Stein's method and approximating the quantum harmonic oscillator
Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but finite, number of classical "worlds." A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quan...
Saved in:
Published in | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 25; no. 1; p. 89 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.02.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but finite, number of classical "worlds." A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quantum theory, was conjectured in Hall et al. (2014) and proven by McKeague and Levin (2016) using Stein's method. In this article we show how quantum position probability densities for higher energy levels beyond the ground state may arise as distributional fixed points in a new generalization of Stein's method These are then used to obtain a rate of distributional convergence for conjectured particle positions in the first energy level above the ground state to the (two-sided) Maxwell distribution; new techniques must be developed for this setting where the usual "density approach" Stein solution (see Chatterjee and Shao (2011)) has a singularity. |
---|---|
AbstractList | Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but finite, number of classical "worlds." A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quantum theory, was conjectured in Hall et al. (2014) and proven by McKeague and Levin (2016) using Stein's method. In this article we show how quantum position probability densities for higher energy levels beyond the ground state may arise as distributional fixed points in a new generalization of Stein's method These are then used to obtain a rate of distributional convergence for conjectured particle positions in the first energy level above the ground state to the (two-sided) Maxwell distribution; new techniques must be developed for this setting where the usual "density approach" Stein solution (see Chatterjee and Shao (2011)) has a singularity. |
Author | Swan, Yvik McKeague, Ian W Peköz, Erol A |
Author_xml | – sequence: 1 givenname: Ian W surname: McKeague fullname: McKeague, Ian W organization: Columbia University, Department of Biostatistics, Room R639, 722 West 168th Street, New York, NY 10032 – sequence: 2 givenname: Erol A surname: Peköz fullname: Peköz, Erol A organization: Boston University Questrom School of Business, 595 Commonwealth Avenue, Room 607 Boston, MA 02215 – sequence: 3 givenname: Yvik surname: Swan fullname: Swan, Yvik organization: Université de Liège, Département de Mathématique, B37 12 allée de la découverte, B-4000 Liège |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31178654$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j7tOxDAURF0sYh9Q8APIHVXA1_Ej6YDV8tJKFEC9unZsEpTYIXEk-HsiAcVopFOMzqzJIsTgCDkDdpmDZFegs9vdU6nYgqwglyzTXMklWY_jB2MglGLHZJkD6EJJsSLXL8k14WKknUt1rCiGOX0_xK-mw9SEd5pqRz8nDGnqaI1DF0NjaRxt07aY4nBCjjy2ozv96w15u9u9bh-y_fP94_Zmn1khIGXAjVZaeQDBc-c5msKg47w03itlvZQMXCHFzEtheOGZRIuVL9CUzuucb8j5724_mc5Vh36YBYfvw_8V_gMUjkrB |
CitedBy_id | crossref_primary_10_1017_jpr_2022_125 crossref_primary_10_1007_s11009_020_09830_w crossref_primary_10_1007_s10959_024_01373_x crossref_primary_10_1140_epjc_s10052_019_7261_y |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.3150/17-BEJ960 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Mathematics |
ExternalDocumentID | 31178654 |
Genre | Journal Article |
GroupedDBID | 23N 2AX 2WC 5GY 6J9 AAFWJ AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ACDIW ACHJO ACMTB ACTMH ADNWM ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CAG COF CS3 DQDLB DSRWC DU5 E3Z EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HGD HQ6 HVGLF IPSME JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 PUASD RBU RNS RPE SA0 TN5 WS9 |
ID | FETCH-LOGICAL-c441t-12b7676f11423ef2ab8bae229bff66cf5501e854ab894b28f05acadf8ab9ef732 |
ISSN | 1350-7265 |
IngestDate | Thu Apr 03 07:01:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Stein’s method Interacting particle system Higher energy levels Maxwell distribution |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-12b7676f11423ef2ab8bae229bff66cf5501e854ab894b28f05acadf8ab9ef732 |
OpenAccessLink | https://projecteuclid.org/journals/bernoulli/volume-25/issue-1/Steins-method-and-approximating-the-quantum-harmonic-oscillator/10.3150/17-BEJ960.pdf |
PMID | 31178654 |
ParticipantIDs | pubmed_primary_31178654 |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
PublicationTitleAlternate | Bernoulli (Andover) |
PublicationYear | 2019 |
SSID | ssj0014660 |
Score | 2.2437735 |
Snippet | Hall et al. (2014) recently proposed that quantum theory can be understood as the continuum limit of a deterministic theory in which there is a large, but... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 89 |
Title | Stein's method and approximating the quantum harmonic oscillator |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31178654 |
Volume | 25 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2RULLoSrlTUE-IHFAgcRx7ORGi4pKURFSW1FOle3YqCrdLd1dQP0Z_OLOZJJ4u6IIuESRnUSJv8loPI9vGHvmZFanWWkTMAckeqtEUplaJKH2ee2U9T7FauTdD2r7QO4cFoeDwa-5rKXZ1L50F7-tK_kfVGEMcMUq2X9Atn8oDMA54AtHQBiOf4XxHrWq1JO2ETQxryJL-M9jtETbSqhvM1i-2ekLZKluGt4ggSXAT0TDMabrz0djjA1dyy3RJBP0V80nfO727K_ILoLh_cj__PEcdEaTgxszjt17b77MGmfqO9Awn6KGPsHQ_aa6ICU9_hqdrXs_yFn7-fvxybyzAuuj-sQP0q95kSZaUHuITgFT5fMVQSNtSs2FFpV8DjYs-ht0srm1U1E3gjmwz04btPMs06Uiguo_zy7wbXdTS2wJdh7YShX9P21cSqq27rz9DOKqwjd61b_PkN3snrGwV2lslv1VttJuNvgGSc5tNvCjNXYrYjVZY8MI1h32uhGo5xNO4sQBPX5FnDjcyVtx4p048ShOd9nB2639N9tJ22IjcWAHT5NMWK20ClhRnfsgjC2t8UJUNgSlXID9a-bLQsJ4Ja0oQ1oYZ-pQGlv5oHNxjy2PxiP_gHEPpq9ShRVaKpm5ojKVyVKtHaj5Wjv5kN2ntTg6Ix6Vo26VHl0785gNoxStsxsBflz_BKzAqX3aAHMJ97NdTQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stein%27s+method+and+approximating+the+quantum+harmonic+oscillator&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=McKeague%2C+Ian+W&rft.au=Pek%C3%B6z%2C+Erol+A&rft.au=Swan%2C+Yvik&rft.date=2019-02-01&rft.issn=1350-7265&rft.volume=25&rft.issue=1&rft.spage=89&rft_id=info:doi/10.3150%2F17-BEJ960&rft_id=info%3Apmid%2F31178654&rft_id=info%3Apmid%2F31178654&rft.externalDocID=31178654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon |