Stein's method and approximating the quantum harmonic oscillator

Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but finite, number of classical "worlds." A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quan...

Full description

Saved in:
Bibliographic Details
Published inBernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 25; no. 1; p. 89
Main Authors McKeague, Ian W, Peköz, Erol A, Swan, Yvik
Format Journal Article
LanguageEnglish
Published England 01.02.2019
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but finite, number of classical "worlds." A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quantum theory, was conjectured in Hall et al. (2014) and proven by McKeague and Levin (2016) using Stein's method. In this article we show how quantum position probability densities for higher energy levels beyond the ground state may arise as distributional fixed points in a new generalization of Stein's method These are then used to obtain a rate of distributional convergence for conjectured particle positions in the first energy level above the ground state to the (two-sided) Maxwell distribution; new techniques must be developed for this setting where the usual "density approach" Stein solution (see Chatterjee and Shao (2011)) has a singularity.
AbstractList Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but finite, number of classical "worlds." A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quantum theory, was conjectured in Hall et al. (2014) and proven by McKeague and Levin (2016) using Stein's method. In this article we show how quantum position probability densities for higher energy levels beyond the ground state may arise as distributional fixed points in a new generalization of Stein's method These are then used to obtain a rate of distributional convergence for conjectured particle positions in the first energy level above the ground state to the (two-sided) Maxwell distribution; new techniques must be developed for this setting where the usual "density approach" Stein solution (see Chatterjee and Shao (2011)) has a singularity.
Author Swan, Yvik
McKeague, Ian W
Peköz, Erol A
Author_xml – sequence: 1
  givenname: Ian W
  surname: McKeague
  fullname: McKeague, Ian W
  organization: Columbia University, Department of Biostatistics, Room R639, 722 West 168th Street, New York, NY 10032
– sequence: 2
  givenname: Erol A
  surname: Peköz
  fullname: Peköz, Erol A
  organization: Boston University Questrom School of Business, 595 Commonwealth Avenue, Room 607 Boston, MA 02215
– sequence: 3
  givenname: Yvik
  surname: Swan
  fullname: Swan, Yvik
  organization: Université de Liège, Département de Mathématique, B37 12 allée de la découverte, B-4000 Liège
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31178654$$D View this record in MEDLINE/PubMed
BookMark eNo1j7tOxDAURF0sYh9Q8APIHVXA1_Ej6YDV8tJKFEC9unZsEpTYIXEk-HsiAcVopFOMzqzJIsTgCDkDdpmDZFegs9vdU6nYgqwglyzTXMklWY_jB2MglGLHZJkD6EJJsSLXL8k14WKknUt1rCiGOX0_xK-mw9SEd5pqRz8nDGnqaI1DF0NjaRxt07aY4nBCjjy2ozv96w15u9u9bh-y_fP94_Zmn1khIGXAjVZaeQDBc-c5msKg47w03itlvZQMXCHFzEtheOGZRIuVL9CUzuucb8j5724_mc5Vh36YBYfvw_8V_gMUjkrB
CitedBy_id crossref_primary_10_1017_jpr_2022_125
crossref_primary_10_1007_s11009_020_09830_w
crossref_primary_10_1007_s10959_024_01373_x
crossref_primary_10_1140_epjc_s10052_019_7261_y
ContentType Journal Article
DBID NPM
DOI 10.3150/17-BEJ960
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 31178654
Genre Journal Article
GroupedDBID 23N
2AX
2WC
5GY
6J9
AAFWJ
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ACDIW
ACHJO
ACMTB
ACTMH
ADNWM
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CAG
COF
CS3
DQDLB
DSRWC
DU5
E3Z
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HGD
HQ6
HVGLF
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
PUASD
RBU
RNS
RPE
SA0
TN5
WS9
ID FETCH-LOGICAL-c441t-12b7676f11423ef2ab8bae229bff66cf5501e854ab894b28f05acadf8ab9ef732
ISSN 1350-7265
IngestDate Thu Apr 03 07:01:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stein’s method
Interacting particle system
Higher energy levels
Maxwell distribution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-12b7676f11423ef2ab8bae229bff66cf5501e854ab894b28f05acadf8ab9ef732
OpenAccessLink https://projecteuclid.org/journals/bernoulli/volume-25/issue-1/Steins-method-and-approximating-the-quantum-harmonic-oscillator/10.3150/17-BEJ960.pdf
PMID 31178654
ParticipantIDs pubmed_primary_31178654
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
PublicationTitleAlternate Bernoulli (Andover)
PublicationYear 2019
SSID ssj0014660
Score 2.2437735
Snippet Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but...
SourceID pubmed
SourceType Index Database
StartPage 89
Title Stein's method and approximating the quantum harmonic oscillator
URI https://www.ncbi.nlm.nih.gov/pubmed/31178654
Volume 25
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2RULLoSrlTUE-IHFAgcRx7ORGi4pKURFSW1FOle3YqCrdLd1dQP0Z_OLOZJJ4u6IIuESRnUSJv8loPI9vGHvmZFanWWkTMAckeqtEUplaJKH2ee2U9T7FauTdD2r7QO4cFoeDwa-5rKXZ1L50F7-tK_kfVGEMcMUq2X9Atn8oDMA54AtHQBiOf4XxHrWq1JO2ETQxryJL-M9jtETbSqhvM1i-2ekLZKluGt4ggSXAT0TDMabrz0djjA1dyy3RJBP0V80nfO727K_ILoLh_cj__PEcdEaTgxszjt17b77MGmfqO9Awn6KGPsHQ_aa6ICU9_hqdrXs_yFn7-fvxybyzAuuj-sQP0q95kSZaUHuITgFT5fMVQSNtSs2FFpV8DjYs-ht0srm1U1E3gjmwz04btPMs06Uiguo_zy7wbXdTS2wJdh7YShX9P21cSqq27rz9DOKqwjd61b_PkN3snrGwV2lslv1VttJuNvgGSc5tNvCjNXYrYjVZY8MI1h32uhGo5xNO4sQBPX5FnDjcyVtx4p048ShOd9nB2639N9tJ22IjcWAHT5NMWK20ClhRnfsgjC2t8UJUNgSlXID9a-bLQsJ4Ja0oQ1oYZ-pQGlv5oHNxjy2PxiP_gHEPpq9ShRVaKpm5ojKVyVKtHaj5Wjv5kN2ntTg6Ix6Vo26VHl0785gNoxStsxsBflz_BKzAqX3aAHMJ97NdTQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stein%27s+method+and+approximating+the+quantum+harmonic+oscillator&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=McKeague%2C+Ian+W&rft.au=Pek%C3%B6z%2C+Erol+A&rft.au=Swan%2C+Yvik&rft.date=2019-02-01&rft.issn=1350-7265&rft.volume=25&rft.issue=1&rft.spage=89&rft_id=info:doi/10.3150%2F17-BEJ960&rft_id=info%3Apmid%2F31178654&rft_id=info%3Apmid%2F31178654&rft.externalDocID=31178654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon