From the pseudogap metal to the Fermi liquid using ancilla qubits

We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla qubits per square lattice site, and employ them to obtain a variational wave fu...

Full description

Saved in:
Bibliographic Details
Published inPhysical review research Vol. 2; no. 2; p. 023172
Main Authors Zhang, Ya-Hui, Sachdev, Subir
Format Journal Article
LanguageEnglish
Published American Physical Society 14.05.2020
Online AccessGet full text

Cover

Loading…
Abstract We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla qubits per square lattice site, and employ them to obtain a variational wave function of a fractionalized Fermi liquid for the pseudogap metal state. We propose a multilayer Hamiltonian for the cuprates, with the electrons residing in the physical layer, and the ancilla qubits in two hidden layers: the hidden layers can be decoupled from the physical layer by a canonical transformation, which leaves the hidden layers in a trivial gapped state. This Hamiltonian yields an emergent gauge theory, which describes not only the fractionalized Fermi liquid, but also the conventional Fermi liquid, and possible exotic intermediate phases and critical points. The fractionalized Fermi liquid has hole pockets with quasiparticle weight which is large only on Fermi arcs, and fermionic spinon excitations, which carry charges of the emergent gauge fields.
AbstractList We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla qubits per square lattice site, and employ them to obtain a variational wave function of a fractionalized Fermi liquid for the pseudogap metal state. We propose a multilayer Hamiltonian for the cuprates, with the electrons residing in the physical layer, and the ancilla qubits in two hidden layers: the hidden layers can be decoupled from the physical layer by a canonical transformation, which leaves the hidden layers in a trivial gapped state. This Hamiltonian yields an emergent gauge theory, which describes not only the fractionalized Fermi liquid, but also the conventional Fermi liquid, and possible exotic intermediate phases and critical points. The fractionalized Fermi liquid has hole pockets with quasiparticle weight which is large only on Fermi arcs, and fermionic spinon excitations, which carry charges of the emergent gauge fields.
ArticleNumber 023172
Author Zhang, Ya-Hui
Sachdev, Subir
Author_xml – sequence: 1
  givenname: Ya-Hui
  orcidid: 0000-0001-9493-1743
  surname: Zhang
  fullname: Zhang, Ya-Hui
– sequence: 2
  givenname: Subir
  orcidid: 0000-0002-2432-7070
  surname: Sachdev
  fullname: Sachdev, Subir
BookMark eNqFkNtKAzEQhoMoWGvfIS-wNac95EYoxWqhoBS9DrPZbJuyu2mTrNC3d21FpDdezfDD_w3z3aHrznUGIUzJlFLCH962x7A2n2sTDHi9nbIpYZzm7AqNWCZ4QtNMXP_Zb9EkhB0hhKWUiiIdodnCuxbHrcH7YPrKbWCPWxOhwdGd4oXxrcWNPfS2wn2w3QZDp23TAD70pY3hHt3U0AQz-Zlj9LF4ep-_JKvX5-V8tkq0EDQmlHFSCc0LWQFPayLzsi4FNUBKaqQROs8kpDXlqeCQl2VVZWXODAdaC5NrzcdoeeZWDnZq720L_qgcWHUKnN8o8NHqxiiSFcOZ4cGCMlGToijTvKol0VIKyVI5sIozS3sXgjf1L48S9W1WXZhVTJ3NDtXHi6q2EaJ1XfRgm_8BX7afh6I
CitedBy_id crossref_primary_10_1073_pnas_2302701120
crossref_primary_10_1103_PhysRevB_104_045110
crossref_primary_10_1103_PhysRevB_108_125130
crossref_primary_10_1103_PhysRevB_107_L121104
crossref_primary_10_1103_PhysRevB_102_155124
crossref_primary_10_1103_PhysRevB_103_115101
crossref_primary_10_1073_pnas_2122059119
crossref_primary_10_1103_PhysRevB_108_205117
crossref_primary_10_1103_PhysRevB_108_245147
crossref_primary_10_1140_epjp_s13360_024_05311_y
crossref_primary_10_7566_JPSJ_92_092001
crossref_primary_10_1103_PhysRevB_103_235129
crossref_primary_10_1103_PhysRevB_110_104517
crossref_primary_10_1103_PhysRevX_10_041057
crossref_primary_10_21468_SciPostPhys_17_2_034
crossref_primary_10_1103_PhysRevB_110_235120
crossref_primary_10_1103_PhysRevLett_128_106402
crossref_primary_10_1103_PhysRevResearch_6_033018
crossref_primary_10_1103_PhysRevResearch_6_023328
crossref_primary_10_1103_PhysRevB_105_235111
crossref_primary_10_1103_PhysRevResearch_2_023344
crossref_primary_10_1038_s41535_023_00608_0
crossref_primary_10_1103_PhysRevB_108_045123
crossref_primary_10_1103_PhysRevB_108_L081118
crossref_primary_10_1126_science_abe7165
crossref_primary_10_1103_PhysRevB_109_075162
crossref_primary_10_1038_s43246_023_00382_3
crossref_primary_10_1103_PhysRevResearch_2_043019
crossref_primary_10_1103_PhysRevB_106_245132
crossref_primary_10_1103_PhysRevB_108_115156
crossref_primary_10_1103_PhysRevLett_127_197004
crossref_primary_10_1103_PhysRevB_109_045123
crossref_primary_10_1073_pnas_2418633121
crossref_primary_10_1103_PhysRevB_107_195133
crossref_primary_10_1103_PhysRevB_103_235138
crossref_primary_10_1103_PhysRevB_105_085120
crossref_primary_10_1103_PhysRevB_108_235112
crossref_primary_10_1103_PhysRevB_110_125122
Cites_doi 10.1103/PhysRevB.83.224508
10.1103/PhysRevB.81.115129
10.1088/1361-6633/aae110
10.1016/S0550-3213(98)00069-8
10.1038/nature16983
10.1038/s41586-019-0932-x
10.1103/PhysRevB.85.134519
10.1103/PhysRevB.91.115111
10.1103/PhysRevB.69.144510
10.1038/nphys790
10.1073/pnas.1209471109
10.1126/science.1248783
10.21468/SciPostPhys.7.6.074
10.1103/PhysRevB.99.054516
10.1103/PhysRevB.98.235126
10.1073/pnas.1720580115
10.1126/science.aaw8850
10.1103/PhysRevB.98.214418
10.1103/PhysRevLett.90.216403
10.1103/PhysRevB.66.064501
10.1103/PhysRevB.69.035111
10.1103/PhysRevB.80.155129
10.1103/PhysRevLett.76.503
10.1103/PhysRevLett.105.057201
10.1038/s41567-018-0387-2
10.1103/PhysRevB.70.245118
10.1038/s41586-019-1375-0
10.1103/PhysRevB.39.8988
10.1103/RevModPhys.78.17
10.1073/pnas.1512206112
10.1016/S0022-3697(00)00101-3
10.1103/PhysRevB.73.174501
10.1103/PhysRevB.85.195123
10.1126/science.1248221
10.1103/PhysRevB.58.16262
10.1103/PhysRevB.99.205150
10.1103/PhysRevB.91.115123
10.1146/annurev-conmatphys-031218-013210
10.1103/PhysRevLett.120.187001
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.2.023172
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_06889d1488124f088b57df90c9949259
10_1103_PhysRevResearch_2_023172
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c441t-1230d4c389da35f097bfb41ea0b1e9e4c769a5f13543a7bbdd6b72e3a1f4e7cc3
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Wed Aug 27 01:21:33 EDT 2025
Tue Jul 01 02:05:35 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-1230d4c389da35f097bfb41ea0b1e9e4c769a5f13543a7bbdd6b72e3a1f4e7cc3
ORCID 0000-0001-9493-1743
0000-0002-2432-7070
OpenAccessLink https://doaj.org/article/06889d1488124f088b57df90c9949259
ParticipantIDs doaj_primary_oai_doaj_org_article_06889d1488124f088b57df90c9949259
crossref_primary_10_1103_PhysRevResearch_2_023172
crossref_citationtrail_10_1103_PhysRevResearch_2_023172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-14
PublicationDateYYYYMMDD 2020-05-14
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-14
  day: 14
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2020
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.2.023172Cc1R1
PhysRevResearch.2.023172Cc3R1
PhysRevResearch.2.023172Cc19R1
PhysRevResearch.2.023172Cc2R1
PhysRevResearch.2.023172Cc5R1
PhysRevResearch.2.023172Cc4R1
PhysRevResearch.2.023172Cc7R1
PhysRevResearch.2.023172Cc6R1
PhysRevResearch.2.023172Cc9R1
PhysRevResearch.2.023172Cc22R1
PhysRevResearch.2.023172Cc23R1
PhysRevResearch.2.023172Cc24R1
PhysRevResearch.2.023172Cc25R1
PhysRevResearch.2.023172Cc26R1
PhysRevResearch.2.023172Cc27R1
PhysRevResearch.2.023172Cc28R1
PhysRevResearch.2.023172Cc29R1
PhysRevResearch.2.023172Cc41R1
PhysRevResearch.2.023172Cc20R1
PhysRevResearch.2.023172Cc21R1
PhysRevResearch.2.023172Cc42R1
PhysRevResearch.2.023172Cc10R1
PhysRevResearch.2.023172Cc11R1
PhysRevResearch.2.023172Cc33R1
PhysRevResearch.2.023172Cc12R1
PhysRevResearch.2.023172Cc34R1
PhysRevResearch.2.023172Cc13R1
PhysRevResearch.2.023172Cc35R1
PhysRevResearch.2.023172Cc36R1
PhysRevResearch.2.023172Cc15R1
PhysRevResearch.2.023172Cc38R1
PhysRevResearch.2.023172Cc16R1
PhysRevResearch.2.023172Cc37R1
PhysRevResearch.2.023172Cc17R1
PhysRevResearch.2.023172Cc18R1
PhysRevResearch.2.023172Cc39R1
PhysRevResearch.2.023172Cc30R1
PhysRevResearch.2.023172Cc31R1
PhysRevResearch.2.023172Cc32R1
References_xml – ident: PhysRevResearch.2.023172Cc32R1
  doi: 10.1103/PhysRevB.83.224508
– ident: PhysRevResearch.2.023172Cc20R1
  doi: 10.1103/PhysRevB.81.115129
– ident: PhysRevResearch.2.023172Cc31R1
  doi: 10.1088/1361-6633/aae110
– ident: PhysRevResearch.2.023172Cc33R1
  doi: 10.1016/S0550-3213(98)00069-8
– ident: PhysRevResearch.2.023172Cc6R1
  doi: 10.1038/nature16983
– ident: PhysRevResearch.2.023172Cc9R1
  doi: 10.1038/s41586-019-0932-x
– ident: PhysRevResearch.2.023172Cc21R1
  doi: 10.1103/PhysRevB.85.134519
– ident: PhysRevResearch.2.023172Cc37R1
  doi: 10.1103/PhysRevB.91.115111
– ident: PhysRevResearch.2.023172Cc13R1
  doi: 10.1103/PhysRevB.69.144510
– ident: PhysRevResearch.2.023172Cc30R1
  doi: 10.1038/nphys790
– ident: PhysRevResearch.2.023172Cc3R1
  doi: 10.1073/pnas.1209471109
– ident: PhysRevResearch.2.023172Cc5R1
  doi: 10.1126/science.1248783
– ident: PhysRevResearch.2.023172Cc25R1
  doi: 10.21468/SciPostPhys.7.6.074
– ident: PhysRevResearch.2.023172Cc26R1
  doi: 10.1103/PhysRevB.99.054516
– ident: PhysRevResearch.2.023172Cc42R1
  doi: 10.1103/PhysRevB.98.235126
– ident: PhysRevResearch.2.023172Cc29R1
  doi: 10.1073/pnas.1720580115
– ident: PhysRevResearch.2.023172Cc11R1
  doi: 10.1126/science.aaw8850
– ident: PhysRevResearch.2.023172Cc10R1
  doi: 10.1103/PhysRevB.98.214418
– ident: PhysRevResearch.2.023172Cc15R1
  doi: 10.1103/PhysRevLett.90.216403
– ident: PhysRevResearch.2.023172Cc12R1
  doi: 10.1103/PhysRevB.66.064501
– ident: PhysRevResearch.2.023172Cc16R1
  doi: 10.1103/PhysRevB.69.035111
– ident: PhysRevResearch.2.023172Cc27R1
  doi: 10.1103/PhysRevB.80.155129
– ident: PhysRevResearch.2.023172Cc18R1
  doi: 10.1103/PhysRevLett.76.503
– ident: PhysRevResearch.2.023172Cc35R1
  doi: 10.1103/PhysRevLett.105.057201
– ident: PhysRevResearch.2.023172Cc38R1
  doi: 10.1038/s41567-018-0387-2
– ident: PhysRevResearch.2.023172Cc17R1
  doi: 10.1103/PhysRevB.70.245118
– ident: PhysRevResearch.2.023172Cc36R1
  doi: 10.1038/s41586-019-1375-0
– ident: PhysRevResearch.2.023172Cc41R1
  doi: 10.1103/PhysRevB.39.8988
– ident: PhysRevResearch.2.023172Cc1R1
  doi: 10.1103/RevModPhys.78.17
– ident: PhysRevResearch.2.023172Cc23R1
  doi: 10.1073/pnas.1512206112
– ident: PhysRevResearch.2.023172Cc7R1
  doi: 10.1016/S0022-3697(00)00101-3
– ident: PhysRevResearch.2.023172Cc19R1
  doi: 10.1103/PhysRevB.73.174501
– ident: PhysRevResearch.2.023172Cc22R1
  doi: 10.1103/PhysRevB.85.195123
– ident: PhysRevResearch.2.023172Cc4R1
  doi: 10.1126/science.1248221
– ident: PhysRevResearch.2.023172Cc34R1
  doi: 10.1103/PhysRevB.58.16262
– ident: PhysRevResearch.2.023172Cc39R1
  doi: 10.1103/PhysRevB.99.205150
– ident: PhysRevResearch.2.023172Cc28R1
  doi: 10.1103/PhysRevB.91.115123
– ident: PhysRevResearch.2.023172Cc2R1
  doi: 10.1146/annurev-conmatphys-031218-013210
– ident: PhysRevResearch.2.023172Cc24R1
  doi: 10.1103/PhysRevLett.120.187001
SSID ssj0002511485
Score 2.4318986
Snippet We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 023172
Title From the pseudogap metal to the Fermi liquid using ancilla qubits
URI https://doaj.org/article/06889d1488124f088b57df90c9949259
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBalUOhS-qTpCw1dnciWFEVjWhJCIR1KA9mMHucQyDtOx_726mwnpF3aoYsHYQnznaX7znz-jpBHB6oFjulIcgmR0AyilvM88lZ7bHUbm-JTdv-12RuIl6Ec7rX6Qk1YaQ9cAtfApijaB9KOmSgLe8JK5TPNnNboq1f8uhdy3l4xhWcwEmfRklvpDuMNFFS-wcdWz1ZP6uh8ppJv-WjPtr_IL91TclIRQ9ouH-iMHMDsnBwVAk23viDt7mo-pYGt0cUaNn4-Mgs6hcCcaT4vhruoaqGT8XIz9hTV7COKVhohynS5seN8fUkG3c77cy-q2h9ELnCUPAo5hXnhAqPwhsuMaWUzK2IwzMagQTjV1EZmMZeCG2Wt902rEuAmzgQo5_gVOZzNZ3BNqEsyEXBUzCk0o9FGOS8NQNiwzDkQNaK2IKSu8gbHFhWTtKgRGE9_wJcmaQlfjcS7mYvSH-MPc54Q59396HBdDIS4p1Xc09_ifvMfi9yS4wTrZ3RjFXfkMF9t4D6QjNw-FO9TuPY_O1-DJ9Av
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+the+pseudogap+metal+to+the+Fermi+liquid+using+ancilla+qubits&rft.jtitle=Physical+review+research&rft.au=Ya-Hui+Zhang&rft.au=Subir+Sachdev&rft.date=2020-05-14&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=2&rft.issue=2&rft.spage=023172&rft_id=info:doi/10.1103%2FPhysRevResearch.2.023172&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_06889d1488124f088b57df90c9949259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon