From the pseudogap metal to the Fermi liquid using ancilla qubits
We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla qubits per square lattice site, and employ them to obtain a variational wave fu...
Saved in:
Published in | Physical review research Vol. 2; no. 2; p. 023172 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
14.05.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla qubits per square lattice site, and employ them to obtain a variational wave function of a fractionalized Fermi liquid for the pseudogap metal state. We propose a multilayer Hamiltonian for the cuprates, with the electrons residing in the physical layer, and the ancilla qubits in two hidden layers: the hidden layers can be decoupled from the physical layer by a canonical transformation, which leaves the hidden layers in a trivial gapped state. This Hamiltonian yields an emergent gauge theory, which describes not only the fractionalized Fermi liquid, but also the conventional Fermi liquid, and possible exotic intermediate phases and critical points. The fractionalized Fermi liquid has hole pockets with quasiparticle weight which is large only on Fermi arcs, and fermionic spinon excitations, which carry charges of the emergent gauge fields. |
---|---|
AbstractList | We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla qubits per square lattice site, and employ them to obtain a variational wave function of a fractionalized Fermi liquid for the pseudogap metal state. We propose a multilayer Hamiltonian for the cuprates, with the electrons residing in the physical layer, and the ancilla qubits in two hidden layers: the hidden layers can be decoupled from the physical layer by a canonical transformation, which leaves the hidden layers in a trivial gapped state. This Hamiltonian yields an emergent gauge theory, which describes not only the fractionalized Fermi liquid, but also the conventional Fermi liquid, and possible exotic intermediate phases and critical points. The fractionalized Fermi liquid has hole pockets with quasiparticle weight which is large only on Fermi arcs, and fermionic spinon excitations, which carry charges of the emergent gauge fields. |
ArticleNumber | 023172 |
Author | Zhang, Ya-Hui Sachdev, Subir |
Author_xml | – sequence: 1 givenname: Ya-Hui orcidid: 0000-0001-9493-1743 surname: Zhang fullname: Zhang, Ya-Hui – sequence: 2 givenname: Subir orcidid: 0000-0002-2432-7070 surname: Sachdev fullname: Sachdev, Subir |
BookMark | eNqFkNtKAzEQhoMoWGvfIS-wNac95EYoxWqhoBS9DrPZbJuyu2mTrNC3d21FpDdezfDD_w3z3aHrznUGIUzJlFLCH962x7A2n2sTDHi9nbIpYZzm7AqNWCZ4QtNMXP_Zb9EkhB0hhKWUiiIdodnCuxbHrcH7YPrKbWCPWxOhwdGd4oXxrcWNPfS2wn2w3QZDp23TAD70pY3hHt3U0AQz-Zlj9LF4ep-_JKvX5-V8tkq0EDQmlHFSCc0LWQFPayLzsi4FNUBKaqQROs8kpDXlqeCQl2VVZWXODAdaC5NrzcdoeeZWDnZq720L_qgcWHUKnN8o8NHqxiiSFcOZ4cGCMlGToijTvKol0VIKyVI5sIozS3sXgjf1L48S9W1WXZhVTJ3NDtXHi6q2EaJ1XfRgm_8BX7afh6I |
CitedBy_id | crossref_primary_10_1073_pnas_2302701120 crossref_primary_10_1103_PhysRevB_104_045110 crossref_primary_10_1103_PhysRevB_108_125130 crossref_primary_10_1103_PhysRevB_107_L121104 crossref_primary_10_1103_PhysRevB_102_155124 crossref_primary_10_1103_PhysRevB_103_115101 crossref_primary_10_1073_pnas_2122059119 crossref_primary_10_1103_PhysRevB_108_205117 crossref_primary_10_1103_PhysRevB_108_245147 crossref_primary_10_1140_epjp_s13360_024_05311_y crossref_primary_10_7566_JPSJ_92_092001 crossref_primary_10_1103_PhysRevB_103_235129 crossref_primary_10_1103_PhysRevB_110_104517 crossref_primary_10_1103_PhysRevX_10_041057 crossref_primary_10_21468_SciPostPhys_17_2_034 crossref_primary_10_1103_PhysRevB_110_235120 crossref_primary_10_1103_PhysRevLett_128_106402 crossref_primary_10_1103_PhysRevResearch_6_033018 crossref_primary_10_1103_PhysRevResearch_6_023328 crossref_primary_10_1103_PhysRevB_105_235111 crossref_primary_10_1103_PhysRevResearch_2_023344 crossref_primary_10_1038_s41535_023_00608_0 crossref_primary_10_1103_PhysRevB_108_045123 crossref_primary_10_1103_PhysRevB_108_L081118 crossref_primary_10_1126_science_abe7165 crossref_primary_10_1103_PhysRevB_109_075162 crossref_primary_10_1038_s43246_023_00382_3 crossref_primary_10_1103_PhysRevResearch_2_043019 crossref_primary_10_1103_PhysRevB_106_245132 crossref_primary_10_1103_PhysRevB_108_115156 crossref_primary_10_1103_PhysRevLett_127_197004 crossref_primary_10_1103_PhysRevB_109_045123 crossref_primary_10_1073_pnas_2418633121 crossref_primary_10_1103_PhysRevB_107_195133 crossref_primary_10_1103_PhysRevB_103_235138 crossref_primary_10_1103_PhysRevB_105_085120 crossref_primary_10_1103_PhysRevB_108_235112 crossref_primary_10_1103_PhysRevB_110_125122 |
Cites_doi | 10.1103/PhysRevB.83.224508 10.1103/PhysRevB.81.115129 10.1088/1361-6633/aae110 10.1016/S0550-3213(98)00069-8 10.1038/nature16983 10.1038/s41586-019-0932-x 10.1103/PhysRevB.85.134519 10.1103/PhysRevB.91.115111 10.1103/PhysRevB.69.144510 10.1038/nphys790 10.1073/pnas.1209471109 10.1126/science.1248783 10.21468/SciPostPhys.7.6.074 10.1103/PhysRevB.99.054516 10.1103/PhysRevB.98.235126 10.1073/pnas.1720580115 10.1126/science.aaw8850 10.1103/PhysRevB.98.214418 10.1103/PhysRevLett.90.216403 10.1103/PhysRevB.66.064501 10.1103/PhysRevB.69.035111 10.1103/PhysRevB.80.155129 10.1103/PhysRevLett.76.503 10.1103/PhysRevLett.105.057201 10.1038/s41567-018-0387-2 10.1103/PhysRevB.70.245118 10.1038/s41586-019-1375-0 10.1103/PhysRevB.39.8988 10.1103/RevModPhys.78.17 10.1073/pnas.1512206112 10.1016/S0022-3697(00)00101-3 10.1103/PhysRevB.73.174501 10.1103/PhysRevB.85.195123 10.1126/science.1248221 10.1103/PhysRevB.58.16262 10.1103/PhysRevB.99.205150 10.1103/PhysRevB.91.115123 10.1146/annurev-conmatphys-031218-013210 10.1103/PhysRevLett.120.187001 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.2.023172 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_06889d1488124f088b57df90c9949259 10_1103_PhysRevResearch_2_023172 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c441t-1230d4c389da35f097bfb41ea0b1e9e4c769a5f13543a7bbdd6b72e3a1f4e7cc3 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:21:33 EDT 2025 Tue Jul 01 02:05:35 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-1230d4c389da35f097bfb41ea0b1e9e4c769a5f13543a7bbdd6b72e3a1f4e7cc3 |
ORCID | 0000-0001-9493-1743 0000-0002-2432-7070 |
OpenAccessLink | https://doaj.org/article/06889d1488124f088b57df90c9949259 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06889d1488124f088b57df90c9949259 crossref_primary_10_1103_PhysRevResearch_2_023172 crossref_citationtrail_10_1103_PhysRevResearch_2_023172 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-14 |
PublicationDateYYYYMMDD | 2020-05-14 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2020 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.2.023172Cc1R1 PhysRevResearch.2.023172Cc3R1 PhysRevResearch.2.023172Cc19R1 PhysRevResearch.2.023172Cc2R1 PhysRevResearch.2.023172Cc5R1 PhysRevResearch.2.023172Cc4R1 PhysRevResearch.2.023172Cc7R1 PhysRevResearch.2.023172Cc6R1 PhysRevResearch.2.023172Cc9R1 PhysRevResearch.2.023172Cc22R1 PhysRevResearch.2.023172Cc23R1 PhysRevResearch.2.023172Cc24R1 PhysRevResearch.2.023172Cc25R1 PhysRevResearch.2.023172Cc26R1 PhysRevResearch.2.023172Cc27R1 PhysRevResearch.2.023172Cc28R1 PhysRevResearch.2.023172Cc29R1 PhysRevResearch.2.023172Cc41R1 PhysRevResearch.2.023172Cc20R1 PhysRevResearch.2.023172Cc21R1 PhysRevResearch.2.023172Cc42R1 PhysRevResearch.2.023172Cc10R1 PhysRevResearch.2.023172Cc11R1 PhysRevResearch.2.023172Cc33R1 PhysRevResearch.2.023172Cc12R1 PhysRevResearch.2.023172Cc34R1 PhysRevResearch.2.023172Cc13R1 PhysRevResearch.2.023172Cc35R1 PhysRevResearch.2.023172Cc36R1 PhysRevResearch.2.023172Cc15R1 PhysRevResearch.2.023172Cc38R1 PhysRevResearch.2.023172Cc16R1 PhysRevResearch.2.023172Cc37R1 PhysRevResearch.2.023172Cc17R1 PhysRevResearch.2.023172Cc18R1 PhysRevResearch.2.023172Cc39R1 PhysRevResearch.2.023172Cc30R1 PhysRevResearch.2.023172Cc31R1 PhysRevResearch.2.023172Cc32R1 |
References_xml | – ident: PhysRevResearch.2.023172Cc32R1 doi: 10.1103/PhysRevB.83.224508 – ident: PhysRevResearch.2.023172Cc20R1 doi: 10.1103/PhysRevB.81.115129 – ident: PhysRevResearch.2.023172Cc31R1 doi: 10.1088/1361-6633/aae110 – ident: PhysRevResearch.2.023172Cc33R1 doi: 10.1016/S0550-3213(98)00069-8 – ident: PhysRevResearch.2.023172Cc6R1 doi: 10.1038/nature16983 – ident: PhysRevResearch.2.023172Cc9R1 doi: 10.1038/s41586-019-0932-x – ident: PhysRevResearch.2.023172Cc21R1 doi: 10.1103/PhysRevB.85.134519 – ident: PhysRevResearch.2.023172Cc37R1 doi: 10.1103/PhysRevB.91.115111 – ident: PhysRevResearch.2.023172Cc13R1 doi: 10.1103/PhysRevB.69.144510 – ident: PhysRevResearch.2.023172Cc30R1 doi: 10.1038/nphys790 – ident: PhysRevResearch.2.023172Cc3R1 doi: 10.1073/pnas.1209471109 – ident: PhysRevResearch.2.023172Cc5R1 doi: 10.1126/science.1248783 – ident: PhysRevResearch.2.023172Cc25R1 doi: 10.21468/SciPostPhys.7.6.074 – ident: PhysRevResearch.2.023172Cc26R1 doi: 10.1103/PhysRevB.99.054516 – ident: PhysRevResearch.2.023172Cc42R1 doi: 10.1103/PhysRevB.98.235126 – ident: PhysRevResearch.2.023172Cc29R1 doi: 10.1073/pnas.1720580115 – ident: PhysRevResearch.2.023172Cc11R1 doi: 10.1126/science.aaw8850 – ident: PhysRevResearch.2.023172Cc10R1 doi: 10.1103/PhysRevB.98.214418 – ident: PhysRevResearch.2.023172Cc15R1 doi: 10.1103/PhysRevLett.90.216403 – ident: PhysRevResearch.2.023172Cc12R1 doi: 10.1103/PhysRevB.66.064501 – ident: PhysRevResearch.2.023172Cc16R1 doi: 10.1103/PhysRevB.69.035111 – ident: PhysRevResearch.2.023172Cc27R1 doi: 10.1103/PhysRevB.80.155129 – ident: PhysRevResearch.2.023172Cc18R1 doi: 10.1103/PhysRevLett.76.503 – ident: PhysRevResearch.2.023172Cc35R1 doi: 10.1103/PhysRevLett.105.057201 – ident: PhysRevResearch.2.023172Cc38R1 doi: 10.1038/s41567-018-0387-2 – ident: PhysRevResearch.2.023172Cc17R1 doi: 10.1103/PhysRevB.70.245118 – ident: PhysRevResearch.2.023172Cc36R1 doi: 10.1038/s41586-019-1375-0 – ident: PhysRevResearch.2.023172Cc41R1 doi: 10.1103/PhysRevB.39.8988 – ident: PhysRevResearch.2.023172Cc1R1 doi: 10.1103/RevModPhys.78.17 – ident: PhysRevResearch.2.023172Cc23R1 doi: 10.1073/pnas.1512206112 – ident: PhysRevResearch.2.023172Cc7R1 doi: 10.1016/S0022-3697(00)00101-3 – ident: PhysRevResearch.2.023172Cc19R1 doi: 10.1103/PhysRevB.73.174501 – ident: PhysRevResearch.2.023172Cc22R1 doi: 10.1103/PhysRevB.85.195123 – ident: PhysRevResearch.2.023172Cc4R1 doi: 10.1126/science.1248221 – ident: PhysRevResearch.2.023172Cc34R1 doi: 10.1103/PhysRevB.58.16262 – ident: PhysRevResearch.2.023172Cc39R1 doi: 10.1103/PhysRevB.99.205150 – ident: PhysRevResearch.2.023172Cc28R1 doi: 10.1103/PhysRevB.91.115123 – ident: PhysRevResearch.2.023172Cc2R1 doi: 10.1146/annurev-conmatphys-031218-013210 – ident: PhysRevResearch.2.023172Cc24R1 doi: 10.1103/PhysRevLett.120.187001 |
SSID | ssj0002511485 |
Score | 2.4318986 |
Snippet | We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal with small Fermi surfaces to the conventional... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 023172 |
Title | From the pseudogap metal to the Fermi liquid using ancilla qubits |
URI | https://doaj.org/article/06889d1488124f088b57df90c9949259 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBalUOhS-qTpCw1dnciWFEVjWhJCIR1KA9mMHucQyDtOx_726mwnpF3aoYsHYQnznaX7znz-jpBHB6oFjulIcgmR0AyilvM88lZ7bHUbm-JTdv-12RuIl6Ec7rX6Qk1YaQ9cAtfApijaB9KOmSgLe8JK5TPNnNboq1f8uhdy3l4xhWcwEmfRklvpDuMNFFS-wcdWz1ZP6uh8ppJv-WjPtr_IL91TclIRQ9ouH-iMHMDsnBwVAk23viDt7mo-pYGt0cUaNn4-Mgs6hcCcaT4vhruoaqGT8XIz9hTV7COKVhohynS5seN8fUkG3c77cy-q2h9ELnCUPAo5hXnhAqPwhsuMaWUzK2IwzMagQTjV1EZmMZeCG2Wt902rEuAmzgQo5_gVOZzNZ3BNqEsyEXBUzCk0o9FGOS8NQNiwzDkQNaK2IKSu8gbHFhWTtKgRGE9_wJcmaQlfjcS7mYvSH-MPc54Q59396HBdDIS4p1Xc09_ifvMfi9yS4wTrZ3RjFXfkMF9t4D6QjNw-FO9TuPY_O1-DJ9Av |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+the+pseudogap+metal+to+the+Fermi+liquid+using+ancilla+qubits&rft.jtitle=Physical+review+research&rft.au=Ya-Hui+Zhang&rft.au=Subir+Sachdev&rft.date=2020-05-14&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=2&rft.issue=2&rft.spage=023172&rft_id=info:doi/10.1103%2FPhysRevResearch.2.023172&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_06889d1488124f088b57df90c9949259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |