Advancements in clinical approaches, analytical methods, and smart sampling for LC–MS‐based protein determination from dried matrix spots
Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected...
Saved in:
Published in | Journal of separation science Vol. 47; no. 9-10; pp. e2400061 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed.
In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so‐called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody‐based affinity capture. |
---|---|
AbstractList | Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed.
In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so‐called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody‐based affinity capture. Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture. Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture.Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture. |
Author | Reubsaet, Léon Halvorsen, Trine Grønhaug |
Author_xml | – sequence: 1 givenname: Léon orcidid: 0000-0001-5165-2701 surname: Reubsaet fullname: Reubsaet, Léon email: leonr@farmasi.uio.no organization: University of Oslo – sequence: 2 givenname: Trine Grønhaug orcidid: 0000-0002-2545-3474 surname: Halvorsen fullname: Halvorsen, Trine Grønhaug organization: University of Oslo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38726749$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb2OEzEUhS20iP2BlhJZoqEgwR6P7XG5ivhVEEWgHt147rCOZuxgOwvp9gWQkHjDfRKc7JJim1TXuvrOudY55-TEB4-EPOdsyhmr3qxSstOKVTVjTPFH5IwrLidG8Prk8GbqlJyntGKM68awJ-RUNLpSujZn5Pdldw3e4og-J-o8tYPzzsJAYb2OAewVptcUPAzbvF-PmK9Ct991NI0QM00wrovqO-1DpPPZ7c3fz4vbmz9LSNjRYpKx-HaYMY7OQ3bB0z6GkXbRFWCEHN0vmtYhp6fkcQ9Dwmf384J8e_f26-zDZP7l_cfZ5Xxi65qbCei-kbVhQvOlWMrGYgPQcVBaoxCs11BJK-qKK6HRNlwaWyklbF-bTpieiQvy6s63_O7HBlNuR5csDgN4DJvUCi6FVI1U-jjKpDANV2bn-vIBugqbWKLbUYopxQUzhXpxT22WI3btOrqS4rb930kBpneAjSGliP0B4azdld7uSm8PpRdB_UBgXd7nnCO44ajspxtwe-RI-2mxmDWVNOIfpzTClA |
CitedBy_id | crossref_primary_10_1002_jssc_70083 crossref_primary_10_1016_j_microc_2025_112940 crossref_primary_10_1002_jssc_70031 |
Cites_doi | 10.1542/peds.32.3.338 10.1002/jms.3932 10.1039/C8AN00317C 10.1016/j.ymgme.2022.06.006 10.1016/j.aca.2019.08.043 10.1007/BF01347215 10.1002/jssc.202300571 10.1002/jssc.202300210 10.1007/s00216-017-0438-z 10.1007/s12217-023-10047-y 10.1007/s00216-017-0280-3 10.1016/j.bbi.2020.08.011 10.1002/jssc.202300394 10.1177/1469066718795978 10.1002/advs.202100323 10.1002/pmic.201500543 10.1515/cclm-2019-0832 10.1016/j.aca.2021.339231 10.1016/j.aca.2019.12.006 10.1002/prca.201600103 10.1007/s00216-022-04161-w 10.1039/C9AY01976F 10.1007/s10989-023-10570-x 10.4155/bio-2016-0059 10.1038/msb.2008.61 10.3389/fphys.2020.00373 10.1016/0009-8981(71)90317-2 10.1039/D1AN01132D 10.1002/dta.2323 10.1002/ansa.202300006 10.1016/j.jpba.2018.04.036 10.1016/j.ijms.2010.06.037 10.1080/14789450.2017.1374859 10.2174/1570164620666230727104921 10.1021/pr800538n 10.1007/s13361-013-0678-x 10.1021/acs.analchem.7b02492 10.1016/j.snb.2017.08.090 10.1177/0883911516637377 10.1016/j.chroma.2017.01.078 10.1021/acs.jproteome.0c00271 10.1021/acs.chemrestox.8b00224 10.1373/clinchem.2017.275966 10.1002/pmic.202100019 10.1038/s41598-022-23300-y 10.1016/j.talanta.2018.12.013 10.1002/ansa.202300011 10.1016/j.clinms.2019.03.002 10.1002/rcm.7981 10.3389/fgene.2022.795348 10.3390/proteomes8010004 10.1038/srep45178 10.1016/j.sampre.2022.100027 10.1039/C7AN01075C 10.1515/cclm-2022-0311 10.3389/fimmu.2020.00464 10.1007/s00216-016-9954-5 10.1021/acs.analchem.0c01350 10.3390/separations8050066 10.1016/j.ab.2021.114314 10.1021/acs.jproteome.1c00892 10.4155/bio-2018-0313 10.1053/j.gastro.2021.02.052 10.1021/ac402735y 10.1373/clinchem.2018.294892 10.1016/j.ab.2019.03.006 10.1021/acs.jproteome.1c00971 10.1038/s41398-017-0027-0 10.1002/sscp.202100062 10.1016/S0735-1097(22)03024-8 10.1002/jms.4989 10.3390/diagnostics10121032 10.1016/j.aca.2018.09.004 10.3390/proteomes6030033 10.1021/la301661x 10.1016/j.trac.2017.10.002 10.1002/dta.2518 10.1039/C8AY01081A 10.3389/fimmu.2018.02756 10.1007/BF00291877 10.1002/clt2.12317 10.1007/s00216-019-01675-8 10.3390/ijms24086989 10.1002/ajh.26368 10.1080/10408363.2017.1297358 10.1016/j.jprot.2016.12.008 10.1016/j.jchromb.2018.01.016 10.1021/acs.jproteome.7b00746 10.1177/1469066718820991 10.1002/ansa.202200050 10.1021/acs.jproteome.6b00828 10.4155/bio-2019-0278 10.1016/j.jpba.2021.114234 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wiley‐VCH GmbH. 2024 The Authors. Journal of Separation Science published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by Wiley‐VCH GmbH. – notice: 2024 The Authors. Journal of Separation Science published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U5 8FD L7M 7X8 7S9 L.6 |
DOI | 10.1002/jssc.202400061 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Technology Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1615-9314 |
EndPage | n/a |
ExternalDocumentID | 38726749 10_1002_jssc_202400061 JSSC8259 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TUS UB1 UPT VH1 W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WXSBR WYISQ XG1 XPP XV2 YQT ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 1OB 7U5 8FD L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4419-a7f85490371b3b58ce8aad1a677e330f7a25c3421637ec8159c2663cf49d39f03 |
IEDL.DBID | DR2 |
ISSN | 1615-9306 1615-9314 |
IngestDate | Fri Jul 11 18:35:49 EDT 2025 Fri Jul 11 10:18:30 EDT 2025 Wed Aug 13 04:29:44 EDT 2025 Mon Jul 21 06:04:39 EDT 2025 Tue Jul 01 01:27:01 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Wed Jan 22 17:18:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Keywords | LC–MS determination bioactive proteins smart sampling dried blood spots |
Language | English |
License | Attribution 2024 The Authors. Journal of Separation Science published by Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4419-a7f85490371b3b58ce8aad1a677e330f7a25c3421637ec8159c2663cf49d39f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5165-2701 0000-0002-2545-3474 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202400061 |
PMID | 38726749 |
PQID | 3060661309 |
PQPubID | 105495 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_3153568567 proquest_miscellaneous_3053981690 proquest_journals_3060661309 pubmed_primary_38726749 crossref_primary_10_1002_jssc_202400061 crossref_citationtrail_10_1002_jssc_202400061 wiley_primary_10_1002_jssc_202400061_JSSC8259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-May 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Journal of separation science |
PublicationTitleAlternate | J Sep Sci |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2021; 21 2023; 35 1986; 72 1913; 52 2023; 4 2019; 11 2013; 24 2019; 12 2021; 204 2017; 89 2021; 160 2016; 31 2020; 58 2020; 12 2020; 11 2022; 21 2008; 4 2017; 154 2020; 10 2019; 1089 2022; 414 2017; 9 2019; 1046 2020; 19 2022; 136 2023; 20 2020; 8 2018; 6 2017; 31 2018; 9 2017; 409 2023; 24 1963; 32 2023; 29 2019; 65 2020; 92 2018; 255 2019; 25 2020; 90 2018; 1077–1078 2022; 79 2012; 28 2019; 195 2020; 1100 2018; 31 2021; 8 2021; 629 2022; 1189 2018; 143 2023; 13 2021; 146 2016; 409 2013; 85 2020; 33 2024; 59 2016; 16 2021; 96 2018; 64 2017; 1491 2017; 97 2017; 52 2018; 17 2011; 300 2023; 46 2023 2022; 3 2022; 60 2017; 14 2022 2022; 5 2017; 16 1971; 35 2017; 11 2017; 54 2018; 156 2022; 12 2022; 13 2019; 575 2009; 8 2019; 411 2017; 142 2018; 10 2016; 8 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 Eshghi A (e_1_2_8_61_1) 2020; 19 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 Trine Grønhaug H (e_1_2_8_20_1) 2020; 33 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Ngo HB (e_1_2_8_27_1) 2023 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 60 start-page: 1318 year: 2022 end-page: 1341 article-title: Multi‐omics analysis from archival neonatal dried blood spots: limitations and opportunities publication-title: Clin Chem Lab Med – volume: 142 start-page: 3837 year: 2017 end-page: 3847 article-title: Instant on‐paper protein digestion during blood spot sampling publication-title: Analyst – volume: 629 year: 2021 article-title: Advances in mass spectrometric methods for detection of hemoglobin disorders publication-title: Anal Biochem – volume: 10 start-page: 2803 year: 2018 end-page: 2811 article-title: Polystyrene‐impregnated paper substrates for direct mass spectrometric analysis of proteins and peptides in complex matrices publication-title: Anal Methods – volume: 409 start-page: 3383 year: 2017 end-page: 3392 article-title: Expanding the knowledge on dried blood spots and LC‐MS‐based protein analysis: two different sampling materials and six protein targets publication-title: Anal BioanalChem – volume: 300 start-page: 123 year: 2011 end-page: 129 article-title: Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots publication-title: Int J Mass spectrom – volume: 409 start-page: 121 year: 2016 end-page: 131 article-title: Comparison of paper spray mass spectrometry analysis of dried blood spots from devices used for in‐field collection of clinical samples publication-title: Anal BioanalChem – volume: 54 start-page: 173 year: 2017 end-page: 184 article-title: Clinical perspectives of dried blood spot protein quantification using mass spectrometry methods publication-title: Crit Rev Clin Lab Sci – volume: 90 start-page: 184 year: 2020 end-page: 195 article-title: Diagnostic prediction model development using data from dried blood spot proteomics and a digital mental health assessment to identify major depressive disorder among individuals presenting with low mood publication-title: Brain Behav Immun – volume: 160 start-page: 2367 year: 2021 end-page: 2382.e1 article-title: Direct measurement of ATP7B peptides is highly effective in the diagnosis of Wilson disease publication-title: Gastroenterology – volume: 31 start-page: 553 year: 2016 end-page: 567 article-title: Enzyme immobilization on cellulose matrixes publication-title: J. Bioact Compat Pol – volume: 17 start-page: 1997 year: 2018 end-page: 2004 article-title: Asymmetric waveform ion mobility spectrometry in nontargeted bottom‐up proteomics of dried blood spots publication-title: J Proteome Res – volume: 8 year: 2021 article-title: Cell analysis from dried blood spots: New opportunities in immunology, hematology, and infectious diseases publication-title: Adv Sci – volume: 89 start-page: 10029 year: 2017 end-page: 10036 article-title: Mass spectrometry method to measure membrane proteins in dried blood spots for the detection of blood doping practices in sport publication-title: Anal Chem – volume: 28 start-page: 11265 year: 2012 end-page: 11273 article-title: Biofunctional paper via the covalent modification of cellulose publication-title: Langmuir – volume: 11 start-page: 373 year: 2020 end-page: 373 article-title: Proteomic profiling and monitoring of training distress and illness in university swimmers during a 25‐week competitive season publication-title: Front Physiol – volume: 1189 year: 2022 article-title: Development of an LC‐MS/MS method to simultaneously quantify therapeutic mAbs and estimate hematocrit values in dried blood spot samples publication-title: Anal Chim Acta – volume: 409 start-page: 4971 year: 2017 end-page: 4981 article-title: Direct analysis of site‐specific N‐glycopeptides of serological proteins in dried blood spot samples publication-title: Anal Bioanal Chem – volume: 13 year: 2023 article-title: Application of a dried blood spot based proteomic and genetic assay for diagnosing hereditary angioedema publication-title: Clin Transl Allergy – volume: 156 start-page: 239 year: 2018 end-page: 246 article-title: Volumetric absorptive MicroSampling vs. other blood sampling materials in LC–MS‐based protein analysis—preliminary investigations publication-title: J Pharm Biomed Anal – year: 2022 – volume: 13 year: 2022 article-title: Non‐lethal blood sampling of fish in the lab and field with methods for dried blood plasma spot omic analyses publication-title: Front Genet – volume: 25 start-page: 381 year: 2019 end-page: 390 article-title: Comparison of blood serum protein analysis by MALDI‐MS from either conventional frozen samples or storage disc‐deposited samples: A study with human serum from pregnant donors and from patients with intrauterine growth restriction publication-title: Eur J Mass Spectrom – volume: 12 start-page: 30 year: 2019 end-page: 36 article-title: Rapid method towards proteomic analysis of dried blood spots by MALDI mass spectrometry publication-title: Clin Mass Spectrom – volume: 7 year: 2017 article-title: Towards reproducible MRM based biomarker discovery using dried blood spots publication-title: Sci Rep – volume: 52 start-page: 521 year: 1913 end-page: 523 – volume: 414 start-page: 5979 year: 2022 end-page: 5989 article-title: On the spot immunocapture in targeted biomarker analysis using paper‐bound streptavidin as anchor for biotinylated antibodies publication-title: Anal BioanalChem – volume: 52 start-page: 319 year: 2017 end-page: 341 article-title: Current trends in quantitative proteomics—an update publication-title: J Mass Spectrom – volume: 97 start-page: 326 year: 2017 end-page: 332 article-title: Beyond dried blood spot: current microsampling techniques in the context of biomedical applications publication-title: TrAC, Trends Anal Chem – volume: 411 start-page: 2351 year: 2019 end-page: 2362 article-title: Untargeted adductomics of Cys34 modifications to human serum albumin in newborn dried blood spots publication-title: Anal BioanalChem – volume: 6 start-page: 33 year: 2018 article-title: Detection of functional overreaching in endurance athletes using proteomics publication-title: Proteomes – volume: 25 start-page: 268 year: 2019 end-page: 277 article-title: Quantification of low abundance yersinia pestis markers in dried blood spots by immuno‐capture and quantitative high‐resolution targeted mass spectrometry publication-title: Eur J Mass Spectrom – volume: 1077–1078 start-page: 44 year: 2018 end-page: 51 article-title: Determination of the low‐abundant protein biomarker hCG from dried matrix spots using immunocapture and 4liquid chromatography mass spectrometry publication-title: J Chromatogr B – volume: 5 start-page: 171 year: 2022 end-page: 183 article-title: Smart proteolysis samplers for pre‐lab bottom‐up protein analysis—Performance of on‐paper digestion compared to conventional digestion publication-title: Sep Sci Plus – volume: 575 start-page: 10 year: 2019 end-page: 16 article-title: Quantification of proteins in whole blood, plasma and DBS, with element‐labelled antibody detection by ICP‐MS publication-title: Anal Biochem – volume: 195 start-page: 764 year: 2019 end-page: 770 article-title: Paper‐based immunocapture for targeted protein analysis publication-title: Talanta – volume: 11 start-page: 464 year: 2020 article-title: Multiplexed proteomic analysis for diagnosis and screening of five primary immunodeficiency disorders from dried blood spots publication-title: Front Immunol – volume: 33 start-page: 222 year: 2020 end-page: 235 article-title: Dried blood spots in mass spectrometry‐based protein analysis. recent developments including sampling of other biological matrices and novel sampling technologies publication-title: LCGC Europe – volume: 31 start-page: 1240 year: 2018 end-page: 1247 article-title: Age‐associated methylation in human hemoglobin and its stability on dried blood spots as analyzed by nanoflow liquid chromatography tandem mass spectrometry publication-title: Chem Res Toxicol – volume: 35 start-page: 19 year: 2023 article-title: Connection of dried blood spot proteomic composition dynamics and heart rate variability in 3‐day female dry immersion publication-title: Microgravity Sci Technol – volume: 10 start-page: 1032 year: 2020 article-title: Design and characterization of a novel blood collection and transportation device for proteomic applications publication-title: Diagnostics (Basel) – volume: 19 start-page: 1820 year: 2020 article-title: Concentration determination of 200 proteins in dried blood spots for biomarker discovery and validation publication-title: Mol Cell Proteomics – volume: 3 year: 2022 article-title: TG Next generation VAMS®–Trypsin immobilization for instant proteolysis in bottom‐up protein determination publication-title: Adv Sample Prep – volume: 46 year: 2023 article-title: Smart sampling as the “Spot‐on” method for LC‐MS protein analysis from dried blood spots publication-title: J Sep Sci – volume: 85 start-page: 11501 year: 2013 end-page: 11508 article-title: Simple, miniaturized blood plasma extraction method publication-title: Anal Chem – volume: 8 start-page: 66 year: 2021 article-title: Next‐generation dried blood spot samplers for protein analysis: describing trypsin‐modified smart sampling paper publication-title: Separations – volume: 146 start-page: 6780 year: 2021 end-page: 6787 article-title: Protective mechanism of dried blood spheroids: stabilization of labile analytes in whole blood, plasma, and serum publication-title: Analyst – volume: 24 start-page: 6989 year: 2023 article-title: New perspectives of multiplex mass spectrometry blood protein quantification on microsamples in biological monitoring of elderly patients publication-title: Int J Mol Sci – volume: 143 start-page: 3184 year: 2018 end-page: 3190 article-title: Smart blood spots for whole blood protein analysis publication-title: Analyst – volume: 1046 start-page: 32 year: 2019 end-page: 47 article-title: Volumetric absorptive microsampling (VAMS) publication-title: Anal Chim Acta – volume: 12 start-page: 97 year: 2020 end-page: 103 article-title: Pre‐lab proteolysis for dried serum spots—a paper‐based sampling concept targeting low abundant biomarkers publication-title: Anal Methods – volume: 16 start-page: 862 year: 2017 end-page: 871 article-title: Quantification of ATP7B protein in dried blood spots by peptide immuno‐SRM as a potential screen for wilson's disease publication-title: J Proteome Res – volume: 64 start-page: 656 year: 2018 end-page: 679 article-title: State of the science in dried blood spots publication-title: Clin Chem – volume: 204 year: 2021 article-title: Enhanced urinary stability of peptide hormones and growth factors by dried urine microsampling publication-title: J Pharm Biomed Anal – volume: 136 start-page: 296 year: 2022 end-page: 305 article-title: A rapid and non‐invasive proteomic analysis using DBS and buccal swab for multiplexed second‐tier screening of Pompe disease and Mucopolysaccharidosis type I publication-title: Mol Genet Metab – volume: 21 start-page: 1816 year: 2022 end-page: 1828 article-title: Evaluation of volumetric absorptive microsampling and mass spectrometry data‐independent acquisition of hemoglobin‐related clinical markers publication-title: J Proteome Res – volume: 8 start-page: 1597 year: 2016 end-page: 1609 article-title: Multiplexed longitudinal measurement of protein biomarkers in DBS using an automated SISCAPA workflow publication-title: Bioanalysis – volume: 1491 start-page: 36 year: 2017 end-page: 42 article-title: A cyclic‐olefin‐copolymer microfluidic immobilized‐enzyme reactor for rapid digestion of proteins from dried blood spots publication-title: J Chromatogr A – volume: 8 start-page: 787 year: 2009 end-page: 797 article-title: Mass spectrometry based targeted protein quantification: methods and applications publication-title: J Proteome Res – volume: 12 start-page: 937 year: 2020 end-page: 955 article-title: Precision multiparameter tracking of inflammation on timescales of hours to years using serial dried blood spots publication-title: Bioanalysis – volume: 1089 start-page: 56 year: 2019 end-page: 65 article-title: All‐in‐one paper‐based sampling chip for targeted protein analysis publication-title: Anal Chim Acta – volume: 46 year: 2023 article-title: Matrix effects demystified: strategies for resolving challenges in analytical separations of complex samples publication-title: J Sep Sci – volume: 92 start-page: 10531 year: 2020 end-page: 10539 article-title: Capillary zone electrophoresis‐top‐down tandem mass spectrometry for in‐depth characterization of hemoglobin proteoforms in clinical and veterinary samples publication-title: Anal Chem – volume: 7 start-page: 1290 year: 2017 article-title: Schizophrenia‐risk and urban birth are associated with proteomic changes in neonatal dried blood spots publication-title: Transl Psychiatry – volume: 21 year: 2021 article-title: Toward proteome‐wide exploration of proteins in dried blood spots using liquid chromatography‐coupled mass spectrometry publication-title: Proteomics – volume: 79 start-page: 2033 year: 2022 article-title: Remote microsample blood collection and proteomic analysis of patients with prior Takotsubo cardiomyopathy whos profile distinct from normal controls publication-title: J Am Coll Cardiol – volume: 1100 start-page: 118 year: 2020 end-page: 130 article-title: An immuno‐MALDI mass spectrometry assay for the oral cancer biomarker, matrix metalloproteinase‐1, in dried saliva spot samples publication-title: Anal Chim Acta – volume: 20 start-page: 81 year: 2023 end-page: 90 article-title: Current understanding of dried spots platform for blood proteomics publication-title: Curr Proteomics – volume: 10 start-page: 1761 year: 2018 end-page: 1768 article-title: Analysis of insulin and insulin analogs from dried blood spots by means of liquid chromatography–high resolution mass spectrometry publication-title: Drug Test Anal – volume: 154 start-page: 78 year: 2017 end-page: 84 article-title: A novel tandem mass spectrometry method for first‐line screening of mainly beta‐thalassemia from dried blood spots publication-title: J Proteomics – volume: 12 year: 2022 article-title: Sportomics method to assess acute phase proteins in Olympic level athletes using dried blood spots and multiplex assay publication-title: Sci Rep – volume: 58 start-page: 810 year: 2020 end-page: 816 article-title: Investigating the suitability of high‐resolution mass spectrometry for newborn screening: identification of hemoglobinopathies and β‐thalassemias in dried blood spots publication-title: Clin Chem Lab Med (CCLM) – volume: 11 year: 2017 article-title: Quantification by nano‐liquid chromatography parallel reaction monitoring mass spectrometry of human apolipoprotein A‐I, apolipoprotein B, and hemoglobin A1c in dried blood spots publication-title: Proteom Clin Appl – volume: 59 year: 2024 article-title: One‐step functionalization of paper and simplified antibody immobilization for on‐the‐spot immunocapture from dried serum in liquid chromatography‐tandem mass spectrometry based targeted protein determination publication-title: J Mass Spectrom – volume: 24 start-page: 1338 year: 2013 end-page: 1345 article-title: comparison of proteins in whole blood and dried blood spot samples by LC/MS/MS publication-title: J Am Soc Mass Spectrom – volume: 65 start-page: 492 year: 2019 end-page: 494 article-title: Measuring the turnover rate of clinically important plasma proteins using an automated SISCAPA workflow publication-title: Clin Chem – volume: 11 start-page: 923 year: 2019 end-page: 940 article-title: Development of two complementary LC‐HRMS methods for analyzing sotatercept in dried blood spots for doping controls publication-title: Bioanalysis – volume: 8 start-page: 4 year: 2020 article-title: Proteomics‐based detection of immune dysfunction in an elite adventure athlete trekking across the antarctica publication-title: Proteomes – volume: 4 start-page: 267 year: 2023 end-page: 274 article-title: Is this the end of dried blood spots as we know it? publication-title: Anal Sci Adv – volume: 32 start-page: 338 year: 1963 end-page: 343 article-title: A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants publication-title: Pediatrics – volume: 19 start-page: 2821 year: 2020 end-page: 2827 article-title: Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics publication-title: J Proteome Res – volume: 31 start-page: 1915 year: 2017 end-page: 1926 article-title: Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion‐mobility time‐of‐flight mass spectrometers publication-title: Rapid Commun Mass Spectrom – volume: 4 start-page: 26 year: 2023 end-page: 36 article-title: Feasibility of detecting snake envenomation biomarkers from dried blood spots publication-title: Anal Sci Adv – volume: 4 start-page: 154 year: 2023 end-page: 180 article-title: Blood microsampling technologies: innovations and applications in 2022 publication-title: Anal Sci Adv – volume: 96 start-page: 1621 year: 2021 end-page: 1629 article-title: Tracking immature reticulocyte proteins for improved detection of recombinant human erythropoietin (rhEPO) abuse publication-title: Am J Hematol – volume: 4 start-page: 222 year: 2008 article-title: Selected reaction monitoring for quantitative proteomics: a tutorial publication-title: Mol Syst Biol – volume: 21 start-page: 1196 year: 2022 end-page: 1203 article-title: Proteomic analysis of whole blood using volumetric absorptive microsampling for precision medicine biomarker studies br publication-title: J Proteome Res – volume: 255 start-page: 598 year: 2018 end-page: 604 article-title: Improving paper‐based ELISA performance through covalent immobilization of antibodies publication-title: Sens Actuators, B – volume: 14 start-page: 869 year: 2017 end-page: 880 article-title: Advances in quantifying apolipoproteins using LC‐MS/MS technology: implications for the clinic publication-title: Expert Rev Proteomics – volume: 46 year: 2023 article-title: Dried blood spot analysis with liquid chromatography and mass spectrometry: Trends in clinical chemistry publication-title: J Sep Sci – volume: 29 start-page: 97 year: 2023 article-title: Dried blood spot sampling in protein and peptide bioanalysis: optimism, experience, and the path forward publication-title: Int J Pept Res Ther – volume: 9 start-page: 1713 year: 2017 end-page: 1720 article-title: Detection of autologous blood transfusions using a novel dried blood spot method publication-title: Drug Test Anal – volume: 72 start-page: 196 year: 1986 end-page: 202 article-title: Fetal hemoglobin variants in 80,000 Japanese neonates: high prevalence of Hb F Yamaguchi (AγT 80 Asp→Asn) publication-title: Hum Genet – volume: 35 start-page: 237 year: 1971 end-page: 238 article-title: Whole blood samples dried and stored on filter paper as substrate for the electrophoretic separation on hemoglobin S from hemoglobin A. A screening procedure publication-title: Clin Chim Acta – year: 2023 article-title: Microsampling in targeted mass spectrometry‐based protein analysis of low‐abundance proteins publication-title: J Vis Exp – volume: 9 start-page: 2756 year: 2018 article-title: Rapid multiplexed proteomic screening for primary immunodeficiency disorders from dried blood spots publication-title: Front Immunol – volume: 16 start-page: 2146 year: 2016 end-page: 2159 article-title: Parallel reaction monitoring using quadrupole‐orbitrap mass spectrometer: principle and applications publication-title: Proteomics – ident: e_1_2_8_3_1 doi: 10.1542/peds.32.3.338 – ident: e_1_2_8_12_1 doi: 10.1002/jms.3932 – ident: e_1_2_8_88_1 doi: 10.1039/C8AN00317C – ident: e_1_2_8_32_1 doi: 10.1016/j.ymgme.2022.06.006 – ident: e_1_2_8_95_1 doi: 10.1016/j.aca.2019.08.043 – ident: e_1_2_8_2_1 doi: 10.1007/BF01347215 – ident: e_1_2_8_26_1 doi: 10.1002/jssc.202300571 – ident: e_1_2_8_6_1 doi: 10.1002/jssc.202300210 – ident: e_1_2_8_43_1 doi: 10.1007/s00216-017-0438-z – ident: e_1_2_8_63_1 doi: 10.1007/s12217-023-10047-y – ident: e_1_2_8_73_1 doi: 10.1007/s00216-017-0280-3 – ident: e_1_2_8_44_1 doi: 10.1016/j.bbi.2020.08.011 – ident: e_1_2_8_17_1 doi: 10.1002/jssc.202300394 – ident: e_1_2_8_33_1 doi: 10.1177/1469066718795978 – ident: e_1_2_8_82_1 doi: 10.1002/advs.202100323 – ident: e_1_2_8_40_1 doi: 10.1002/pmic.201500543 – ident: e_1_2_8_48_1 doi: 10.1515/cclm-2019-0832 – ident: e_1_2_8_35_1 doi: 10.1016/j.aca.2021.339231 – ident: e_1_2_8_30_1 doi: 10.1016/j.aca.2019.12.006 – ident: e_1_2_8_53_1 doi: 10.1002/prca.201600103 – ident: e_1_2_8_98_1 doi: 10.1007/s00216-022-04161-w – ident: e_1_2_8_93_1 doi: 10.1039/C9AY01976F – ident: e_1_2_8_16_1 doi: 10.1007/s10989-023-10570-x – ident: e_1_2_8_41_1 doi: 10.4155/bio-2016-0059 – ident: e_1_2_8_23_1 doi: 10.1038/msb.2008.61 – ident: e_1_2_8_64_1 doi: 10.3389/fphys.2020.00373 – ident: e_1_2_8_4_1 doi: 10.1016/0009-8981(71)90317-2 – ident: e_1_2_8_81_1 doi: 10.1039/D1AN01132D – ident: e_1_2_8_66_1 doi: 10.1002/dta.2323 – ident: e_1_2_8_18_1 doi: 10.1002/ansa.202300006 – ident: e_1_2_8_74_1 doi: 10.1016/j.jpba.2018.04.036 – ident: e_1_2_8_79_1 doi: 10.1016/j.ijms.2010.06.037 – ident: e_1_2_8_14_1 doi: 10.1080/14789450.2017.1374859 – ident: e_1_2_8_15_1 doi: 10.2174/1570164620666230727104921 – ident: e_1_2_8_24_1 doi: 10.1021/pr800538n – ident: e_1_2_8_54_1 doi: 10.1007/s13361-013-0678-x – ident: e_1_2_8_67_1 doi: 10.1021/acs.analchem.7b02492 – ident: e_1_2_8_89_1 doi: 10.1016/j.snb.2017.08.090 – ident: e_1_2_8_71_1 doi: 10.1177/0883911516637377 – ident: e_1_2_8_75_1 doi: 10.1016/j.chroma.2017.01.078 – ident: e_1_2_8_22_1 doi: 10.1021/acs.jproteome.0c00271 – ident: e_1_2_8_52_1 doi: 10.1021/acs.chemrestox.8b00224 – ident: e_1_2_8_10_1 doi: 10.1373/clinchem.2017.275966 – ident: e_1_2_8_19_1 doi: 10.1002/pmic.202100019 – ident: e_1_2_8_37_1 doi: 10.1038/s41598-022-23300-y – ident: e_1_2_8_94_1 doi: 10.1016/j.talanta.2018.12.013 – ident: e_1_2_8_7_1 doi: 10.1002/ansa.202300011 – ident: e_1_2_8_55_1 doi: 10.1016/j.clinms.2019.03.002 – ident: e_1_2_8_25_1 doi: 10.1002/rcm.7981 – ident: e_1_2_8_85_1 doi: 10.3389/fgene.2022.795348 – ident: e_1_2_8_60_1 doi: 10.3390/proteomes8010004 – ident: e_1_2_8_42_1 doi: 10.1038/srep45178 – ident: e_1_2_8_92_1 doi: 10.1016/j.sampre.2022.100027 – ident: e_1_2_8_87_1 doi: 10.1039/C7AN01075C – ident: e_1_2_8_8_1 doi: 10.1515/cclm-2022-0311 – ident: e_1_2_8_36_1 doi: 10.3389/fimmu.2020.00464 – ident: e_1_2_8_78_1 doi: 10.1007/s00216-016-9954-5 – ident: e_1_2_8_50_1 doi: 10.1021/acs.analchem.0c01350 – ident: e_1_2_8_90_1 doi: 10.3390/separations8050066 – ident: e_1_2_8_13_1 doi: 10.1016/j.ab.2021.114314 – ident: e_1_2_8_47_1 doi: 10.1021/acs.jproteome.1c00892 – year: 2023 ident: e_1_2_8_27_1 article-title: Microsampling in targeted mass spectrometry‐based protein analysis of low‐abundance proteins publication-title: J Vis Exp – ident: e_1_2_8_31_1 doi: 10.4155/bio-2018-0313 – ident: e_1_2_8_28_1 doi: 10.1053/j.gastro.2021.02.052 – ident: e_1_2_8_83_1 doi: 10.1021/ac402735y – ident: e_1_2_8_39_1 doi: 10.1373/clinchem.2018.294892 – ident: e_1_2_8_77_1 doi: 10.1016/j.ab.2019.03.006 – ident: e_1_2_8_57_1 doi: 10.1021/acs.jproteome.1c00971 – ident: e_1_2_8_56_1 doi: 10.1038/s41398-017-0027-0 – ident: e_1_2_8_91_1 doi: 10.1002/sscp.202100062 – ident: e_1_2_8_59_1 doi: 10.1016/S0735-1097(22)03024-8 – ident: e_1_2_8_97_1 doi: 10.1002/jms.4989 – ident: e_1_2_8_65_1 – ident: e_1_2_8_86_1 doi: 10.3390/diagnostics10121032 – ident: e_1_2_8_9_1 doi: 10.1016/j.aca.2018.09.004 – ident: e_1_2_8_62_1 doi: 10.3390/proteomes6030033 – ident: e_1_2_8_96_1 doi: 10.1021/la301661x – ident: e_1_2_8_11_1 doi: 10.1016/j.trac.2017.10.002 – ident: e_1_2_8_69_1 doi: 10.1002/dta.2518 – ident: e_1_2_8_80_1 doi: 10.1039/C8AY01081A – ident: e_1_2_8_34_1 doi: 10.3389/fimmu.2018.02756 – ident: e_1_2_8_5_1 doi: 10.1007/BF00291877 – ident: e_1_2_8_46_1 doi: 10.1002/clt2.12317 – volume: 19 start-page: 1820 year: 2020 ident: e_1_2_8_61_1 article-title: Concentration determination of 200 proteins in dried blood spots for biomarker discovery and validation publication-title: Mol Cell Proteomics – ident: e_1_2_8_51_1 doi: 10.1007/s00216-019-01675-8 – volume: 33 start-page: 222 year: 2020 ident: e_1_2_8_20_1 article-title: Dried blood spots in mass spectrometry‐based protein analysis. recent developments including sampling of other biological matrices and novel sampling technologies publication-title: LCGC Europe – ident: e_1_2_8_45_1 doi: 10.3390/ijms24086989 – ident: e_1_2_8_68_1 doi: 10.1002/ajh.26368 – ident: e_1_2_8_21_1 doi: 10.1080/10408363.2017.1297358 – ident: e_1_2_8_49_1 doi: 10.1016/j.jprot.2016.12.008 – ident: e_1_2_8_72_1 doi: 10.1016/j.jchromb.2018.01.016 – ident: e_1_2_8_76_1 doi: 10.1021/acs.jproteome.7b00746 – ident: e_1_2_8_84_1 doi: 10.1177/1469066718820991 – ident: e_1_2_8_58_1 doi: 10.1002/ansa.202200050 – ident: e_1_2_8_29_1 doi: 10.1021/acs.jproteome.6b00828 – ident: e_1_2_8_38_1 doi: 10.4155/bio-2019-0278 – ident: e_1_2_8_70_1 doi: 10.1016/j.jpba.2021.114234 |
SSID | ssj0017890 |
Score | 2.449186 |
SecondaryResourceType | review_article |
Snippet | Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400061 |
SubjectTerms | Affinity Analytical chemistry Antibodies bioactive proteins Biological activity Biomedical research Blood blood serum Dried Blood Spot Testing dried blood spots Humans LC–MS determination Liquid Chromatography-Mass Spectrometry Mass spectrometry Proteins Proteins - analysis proteolysis Proteomics Proteomics - methods Sampling separation smart sampling Specimen Handling urine |
Title | Advancements in clinical approaches, analytical methods, and smart sampling for LC–MS‐based protein determination from dried matrix spots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202400061 https://www.ncbi.nlm.nih.gov/pubmed/38726749 https://www.proquest.com/docview/3060661309 https://www.proquest.com/docview/3053981690 https://www.proquest.com/docview/3153568567 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXoADlPK30FauhMQFt9nYiZ1jtWpVVS1CXSr1Fjm2g2hpisiuhDj1BZCQeMM-SWfsTdotAoS4JhPHsceZb-yZbwBekRFAPyHhVtmKSwSw3FhtuSFyNSOHLtOUO3zwNt89knvH2fGNLP7ID9FvuNHKCP9rWuCmajevSUNP2pYoCCkGMgn-DwVsESo67PmjhpTlSR4Xmm1eIDjuWBuTdHP-8Xmr9AvUnEeuwfTsPATTdTpGnJxuTCfVhv12i8_xf75qCR7McCnbior0CBZ8swx3R105uGW4f4O58DF834qxAyFBjn1sWJdhyTqSct--YYYYT8JmOYuVqsM1x9ozVFjWGopmbz4wxM1sf3R58fNgfHnxg-yqY4E_Att1XbgOKRCjZBjm0Lt37IxqC3xl6JVP2idwtLP9frTLZ5UduEX4VXCjao2OKdEFVqLKtPXaGDc0uVJeiKRWJs2skCmCReWtRshlEUgIW8vCiaJOxFNYbM4b_xwYNlB75bPUiEpWqGepGUpsyaLfb0ziBsC7mS3tjPacqm98KiNhc1rSkJf9kA_gdS__ORJ-_FZypVOUcrbw2xKVDEEcAoNiAOv9bZwqOocxjT-fkkwmCk3nk3-QQUuU5TrL1QCeRSXsuyO0SnMl8Q08qNJf-lnujccjjW7ui3-Ufwn36GIM71yBxcmXqV9FCDap1uBOKt-thcV2BW_0LSw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hcigc-CgfXShgJCQuuM3GSewcqxXVUnZ7YFuJW-TYTgW0KSK7EuLUP4CExD_sL2HGXgcWBAhxzc463mS885498wbgCQUB5AkJN9LUPEMAy7VRhmsSV9PZ0OaKaoenB8X4KNt_ncdsQqqFCfoQ_YYbrQz_f00LnDakd76rhr7tOtIgpCTIhAjQZWrr7VnVq15Bakh1nsS5MHDzEuFx1G1M0p3V76_GpV_A5ip29cFn7zrUcdoh5-Td9mJeb5tPPyk6_tfvugHXltCU7QZfugmXXLsB66PYEW4Drv4gXngLPu-G9AFfI8fetCwWWbKoU-66Z0yT6InfL2ehWbW_Zll3ij7LOk0J7e0xQ-jMJqOL86_T2cX5FwqtlnkJCRzXxowd8iFG9TDMIsG37JTaC3xkSMzn3W042nt-OBrzZXMHbhCBlVzLRiE3JcXAWtS5Mk5pbYe6kNIJkTRSp7kRWYp4UTqjEHUZxBLCNFlpRdkk4g6stWet2wSGAzROujzVos5qdLVUDzMcySD11zqxA-Dx1VZmqXxODThOqqDZnFb0yKv-kQ_gaW__Pmh-_NZyK3pKtVz7XYVehjgOsUE5gMf9x_iq6ChGt-5sQTa5KBUdUf7BBoNRXqi8kAO4G7ywn45QMi1khnfg3pf-Ms9qfzYbKWS69_7R_hGsjw-nk2ry4uDlfbhCBiHbcwvW5h8W7gEisnn90K-5bwi8MHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hIgE9QFugLLTUSEhccJuNndg5VtuuSr-EWCr1Fjm2g_hoWpFdCXHqH0BC4h_2l3Qm3oQuCBDqNZk4TvKceZPMvAF4Tk4A44SIW2ULLpHAcmO15YbE1Yzsu0RT7fDBYbpzJHePk-MrVfxBH6L74EYro3lf0wI_c-XGT9HQD3VNEoSUAxlR_HNTppEmXG-96QSk-lTmSSEX-m2eITtuZRujeGP2-Fm39BvXnKWuje8Z3gPTzjqknHxcn4yLdfv1F0HH61zWAtydElO2GZC0CDd8tQS3B20_uCWYvyJdeB--bYbkgaZCjr2vWFtiyVqVcl-_ZIYkT5qv5Sy0qm62OVafIGJZbSidvXrHkDiz_cHF-Y-D0cX5d3KsjjUCEjiua_N1CEGMqmGYw_DesRNqLvCFYVg-rh_A0XD77WCHT1s7cIv8K-NGlRojU9ILLESRaOu1Ma5vUqW8EFGpTJxYIWNki8pbjZzLIpMQtpSZE1kZiYcwV51W_hEwHKD0yiexEYUsEGix6UscyWLgb0zkesDbJ5vbqe45td_4lAfF5jinW553t7wHLzr7s6D48UfLlRYo-XTl1zmCDFkcMoOsB8-63fio6EeMqfzphGwSkWn6QfkXG3RFSaqTVPVgOYCwm47QKk6VxDPwBkr_mGe-OxoNNMa5j__Tfg1uvd4a5vuvDveewB3aH1I9V2Bu_HniV5GOjYunzYq7BHTWLyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+clinical+approaches%2C+analytical+methods%2C+and+smart+sampling+for+LC%E2%80%93MS%E2%80%90based+protein+determination+from+dried+matrix+spots&rft.jtitle=Journal+of+separation+science&rft.au=Reubsaet%2C+L%C3%A9on&rft.au=Halvorsen%2C+Trine+Gr%C3%B8nhaug&rft.date=2024-05-01&rft.issn=1615-9306&rft.eissn=1615-9314&rft.volume=47&rft.issue=9-10&rft_id=info:doi/10.1002%2Fjssc.202400061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jssc_202400061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon |