Prediction of whole-body thermal sensation in the non-steady state based on skin temperature
The goal of this study is to propose a new model for predicting thermal sensation in the non-steady state based on skin temperature and its time differential. A multiple regression equation for the prediction of the transient thermal sensation as a function of mean skin temperature and its time diff...
Saved in:
Published in | Building and environment Vol. 68; pp. 123 - 133 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 1873-684X |
DOI | 10.1016/j.buildenv.2013.06.004 |
Cover
Loading…
Abstract | The goal of this study is to propose a new model for predicting thermal sensation in the non-steady state based on skin temperature and its time differential. A multiple regression equation for the prediction of the transient thermal sensation as a function of mean skin temperature and its time differential is determined based on the data obtained in subject experiments involving various non-steady state patterns during sedentary conditions. The results indicate a high correlation and a trend in good agreement between the predicted and experimental thermal sensations in a non-steady state, and showed that the proposed equation can predict transient whole-body thermal sensation with high precision. In addition, experiments incorporating processes with changes in metabolic rate (walking) were conducted on the subjects, and the applicability of the proposed equation, which was based on the data for sedentary conditions, to the conditions involving such a change in metabolic rate was studied. When the skin temperatures of all the body segments increase or decrease simultaneously, the predicted thermal sensation agrees well with the experimental results, allowing for the use of the proposed equation, while the application of the equation is more difficult for the cases in which skin temperature increases and decreases coexist over the segments of the body.
[Display omitted]
•A new model for predicting thermal sensation in the non-steady state is developed.•The proposed model is a function of skin temperature and its time differential.•The proposed model is made by a regression analysis based on subject experiment.•Thermal sensation in non-steady state can be well predicted by the proposed model.•The model is applicable unless increase and decrease in skin temperatures coexist. |
---|---|
AbstractList | The goal of this study is to propose a new model for predicting thermal sensation in the non-steady state based on skin temperature and its time differential. A multiple regression equation for the prediction of the transient thermal sensation as a function of mean skin temperature and its time differential is determined based on the data obtained in subject experiments involving various non-steady state patterns during sedentary conditions. The results indicate a high correlation and a trend in good agreement between the predicted and experimental thermal sensations in a non-steady state, and showed that the proposed equation can predict transient whole-body thermal sensation with high precision. In addition, experiments incorporating processes with changes in metabolic rate (walking) were conducted on the subjects, and the applicability of the proposed equation, which was based on the data for sedentary conditions, to the conditions involving such a change in metabolic rate was studied. When the skin temperatures of all the body segments increase or decrease simultaneously, the predicted thermal sensation agrees well with the experimental results, allowing for the use of the proposed equation, while the application of the equation is more difficult for the cases in which skin temperature increases and decreases coexist over the segments of the body. The goal of this study is to propose a new model for predicting thermal sensation in the non-steady state based on skin temperature and its time differential. A multiple regression equation for the prediction of the transient thermal sensation as a function of mean skin temperature and its time differential is determined based on the data obtained in subject experiments involving various non-steady state patterns during sedentary conditions. The results indicate a high correlation and a trend in good agreement between the predicted and experimental thermal sensations in a non-steady state, and showed that the proposed equation can predict transient whole-body thermal sensation with high precision. In addition, experiments incorporating processes with changes in metabolic rate (walking) were conducted on the subjects, and the applicability of the proposed equation, which was based on the data for sedentary conditions, to the conditions involving such a change in metabolic rate was studied. When the skin temperatures of all the body segments increase or decrease simultaneously, the predicted thermal sensation agrees well with the experimental results, allowing for the use of the proposed equation, while the application of the equation is more difficult for the cases in which skin temperature increases and decreases coexist over the segments of the body. [Display omitted] •A new model for predicting thermal sensation in the non-steady state is developed.•The proposed model is a function of skin temperature and its time differential.•The proposed model is made by a regression analysis based on subject experiment.•Thermal sensation in non-steady state can be well predicted by the proposed model.•The model is applicable unless increase and decrease in skin temperatures coexist. |
Author | Takada, Satoru Matsushita, Takayuki Matsumoto, Sho |
Author_xml | – sequence: 1 givenname: Satoru surname: Takada fullname: Takada, Satoru email: satoruta@kobe-u.ac.jp – sequence: 2 givenname: Sho surname: Matsumoto fullname: Matsumoto, Sho – sequence: 3 givenname: Takayuki surname: Matsushita fullname: Matsushita, Takayuki |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27720377$$DView record in Pascal Francis |
BookMark | eNqFkU1rGzEQhkVJoY7bv1D2Eshlt6OVIq0hh4SQfkCgPbTQQ0HMSrNE7lpyJDkh_75ynFx6yUkgPe87w6NjdhRiIMY-cug4cPVp3Y07PzsK910PXHSgOgD5hi34oEWrBvn7iC1AKGi56MU7dpzzGmpwJeSC_fmRyHlbfAxNnJqH2zhTO0b32JRbShucm0wh49O7D_vLpo5vcyGsTC5YqBkxk2sqkP_uEdpsKWHZJXrP3k44Z_rwfC7Zr8_XP6--tjffv3y7urxprZS8tBysXrmzQUo3ILekeuhXNA51QaEUTqA0SG0BV70GPsJkuVKjFA6tHh2BWLLTQ-82xbsd5WI2PluaZwwUd9lwLcRZz1XtW7KTZxSzxXlKGKzPZpv8BtOj6bXuQWhdufMDZ1PMOdFkrC9PGkpCPxsOZi_frM2LfLOXb0CZKr_G1X_xlwmvBi8OQaq-7j0lk62nYOsnJbLFuOhfq_gHFmilmA |
CODEN | BUENDB |
CitedBy_id | crossref_primary_10_1016_j_buildenv_2022_109919 crossref_primary_10_3389_fbuil_2022_971523 crossref_primary_10_1016_j_renene_2020_11_005 crossref_primary_10_3390_buildings12040472 crossref_primary_10_1016_j_buildenv_2023_110869 crossref_primary_10_1016_j_buildenv_2019_106593 crossref_primary_10_1016_j_buildenv_2024_111439 crossref_primary_10_1016_j_enbuild_2018_05_056 crossref_primary_10_1016_j_buildenv_2024_111689 crossref_primary_10_1051_e3sconf_202236303006 crossref_primary_10_1038_s41598_018_19239_8 crossref_primary_10_1088_1748_9326_abd130 crossref_primary_10_1016_j_buildenv_2014_08_006 crossref_primary_10_1016_j_snb_2016_04_137 crossref_primary_10_3390_su15032667 crossref_primary_10_1080_19401493_2019_1601259 crossref_primary_10_1016_j_enbuild_2019_06_007 crossref_primary_10_1016_j_buildenv_2021_107589 crossref_primary_10_3390_su15097043 crossref_primary_10_1016_j_enbuild_2015_07_047 crossref_primary_10_1016_j_buildenv_2025_112638 crossref_primary_10_3390_app9153170 crossref_primary_10_1016_j_buildenv_2024_111217 crossref_primary_10_1016_j_enbuild_2019_109594 crossref_primary_10_1016_j_jtherbio_2024_103877 crossref_primary_10_3390_s16040420 crossref_primary_10_1016_j_buildenv_2021_108269 crossref_primary_10_1007_s12273_022_0890_3 crossref_primary_10_1016_j_buildenv_2025_112591 crossref_primary_10_1016_j_buildenv_2016_12_005 crossref_primary_10_1016_j_enbuild_2017_10_098 crossref_primary_10_1016_j_buildenv_2023_110766 crossref_primary_10_3390_buildings14123861 crossref_primary_10_1111_ina_12525 crossref_primary_10_1016_j_buildenv_2024_111469 crossref_primary_10_1051_e3sconf_202021011008 crossref_primary_10_3130_aije_88_708 crossref_primary_10_1007_s12273_018_0486_0 crossref_primary_10_1016_j_buildenv_2022_109504 crossref_primary_10_1016_j_scs_2020_102216 crossref_primary_10_1016_j_enbuild_2022_112682 crossref_primary_10_3390_buildings12081241 crossref_primary_10_1016_j_ijpsycho_2017_01_003 crossref_primary_10_3389_frsc_2021_730474 crossref_primary_10_3390_en12050841 crossref_primary_10_3390_su14031840 crossref_primary_10_1016_j_jobe_2021_102918 crossref_primary_10_1016_j_rser_2023_113504 crossref_primary_10_3390_su131910638 crossref_primary_10_1016_j_buildenv_2024_111514 crossref_primary_10_3390_app9163303 crossref_primary_10_3390_buildings7010010 crossref_primary_10_1016_j_buildenv_2024_112321 crossref_primary_10_1016_j_enbuild_2018_02_035 crossref_primary_10_1002_advs_202104426 crossref_primary_10_1016_j_enbuild_2023_113719 crossref_primary_10_1016_j_scs_2021_103204 crossref_primary_10_1016_j_enbuild_2022_111894 crossref_primary_10_1016_j_buildenv_2016_09_005 crossref_primary_10_1016_j_buildenv_2023_110949 crossref_primary_10_1016_j_measurement_2021_109872 crossref_primary_10_1051_e3sconf_202339601109 crossref_primary_10_4028_www_scientific_net_JBBBE_35_1 crossref_primary_10_1016_j_buildenv_2021_108196 crossref_primary_10_1016_j_jtherbio_2022_103447 crossref_primary_10_1016_j_enbuild_2018_05_005 crossref_primary_10_1016_j_buildenv_2017_12_020 crossref_primary_10_1016_j_jobe_2022_104723 crossref_primary_10_1007_s12273_020_0714_2 crossref_primary_10_1016_j_buildenv_2015_04_017 crossref_primary_10_1016_j_buildenv_2023_110418 crossref_primary_10_3390_app9071375 crossref_primary_10_3390_en16248064 crossref_primary_10_1016_j_enbuild_2017_09_037 crossref_primary_10_1016_j_apenergy_2022_120283 crossref_primary_10_3389_fbuil_2020_00049 crossref_primary_10_1016_j_buildenv_2022_109454 crossref_primary_10_1016_j_buildenv_2024_111256 crossref_primary_10_1016_j_buildenv_2022_109457 crossref_primary_10_1016_j_scs_2024_105574 crossref_primary_10_1016_j_buildenv_2018_12_017 crossref_primary_10_36740_WLek202309104 crossref_primary_10_3390_ijerph16162869 crossref_primary_10_1016_j_apergo_2015_01_007 crossref_primary_10_3390_app122312105 crossref_primary_10_1016_j_buildenv_2017_11_003 crossref_primary_10_1021_acsphotonics_2c00898 crossref_primary_10_1016_j_buildenv_2017_07_024 crossref_primary_10_1177_01436244211003028 crossref_primary_10_1111_ina_12329 crossref_primary_10_1016_j_buildenv_2022_109263 crossref_primary_10_1016_j_buildenv_2020_107193 crossref_primary_10_7856_kjcls_2023_34_2_201 crossref_primary_10_1016_j_buildenv_2019_106215 crossref_primary_10_1016_j_buildenv_2021_108454 crossref_primary_10_1016_j_buildenv_2019_106579 crossref_primary_10_1016_j_enbuild_2024_114467 crossref_primary_10_1016_j_buildenv_2023_110050 crossref_primary_10_1016_j_buildenv_2023_110290 crossref_primary_10_1016_j_enbuild_2020_110261 crossref_primary_10_1016_j_buildenv_2023_110291 crossref_primary_10_1108_SASBE_08_2020_0122 crossref_primary_10_1080_23744731_2021_2000781 crossref_primary_10_1080_10803548_2017_1381468 crossref_primary_10_1016_j_buildenv_2019_106284 crossref_primary_10_3390_s23136186 crossref_primary_10_1016_j_buildenv_2018_09_033 crossref_primary_10_1109_TIM_2021_3112778 crossref_primary_10_1016_j_scs_2024_105872 crossref_primary_10_1016_j_buildenv_2022_109677 crossref_primary_10_1016_j_apenergy_2017_11_021 crossref_primary_10_1016_j_buildenv_2019_01_007 crossref_primary_10_1016_j_jtherbio_2022_103254 crossref_primary_10_1080_09613218_2020_1836950 |
Cites_doi | 10.1152/jappl.1969.26.5.616 10.1016/j.buildenv.2008.11.016 10.1016/0378-7788(93)90007-H 10.1111/j.1600-0668.1991.00009.x 10.1152/jappl.1966.21.6.1799 10.1016/j.buildenv.2009.06.015 10.1016/j.buildenv.2008.04.007 10.1037/h0077284 10.1007/s00484-005-0016-5 10.1016/j.buildenv.2009.06.020 10.1016/j.buildenv.2010.09.008 10.1152/jappl.1999.86.5.1588 10.1016/0013-9351(67)90002-3 10.1016/j.buildenv.2009.06.018 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.buildenv.2013.06.004 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-684X |
EndPage | 133 |
ExternalDocumentID | 27720377 10_1016_j_buildenv_2013_06_004 S0360132313001820 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSJ SSR SST SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-10c79d5844d8a1ce62029eb8934366af067047c0a92701b0fc166b43dac7bde03 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Fri Jul 11 03:28:02 EDT 2025 Wed Apr 02 07:28:58 EDT 2025 Tue Jul 01 00:24:39 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 Fri Feb 23 02:31:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regression Time differential Whole-body thermal sensation Skin temperature Non-steady state Sensation Thermal comfort Temperature Time Forecast model Modeling Steady state Experimentation Skin Whole body |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-10c79d5844d8a1ce62029eb8934366af067047c0a92701b0fc166b43dac7bde03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1733521634 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1733521634 pascalfrancis_primary_27720377 crossref_citationtrail_10_1016_j_buildenv_2013_06_004 crossref_primary_10_1016_j_buildenv_2013_06_004 elsevier_sciencedirect_doi_10_1016_j_buildenv_2013_06_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Building and environment |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gonzalez, Gagge (bib4) 1973; 79 Zhang, Arens, Huizenga (bib13) 2010; 45 Gagge, Stolwijk, Hardy (bib2) 1967; 1 Takada, Kobayashi, Matsushita (bib22) 2009; 44 Goto, Toftum, de Dear, Fanger (bib8) 2006; 50 Zhang, Arens, Huizenga (bib14) 2010; 45 Munir, Takada, Matsushita (bib9) 2009; 44 Mower (bib17) 1976; 90 Zhang, Arens, Huizenga (bib15) 2010; 45 Ogawa (bib24) 1974; 23 Ring, de Dear, Melikov (bib20) 1993; 20 Mitchell, Wyndham (bib23) 1969; 26 Kuno, Ohno, Nakahara (bib7) 1987; 93 Gagge, Stolwijk, Nishi (bib3) 1969; 75 Hensel (bib18) 1981; vol. 38 Fanger (bib1) 1970 Nevins, Gonzalez, Nishi, Gagge (bib5) 1975; 81 Fiala, Lomas, Stohrer (bib12) 2003 Takada, Sakiyama, Matsushita (bib10) 2011; 46 Hardy, Stolwijk (bib21) 1966; 21 Frank, Raja, Bulcao, Goldstein (bib16) 1999; 86 Ring, de Dear (bib19) 1991; 4 Mori, Hokoi, Takada (bib11) 2003; 563 Rohles, Hayter, Milliken (bib6) 1975; 81 Gagge (10.1016/j.buildenv.2013.06.004_bib2) 1967; 1 Hardy (10.1016/j.buildenv.2013.06.004_bib21) 1966; 21 Ogawa (10.1016/j.buildenv.2013.06.004_bib24) 1974; 23 Nevins (10.1016/j.buildenv.2013.06.004_bib5) 1975; 81 Kuno (10.1016/j.buildenv.2013.06.004_bib7) 1987; 93 Mower (10.1016/j.buildenv.2013.06.004_bib17) 1976; 90 Gagge (10.1016/j.buildenv.2013.06.004_bib3) 1969; 75 Goto (10.1016/j.buildenv.2013.06.004_bib8) 2006; 50 Gonzalez (10.1016/j.buildenv.2013.06.004_bib4) 1973; 79 Rohles (10.1016/j.buildenv.2013.06.004_bib6) 1975; 81 Zhang (10.1016/j.buildenv.2013.06.004_bib13) 2010; 45 Zhang (10.1016/j.buildenv.2013.06.004_bib14) 2010; 45 Mitchell (10.1016/j.buildenv.2013.06.004_bib23) 1969; 26 Munir (10.1016/j.buildenv.2013.06.004_bib9) 2009; 44 Ring (10.1016/j.buildenv.2013.06.004_bib20) 1993; 20 Hensel (10.1016/j.buildenv.2013.06.004_bib18) 1981; vol. 38 Mori (10.1016/j.buildenv.2013.06.004_bib11) 2003; 563 Fanger (10.1016/j.buildenv.2013.06.004_bib1) 1970 Zhang (10.1016/j.buildenv.2013.06.004_bib15) 2010; 45 Fiala (10.1016/j.buildenv.2013.06.004_bib12) 2003 Frank (10.1016/j.buildenv.2013.06.004_bib16) 1999; 86 Takada (10.1016/j.buildenv.2013.06.004_bib22) 2009; 44 Takada (10.1016/j.buildenv.2013.06.004_bib10) 2011; 46 Ring (10.1016/j.buildenv.2013.06.004_bib19) 1991; 4 |
References_xml | – volume: 81 start-page: 169 year: 1975 end-page: 183 ident: bib5 article-title: Effect of changes in ambient temperature and level of humidity on comfort and thermal sensations publication-title: ASHRAE Transactions – volume: 93 start-page: 396 year: 1987 end-page: 406 ident: bib7 article-title: A two-dimensional model expressing thermal sensation in transitional conditions publication-title: ASHRAE Transactions – volume: 90 start-page: 1152 year: 1976 end-page: 1155 ident: bib17 article-title: Perceived intensity of peripheral thermal stimuli is independent of internal body temperature publication-title: Journal of Comparative and Physiological Psychology – volume: vol. 38 start-page: 33 year: 1981 end-page: 35 ident: bib18 article-title: Thermoreception and temperature regulation publication-title: Monographs of physiological society – volume: 45 start-page: 389 year: 2010 end-page: 398 ident: bib14 article-title: Thermal sensation and comfort models for non-uniform and transient environments: part II: local comfort of individual body parts publication-title: Building and Environment – volume: 86 start-page: 1588 year: 1999 end-page: 1593 ident: bib16 article-title: Relative contribution of core and cutaneous temperatures to thermal comfort and autonomic responses in humans publication-title: Journal of Applied Physiology – volume: 75 start-page: 108 year: 1969 end-page: 125 ident: bib3 article-title: The prediction of thermal comfort when thermal equilibrium is maintained by sweating publication-title: ASHRAE Transactions – volume: 1 start-page: 1 year: 1967 end-page: 20 ident: bib2 article-title: Comfort and thermal sensations and associated physiological responses at various ambient temperatures publication-title: Environmental Research – start-page: 179 year: 2003 end-page: 187 ident: bib12 article-title: First principles modeling of thermal sensation responses in steady-state and transient conditions publication-title: ASHRAE Transactions – volume: 46 start-page: 597 year: 2011 end-page: 604 ident: bib10 article-title: Validity of the two-node model for predicting steady state skin temperature publication-title: Building and Environment – volume: 20 start-page: 159 year: 1993 end-page: 165 ident: bib20 article-title: Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin publication-title: Energy and Buildings – volume: 50 start-page: 323 year: 2006 end-page: 332 ident: bib8 article-title: Thermal sensation and thermophysiological responses to metabolic step-changes publication-title: International Journal of Biometeorology – volume: 45 start-page: 380 year: 2010 end-page: 388 ident: bib13 article-title: Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts publication-title: Building and Environment – volume: 45 start-page: 399 year: 2010 end-page: 410 ident: bib15 article-title: Thermal sensation and comfort models for non-uniform and transient environments: part III: whole-body sensation and comfort publication-title: Building and Environment – volume: 44 start-page: 1777 year: 2009 end-page: 1787 ident: bib9 article-title: Reevaluation of Stolwijk's 25-node human thermal model under thermal transient conditions: prediction of skin temperature in low activity conditions publication-title: Building and Environment – year: 1970 ident: bib1 article-title: Thermal comfort – volume: 79 start-page: 88 year: 1973 end-page: 96 ident: bib4 article-title: Magnitude estimates of thermal discomfort during transients of humidity and operative temperature and their relation to the new ASHRAE effective temperature (ET*) publication-title: ASHRAE Transactions – volume: 23 start-page: 72 year: 1974 end-page: 87 ident: bib24 article-title: Experimental study on the optimum thermal condition publication-title: The Bulletin of the High Institute of Public Health – volume: 81 start-page: 148 year: 1975 end-page: 156 ident: bib6 article-title: Effective temperature (ET*) as a predicitor of thermal comfort publication-title: ASHRAE Transactions – volume: 44 start-page: 463 year: 2009 end-page: 470 ident: bib22 article-title: Thermal model of human body fitted with individual characteristics of body temperature regulation publication-title: Building and Environment – volume: 563 start-page: 9 year: 2003 end-page: 15 ident: bib11 article-title: Experimental study on thermal sensation index in thermal transient publication-title: Journal of Architecture, Planning and Environmental Engineering (Transactions of AIJ) – volume: 26 start-page: 616 year: 1969 end-page: 622 ident: bib23 article-title: Comparison of weighting formulas for calculation mean skin temperature publication-title: Journal of Applied Physiology – volume: 4 start-page: 448 year: 1991 end-page: 456 ident: bib19 article-title: Temperature transients: a model for heat diffusion through the skin, thermoreceptor response and thermal sensation publication-title: Indoor Air – volume: 21 start-page: 1799 year: 1966 end-page: 1806 ident: bib21 article-title: Partitional calorimetric studies of man during exposures to thermal transients publication-title: Journal of Applied Physiology – volume: 26 start-page: 616 issue: 5 year: 1969 ident: 10.1016/j.buildenv.2013.06.004_bib23 article-title: Comparison of weighting formulas for calculation mean skin temperature publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1969.26.5.616 – volume: 44 start-page: 1777 issue: 9 year: 2009 ident: 10.1016/j.buildenv.2013.06.004_bib9 article-title: Reevaluation of Stolwijk's 25-node human thermal model under thermal transient conditions: prediction of skin temperature in low activity conditions publication-title: Building and Environment doi: 10.1016/j.buildenv.2008.11.016 – volume: 20 start-page: 159 year: 1993 ident: 10.1016/j.buildenv.2013.06.004_bib20 article-title: Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin publication-title: Energy and Buildings doi: 10.1016/0378-7788(93)90007-H – volume: 4 start-page: 448 year: 1991 ident: 10.1016/j.buildenv.2013.06.004_bib19 article-title: Temperature transients: a model for heat diffusion through the skin, thermoreceptor response and thermal sensation publication-title: Indoor Air doi: 10.1111/j.1600-0668.1991.00009.x – volume: 93 start-page: 396 issue: 2 year: 1987 ident: 10.1016/j.buildenv.2013.06.004_bib7 article-title: A two-dimensional model expressing thermal sensation in transitional conditions publication-title: ASHRAE Transactions – volume: 21 start-page: 1799 year: 1966 ident: 10.1016/j.buildenv.2013.06.004_bib21 article-title: Partitional calorimetric studies of man during exposures to thermal transients publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1966.21.6.1799 – volume: vol. 38 start-page: 33 year: 1981 ident: 10.1016/j.buildenv.2013.06.004_bib18 article-title: Thermoreception and temperature regulation – year: 1970 ident: 10.1016/j.buildenv.2013.06.004_bib1 – volume: 45 start-page: 389 year: 2010 ident: 10.1016/j.buildenv.2013.06.004_bib14 article-title: Thermal sensation and comfort models for non-uniform and transient environments: part II: local comfort of individual body parts publication-title: Building and Environment doi: 10.1016/j.buildenv.2009.06.015 – volume: 44 start-page: 463 issue: 3 year: 2009 ident: 10.1016/j.buildenv.2013.06.004_bib22 article-title: Thermal model of human body fitted with individual characteristics of body temperature regulation publication-title: Building and Environment doi: 10.1016/j.buildenv.2008.04.007 – volume: 90 start-page: 1152 issue: 12 year: 1976 ident: 10.1016/j.buildenv.2013.06.004_bib17 article-title: Perceived intensity of peripheral thermal stimuli is independent of internal body temperature publication-title: Journal of Comparative and Physiological Psychology doi: 10.1037/h0077284 – volume: 50 start-page: 323 year: 2006 ident: 10.1016/j.buildenv.2013.06.004_bib8 article-title: Thermal sensation and thermophysiological responses to metabolic step-changes publication-title: International Journal of Biometeorology doi: 10.1007/s00484-005-0016-5 – volume: 79 start-page: 88 year: 1973 ident: 10.1016/j.buildenv.2013.06.004_bib4 article-title: Magnitude estimates of thermal discomfort during transients of humidity and operative temperature and their relation to the new ASHRAE effective temperature (ET*) publication-title: ASHRAE Transactions – volume: 563 start-page: 9 year: 2003 ident: 10.1016/j.buildenv.2013.06.004_bib11 article-title: Experimental study on thermal sensation index in thermal transient publication-title: Journal of Architecture, Planning and Environmental Engineering (Transactions of AIJ) – volume: 75 start-page: 108 issue: 2 year: 1969 ident: 10.1016/j.buildenv.2013.06.004_bib3 article-title: The prediction of thermal comfort when thermal equilibrium is maintained by sweating publication-title: ASHRAE Transactions – volume: 81 start-page: 148 issue: 2 year: 1975 ident: 10.1016/j.buildenv.2013.06.004_bib6 article-title: Effective temperature (ET*) as a predicitor of thermal comfort publication-title: ASHRAE Transactions – volume: 45 start-page: 399 year: 2010 ident: 10.1016/j.buildenv.2013.06.004_bib15 article-title: Thermal sensation and comfort models for non-uniform and transient environments: part III: whole-body sensation and comfort publication-title: Building and Environment doi: 10.1016/j.buildenv.2009.06.020 – start-page: 179 year: 2003 ident: 10.1016/j.buildenv.2013.06.004_bib12 article-title: First principles modeling of thermal sensation responses in steady-state and transient conditions publication-title: ASHRAE Transactions – volume: 46 start-page: 597 issue: 3 year: 2011 ident: 10.1016/j.buildenv.2013.06.004_bib10 article-title: Validity of the two-node model for predicting steady state skin temperature publication-title: Building and Environment doi: 10.1016/j.buildenv.2010.09.008 – volume: 86 start-page: 1588 issue: 5 year: 1999 ident: 10.1016/j.buildenv.2013.06.004_bib16 article-title: Relative contribution of core and cutaneous temperatures to thermal comfort and autonomic responses in humans publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1999.86.5.1588 – volume: 1 start-page: 1 year: 1967 ident: 10.1016/j.buildenv.2013.06.004_bib2 article-title: Comfort and thermal sensations and associated physiological responses at various ambient temperatures publication-title: Environmental Research doi: 10.1016/0013-9351(67)90002-3 – volume: 81 start-page: 169 issue: 2 year: 1975 ident: 10.1016/j.buildenv.2013.06.004_bib5 article-title: Effect of changes in ambient temperature and level of humidity on comfort and thermal sensations publication-title: ASHRAE Transactions – volume: 45 start-page: 380 year: 2010 ident: 10.1016/j.buildenv.2013.06.004_bib13 article-title: Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts publication-title: Building and Environment doi: 10.1016/j.buildenv.2009.06.018 – volume: 23 start-page: 72 issue: 2 year: 1974 ident: 10.1016/j.buildenv.2013.06.004_bib24 article-title: Experimental study on the optimum thermal condition publication-title: The Bulletin of the High Institute of Public Health |
SSID | ssj0016934 |
Score | 2.4302795 |
Snippet | The goal of this study is to propose a new model for predicting thermal sensation in the non-steady state based on skin temperature and its time differential.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123 |
SubjectTerms | Applied sciences Building insulation Buildings Buildings. Public works Computation methods. Tables. Charts equations Exact sciences and technology External envelopes metabolism Non-steady state prediction Regression sensation Skin temperature Structural analysis. Stresses Thermal comfort Time differential walking Whole-body thermal sensation |
Title | Prediction of whole-body thermal sensation in the non-steady state based on skin temperature |
URI | https://dx.doi.org/10.1016/j.buildenv.2013.06.004 https://www.proquest.com/docview/1733521634 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iF0XEJ9ZHieA1NrubTexRiqUqFkEFD0LIa6E-tsVWxYu_3Zl9FIuCBy8LuyRsdiY784WZ-YaQQ-tiAzYwZcIJz4T0nlkjAwNvESsDCF8ZPChe9mXvVpzfpXdzpFPXwmBaZWX7S5teWOvqSauSZms0GLSuwfZioCDBgAzSkGMFu1C4y48-p2keyDVSUUhxhqO_VQk_HFlsPR3yN0zxSgoez6ph2y8OanlkxiC2rOx38cN0F_6ou0pWKiBJT8q1rpG5kK-TpW_0ghvk_uoFwzAoejrM6Du2wmV26D8oor5nmD2GQ2yhGjrI8SHNhzkr9P5Bi1Ijil7OUxgwfsQhAVB2ycK8SW67pzedHqu6KTAHkGcC9taptge8IfyxiVyQMY_bwQJeEYmUJsOCHaEcN-1Y8cjyzEVSWpF445T1gSdbZB4WEbYJzeAMooxxaSZT4eLMeCczDpfIcO6OVYOktQi1q6jGsePFk65zyh50LXqNotdFcp1okNZ03qgk2_hzRrvWkJ7ZNho8wp9zmzMqnb4yVhibVvAZB7WONfx0GEkxeRi-jnWksFQNoKzY-ccCdski3pWpgXtkfvLyGvYB4kxss9jDTbJwcnbR638BD5n9Ow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_s-dAWkX5SW7Vb6Ov2Nslm1zyKVM6vo1AFHwrLfgVO29zhnS3-984km0Op4IMveUgyZDOTzPyWmfkNwFfnc4s-sOTSy8ClCoE7qyLHaJFriwhfW9oonozV6EwenpfnK7DX98JQWWXy_Z1Pb711OjNM2hzOJpPhT_S9lCgoKCFDNOTPYJXYqcoBrO4eHI3Gy2SCqorEIiU4CdxpFL745mj6dGz-UpVX0VJ5ppltD8SotZmdo-bqbuTFf967DUn7r2A9YUm22y33NazE5g28vMMw-BZ-_biiTAxpn01r9o-m4XI3DTeMgN8flJ7jPra1Dps0dJI104a3pr9hbbcRo0AXGN4wv6RbIgLtjoj5HZztfz_dG_E0UIF7RD0LdLleVwEhhww7NvNR5SKvokPIIgulbE09O1J7Yatci8yJ2mdKOVkE67ULURTvYYCLiB-A1bgN0db6slal9Hltg1e1wENmhfA7egPKXoXGJ7ZxGnrx2_RlZRemV70h1Zu2vk5uwHApN-v4Nh6VqHoLmXtfjsGg8Kjs9j2TLh-Za0pPa3yNL72NDf53lEyxTZxez02mqVsN0az8-IQFfIbno9OTY3N8MD76BC_oSlcpuAmDxdV13ELEs3Db6Yu-BbRa_-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+whole-body+thermal+sensation+in+the+non-steady+state+based+on+skin+temperature&rft.jtitle=Building+and+environment&rft.au=TAKADA%2C+Satoru&rft.au=MATSUMOTO%2C+Sho&rft.au=MATSUSHITA%2C+Takayuki&rft.date=2013-10-01&rft.pub=Elsevier&rft.issn=0360-1323&rft.volume=68&rft.spage=123&rft.epage=133&rft_id=info:doi/10.1016%2Fj.buildenv.2013.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=27720377 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |