 120 start-page: 8416 year: 2020 ident: 1334_CR57 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00842 – volume: 1 start-page: 15018 year: 2016 ident: 1334_CR6 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.18 – volume: 49 start-page: 708 year: 2020 ident: 1334_CR20 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00827F – volume: 138 start-page: 15519 year: 2016 ident: 1334_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08377 – volume: 604 start-page: 72 year: 2022 ident: 1334_CR21 publication-title: Nature doi: 10.1038/s41586-022-04443-4 – volume: 327 start-page: 1627 year: 2010 ident: 1334_CR7 publication-title: Science doi: 10.1126/science.1184228 – volume: 140 start-page: 1077 year: 2018 ident: 1334_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11364 – volume: 349 start-page: 1208 year: 2015 ident: 1334_CR22 publication-title: Science doi: 10.1126/science.aac8343 – volume: 474 start-page: 367 year: 2011 ident: 1334_CR5 publication-title: Nature doi: 10.1038/nature10125 – volume: 144 start-page: 12390 year: 2022 ident: 1334_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03959 – volume: 11 start-page: 587 year: 2019 ident: 1334_CR17 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0238-5 – volume: 20 start-page: 1142 year: 2021 ident: 1334_CR26 publication-title: Nat. Mater. doi: 10.1038/s41563-021-00934-3 – volume: 361 start-page: 52 year: 2018 ident: 1334_CR34 publication-title: Science doi: 10.1126/science.aar7883 – volume: 15 start-page: 722 year: 2016 ident: 1334_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat4611 – volume: 11 start-page: 2102300 year: 2021 ident: 1334_CR51 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102300 – volume: 5 start-page: 830 year: 2013 ident: 1334_CR35 publication-title: Nat. Chem. doi: 10.1038/nchem.1730 – volume: 14 start-page: 507 year: 2022 ident: 1334_CR16 publication-title: Nat. Chem. doi: 10.1038/s41557-022-00908-1 – volume: 112 start-page: 1126 year: 2012 ident: 1334_CR3 publication-title: Chem. Rev. doi: 10.1021/cr200101d – volume: 11 start-page: 994 year: 2019 ident: 1334_CR13 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0327-5 – volume: 143 start-page: 7104 year: 2021 ident: 1334_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02145 – volume: 135 start-page: 16336 year: 2013 ident: 1334_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409033p – volume: 351 start-page: 365 year: 2016 ident: 1334_CR41 publication-title: Science doi: 10.1126/science.aad4011 |
SSID | ssj0065316 |
Score | 2.6839142 |
Snippet | Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114 |
SubjectTerms | 639/638/298 639/638/541/961 Acids Analytical Chemistry Biochemistry Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Covalence Crystals Inorganic Chemistry Laboratories Linkages Microscopy Organic Chemistry Oxidation Phosphoric acid Physical Chemistry Polymerization Protons Single crystals Solvents Thermal expansion Topology Transformations X-ray diffraction |
Title | Linkage conversions in single-crystalline covalent organic frameworks |
URI | https://link.springer.com/article/10.1038/s41557-023-01334-7 https://www.ncbi.nlm.nih.gov/pubmed/37723258 https://www.proquest.com/docview/2911664335 https://www.proquest.com/docview/2866378287 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8RADA4-DnoR39YXFbzpYLfz7Elc2VUEFxGFvZXOdArC0lW7Hvz3Jn2siOilPXTaTpN08iWZJACnslAytlmP6SJxTHiRMFPomHGhlZBeZyYj18D9SN0-i7uxHLcOt6rdVtmtifVCnU8d-cgvYvwrFapPLi9f3xh1jaLoattCYxGWqXQZSbUezw0uhfJVZxdpKSkzKGqTZiJuLipSpJqhxkJjmnPB9E_F9Att_oqU1gpouA5rLXIMrxpWb8CCLzdh5bpr2LYFA7IrcXkI653ktRusCl_KkLwBE8_c-yciQSrBTSNQwFDdhE1TJxcW3R6tahueh4On61vWdklgDqHMjBEgUE4jLhOJyaXzkVWCqorFvEA8FZtCWWd8lETWOsRPMtfKJZQ5ZF3mbcR3YKmcln4PQu1j7nwsciSNsJxniXEGTRpneS83Pg-g15EodW0JcepkMUnrUDY3aUPWFMma1mRNdQBn83temwIa_44-7Ciftj9TlX6zPoCT-WUkLsU2stJPP3CMQeikqXp_ALsNx-av42hB4HebAM47Fn4__O-57P8_lwNYjRHgNO6YQ1iavX_4IwQoM3tcSyEezfDmGJavhv3-CM_9wejh8QszqeIP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGOIwL2vgs26BIcIJoffnuASE09nhjH6dN2i00aSohTX1jfRPaP8XfiN02b0ITu-3cNE0dx_7Zjm2Ad6rRivtqwkxTBiajLJltDGdCGi1VNJWtyDVwdKxnp_L7mTpbgT8pF4auVSaZ2Avqeh7IR77D8VRqVJ9Cfb74xahrFEVXUwuNgS0O4vVvNNm6T_tfcX_fcz7dO9mdsbGrAAuo-heMFKgOBnGMLG2tQiy8llSFi4sG8Qe3jfbBxqIsvA-IN1RtdCgp08aHKvpC4LwP4CGupCRjz06_JcmvkZ_7bCajFGUiFWOSTiHsTkeK2zDUkGi8CyGZ-VcR3kK3tyKzvcKbrsPjEanmXwbW2oCV2D6Btd3UIO4p7JEdi-Io72-u9263Lv_Z5uR9OI8sXF4j8qSS3zQCGRrVWz40kQp5k-6Edc_g9F7o9xxW23kbX0JuIhchclkjaaQXoiptsGhCBS8mtY11BpNEIhfGkuXUOePc9aFzYd1AVodkdT1Zncngw_Kdi6Fgx52jtxLl3Xh4O3fDahm8XT5G4lIspWrj_ArHWIRqhroFZPBi2LHl5wRaLPjfNoOPaQtvJv__Wl7dvZY3sDY7OTp0h_vHB5vwiCO4GlxBW7C6uLyK2wiOFv51z5E5_LjvI_AXuIEZQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFdQXqd_RqhH0SZfL7Xceimh7R2v1KGKhbzG72YBQcrW5Uvqv9a9zJslekWLf-pzNZjM7u_Obb4B3qtaKu3LCTJ17JoPMma0NZ0IaLVUwpS3JNPB9rncP5dcjdbQGlzEXhsIq453YXdTVwpONfMzxVGoUn0KN6yEs4mBn9unkD6MOUuRpje00ehbZDxfnqL61W3s7uNfvOZ9Nf27vsqHDAPMIA5aMhKn2BjGNzG2lfMicllSRi4sasQi3tXbehizPnPOIPVRltM8p68b5MrhM4Lx3YN2QVjSC9S_T-cGPKAc0cneX22SUorykbEjZyYQdtyTGDUN5iaq8EJKZf8XiNax7zU_bib_ZBjwYcGv6uWe0h7AWmkdwbzu2i3sMU9Jq8XJKuzj2zgjXpr-blGwRx4H50wvEoVQAnEYge6OwS_uWUj6tY4RY-wQOb4WCT2HULJrwHFITuPCBywpJI50QZW69RYXKOzGpbKgSmEQSFX4oYE59NI6LzpEubNGTtUCyFh1ZC5PAh9U7J335jhtHb0bKF8NRbosrxkvg7eoxEpc8K2UTFmc4xiJwM9Q7IIFn_Y6tPidQf8H_tgl8jFt4Nfn_1_Li5rW8gbvI_sW3vfn-S7jPEWn1dqFNGC1Pz8IrREpL93pgyRR-3fYp-AvgaB7S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+conversions+in+single-crystalline+covalent+organic+frameworks&rft.jtitle=Nature+chemistry&rft.au=Yu%2C+Baoqiu&rft.au=Lin%2C+Rui-Biao&rft.au=Xu%2C+Gang&rft.au=Fu%2C+Zhi-Hua&rft.date=2024-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=16&rft.issue=1&rft.spage=114&rft.epage=121&rft_id=info:doi/10.1038%2Fs41557-023-01334-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |