Linkage conversions in single-crystalline covalent organic frameworks

Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially s...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 16; no. 1; pp. 114 - 121
Main Authors Yu, Baoqiu, Lin, Rui-Biao, Xu, Gang, Fu, Zhi-Hua, Wu, Hui, Zhou, Wei, Lu, Shanfu, Li, Qian-Wen, Jin, Yucheng, Li, Jing-Hong, Zhang, Zhenguo, Wang, Hailong, Yan, Zier, Liu, Xiaolin, Wang, Kang, Chen, Banglin, Jiang, Jianzhuang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis ( α c  = +491 × 10 –6  K –1 ), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10 −2  S cm −1 . Covalent organic frameworks offer a highly tunable class of materials for a range of applications, although their dynamic structural transformations are challenging to analyse. Now single-crystal X-ray diffraction is shown to demonstrate single-crystal-to-single-crystal transformations of the imine linkages, showing a well-defined interpenetrating topology and affording structures that have high positive thermal expansion and anhydrous proton-conduction properties.
AbstractList Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1.Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1.
Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10–6 K–1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10−2 S cm−1.Covalent organic frameworks offer a highly tunable class of materials for a range of applications, although their dynamic structural transformations are challenging to analyse. Now single-crystal X-ray diffraction is shown to demonstrate single-crystal-to-single-crystal transformations of the imine linkages, showing a well-defined interpenetrating topology and affording structures that have high positive thermal expansion and anhydrous proton-conduction properties.
Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (α  = +491 × 10  K ), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10  S cm .
Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis ( α c  = +491 × 10 –6  K –1 ), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10 −2  S cm −1 . Covalent organic frameworks offer a highly tunable class of materials for a range of applications, although their dynamic structural transformations are challenging to analyse. Now single-crystal X-ray diffraction is shown to demonstrate single-crystal-to-single-crystal transformations of the imine linkages, showing a well-defined interpenetrating topology and affording structures that have high positive thermal expansion and anhydrous proton-conduction properties.
Author Zhang, Zhenguo
Wang, Kang
Li, Qian-Wen
Liu, Xiaolin
Wang, Hailong
Yu, Baoqiu
Jin, Yucheng
Wu, Hui
Zhou, Wei
Chen, Banglin
Jiang, Jianzhuang
Li, Jing-Hong
Lin, Rui-Biao
Lu, Shanfu
Fu, Zhi-Hua
Yan, Zier
Xu, Gang
Author_xml – sequence: 1
  givenname: Baoqiu
  orcidid: 0000-0003-3379-7581
  surname: Yu
  fullname: Yu, Baoqiu
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing
– sequence: 2
  givenname: Rui-Biao
  orcidid: 0000-0003-3267-220X
  surname: Lin
  fullname: Lin, Rui-Biao
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University
– sequence: 3
  givenname: Gang
  orcidid: 0000-0001-8562-0724
  surname: Xu
  fullname: Xu, Gang
  organization: State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhi-Hua
  surname: Fu
  fullname: Fu, Zhi-Hua
  organization: State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 5
  givenname: Hui
  orcidid: 0000-0003-0296-5204
  surname: Wu
  fullname: Wu, Hui
  organization: Center for Neutron Research, National Institute of Standards and Technology
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-5461-3617
  surname: Zhou
  fullname: Zhou, Wei
  organization: Center for Neutron Research, National Institute of Standards and Technology
– sequence: 7
  givenname: Shanfu
  surname: Lu
  fullname: Lu, Shanfu
  organization: Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University
– sequence: 8
  givenname: Qian-Wen
  surname: Li
  fullname: Li, Qian-Wen
  organization: State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 9
  givenname: Yucheng
  orcidid: 0000-0002-7008-4938
  surname: Jin
  fullname: Jin, Yucheng
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing
– sequence: 10
  givenname: Jing-Hong
  surname: Li
  fullname: Li, Jing-Hong
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University
– sequence: 11
  givenname: Zhenguo
  surname: Zhang
  fullname: Zhang, Zhenguo
  organization: Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University
– sequence: 12
  givenname: Hailong
  orcidid: 0000-0002-0138-2966
  surname: Wang
  fullname: Wang, Hailong
  email: hlwang@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing
– sequence: 13
  givenname: Zier
  surname: Yan
  fullname: Yan, Zier
  organization: Rigaku Beijing Corporation
– sequence: 14
  givenname: Xiaolin
  surname: Liu
  fullname: Liu, Xiaolin
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing
– sequence: 15
  givenname: Kang
  orcidid: 0000-0001-9405-5499
  surname: Wang
  fullname: Wang, Kang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing
– sequence: 16
  givenname: Banglin
  orcidid: 0000-0001-8707-8115
  surname: Chen
  fullname: Chen, Banglin
  email: banglin.chen@fjnu.edu.cn
  organization: Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University
– sequence: 17
  givenname: Jianzhuang
  orcidid: 0000-0003-0454-9685
  surname: Jiang
  fullname: Jiang, Jianzhuang
  email: jianzhuang@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37723258$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PAjEYhBuDEUH_gAeziRcvq_1uORqCHwmJFz033dIlhaXFdsHw7y0CmnDg1DfNM5PJTA90fPAWgBsEHxAk8jFRxJgoISYlRITQUpyBSyQYKymhg87fTWAX9FKaQcgZQfwCdIkQmGAmL8Fo7PxcT21hgl_bmFzwqXC-SM5PG1uauEmtbhrnt8RaN9a3RYhT7Z0p6qgX9jvEeboC57Vukr3ev33w-Tz6GL6W4_eXt-HTuDSUorbMcSk3gjNOB3LCjIUVp1wijEkNJcOy5pWRFg5gVZltwIngZoAQzt_aVpD0wf3OdxnD18qmVi1cMrZptLdhlRSWnBMhsRQZvTtCZ2EVfU6ncLbkPPfCMnW7p1bVwk7UMrqFjht1KCgDcgeYGFKKtlbGtbrNNbVRu0YhqLZbqN0WKm-hfrdQ2wT4SHpwPykiO1HKsJ_a-B_7hOoHwVaaFg
CitedBy_id crossref_primary_10_1038_s41467_024_54235_9
crossref_primary_10_1002_anie_202414566
crossref_primary_10_1021_jacs_4c05705
crossref_primary_10_1021_acs_chemmater_4c01292
crossref_primary_10_1002_ange_202423220
crossref_primary_10_1002_smll_202402486
crossref_primary_10_1021_jacs_3c13244
crossref_primary_10_1016_j_cej_2025_160788
crossref_primary_10_1016_j_jhazmat_2024_135236
crossref_primary_10_1007_s11426_023_1853_x
crossref_primary_10_1039_D4QI01226G
crossref_primary_10_1002_ange_202421555
crossref_primary_10_1002_adfm_202401362
crossref_primary_10_1016_j_cclet_2024_110294
crossref_primary_10_1002_ange_202423458
crossref_primary_10_1021_jacs_5c00458
crossref_primary_10_1038_s44160_024_00719_x
crossref_primary_10_1002_anie_202420333
crossref_primary_10_1002_anie_202423205
crossref_primary_10_1002_anie_202421661
crossref_primary_10_1016_j_ccr_2024_216068
crossref_primary_10_1021_jacs_4c14535
crossref_primary_10_1007_s11426_024_2300_8
crossref_primary_10_1002_anie_202405313
crossref_primary_10_1016_j_matlet_2025_138372
crossref_primary_10_1021_jacs_3c09001
crossref_primary_10_1016_j_micron_2024_103595
crossref_primary_10_1002_ange_202420333
crossref_primary_10_1002_anie_202501875
crossref_primary_10_1002_ange_202423205
crossref_primary_10_1038_s41467_024_55729_2
crossref_primary_10_1021_acs_inorgchem_4c05080
crossref_primary_10_1002_ange_202401014
crossref_primary_10_1038_s41467_025_56750_9
crossref_primary_10_1039_D3CS00866E
crossref_primary_10_1107_S2052252524003713
crossref_primary_10_1002_ange_202421661
crossref_primary_10_1002_aoc_70092
crossref_primary_10_1021_jacs_3c13069
crossref_primary_10_1021_acs_accounts_4c00061
crossref_primary_10_1021_jacs_3c14833
crossref_primary_10_1039_D4SC06300G
crossref_primary_10_1002_anie_202419047
crossref_primary_10_1039_D4SC00656A
crossref_primary_10_1002_ange_202414566
crossref_primary_10_1016_j_mattod_2024_12_003
crossref_primary_10_1016_S1872_2067_24_60196_8
crossref_primary_10_1016_j_ccr_2024_216404
crossref_primary_10_1021_acsami_4c15460
crossref_primary_10_1002_ange_202501875
crossref_primary_10_1002_asia_202401856
crossref_primary_10_1021_jacs_4c10071
crossref_primary_10_1038_s41557_024_01690_y
crossref_primary_10_1021_prechem_4c00019
crossref_primary_10_1002_anie_202401014
crossref_primary_10_1039_D4QI02121E
crossref_primary_10_1002_chem_202404423
crossref_primary_10_1016_j_chroma_2025_465681
crossref_primary_10_1016_j_cej_2024_151628
crossref_primary_10_1039_D4TA07994A
crossref_primary_10_1002_adfm_202404289
crossref_primary_10_1016_j_ensm_2024_103931
crossref_primary_10_1021_jacs_4c16485
crossref_primary_10_1016_j_matt_2024_06_012
crossref_primary_10_1021_jacs_4c13377
crossref_primary_10_1002_ange_202405313
crossref_primary_10_1039_D4CC03708A
crossref_primary_10_1039_D4NR03204G
crossref_primary_10_1038_s41467_025_56307_w
crossref_primary_10_1038_s41557_024_01527_8
crossref_primary_10_1021_jacs_4c06049
crossref_primary_10_1016_j_chempr_2024_03_011
crossref_primary_10_1038_s41467_024_52487_z
crossref_primary_10_1002_smll_202409238
crossref_primary_10_1002_smll_202411954
crossref_primary_10_1021_jacs_4c14458
crossref_primary_10_1093_nsr_nwae396
crossref_primary_10_1021_acsami_4c06179
crossref_primary_10_1016_j_rineng_2024_103076
crossref_primary_10_1016_j_seppur_2024_129701
crossref_primary_10_1002_adfm_202422291
crossref_primary_10_1002_ange_202419047
crossref_primary_10_1021_jacs_4c08918
crossref_primary_10_1002_anie_202423458
crossref_primary_10_1021_acs_chemrev_3c00926
crossref_primary_10_1002_anie_202421555
crossref_primary_10_1002_ejic_202400435
crossref_primary_10_1002_anie_202405426
crossref_primary_10_1021_jacs_4c09680
crossref_primary_10_1039_D4EE00520A
crossref_primary_10_1002_ange_202403599
crossref_primary_10_1016_j_cej_2025_161018
crossref_primary_10_1021_acssuschemeng_4c05020
crossref_primary_10_1002_ange_202501391
crossref_primary_10_1016_j_ccr_2025_216507
crossref_primary_10_1016_j_cclet_2024_110590
crossref_primary_10_1021_acs_cgd_3c01427
crossref_primary_10_1002_adfm_202408778
crossref_primary_10_1021_acsami_4c11616
crossref_primary_10_1002_anie_202423220
crossref_primary_10_1016_j_chempr_2024_102398
crossref_primary_10_1002_anie_202403599
crossref_primary_10_1038_s41467_024_44899_8
crossref_primary_10_1002_ange_202405426
crossref_primary_10_1021_jacs_4c11880
crossref_primary_10_1002_anie_202501391
crossref_primary_10_1002_adfm_202415629
crossref_primary_10_1039_D4QO02211D
Cites_doi 10.1002/anie.202207043
10.1021/cr400392k
10.1002/anie.202101400
10.1021/ja4051668
10.1039/D0CS00552E
10.1126/science.aal1585
10.1038/nchem.2444
10.1126/science.1151442
10.1002/anie.201804753
10.1126/science.aat7679
10.1038/nchem.2008
10.1039/C4CS00093E
10.1038/s41586-019-1661-x
10.1021/jacs.0c06474
10.1039/D0CS00176G
10.1107/S2053273314019950
10.6084/m9.figshare.20446014
10.1038/s41557-020-00562-5
10.1126/science.1230444
10.1021/jacs.9b09502
10.1016/j.chempr.2018.05.003
10.1002/anie.201909977
10.1039/C8CS00155C
10.1126/science.abd6406
10.1038/s41563-021-01052-w
10.1021/acs.chemrev.9b00550
10.1038/s41557-021-00686-2
10.1039/C4CS00129J
10.1002/anie.202217240
10.1021/ja502212v
10.1039/D0CS00009D
10.1039/C8CS00978C
10.1002/anie.201800820
10.1038/s41570-017-0056
10.1038/s41557-018-0141-5
10.1021/acs.chemrev.9b00842
10.1038/natrevmats.2015.18
10.1039/C9CS00827F
10.1021/jacs.6b08377
10.1038/s41586-022-04443-4
10.1126/science.1184228
10.1021/jacs.7b11364
10.1126/science.aac8343
10.1038/nature10125
10.1021/jacs.2c03959
10.1038/s41557-019-0238-5
10.1038/s41563-021-00934-3
10.1126/science.aar7883
10.1038/nmat4611
10.1002/aenm.202102300
10.1038/nchem.1730
10.1038/s41557-022-00908-1
10.1021/cr200101d
10.1038/s41557-019-0327-5
10.1021/jacs.1c02145
10.1021/ja409033p
10.1126/science.aad4011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
NPM
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41557-023-01334-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 121
ExternalDocumentID 37723258
10_1038_s41557_023_01334_7
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22235001; 22175020; 21631003; 22101307; 22090061; 22171263; 91961115; 22178012; 22131005
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22235001
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21631003
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22178012
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22171263
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22175020
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22090061
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 91961115
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22101307
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22131005
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGHTU
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
NPM
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
7X8
ID FETCH-LOGICAL-c441t-15546c7656498d5ce0b64681223f08528f6bc8e090bbc2325d76c91126bcaeb03
IEDL.DBID 7X7
ISSN 1755-4330
1755-4349
IngestDate Fri Jul 11 05:20:45 EDT 2025
Sat Aug 23 12:21:31 EDT 2025
Thu Apr 03 07:03:00 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Tue Jul 01 03:02:15 EDT 2025
Fri Feb 21 02:38:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-15546c7656498d5ce0b64681223f08528f6bc8e090bbc2325d76c91126bcaeb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3379-7581
0000-0001-8562-0724
0000-0001-8707-8115
0000-0003-0454-9685
0000-0001-9405-5499
0000-0002-0138-2966
0000-0002-7008-4938
0000-0003-3267-220X
0000-0003-0296-5204
0000-0002-5461-3617
PMID 37723258
PQID 2911664335
PQPubID 536302
PageCount 8
ParticipantIDs proquest_miscellaneous_2866378287
proquest_journals_2911664335
pubmed_primary_37723258
crossref_citationtrail_10_1038_s41557_023_01334_7
crossref_primary_10_1038_s41557_023_01334_7
springer_journals_10_1038_s41557_023_01334_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nat. Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhao (CR18) 2021; 20
Beaudoin, Maris, Wuest (CR35) 2013; 5
Yang (CR30) 2022; 61
Yamashina (CR8) 2019; 574
Kissel, Murray, Wulftange, Catalano, King (CR38) 2014; 6
Geng (CR10) 2020; 120
Lin (CR22) 2015; 349
Ramaswamy, Wong, Shimizu (CR56) 2014; 43
Ascherl (CR11) 2016; 8
Wang, Zhang, Chen, Zhang, Ma (CR20) 2020; 49
Han (CR25) 2021; 143
Wu (CR29) 2020; 142
Li (CR54) 2021; 60
Li (CR12) 2020; 12
Zhu (CR47) 2019; 58
Hu (CR40) 2021; 13
Sasmal (CR50) 2018; 57
Wang (CR23) 2018; 10
Umeyama, Horike, Inukai, Kitagawa (CR58) 2013; 135
Waller (CR46) 2016; 138
Liu (CR32) 2022; 144
Howarth (CR6) 2016; 1
Zhang (CR21) 2022; 604
Sahoo, Mondal, Pal, Mukherjee, Das (CR51) 2021; 11
Cui, Yue, Qian, Chen (CR3) 2012; 112
Jones (CR5) 2011; 474
Han (CR15) 2020; 49
Lin (CR2) 2019; 48
Yang (CR48) 2018; 57
Xu, Tao, Jiang (CR27) 2016; 15
Zhang (CR33) 2013; 135
Liu (CR45) 2018; 4
Lim, Kitagawa (CR57) 2020; 120
Li, Li, O’Keeffe, Yaghi (CR43) 2014; 114
Liu (CR13) 2019; 11
Dou (CR19) 2021; 50
CR59
Schlüter, Weber, Hofer (CR39) 2020; 49
Hao (CR55) 2023; 62
Ma (CR36) 2018; 361
Liu (CR24) 2019; 141
Chandra (CR28) 2014; 136
Jin, Hu, Zhang (CR14) 2017; 1
Koner (CR16) 2022; 14
Bonneau, O'Keeffe (CR42) 2015; 71
Gropp, Ma, Hanikel, Yaghi (CR37) 2020; 370
Segura, Royuela, Mar Ramos (CR49) 2019; 48
Liu (CR41) 2016; 351
Kim (CR52) 2018; 140
Bezzu, Helliwell, Warren, Allan, McKeown (CR7) 2010; 327
Evans (CR26) 2021; 20
Furukawa, Cordova, O’Keeffe, Yaghi (CR1) 2013; 341
Tao (CR53) 2020; 11
Gao, Li, Yin, Sun, Wang (CR31) 2020; 11
Goodwin (CR44) 2008; 319
Diercks, Yaghi (CR9) 2017; 355
Zhang, Liao, Zhou, Lin, Chen (CR4) 2014; 43
Guan (CR17) 2019; 11
Evans (CR34) 2018; 361
M Yamashina (1334_CR8) 2019; 574
D-W Lim (1334_CR57) 2020; 120
CS Diercks (1334_CR9) 2017; 355
J Li (1334_CR54) 2021; 60
M Li (1334_CR43) 2014; 114
Y Jin (1334_CR14) 2017; 1
B Han (1334_CR25) 2021; 143
X Guan (1334_CR17) 2019; 11
X Wang (1334_CR23) 2018; 10
W Liu (1334_CR24) 2019; 141
Z Wang (1334_CR20) 2020; 49
X Han (1334_CR15) 2020; 49
CG Bezzu (1334_CR7) 2010; 327
H Xu (1334_CR27) 2016; 15
Y-B Zhang (1334_CR33) 2013; 135
Y Hu (1334_CR40) 2021; 13
AL Goodwin (1334_CR44) 2008; 319
K Koner (1334_CR16) 2022; 14
K Liu (1334_CR13) 2019; 11
D Beaudoin (1334_CR35) 2013; 5
S Zhao (1334_CR18) 2021; 20
L Hao (1334_CR55) 2023; 62
C Gao (1334_CR31) 2020; 11
A-X Zhu (1334_CR47) 2019; 58
PJ Waller (1334_CR46) 2016; 138
S Lin (1334_CR22) 2015; 349
R Sahoo (1334_CR51) 2021; 11
AM Evans (1334_CR34) 2018; 361
H Furukawa (1334_CR1) 2013; 341
Y Liu (1334_CR41) 2016; 351
Q-Y Yang (1334_CR48) 2018; 57
K Geng (1334_CR10) 2020; 120
H Liu (1334_CR45) 2018; 4
S Chandra (1334_CR28) 2014; 136
AM Evans (1334_CR26) 2021; 20
S Tao (1334_CR53) 2020; 11
W Zhang (1334_CR21) 2022; 604
Y Cui (1334_CR3) 2012; 112
AD Schlüter (1334_CR39) 2020; 49
HS Sasmal (1334_CR50) 2018; 57
C Bonneau (1334_CR42) 2015; 71
R-B Lin (1334_CR2) 2019; 48
J-P Zhang (1334_CR4) 2014; 43
S Kim (1334_CR52) 2018; 140
D Umeyama (1334_CR58) 2013; 135
H Dou (1334_CR19) 2021; 50
C Gropp (1334_CR37) 2020; 370
JL Segura (1334_CR49) 2019; 48
1334_CR59
X Li (1334_CR12) 2020; 12
P Ramaswamy (1334_CR56) 2014; 43
X Wu (1334_CR29) 2020; 142
T Ma (1334_CR36) 2018; 361
L Ascherl (1334_CR11) 2016; 8
C Liu (1334_CR32) 2022; 144
JTA Jones (1334_CR5) 2011; 474
AJ Howarth (1334_CR6) 2016; 1
X Yang (1334_CR30) 2022; 61
P Kissel (1334_CR38) 2014; 6
References_xml – volume: 13
  start-page: 660
  year: 2021
  end-page: 665
  ident: CR40
  article-title: Single crystals of mechanically entwined helical covalent polymers
  publication-title: Nat. Chem.
– volume: 12
  start-page: 1115
  year: 2020
  end-page: 1122
  ident: CR12
  article-title: Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones
  publication-title: Nat. Chem.
– volume: 48
  start-page: 3903
  year: 2019
  end-page: 3945
  ident: CR49
  article-title: Post-synthetic modification of covalent organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 11
  year: 2020
  ident: CR53
  article-title: Confining H PO network in covalent organic frameworks enables proton super flow
  publication-title: Nat. Commun.
– volume: 135
  start-page: 11345
  year: 2013
  end-page: 11350
  ident: CR58
  article-title: Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer
  publication-title: J. Am. Chem. Soc.
– volume: 319
  start-page: 794
  year: 2008
  end-page: 797
  ident: CR44
  article-title: Colossal positive and negative thermal expansion in the framework material Ag [Co(CN) ]
  publication-title: Science
– volume: 474
  start-page: 367
  year: 2011
  end-page: 371
  ident: CR5
  article-title: Modular and predictable assembly of porous organic molecular crystals
  publication-title: Nature
– volume: 361
  start-page: 48
  year: 2018
  end-page: 52
  ident: CR36
  article-title: Single-crystal x-ray diffraction structures of covalent organic frameworks
  publication-title: Science
– volume: 11
  year: 2020
  ident: CR31
  article-title: Redox-triggered switching in three-dimensional covalent organic frameworks
  publication-title: Nat. Commun.
– volume: 48
  start-page: 1362
  year: 2019
  end-page: 1389
  ident: CR2
  article-title: Multifunctional porous hydrogen-bonded organic framework materials
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  ident: CR10
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
– volume: 8
  start-page: 310
  year: 2016
  end-page: 316
  ident: CR11
  article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks
  publication-title: Nat. Chem.
– volume: 11
  start-page: 2102300
  year: 2021
  ident: CR51
  article-title: Covalent-organic frameworks (COFs) as proton conductors
  publication-title: Adv. Energy Mater.
– volume: 327
  start-page: 1627
  year: 2010
  end-page: 1630
  ident: CR7
  article-title: Heme-like coordination chemistry within nanoporous molecular crystals
  publication-title: Science
– volume: 1
  start-page: 0056
  year: 2017
  ident: CR14
  article-title: Tessellated multiporous two-dimensional covalent organic frameworks
  publication-title: Nat. Rev. Chem.
– volume: 11
  start-page: 994
  year: 2019
  end-page: 1000
  ident: CR13
  article-title: On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers
  publication-title: Nat. Chem.
– volume: 138
  start-page: 15519
  year: 2016
  end-page: 15522
  ident: CR46
  article-title: Chemical conversion of linkages in covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: CR9
  article-title: The atom, the molecule, and the covalent organic framework
  publication-title: Science
– volume: 4
  start-page: 1696
  year: 2018
  end-page: 1709
  ident: CR45
  article-title: Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO
  publication-title: Chem
– volume: 112
  start-page: 1126
  year: 2012
  end-page: 1162
  ident: CR3
  article-title: Luminescent functional metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 604
  start-page: 72
  year: 2022
  end-page: 79
  ident: CR21
  article-title: Reconstructed covalent organic frameworks
  publication-title: Nature
– volume: 6
  start-page: 774
  year: 2014
  end-page: 778
  ident: CR38
  article-title: A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization
  publication-title: Nat. Chem.
– volume: 140
  start-page: 1077
  year: 2018
  end-page: 1082
  ident: CR52
  article-title: Achieving superprotonic conduction in metal–organic frameworks through iterative design advances
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 15018
  year: 2016
  ident: CR6
  article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks
  publication-title: Nat. Rev. Mater.
– volume: 14
  start-page: 507
  year: 2022
  end-page: 514
  ident: CR16
  article-title: Porous covalent organic nanotubes and their assembly in loops and toroids
  publication-title: Nat. Chem.
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  ident: CR22
  article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO reduction in water
  publication-title: Science
– volume: 351
  start-page: 365
  year: 2016
  end-page: 369
  ident: CR41
  article-title: Weaving of organic threads into a crystalline covalent organic framework
  publication-title: Science
– volume: 5
  start-page: 830
  year: 2013
  end-page: 834
  ident: CR35
  article-title: Constructing monocrystalline covalent organic networks by polymerization
  publication-title: Nat. Chem.
– volume: 143
  start-page: 7104
  year: 2021
  end-page: 7113
  ident: CR25
  article-title: Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 14357
  year: 2020
  end-page: 14364
  ident: CR29
  article-title: Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 6570
  year: 2014
  end-page: 6573
  ident: CR28
  article-title: Phosphoric acid loaded azo (−N═N−) based covalent organic framework for proton conduction
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 722
  year: 2016
  end-page: 726
  ident: CR27
  article-title: Proton conduction in crystalline and porous covalent organic frameworks
  publication-title: Nat. Mater.
– volume: 71
  start-page: 82
  year: 2015
  end-page: 91
  ident: CR42
  article-title: High-symmetry embeddings of interpenetrating periodic nets. Essential rings and patterns of catenation
  publication-title: Acta Crystallogr. A
– volume: 341
  start-page: 1230444
  year: 2013
  ident: CR1
  article-title: The chemistry and applications of metal–organic frameworks
  publication-title: Science
– volume: 61
  start-page: e202207043
  year: 2022
  ident: CR30
  article-title: Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: e202217240
  year: 2023
  ident: CR55
  article-title: Pore geometry and surface engineering of covalent organic frameworks for anhydrous proton conduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 17431
  year: 2019
  end-page: 17440
  ident: CR24
  article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO reduction
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5789
  year: 2014
  end-page: 5814
  ident: CR4
  article-title: Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 12918
  year: 2021
  end-page: 12923
  ident: CR54
  article-title: Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks confinement and activation
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 1142
  year: 2021
  end-page: 1148
  ident: CR26
  article-title: Thermally conductive ultra-low- dielectric layers based on two-dimensional covalent organic frameworks
  publication-title: Nat. Mater.
– volume: 20
  start-page: 1551
  year: 2021
  end-page: 1558
  ident: CR18
  article-title: Hydrophilicity gradient in covalent organic frameworks for membrane distillation
  publication-title: Nat. Mater.
– volume: 11
  start-page: 587
  year: 2019
  end-page: 594
  ident: CR17
  article-title: Chemically stable polyarylether-based covalent organic frameworks
  publication-title: Nat. Chem.
– volume: 49
  start-page: 6248
  year: 2020
  end-page: 6272
  ident: CR15
  article-title: Chiral covalent organic frameworks: design, synthesis and property
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  ident: CR20
  article-title: Covalent organic frameworks for separation applications
  publication-title: Chem. Soc. Rev.
– volume: 114
  start-page: 1343
  year: 2014
  end-page: 1370
  ident: CR43
  article-title: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle
  publication-title: Chem. Rev.
– volume: 43
  start-page: 5913
  year: 2014
  end-page: 5932
  ident: CR56
  article-title: MOFs as proton conductors—challenges and opportunities
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 5140
  year: 2020
  end-page: 5158
  ident: CR39
  article-title: How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 5684
  year: 2018
  end-page: 5689
  ident: CR48
  article-title: Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate‐opening at methane storage pressures
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1180
  year: 2018
  end-page: 1189
  ident: CR23
  article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water
  publication-title: Nat. Chem.
– volume: 50
  start-page: 986
  year: 2021
  end-page: 1029
  ident: CR19
  article-title: Microporous framework membranes for precise molecule/ion separations
  publication-title: Chem. Soc. Rev.
– volume: 370
  start-page: eabd6406
  year: 2020
  ident: CR37
  article-title: Design of higher valency in covalent organic frameworks
  publication-title: Science
– volume: 120
  start-page: 8416
  year: 2020
  end-page: 8467
  ident: CR57
  article-title: Proton transport in metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 144
  start-page: 12390
  year: 2022
  end-page: 12399
  ident: CR32
  article-title: Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance
  publication-title: J. Am. Chem. Soc.
– volume: 361
  start-page: 52
  year: 2018
  end-page: 57
  ident: CR34
  article-title: Seeded growth of single-crystal two-dimensional covalent organic frameworks
  publication-title: Science
– volume: 135
  start-page: 16336
  year: 2013
  end-page: 16339
  ident: CR33
  article-title: Single-crystal structure of a covalent organic framework
  publication-title: J. Am. Chem. Soc.
– ident: CR59
– volume: 58
  start-page: 18212
  year: 2019
  end-page: 18217
  ident: CR47
  article-title: Tuning the gate-opening pressure in a switching pcu coordination network, X-pcu-5-Zn, by pillar-ligand substitution
  publication-title: Angew. Chem. Int. Ed.
– volume: 574
  start-page: 511
  year: 2019
  end-page: 515
  ident: CR8
  article-title: An antiaromatic-walled nanospace
  publication-title: Nature
– volume: 57
  start-page: 10894
  year: 2018
  end-page: 10898
  ident: CR50
  article-title: Superprotonic conductivity in flexible porous covalent organic framework membranes
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  start-page: e202207043
  year: 2022
  ident: 1334_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202207043
– volume: 114
  start-page: 1343
  year: 2014
  ident: 1334_CR43
  publication-title: Chem. Rev.
  doi: 10.1021/cr400392k
– volume: 60
  start-page: 12918
  year: 2021
  ident: 1334_CR54
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101400
– volume: 135
  start-page: 11345
  year: 2013
  ident: 1334_CR58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4051668
– volume: 50
  start-page: 986
  year: 2021
  ident: 1334_CR19
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00552E
– volume: 11
  year: 2020
  ident: 1334_CR53
  publication-title: Nat. Commun.
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: 1334_CR9
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 8
  start-page: 310
  year: 2016
  ident: 1334_CR11
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2444
– volume: 319
  start-page: 794
  year: 2008
  ident: 1334_CR44
  publication-title: Science
  doi: 10.1126/science.1151442
– volume: 57
  start-page: 10894
  year: 2018
  ident: 1334_CR50
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804753
– volume: 361
  start-page: 48
  year: 2018
  ident: 1334_CR36
  publication-title: Science
  doi: 10.1126/science.aat7679
– volume: 11
  year: 2020
  ident: 1334_CR31
  publication-title: Nat. Commun.
– volume: 6
  start-page: 774
  year: 2014
  ident: 1334_CR38
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2008
– volume: 43
  start-page: 5913
  year: 2014
  ident: 1334_CR56
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00093E
– volume: 574
  start-page: 511
  year: 2019
  ident: 1334_CR8
  publication-title: Nature
  doi: 10.1038/s41586-019-1661-x
– volume: 142
  start-page: 14357
  year: 2020
  ident: 1334_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06474
– volume: 49
  start-page: 5140
  year: 2020
  ident: 1334_CR39
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00176G
– volume: 71
  start-page: 82
  year: 2015
  ident: 1334_CR42
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S2053273314019950
– ident: 1334_CR59
  doi: 10.6084/m9.figshare.20446014
– volume: 12
  start-page: 1115
  year: 2020
  ident: 1334_CR12
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00562-5
– volume: 341
  start-page: 1230444
  year: 2013
  ident: 1334_CR1
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 141
  start-page: 17431
  year: 2019
  ident: 1334_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09502
– volume: 4
  start-page: 1696
  year: 2018
  ident: 1334_CR45
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.05.003
– volume: 58
  start-page: 18212
  year: 2019
  ident: 1334_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909977
– volume: 48
  start-page: 1362
  year: 2019
  ident: 1334_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00155C
– volume: 370
  start-page: eabd6406
  year: 2020
  ident: 1334_CR37
  publication-title: Science
  doi: 10.1126/science.abd6406
– volume: 20
  start-page: 1551
  year: 2021
  ident: 1334_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01052-w
– volume: 120
  start-page: 8814
  year: 2020
  ident: 1334_CR10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 13
  start-page: 660
  year: 2021
  ident: 1334_CR40
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00686-2
– volume: 43
  start-page: 5789
  year: 2014
  ident: 1334_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00129J
– volume: 62
  start-page: e202217240
  year: 2023
  ident: 1334_CR55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202217240
– volume: 136
  start-page: 6570
  year: 2014
  ident: 1334_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502212v
– volume: 49
  start-page: 6248
  year: 2020
  ident: 1334_CR15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00009D
– volume: 48
  start-page: 3903
  year: 2019
  ident: 1334_CR49
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00978C
– volume: 57
  start-page: 5684
  year: 2018
  ident: 1334_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800820
– volume: 1
  start-page: 0056
  year: 2017
  ident: 1334_CR14
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0056
– volume: 10
  start-page: 1180
  year: 2018
  ident: 1334_CR23
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0141-5
– volume: 120
  start-page: 8416
  year: 2020
  ident: 1334_CR57
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00842
– volume: 1
  start-page: 15018
  year: 2016
  ident: 1334_CR6
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2015.18
– volume: 49
  start-page: 708
  year: 2020
  ident: 1334_CR20
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00827F
– volume: 138
  start-page: 15519
  year: 2016
  ident: 1334_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08377
– volume: 604
  start-page: 72
  year: 2022
  ident: 1334_CR21
  publication-title: Nature
  doi: 10.1038/s41586-022-04443-4
– volume: 327
  start-page: 1627
  year: 2010
  ident: 1334_CR7
  publication-title: Science
  doi: 10.1126/science.1184228
– volume: 140
  start-page: 1077
  year: 2018
  ident: 1334_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11364
– volume: 349
  start-page: 1208
  year: 2015
  ident: 1334_CR22
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 474
  start-page: 367
  year: 2011
  ident: 1334_CR5
  publication-title: Nature
  doi: 10.1038/nature10125
– volume: 144
  start-page: 12390
  year: 2022
  ident: 1334_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03959
– volume: 11
  start-page: 587
  year: 2019
  ident: 1334_CR17
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0238-5
– volume: 20
  start-page: 1142
  year: 2021
  ident: 1334_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00934-3
– volume: 361
  start-page: 52
  year: 2018
  ident: 1334_CR34
  publication-title: Science
  doi: 10.1126/science.aar7883
– volume: 15
  start-page: 722
  year: 2016
  ident: 1334_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4611
– volume: 11
  start-page: 2102300
  year: 2021
  ident: 1334_CR51
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102300
– volume: 5
  start-page: 830
  year: 2013
  ident: 1334_CR35
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1730
– volume: 14
  start-page: 507
  year: 2022
  ident: 1334_CR16
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-022-00908-1
– volume: 112
  start-page: 1126
  year: 2012
  ident: 1334_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 11
  start-page: 994
  year: 2019
  ident: 1334_CR13
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0327-5
– volume: 143
  start-page: 7104
  year: 2021
  ident: 1334_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02145
– volume: 135
  start-page: 16336
  year: 2013
  ident: 1334_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409033p
– volume: 351
  start-page: 365
  year: 2016
  ident: 1334_CR41
  publication-title: Science
  doi: 10.1126/science.aad4011
SSID ssj0065316
Score 2.6839142
Snippet Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms 639/638/298
639/638/541/961
Acids
Analytical Chemistry
Biochemistry
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Covalence
Crystals
Inorganic Chemistry
Laboratories
Linkages
Microscopy
Organic Chemistry
Oxidation
Phosphoric acid
Physical Chemistry
Polymerization
Protons
Single crystals
Solvents
Thermal expansion
Topology
Transformations
X-ray diffraction
Title Linkage conversions in single-crystalline covalent organic frameworks
URI https://link.springer.com/article/10.1038/s41557-023-01334-7
https://www.ncbi.nlm.nih.gov/pubmed/37723258
https://www.proquest.com/docview/2911664335
https://www.proquest.com/docview/2866378287
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8RADA4-DnoR39YXFbzpYLfz7Elc2VUEFxGFvZXOdArC0lW7Hvz3Jn2siOilPXTaTpN08iWZJACnslAytlmP6SJxTHiRMFPomHGhlZBeZyYj18D9SN0-i7uxHLcOt6rdVtmtifVCnU8d-cgvYvwrFapPLi9f3xh1jaLoattCYxGWqXQZSbUezw0uhfJVZxdpKSkzKGqTZiJuLipSpJqhxkJjmnPB9E_F9Att_oqU1gpouA5rLXIMrxpWb8CCLzdh5bpr2LYFA7IrcXkI653ktRusCl_KkLwBE8_c-yciQSrBTSNQwFDdhE1TJxcW3R6tahueh4On61vWdklgDqHMjBEgUE4jLhOJyaXzkVWCqorFvEA8FZtCWWd8lETWOsRPMtfKJZQ5ZF3mbcR3YKmcln4PQu1j7nwsciSNsJxniXEGTRpneS83Pg-g15EodW0JcepkMUnrUDY3aUPWFMma1mRNdQBn83temwIa_44-7Ciftj9TlX6zPoCT-WUkLsU2stJPP3CMQeikqXp_ALsNx-av42hB4HebAM47Fn4__O-57P8_lwNYjRHgNO6YQ1iavX_4IwQoM3tcSyEezfDmGJavhv3-CM_9wejh8QszqeIP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGOIwL2vgs26BIcIJoffnuASE09nhjH6dN2i00aSohTX1jfRPaP8XfiN02b0ITu-3cNE0dx_7Zjm2Ad6rRivtqwkxTBiajLJltDGdCGi1VNJWtyDVwdKxnp_L7mTpbgT8pF4auVSaZ2Avqeh7IR77D8VRqVJ9Cfb74xahrFEVXUwuNgS0O4vVvNNm6T_tfcX_fcz7dO9mdsbGrAAuo-heMFKgOBnGMLG2tQiy8llSFi4sG8Qe3jfbBxqIsvA-IN1RtdCgp08aHKvpC4LwP4CGupCRjz06_JcmvkZ_7bCajFGUiFWOSTiHsTkeK2zDUkGi8CyGZ-VcR3kK3tyKzvcKbrsPjEanmXwbW2oCV2D6Btd3UIO4p7JEdi-Io72-u9263Lv_Z5uR9OI8sXF4j8qSS3zQCGRrVWz40kQp5k-6Edc_g9F7o9xxW23kbX0JuIhchclkjaaQXoiptsGhCBS8mtY11BpNEIhfGkuXUOePc9aFzYd1AVodkdT1Zncngw_Kdi6Fgx52jtxLl3Xh4O3fDahm8XT5G4lIspWrj_ArHWIRqhroFZPBi2LHl5wRaLPjfNoOPaQtvJv__Wl7dvZY3sDY7OTp0h_vHB5vwiCO4GlxBW7C6uLyK2wiOFv51z5E5_LjvI_AXuIEZQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFdQXqd_RqhH0SZfL7Xceimh7R2v1KGKhbzG72YBQcrW5Uvqv9a9zJslekWLf-pzNZjM7u_Obb4B3qtaKu3LCTJ17JoPMma0NZ0IaLVUwpS3JNPB9rncP5dcjdbQGlzEXhsIq453YXdTVwpONfMzxVGoUn0KN6yEs4mBn9unkD6MOUuRpje00ehbZDxfnqL61W3s7uNfvOZ9Nf27vsqHDAPMIA5aMhKn2BjGNzG2lfMicllSRi4sasQi3tXbehizPnPOIPVRltM8p68b5MrhM4Lx3YN2QVjSC9S_T-cGPKAc0cneX22SUorykbEjZyYQdtyTGDUN5iaq8EJKZf8XiNax7zU_bib_ZBjwYcGv6uWe0h7AWmkdwbzu2i3sMU9Jq8XJKuzj2zgjXpr-blGwRx4H50wvEoVQAnEYge6OwS_uWUj6tY4RY-wQOb4WCT2HULJrwHFITuPCBywpJI50QZW69RYXKOzGpbKgSmEQSFX4oYE59NI6LzpEubNGTtUCyFh1ZC5PAh9U7J335jhtHb0bKF8NRbosrxkvg7eoxEpc8K2UTFmc4xiJwM9Q7IIFn_Y6tPidQf8H_tgl8jFt4Nfn_1_Li5rW8gbvI_sW3vfn-S7jPEWn1dqFNGC1Pz8IrREpL93pgyRR-3fYp-AvgaB7S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+conversions+in+single-crystalline+covalent+organic+frameworks&rft.jtitle=Nature+chemistry&rft.au=Yu%2C+Baoqiu&rft.au=Lin%2C+Rui-Biao&rft.au=Xu%2C+Gang&rft.au=Fu%2C+Zhi-Hua&rft.date=2024-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=16&rft.issue=1&rft.spage=114&rft.epage=121&rft_id=info:doi/10.1038%2Fs41557-023-01334-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon