RhoB Differentially Controls Akt Function in Tumor Cells and Stromal Endothelial Cells during Breast Tumorigenesis

Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 73; no. 1; pp. 50 - 61
Main Authors KAZEROUNIAN, Shiva, GERALD, Damien, PHUNG, Thuy L, BRAVO-NUEVO, Arturo, SHECHTER, Sharon, MCNAMARA, Stephanie, DUHADAWAY, James B, KOCHER, Olivier N, BROWN, Lawrence F, TOKER, Alex, PRENDERGAST, George C, BENJAMIN, Laura E, MINZHOU HUANG, REBECCA CHIN, Y, UDAYAKUMAR, Durga, NINGNING ZHENG, O'DONNELL, Rebekah K, PERRUZZI, Carole, MANGIANTE, Lee, POURAT, Jacob
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target tumors. This oversight potentially confounds proof-of-concept studies and increases drug development risks. Here, we show in established murine and human models of breast cancer how differential regulation of Akt by the small GTPase RhoB in cancer cells or stromal endothelial cells determines their dormancy versus outgrowth when angiogenesis becomes critical. In cancer cells in vitro or in vivo, RhoB functions as a tumor suppressor that restricts EGF receptor (EGFR) cell surface occupancy as well as Akt signaling. However, after activation of the angiogenic switch, RhoB functions as a tumor promoter by sustaining endothelial Akt signaling, growth, and survival of stromal endothelial cells that mediate tumor neoangiogenesis. Altogether, the positive impact of RhoB on angiogenesis and progression supercedes its negative impact in cancer cells themselves. Our findings elucidate the dominant positive role of RhoB in cancer. More generally, they illustrate how differential gene function effects on signaling pathways in the tumor stromal component can complicate the challenge of developing therapeutics to target cancer pathophysiology.
AbstractList Abstract Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target tumors. This oversight potentially confounds proof-of-concept studies and increases drug development risks. Here, we show in established murine and human models of breast cancer how differential regulation of Akt by the small GTPase RhoB in cancer cells or stromal endothelial cells determines their dormancy versus outgrowth when angiogenesis becomes critical. In cancer cells in vitro or in vivo, RhoB functions as a tumor suppressor that restricts EGF receptor (EGFR) cell surface occupancy as well as Akt signaling. However, after activation of the angiogenic switch, RhoB functions as a tumor promoter by sustaining endothelial Akt signaling, growth, and survival of stromal endothelial cells that mediate tumor neoangiogenesis. Altogether, the positive impact of RhoB on angiogenesis and progression supercedes its negative impact in cancer cells themselves. Our findings elucidate the dominant positive role of RhoB in cancer. More generally, they illustrate how differential gene function effects on signaling pathways in the tumor stromal component can complicate the challenge of developing therapeutics to target cancer pathophysiology. Cancer Res; 73(1); 50–61. ©2012 AACR.
Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target tumors. This oversight potentially confounds proof-of-concept studies and increases drug development risks. Here, we show in established murine and human models of breast cancer how differential regulation of Akt by the small GTPase RhoB in cancer cells or stromal endothelial cells determines their dormancy versus outgrowth when angiogenesis becomes critical. In cancer cells in vitro or in vivo , RhoB functions as a tumor suppressor that restricts EGF receptor (EGFR) cell surface occupancy as well as Akt signaling. However, after activation of the angiogenic switch, RhoB functions as a tumor promoter by sustaining endothelial Akt signaling, growth, and survival of stromal endothelial cells that mediate tumor neoangiogenesis. Altogether, the positive impact of RhoB on angiogenesis and progression supercedes its negative impact in cancer cells themselves. Our findings elucidate the dominant positive role of RhoB in cancer. More generally, they illustrate how differential gene function effects on signaling pathways in the tumor stromal component can complicate the challenge of developing therapeutics to target cancer pathophysiology.
Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target tumors. This oversight potentially confounds proof-of-concept studies and increases drug development risks. Here, we show in established murine and human models of breast cancer how differential regulation of Akt by the small GTPase RhoB in cancer cells or stromal endothelial cells determines their dormancy versus outgrowth when angiogenesis becomes critical. In cancer cells in vitro or in vivo, RhoB functions as a tumor suppressor that restricts EGF receptor (EGFR) cell surface occupancy as well as Akt signaling. However, after activation of the angiogenic switch, RhoB functions as a tumor promoter by sustaining endothelial Akt signaling, growth, and survival of stromal endothelial cells that mediate tumor neoangiogenesis. Altogether, the positive impact of RhoB on angiogenesis and progression supercedes its negative impact in cancer cells themselves. Our findings elucidate the dominant positive role of RhoB in cancer. More generally, they illustrate how differential gene function effects on signaling pathways in the tumor stromal component can complicate the challenge of developing therapeutics to target cancer pathophysiology.
Author PERRUZZI, Carole
BRAVO-NUEVO, Arturo
BROWN, Lawrence F
MANGIANTE, Lee
O'DONNELL, Rebekah K
KAZEROUNIAN, Shiva
TOKER, Alex
SHECHTER, Sharon
PRENDERGAST, George C
MINZHOU HUANG
GERALD, Damien
MCNAMARA, Stephanie
NINGNING ZHENG
POURAT, Jacob
KOCHER, Olivier N
PHUNG, Thuy L
BENJAMIN, Laura E
UDAYAKUMAR, Durga
DUHADAWAY, James B
REBECCA CHIN, Y
AuthorAffiliation 3 Department of Pathology, Anatomy and Cell Biology and Kimmel Cancer Center, Jefferson Medical School, Thomas Jefferson University, Philadelphia, Pennsylvania
2 Lankenau Institute for Medical Research, Wynnewood
1 Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
4 ImClone Systems, Eli Lilly and Company, New York, New York
AuthorAffiliation_xml – name: 3 Department of Pathology, Anatomy and Cell Biology and Kimmel Cancer Center, Jefferson Medical School, Thomas Jefferson University, Philadelphia, Pennsylvania
– name: 1 Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
– name: 4 ImClone Systems, Eli Lilly and Company, New York, New York
– name: 2 Lankenau Institute for Medical Research, Wynnewood
Author_xml – sequence: 1
  givenname: Shiva
  surname: KAZEROUNIAN
  fullname: KAZEROUNIAN, Shiva
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 2
  givenname: Damien
  surname: GERALD
  fullname: GERALD, Damien
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 3
  givenname: Thuy L
  surname: PHUNG
  fullname: PHUNG, Thuy L
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 4
  givenname: Arturo
  surname: BRAVO-NUEVO
  fullname: BRAVO-NUEVO, Arturo
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 5
  givenname: Sharon
  surname: SHECHTER
  fullname: SHECHTER, Sharon
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 6
  givenname: Stephanie
  surname: MCNAMARA
  fullname: MCNAMARA, Stephanie
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 7
  givenname: James B
  surname: DUHADAWAY
  fullname: DUHADAWAY, James B
  organization: Lankenau Institute for Medical Research, Wynnewood, United States
– sequence: 8
  givenname: Olivier N
  surname: KOCHER
  fullname: KOCHER, Olivier N
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 9
  givenname: Lawrence F
  surname: BROWN
  fullname: BROWN, Lawrence F
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 10
  givenname: Alex
  surname: TOKER
  fullname: TOKER, Alex
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 11
  givenname: George C
  surname: PRENDERGAST
  fullname: PRENDERGAST, George C
  organization: Lankenau Institute for Medical Research, Wynnewood, United States
– sequence: 12
  givenname: Laura E
  surname: BENJAMIN
  fullname: BENJAMIN, Laura E
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 13
  surname: MINZHOU HUANG
  fullname: MINZHOU HUANG
  organization: Lankenau Institute for Medical Research, Wynnewood, United States
– sequence: 14
  givenname: Y
  surname: REBECCA CHIN
  fullname: REBECCA CHIN, Y
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 15
  givenname: Durga
  surname: UDAYAKUMAR
  fullname: UDAYAKUMAR, Durga
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 16
  surname: NINGNING ZHENG
  fullname: NINGNING ZHENG
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 17
  givenname: Rebekah K
  surname: O'DONNELL
  fullname: O'DONNELL, Rebekah K
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 18
  givenname: Carole
  surname: PERRUZZI
  fullname: PERRUZZI, Carole
  organization: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
– sequence: 19
  givenname: Lee
  surname: MANGIANTE
  fullname: MANGIANTE, Lee
  organization: ImClone Systems, Eli Lilly and Company, New York, New York, United States
– sequence: 20
  givenname: Jacob
  surname: POURAT
  fullname: POURAT, Jacob
  organization: ImClone Systems, Eli Lilly and Company, New York, New York, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27062140$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23135917$$D View this record in MEDLINE/PubMed
BookMark eNpVUctOAyEUJUaj9fEJGjYupwIDZboxqeMzMZpoXZNbhmlRCgamJv17aVqrrm7uPQ_COYdo1wdvEDqlpE-pqC4IIVUhuGT9evRUUFqURIgd1KOirArJudhFvS3nAB2m9J5XQYnYRwespKUYUtlD8WUWrvC1bVsTje8sOLfEdfBdDC7h0UeHbxdedzZ4bD0eL-Yh4tq4jIFv8GumzcHhG9-EbmZclm_QZhGtn-KraCB1a52dGm-STcdorwWXzMlmHqG325txfV88Pt891KPHQnNOu4LyFrSUTHBWDqtmKCtBCOOEcy0nLUgiGZ9QMcg3BhPNzIBwylhTEWYAgJVH6HLt-7mYzE2j8_ciOPUZ7RziUgWw6j_i7UxNw5fijFA-rLKBWBvoGFKKpt1qKVGrEtQqYLUKWOUS8kmtSsi6s78Pb1U_qWfC-YYASYNrI3ht0y9PkgGjnJTflvSS-Q
CODEN CNREA8
CitedBy_id crossref_primary_10_1038_s41598_019_42357_w
crossref_primary_10_1210_endocr_bqac134
crossref_primary_10_4161_sgtp_29019
crossref_primary_10_3390_ijms25136868
crossref_primary_10_1093_nar_gku626
crossref_primary_10_1128_mBio_02323_18
crossref_primary_10_15252_embj_201898994
crossref_primary_10_1038_onc_2015_240
crossref_primary_10_1016_j_molonc_2013_11_001
crossref_primary_10_1038_s41388_019_0985_1
crossref_primary_10_1038_s41598_021_84852_z
crossref_primary_10_3390_cells9122616
crossref_primary_10_1007_s11523_023_00993_3
crossref_primary_10_1016_j_ejcb_2023_151313
crossref_primary_10_1089_omi_2014_0135
crossref_primary_10_1016_j_yexcr_2023_113893
crossref_primary_10_18632_oncotarget_3975
crossref_primary_10_1002_biof_1155
crossref_primary_10_1016_j_canlet_2018_04_027
crossref_primary_10_1189_jlb_2A0415_162R
crossref_primary_10_3390_cells8060545
crossref_primary_10_1016_j_ijrobp_2019_04_021
crossref_primary_10_3390_cancers11060818
crossref_primary_10_1002_cnr2_1164
crossref_primary_10_1016_j_canlet_2022_215761
crossref_primary_10_1038_ncomms3824
crossref_primary_10_1210_me_2015_1294
crossref_primary_10_3390_cells9102167
crossref_primary_10_1002_cbin_11802
crossref_primary_10_1083_jcb_201806111
crossref_primary_10_1074_mcp_M114_045211
crossref_primary_10_15252_emmm_201606646
crossref_primary_10_1002_jcb_28213
crossref_primary_10_1093_neuonc_nou228
crossref_primary_10_1002_bies_201900256
crossref_primary_10_3390_genes9020067
crossref_primary_10_1080_21541248_2016_1234429
Cites_doi 10.1016/S0888-7543(03)00044-2
10.1186/1471-2407-7-220
10.1073/pnas.111137198
10.1158/0008-5472.CAN-08-4886
10.1083/jcb.152.1.111
10.1128/MCB.21.20.6906-6912.2001
10.1038/nature03096
10.1158/1078-0432.CCR-03-0149
10.1007/s11010-010-0618-z
10.1093/nar/gkh906
10.1016/S0962-8924(99)01710-9
10.1200/JCO.2010.28.4257
10.1002/ijc.25445
10.1038/cgt.2008.12
10.1007/978-1-4615-4295-7
10.1016/j.ajpath.2010.11.040
10.1038/35101096
10.1016/S1046-2023(03)00032-X
10.1016/S0960-9822(99)80422-9
10.1038/ncb0901-785
10.1083/jcb.109.2.903
10.1016/0092-8674(87)90449-1
10.1158/0008-5472.CAN-05-2299
10.1158/0008-5472.CAN-07-6854
10.1074/jbc.C000145200
10.1002/ijc.22328
10.1093/nar/29.3.792
10.1242/jcs.003657
10.1158/0008-5472.CAN-08-4147
10.1016/j.yexcr.2010.02.045
10.1016/S0014-5793(00)02003-2
10.1038/nrc1477
10.2144/04361ST04
10.1186/1471-2407-7-55
10.1101/gad.1134603
10.1016/S0014-5793(01)02117-2
10.1016/S0092-8674(00)80108-7
10.1161/ATVBAHA.107.154211
10.1016/j.yexcr.2004.08.012
ContentType Journal Article
Copyright 2014 INIST-CNRS
2012 American Association for Cancer Research. 2012
Copyright_xml – notice: 2014 INIST-CNRS
– notice: 2012 American Association for Cancer Research. 2012
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1158/0008-5472.CAN-11-3055
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 61
ExternalDocumentID 10_1158_0008_5472_CAN_11_3055
23135917
27062140
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL071049
– fundername: NCI NIH HHS
  grantid: K99 CA157945
– fundername: NCI NIH HHS
  grantid: K99CA157945
– fundername: NIDDK NIH HHS
  grantid: P30 DK034854
– fundername: NCI NIH HHS
  grantid: R01 CA109086
– fundername: NCI NIH HHS
  grantid: CA0109086
– fundername: NCI NIH HHS
  grantid: R01 CA100123
– fundername: NCI NIH HHS
  grantid: CA082222
– fundername: NCI NIH HHS
  grantid: P01 CA092644
– fundername: NCI NIH HHS
  grantid: R01 CA082222
GroupedDBID ---
-ET
.55
.GJ
08R
18M
29B
2WC
34G
39C
3O-
476
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAPBV
ABFLS
ABOCM
ABPTK
ACGFO
ACIWK
ACPRK
ADBBV
ADCOW
ADGIM
ADNWM
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CS3
D0S
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
IQODW
J5H
KQ8
L7B
LSO
MVM
OHT
OK1
P0W
P2P
PQEST
PQQKQ
RCR
RHF
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
YKV
YZZ
ZA5
ZCG
ZGI
ACSVP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c441t-14fac772542398d97850024044c7bfa70724b1560242abc2e604122d802eaaa23
ISSN 0008-5472
IngestDate Tue Sep 17 21:22:13 EDT 2024
Thu Sep 26 17:17:03 EDT 2024
Sat Sep 28 07:57:44 EDT 2024
Fri Nov 25 01:10:46 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Endothelial cell
Control
Akt protein kinase
Breast
Tumorigenicity
Stromal cell
Mammary gland
Carcinogenesis
Tumor cell
Tumor suppressor gene
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-14fac772542398d97850024044c7bfa70724b1560242abc2e604122d802eaaa23
Notes D. Gerald and M. Huang contributed equally to this work.
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/73/1/50.full.pdf
PMID 23135917
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4201498
crossref_primary_10_1158_0008_5472_CAN_11_3055
pubmed_primary_23135917
pascalfrancis_primary_27062140
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2013
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 20963626 - Mol Cell Biochem. 2011 Jan;347(1-2):103-15
16397264 - Cancer Res. 2006 Jan 1;66(1):482-9
3032456 - Cell. 1987 May 22;49(4):465-75
11007964 - FEBS Lett. 2000 Sep 22;481(3):205-8
20473933 - Int J Cancer. 2011 Mar 1;128(5):1057-68
15102679 - Clin Cancer Res. 2004 Apr 15;10(8):2742-50
17951322 - Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2597-605
20211171 - Exp Cell Res. 2010 May 1;316(8):1324-31
18676830 - Cancer Res. 2008 Aug 1;68(15):6084-91
17623777 - J Cell Sci. 2007 Aug 1;120(Pt 15):2555-64
12798140 - Methods. 2003 Jul;30(3):256-68
8756718 - Cell. 1996 Aug 9;86(3):353-64
21224061 - Am J Pathol. 2011 Jan;178(1):245-52
2760116 - J Cell Biol. 1989 Aug;109(2):903-14
11353846 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6192-7
17389037 - BMC Cancer. 2007;7:55
9044849 - Cancer Res. 1997 Feb 15;57(4):708-13
12114424 - Clin Cancer Res. 2002 Jul;8(7):2225-32
17096327 - Int J Cancer. 2007 Feb 1;120(3):543-51
18340357 - Cancer Gene Ther. 2008 Jul;15(7):456-64
19351819 - Cancer Res. 2009 Apr 15;69(8):3272-7
11149925 - J Cell Biol. 2001 Jan 8;152(1):111-26
11905808 - Nat Rev Cancer. 2001 Nov;1(2):162-8
14740490 - Biotechniques. 2004 Jan;36(1):84-6, 88, 90-1
15516957 - Nat Rev Cancer. 2004 Nov;4(11):839-49
11564874 - Mol Cell Biol. 2001 Oct;21(20):6906-12
11223029 - FEBS Lett. 2001 Feb 16;490(3):142-52
10508588 - Curr Biol. 1999 Sep 9;9(17):955-8
20644094 - J Clin Oncol. 2010 Sep 10;28(26):4022-8
1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61
19602596 - Cancer Res. 2009 Aug 1;69(15):6092-9
18047684 - BMC Cancer. 2007;7:220
15501444 - Exp Cell Res. 2004 Nov 15;301(1):43-9
10770919 - J Biol Chem. 2000 Jun 16;275(24):17974-8
16329046 - Histol Histopathol. 2006 Feb;21(2):213-8
12706111 - Genomics. 2003 May;81(5):525-30
11196177 - Cancer Res. 2001 Jan 1;61(1):293-302
10675900 - Trends Cell Biol. 2000 Mar;10(3):85-8
15549095 - Nature. 2004 Nov 18;432(7015):332-7
11533657 - Nat Cell Biol. 2001 Sep;3(9):785-92
15498926 - Nucleic Acids Res. 2004;32(18):5693-702
11160903 - Nucleic Acids Res. 2001 Feb 1;29(3):792-8
14597666 - Genes Dev. 2003 Nov 1;17(21):2721-32
Adini (2022061703522182900_bib7) 2003; 17
Mazieres (2022061703522182900_bib43) 2007; 7
Michaelson (2022061703522182900_bib6) 2001; 152
Couderc (2022061703522182900_bib17) 2008; 15
Mueller (2022061703522182900_bib5) 2004; 4
Turashvili (2022061703522182900_bib35) 2007; 7
Skuli (2022061703522182900_bib44) 2006; 66
Sandilands (2022061703522182900_bib9) 2007; 120
Prendergast (2022061703522182900_bib18) 2001; 1
Debnath (2022061703522182900_bib28) 2003; 30
Mazieres (2022061703522182900_bib16) 2004; 10
Ellis (2022061703522182900_bib38) 2000; 10
Waterman (2022061703522182900_bib39) 2001; 490
Wheeler (2022061703522182900_bib8) 2004; 301
Huang (2022061703522182900_bib11) 2007; 27
Bhowmick (2022061703522182900_bib3) 2004; 432
Bousquet (2022061703522182900_bib22) 2009; 69
Chen (2022061703522182900_bib37) 2000; 275
Zhou (2022061703522182900_bib15) 2011; 128
Tovar (2022061703522182900_bib42) 2003; 81
Sinn (2022061703522182900_bib36) 1987; 49
Muthuswamy (2022061703522182900_bib29) 2001; 3
Guy (2022061703522182900_bib23) 1992; 12
Liu (2022061703522182900_bib13) 2001; 98
Liu (2022061703522182900_bib19) 2000; 481
Shih (2022061703522182900_bib31) 2009; 69
Fritz (2022061703522182900_bib41) 2001; 29
Pietras (2022061703522182900_bib1) 2010; 316
Lanari (2022061703522182900_bib26) 2001; 61
Hollenhorst (2022061703522182900_bib33) 2004; 32
Huang (2022061703522182900_bib34) 2006; 21
Bravo-Nuevo (2022061703522182900_bib45) 2011; 178
Gampel (2022061703522182900_bib10) 1999; 9
Liu (2022061703522182900_bib12) 2001; 21
2022061703522182900_bib25
Aerts (2022061703522182900_bib32) 2004; 36
Lebowitz (2022061703522182900_bib27) 1997; 57
Stemke-Hale (2022061703522182900_bib20) 2008; 68
Hanahan (2022061703522182900_bib4) 1996; 86
Adnane (2022061703522182900_bib14) 2002; 8
Ffrench-Constant (2022061703522182900_bib30) 1989; 109
McAllister (2022061703522182900_bib2) 2010; 28
Lee (2022061703522182900_bib21) 2011; 347
Sato (2022061703522182900_bib40) 2007; 120
Ip (2022061703522182900_bib24) 2000
References_xml – volume: 81
  start-page: 525
  year: 2003
  ident: 2022061703522182900_bib42
  article-title: Cloning of the human RHOB gene promoter: characterization of a VNTR sequence that affects transcriptional activity
  publication-title: Genomics
  doi: 10.1016/S0888-7543(03)00044-2
  contributor:
    fullname: Tovar
– volume: 7
  start-page: 220
  year: 2007
  ident: 2022061703522182900_bib43
  article-title: Epigenetic regulation of RhoB loss of expression in lung cancer
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-7-220
  contributor:
    fullname: Mazieres
– volume: 98
  start-page: 6192
  year: 2001
  ident: 2022061703522182900_bib13
  article-title: RhoB is required to mediate apoptosis in neoplastically transformed cells after DNA damage
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.111137198
  contributor:
    fullname: Liu
– volume: 69
  start-page: 3272
  year: 2009
  ident: 2022061703522182900_bib31
  article-title: The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4886
  contributor:
    fullname: Shih
– volume: 152
  start-page: 111
  year: 2001
  ident: 2022061703522182900_bib6
  article-title: Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding
  publication-title: J Cell Biol
  doi: 10.1083/jcb.152.1.111
  contributor:
    fullname: Michaelson
– volume: 21
  start-page: 6906
  year: 2001
  ident: 2022061703522182900_bib12
  article-title: RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.20.6906-6912.2001
  contributor:
    fullname: Liu
– volume: 432
  start-page: 332
  year: 2004
  ident: 2022061703522182900_bib3
  article-title: Stromal fibroblasts in cancer initiation and progression
  publication-title: Nature
  doi: 10.1038/nature03096
  contributor:
    fullname: Bhowmick
– volume: 10
  start-page: 2742
  year: 2004
  ident: 2022061703522182900_bib16
  article-title: Loss of RhoB expression in human lung cancer progression
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-03-0149
  contributor:
    fullname: Mazieres
– volume: 347
  start-page: 103
  year: 2011
  ident: 2022061703522182900_bib21
  article-title: Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-010-0618-z
  contributor:
    fullname: Lee
– volume: 32
  start-page: 5693
  year: 2004
  ident: 2022061703522182900_bib33
  article-title: Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh906
  contributor:
    fullname: Hollenhorst
– volume: 10
  start-page: 85
  year: 2000
  ident: 2022061703522182900_bib38
  article-title: Regulation of endocytic traffic by rho family GTPases
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(99)01710-9
  contributor:
    fullname: Ellis
– volume: 28
  start-page: 4022
  year: 2010
  ident: 2022061703522182900_bib2
  article-title: Tumor-host interactions: a far-reaching relationship
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.28.4257
  contributor:
    fullname: McAllister
– volume: 12
  start-page: 954
  year: 1992
  ident: 2022061703522182900_bib23
  article-title: Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease
  publication-title: Mol Cell Biol
  contributor:
    fullname: Guy
– volume: 128
  start-page: 1057
  year: 2011
  ident: 2022061703522182900_bib15
  article-title: A distinct role of RhoB in gastric cancer suppression
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25445
  contributor:
    fullname: Zhou
– volume: 15
  start-page: 456
  year: 2008
  ident: 2022061703522182900_bib17
  article-title: In vivo restoration of RhoB expression leads to ovarian tumor regression
  publication-title: Cancer Gene Ther
  doi: 10.1038/cgt.2008.12
  contributor:
    fullname: Couderc
– year: 2000
  ident: 2022061703522182900_bib24
  article-title: Methods in Mammary Gland Biology and Breast Cancer Research
  doi: 10.1007/978-1-4615-4295-7
  contributor:
    fullname: Ip
– volume: 57
  start-page: 708
  year: 1997
  ident: 2022061703522182900_bib27
  article-title: Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment
  publication-title: Cancer Res
  contributor:
    fullname: Lebowitz
– volume: 178
  start-page: 245
  year: 2011
  ident: 2022061703522182900_bib45
  article-title: RhoB loss prevents streptozotocin-induced diabetes and ameliorates diabetic complications in mice
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2010.11.040
  contributor:
    fullname: Bravo-Nuevo
– volume: 1
  start-page: 162
  year: 2001
  ident: 2022061703522182900_bib18
  article-title: Actin' up: RhoB in cancer and apoptosis
  publication-title: Nat Rev Cancer
  doi: 10.1038/35101096
  contributor:
    fullname: Prendergast
– ident: 2022061703522182900_bib25
– volume: 30
  start-page: 256
  year: 2003
  ident: 2022061703522182900_bib28
  article-title: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00032-X
  contributor:
    fullname: Debnath
– volume: 9
  start-page: 955
  year: 1999
  ident: 2022061703522182900_bib10
  article-title: Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(99)80422-9
  contributor:
    fullname: Gampel
– volume: 3
  start-page: 785
  year: 2001
  ident: 2022061703522182900_bib29
  article-title: ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0901-785
  contributor:
    fullname: Muthuswamy
– volume: 109
  start-page: 903
  year: 1989
  ident: 2022061703522182900_bib30
  article-title: Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat
  publication-title: J Cell Biol
  doi: 10.1083/jcb.109.2.903
  contributor:
    fullname: Ffrench-Constant
– volume: 21
  start-page: 213
  year: 2006
  ident: 2022061703522182900_bib34
  article-title: RhoB in cancer suppression
  publication-title: Histol Histopathol
  contributor:
    fullname: Huang
– volume: 49
  start-page: 465
  year: 1987
  ident: 2022061703522182900_bib36
  article-title: Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90449-1
  contributor:
    fullname: Sinn
– volume: 66
  start-page: 482
  year: 2006
  ident: 2022061703522182900_bib44
  article-title: Activation of RhoB by hypoxia controls hypoxia-inducible factor-1alpha stabilization through glycogen synthase kinase-3 in U87 glioblastoma cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-2299
  contributor:
    fullname: Skuli
– volume: 68
  start-page: 6084
  year: 2008
  ident: 2022061703522182900_bib20
  article-title: An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-6854
  contributor:
    fullname: Stemke-Hale
– volume: 275
  start-page: 17974
  year: 2000
  ident: 2022061703522182900_bib37
  article-title: Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C000145200
  contributor:
    fullname: Chen
– volume: 120
  start-page: 543
  year: 2007
  ident: 2022061703522182900_bib40
  article-title: RhoB is frequently downregulated in non-small-cell lung cancer and resides in the 2p24 homozygous deletion region of a lung cancer cell line
  publication-title: Int J Cancer
  doi: 10.1002/ijc.22328
  contributor:
    fullname: Sato
– volume: 29
  start-page: 792
  year: 2001
  ident: 2022061703522182900_bib41
  article-title: Transcriptional activation of the small GTPase gene rhoB by genotoxic stress is regulated via a CCAAT element
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.3.792
  contributor:
    fullname: Fritz
– volume: 120
  start-page: 2555
  year: 2007
  ident: 2022061703522182900_bib9
  article-title: The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements
  publication-title: J Cell Sci
  doi: 10.1242/jcs.003657
  contributor:
    fullname: Sandilands
– volume: 69
  start-page: 6092
  year: 2009
  ident: 2022061703522182900_bib22
  article-title: Loss of RhoB expression promotes migration and invasion of human bronchial cells via activation of AKT1
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4147
  contributor:
    fullname: Bousquet
– volume: 316
  start-page: 1324
  year: 2010
  ident: 2022061703522182900_bib1
  article-title: Hallmarks of cancer: interactions with the tumor stroma
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2010.02.045
  contributor:
    fullname: Pietras
– volume: 8
  start-page: 2225
  year: 2002
  ident: 2022061703522182900_bib14
  article-title: Suppression of rho B expression in invasive carcinoma from head and neck cancer patients
  publication-title: Clin Cancer Res
  contributor:
    fullname: Adnane
– volume: 481
  start-page: 205
  year: 2000
  ident: 2022061703522182900_bib19
  article-title: Geranylgeranylated RhoB is sufficient to mediate tissue-specific suppression of Akt kinase activity by farnesyltransferase inhibitors
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)02003-2
  contributor:
    fullname: Liu
– volume: 4
  start-page: 839
  year: 2004
  ident: 2022061703522182900_bib5
  article-title: Friends or foes - bipolar effects of the tumour stroma in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1477
  contributor:
    fullname: Mueller
– volume: 36
  start-page: 84
  year: 2004
  ident: 2022061703522182900_bib32
  article-title: Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR
  publication-title: Biotechniques
  doi: 10.2144/04361ST04
  contributor:
    fullname: Aerts
– volume: 7
  start-page: 55
  year: 2007
  ident: 2022061703522182900_bib35
  article-title: Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-7-55
  contributor:
    fullname: Turashvili
– volume: 17
  start-page: 2721
  year: 2003
  ident: 2022061703522182900_bib7
  article-title: RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development
  publication-title: Genes Dev
  doi: 10.1101/gad.1134603
  contributor:
    fullname: Adini
– volume: 490
  start-page: 142
  year: 2001
  ident: 2022061703522182900_bib39
  article-title: Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02117-2
  contributor:
    fullname: Waterman
– volume: 86
  start-page: 353
  year: 1996
  ident: 2022061703522182900_bib4
  article-title: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80108-7
  contributor:
    fullname: Hanahan
– volume: 27
  start-page: 2597
  year: 2007
  ident: 2022061703522182900_bib11
  article-title: RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.107.154211
  contributor:
    fullname: Huang
– volume: 61
  start-page: 293
  year: 2001
  ident: 2022061703522182900_bib26
  article-title: Five novel hormone-responsive cell lines derived from murine mammary ductal carcinomas: in vivo and in vitro effects of estrogens and progestins
  publication-title: Cancer Res
  contributor:
    fullname: Lanari
– volume: 301
  start-page: 43
  year: 2004
  ident: 2022061703522182900_bib8
  article-title: Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2004.08.012
  contributor:
    fullname: Wheeler
SSID ssj0005105
Score 2.3166752
Snippet Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports...
Abstract Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential...
SourceID pubmedcentral
crossref
pubmed
pascalfrancis
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 50
SubjectTerms Animals
Antineoplastic agents
Biological and medical sciences
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Carcinoma, Ductal, Breast - metabolism
Carcinoma, Ductal, Breast - pathology
Cell Transformation, Neoplastic - metabolism
Endothelial Cells - metabolism
Female
Flow Cytometry
Gene Expression Regulation, Neoplastic
Humans
Immunoblotting
Immunohistochemistry
Immunoprecipitation
In Situ Hybridization
Medical sciences
Mice
Mice, Transgenic
Neovascularization, Pathologic - metabolism
Pharmacology. Drug treatments
Proto-Oncogene Proteins c-akt - metabolism
Real-Time Polymerase Chain Reaction
rhoB GTP-Binding Protein - metabolism
Stromal Cells - metabolism
Tumor Microenvironment - physiology
Tumors
Title RhoB Differentially Controls Akt Function in Tumor Cells and Stromal Endothelial Cells during Breast Tumorigenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/23135917
https://pubmed.ncbi.nlm.nih.gov/PMC4201498
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bitswEBXpFkqhlF636WXRQ9-CU0eWY_nRCdmGLrtps8my9CX4IpNQx1kSp9B-az-mI43s2O1CLy8mWHaEPUfSaHzmDCFvpYRVJvETK00Zt5T6iCWiWFic-1z24yQUQmUjn1_0x3P-4dq9brV-1FhL-yLqxt9vzSv5H6vCObCrypL9B8tWfwon4DfYF45gYTj-lY2ny80AJi0scQJDNVNaxcg933WCL0XnFFatks042683285QZhnKMl_CZWulKpwnKgsrU6FzbDWpiwPFVy_wPqXZKXerXd2XHSrAbDtGLmipvwcjsUNPPFnWrYUZzoLPo-kEdpuB5hVcLldfqwXhvS42igz79eqQm_ZxPMeMqtly_61TRakH0-BqYl3MR1cTPbNtYdXc1KMXqpJEI3pRfZaqgVHzK80jlPTDxhQuLJdjvZ-uPMzaHkddynJaxwopDfjiHI1Ct2a1RyX439cRVyDxEvvqDoML1HtETeGmbvcv62nFcmSe3Wewgb1D7jLPd1Vo4OzTQcveNQTbshOTXwZdv7u144bn9OAm3MEgTrH6Ss19alJ7a77S7BF5aDY5NEDEPiYtmT8h984NjeMp2Srg0iZwaQlcCsClJXDpKqcagFRDkwJwqQEurQHXtCJwKQKXNoD7jMxPR7Ph2DLFP6wYPPTC6vE0jGHr52qFysT3hKv1-DiPvSgNPdtjPFIyAOBjhlHMZF8px7FE2EyGYcic5-Qo3-TyBaG9yIHn6TFPFZWJIu47nCexY6exHYEDbLdJt3yxixvUeFnovbErFDdDLJQlFmAJOLVQlmiTk8brr-4qLd4mx2iGQ4vTc1y_57WJ1zBQdYGSeW-25KullnvnTIUxxMs_dfqK3D-MsNfkqNju5RvwmIvoRAPvJ0oFvtQ
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RhoB+Differentially+Controls+Akt+Function+in+Tumor+Cells+and+Stromal+Endothelial+Cells+during+Breast+Tumorigenesis&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=KAZEROUNIAN%2C+Shiva&rft.au=GERALD%2C+Damien&rft.au=PHUNG%2C+Thuy+L&rft.au=BRAVO-NUEVO%2C+Arturo&rft.date=2013-01-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=73&rft.issue=1&rft.spage=50&rft.epage=61&rft_id=info:doi/10.1158%2F0008-5472.CAN-11-3055&rft.externalDBID=n%2Fa&rft.externalDocID=27062140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon