Medical image segmentation using deep learning: A survey
Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two origi...
Saved in:
Published in | IET image processing Vol. 16; no. 5; pp. 1243 - 1267 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.04.2022
|
Online Access | Get full text |
ISSN | 1751-9659 1751-9667 |
DOI | 10.1049/ipr2.12419 |
Cover
Loading…
Abstract | Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two original contributions. Firstly, compared to traditional surveys that directly divide literatures of deep learning on medical image segmentation into many groups and introduce literatures in detail for each group, we classify currently popular literatures according to a multi‐level structure from coarse to fine. Secondly, this paper focuses on supervised and weakly supervised learning approaches, without including unsupervised approaches since they have been introduced in many old surveys and they are not popular currently. For supervised learning approaches, we analyse literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions. For weakly supervised learning approaches, we investigate literature according to data augmentation, transfer learning, and interactive segmentation, separately. Compared to existing surveys, this survey classifies the literatures very differently from before and is more convenient for readers to understand the relevant rationale and will guide them to think of appropriate improvements in medical image segmentation based on deep learning approaches. |
---|---|
AbstractList | Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two original contributions. Firstly, compared to traditional surveys that directly divide literatures of deep learning on medical image segmentation into many groups and introduce literatures in detail for each group, we classify currently popular literatures according to a multi‐level structure from coarse to fine. Secondly, this paper focuses on supervised and weakly supervised learning approaches, without including unsupervised approaches since they have been introduced in many old surveys and they are not popular currently. For supervised learning approaches, we analyse literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions. For weakly supervised learning approaches, we investigate literature according to data augmentation, transfer learning, and interactive segmentation, separately. Compared to existing surveys, this survey classifies the literatures very differently from before and is more convenient for readers to understand the relevant rationale and will guide them to think of appropriate improvements in medical image segmentation based on deep learning approaches. Abstract Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two original contributions. Firstly, compared to traditional surveys that directly divide literatures of deep learning on medical image segmentation into many groups and introduce literatures in detail for each group, we classify currently popular literatures according to a multi‐level structure from coarse to fine. Secondly, this paper focuses on supervised and weakly supervised learning approaches, without including unsupervised approaches since they have been introduced in many old surveys and they are not popular currently. For supervised learning approaches, we analyse literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions. For weakly supervised learning approaches, we investigate literature according to data augmentation, transfer learning, and interactive segmentation, separately. Compared to existing surveys, this survey classifies the literatures very differently from before and is more convenient for readers to understand the relevant rationale and will guide them to think of appropriate improvements in medical image segmentation based on deep learning approaches. |
Author | Meng, Hongying Zhang, Bingtao Wang, Risheng Lei, Tao Cui, Ruixia Nandi, Asoke K. |
Author_xml | – sequence: 1 givenname: Risheng surname: Wang fullname: Wang, Risheng organization: Shaanxi University of Science and Technology – sequence: 2 givenname: Tao orcidid: 0000-0002-2104-9298 surname: Lei fullname: Lei, Tao email: leitao@sust.edu.cn organization: Shaanxi University of Science and Technology – sequence: 3 givenname: Ruixia surname: Cui fullname: Cui, Ruixia organization: First Affiliated Hospital' and 'National Engineering Laboratory of Big Data Algorithm and Analysis Technology Research'(Xi'an Jiaotong University) – sequence: 4 givenname: Bingtao surname: Zhang fullname: Zhang, Bingtao organization: Lanzhou Jiaotong University – sequence: 5 givenname: Hongying orcidid: 0000-0002-8836-1382 surname: Meng fullname: Meng, Hongying organization: Brunel University London – sequence: 6 givenname: Asoke K. orcidid: 0000-0001-6248-2875 surname: Nandi fullname: Nandi, Asoke K. organization: Brunel University London |
BookMark | eNp9UE1Lw0AQXaSCbfXiL8hZaJ3ZZDdZb6X4UagooudluzsJW9KkbFKl_960UQ8inmbm8d7jzRuxQVVXxNglwhQhUdd-G_gUeYLqhA0xFThRUqaDn12oMzZqmjWAUJCJIcseyXlryshvTEFRQ8WGqta0vq6iXeOrInJE26gkE6ruuolmUbML77Q_Z6e5KRu6-Jpj9nZ3-zp_mCyf7hfz2XJiky7FREoCAI7crchJB-AMqTRFzknlmeCxyTCLVw4MGWeww2OCGGWaobTOQTxmi97X1Watt6HLGfa6Nl4fgToU2oTW25L0SqJKnXCpsJjEFGcWuLA5z1J00sLBC3ovG-qmCZRr6_tf22B8qRH0oUV9aFEfW-wkV78k3xH-JGNP_vAl7f9h6sXzC-81n-dEgsU |
CitedBy_id | crossref_primary_10_32604_cmc_2024_046094 crossref_primary_10_1007_s12204_024_2786_0 crossref_primary_10_1016_j_compbiomed_2024_108302 crossref_primary_10_1016_j_radonc_2023_109871 crossref_primary_10_2139_ssrn_4185484 crossref_primary_10_1007_s11042_024_19799_0 crossref_primary_10_1109_ACCESS_2024_3365544 crossref_primary_10_1109_TUFFC_2024_3393026 crossref_primary_10_1371_journal_pone_0288658 crossref_primary_10_1016_j_media_2025_103461 crossref_primary_10_1007_s10103_024_04053_8 crossref_primary_10_54097_31ag9n29 crossref_primary_10_1038_s41368_024_00294_z crossref_primary_10_4108_eetsis_4788 crossref_primary_10_1186_s12938_024_01238_8 crossref_primary_10_1007_s11517_024_03252_3 crossref_primary_10_1016_j_bspc_2024_107439 crossref_primary_10_1002_ima_70042 crossref_primary_10_1016_j_amc_2023_128050 crossref_primary_10_1016_j_eswa_2024_124816 crossref_primary_10_1002_mp_16389 crossref_primary_10_1038_s41598_024_59436_2 crossref_primary_10_1007_s40747_024_01625_7 crossref_primary_10_1016_j_ynirp_2024_100215 crossref_primary_10_1109_TMI_2022_3225687 crossref_primary_10_3389_fonc_2022_950706 crossref_primary_10_1007_s13139_022_00772_4 crossref_primary_10_1007_s11042_024_18482_8 crossref_primary_10_1016_j_adro_2022_101163 crossref_primary_10_1016_j_knosys_2024_112170 crossref_primary_10_1038_s41598_024_53997_y crossref_primary_10_2478_amns_2024_0337 crossref_primary_10_1049_ipr2_13029 crossref_primary_10_3390_s24041117 crossref_primary_10_1109_ACCESS_2024_3377428 crossref_primary_10_4018_IJITSA_340774 crossref_primary_10_1117_1_JEI_33_3_031209 crossref_primary_10_3390_s25072043 crossref_primary_10_1371_journal_pone_0309421 crossref_primary_10_1109_TRPMS_2023_3272209 crossref_primary_10_3390_coatings12101551 crossref_primary_10_1088_1361_6560_ace1cf crossref_primary_10_3390_w16121755 crossref_primary_10_1016_j_cmpb_2025_108705 crossref_primary_10_3390_jcm12072646 crossref_primary_10_1002_aisy_202400654 crossref_primary_10_3390_computation11100195 crossref_primary_10_1038_s42003_023_05441_6 crossref_primary_10_3390_app14135382 crossref_primary_10_1016_j_imavis_2024_105055 crossref_primary_10_1016_j_vrih_2024_04_001 crossref_primary_10_1371_journal_pone_0296031 crossref_primary_10_1038_s41598_024_84629_0 crossref_primary_10_3390_rs16173218 crossref_primary_10_7717_peerj_17509 crossref_primary_10_1007_s10489_024_05900_5 crossref_primary_10_1007_s40846_024_00863_x crossref_primary_10_1049_ipr2_13290 crossref_primary_10_1016_j_jpi_2025_100435 crossref_primary_10_1016_j_engmed_2024_100004 crossref_primary_10_1007_s11517_024_03225_6 crossref_primary_10_3389_fnins_2024_1351387 crossref_primary_10_1016_j_swevo_2023_101388 crossref_primary_10_1007_s00530_023_01165_z crossref_primary_10_1089_aipo_2024_0003 crossref_primary_10_3390_info15040198 crossref_primary_10_12677_mos_2025_141011 crossref_primary_10_32604_cmes_2023_031229 crossref_primary_10_3389_fphy_2023_1266500 crossref_primary_10_1002_mp_17323 crossref_primary_10_1038_s41598_024_68768_y crossref_primary_10_3390_app13010329 crossref_primary_10_1038_s41598_024_66873_6 crossref_primary_10_3390_app14072986 crossref_primary_10_1007_s00464_024_10880_1 crossref_primary_10_1016_j_imu_2024_101504 crossref_primary_10_1016_j_neucom_2024_128740 crossref_primary_10_1109_TRPMS_2023_3286866 crossref_primary_10_1007_s11548_022_02701_4 crossref_primary_10_1016_j_eswa_2024_124179 crossref_primary_10_1016_j_foodcont_2025_111314 crossref_primary_10_1007_s11042_024_18334_5 crossref_primary_10_1016_j_compbiomed_2024_108115 crossref_primary_10_3390_app122211557 crossref_primary_10_1016_j_bspc_2025_107854 crossref_primary_10_1088_1361_6560_acaae9 crossref_primary_10_3389_fmed_2024_1401473 crossref_primary_10_1109_TMI_2024_3483221 crossref_primary_10_3390_s23156781 crossref_primary_10_1007_s12555_024_0550_8 crossref_primary_10_1155_2024_6621199 crossref_primary_10_1007_s11042_023_15505_8 crossref_primary_10_1016_j_bspc_2025_107728 crossref_primary_10_1016_j_joule_2023_10_011 crossref_primary_10_3390_rs14122885 crossref_primary_10_1007_s40747_024_01359_6 crossref_primary_10_1007_s11042_024_20081_6 crossref_primary_10_3390_cancers15061750 crossref_primary_10_1016_j_neucom_2024_129287 crossref_primary_10_3390_aerospace11120961 crossref_primary_10_1016_j_medengphy_2024_104118 crossref_primary_10_1186_s42492_023_00140_9 crossref_primary_10_1016_j_compmedimag_2024_102453 crossref_primary_10_1371_journal_pone_0311228 crossref_primary_10_32604_cmc_2024_053565 crossref_primary_10_32604_cmes_2023_027425 crossref_primary_10_3390_jmmp9030069 crossref_primary_10_1109_TSMC_2024_3416268 crossref_primary_10_1016_j_knosys_2025_113234 crossref_primary_10_1016_j_compeleceng_2024_109654 crossref_primary_10_1038_s41598_024_57618_6 crossref_primary_10_1016_j_image_2023_117076 crossref_primary_10_3389_fonc_2022_970425 crossref_primary_10_1177_13872877241300278 crossref_primary_10_1038_s41598_024_53707_8 crossref_primary_10_3233_JAD_221261 crossref_primary_10_3390_diagnostics14121213 crossref_primary_10_1109_TMI_2022_3224459 crossref_primary_10_1016_j_bspc_2024_106487 crossref_primary_10_3389_fphy_2024_1334298 crossref_primary_10_1016_j_compeleceng_2024_109522 crossref_primary_10_3390_app15010186 crossref_primary_10_1038_s41598_024_76035_3 crossref_primary_10_3390_biomedicines10102545 crossref_primary_10_1088_2057_1976_ace4d0 crossref_primary_10_1016_j_patcog_2024_110375 crossref_primary_10_1148_ryai_240353 crossref_primary_10_1007_s11548_024_03133_y crossref_primary_10_1007_s11517_024_03150_8 crossref_primary_10_1109_TMI_2023_3327942 crossref_primary_10_1016_j_cmpb_2023_107788 crossref_primary_10_1002_mrm_29671 crossref_primary_10_1007_s42979_024_03262_w crossref_primary_10_1038_s41598_023_49337_1 crossref_primary_10_3390_diagnostics13213364 crossref_primary_10_1016_j_compbiomed_2023_107567 crossref_primary_10_1109_JBHI_2024_3397047 crossref_primary_10_1002_cam4_70574 crossref_primary_10_1007_s11042_024_19072_4 crossref_primary_10_1007_s11042_024_20287_8 crossref_primary_10_1016_j_knosys_2024_112202 crossref_primary_10_1051_bioconf_202516304001 crossref_primary_10_1186_s12938_023_01171_2 crossref_primary_10_1093_bioinformatics_btae606 crossref_primary_10_1109_ACCESS_2023_3275966 crossref_primary_10_1109_JBHI_2024_3492540 crossref_primary_10_1038_s41598_024_83031_0 crossref_primary_10_1051_bioconf_202515201036 crossref_primary_10_1016_j_jbo_2024_100606 crossref_primary_10_3934_mbe_2025022 crossref_primary_10_1002_cpe_8386 crossref_primary_10_1016_j_procs_2024_09_577 crossref_primary_10_3390_a17040168 crossref_primary_10_3390_stats7010013 crossref_primary_10_3390_bioengineering11020194 crossref_primary_10_3390_bioengineering10121349 crossref_primary_10_1038_s41598_024_77001_9 crossref_primary_10_1007_s44244_024_00020_y crossref_primary_10_1109_TMI_2023_3313786 crossref_primary_10_1016_j_inffus_2024_102634 crossref_primary_10_1016_j_trgeo_2025_101490 crossref_primary_10_1016_j_compeleceng_2025_110224 crossref_primary_10_1016_j_knosys_2025_113120 crossref_primary_10_1364_OE_486984 crossref_primary_10_1111_cgf_15083 crossref_primary_10_1093_dmfr_twae009 crossref_primary_10_1002_mp_17423 crossref_primary_10_2196_57723 crossref_primary_10_3389_fmats_2022_1033505 crossref_primary_10_1109_ACCESS_2024_3511430 crossref_primary_10_1016_j_compbiomed_2024_108967 crossref_primary_10_1007_s10559_023_00555_5 crossref_primary_10_3389_fonc_2022_1087438 crossref_primary_10_1016_j_imu_2023_101248 crossref_primary_10_1371_journal_pone_0315631 crossref_primary_10_1016_j_neunet_2024_106914 crossref_primary_10_1088_2057_1976_adaec7 crossref_primary_10_1038_s41597_024_03775_2 crossref_primary_10_1016_j_compbiomed_2023_107460 crossref_primary_10_1109_ACCESS_2023_3244197 crossref_primary_10_3390_bioengineering9100578 crossref_primary_10_1016_j_knosys_2023_110987 crossref_primary_10_1016_j_neunet_2023_06_047 crossref_primary_10_3390_electronics12234835 crossref_primary_10_1016_j_bspc_2023_105331 crossref_primary_10_3389_fpls_2023_1115713 crossref_primary_10_3390_technologies12020015 crossref_primary_10_1016_j_cag_2023_05_009 crossref_primary_10_1016_j_bspc_2024_107257 crossref_primary_10_1007_s40747_023_01166_5 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_3390_app13148295 crossref_primary_10_1109_JBHI_2024_3460745 crossref_primary_10_1515_bmt_2024_0439 crossref_primary_10_1080_23311916_2023_2229571 crossref_primary_10_3390_jpm15010020 crossref_primary_10_1109_ACCESS_2024_3381523 crossref_primary_10_1016_j_asoc_2023_110869 crossref_primary_10_1002_aisy_202400007 crossref_primary_10_1159_000541980 crossref_primary_10_3390_computers13090237 crossref_primary_10_1186_s13040_024_00381_1 crossref_primary_10_1016_j_compag_2023_107717 crossref_primary_10_1016_j_jvcir_2025_104434 crossref_primary_10_1007_s10489_023_04570_z crossref_primary_10_1049_ipr2_70017 crossref_primary_10_1109_ACCESS_2024_3512664 crossref_primary_10_1038_s41592_024_02499_w crossref_primary_10_1016_j_tsep_2025_103265 crossref_primary_10_1016_j_bspc_2024_106658 crossref_primary_10_1109_TGRS_2024_3442732 crossref_primary_10_1142_S0219519424400621 crossref_primary_10_3389_fnins_2024_1363930 crossref_primary_10_1002_btm2_10553 crossref_primary_10_1016_j_copbio_2023_103055 crossref_primary_10_1109_TMI_2023_3335406 crossref_primary_10_1007_s11042_025_20752_y crossref_primary_10_1016_j_postharvbio_2024_112814 crossref_primary_10_3390_bioengineering10080981 crossref_primary_10_1016_j_phro_2023_100483 crossref_primary_10_1002_widm_1574 crossref_primary_10_1049_ipr2_13219 crossref_primary_10_3389_fonc_2025_1536039 crossref_primary_10_3390_math10193571 crossref_primary_10_3390_app132312771 crossref_primary_10_3390_info15100633 crossref_primary_10_3389_fmed_2023_1273441 crossref_primary_10_1002_eqe_3966 crossref_primary_10_1109_ACCESS_2024_3428572 crossref_primary_10_2478_amns_2025_0351 crossref_primary_10_1016_j_engappai_2023_106299 crossref_primary_10_1007_s12559_024_10257_5 crossref_primary_10_1016_j_compbiomed_2025_109822 crossref_primary_10_1038_s41597_024_03814_y crossref_primary_10_1109_ACCESS_2024_3467117 crossref_primary_10_1002_pro6_1242 crossref_primary_10_1016_j_eswa_2023_121926 crossref_primary_10_1111_jcmm_70315 crossref_primary_10_1016_j_procs_2023_10_295 crossref_primary_10_1016_j_carbon_2023_118230 crossref_primary_10_1038_s41598_024_71066_2 crossref_primary_10_1016_j_ndteint_2024_103088 crossref_primary_10_1186_s40644_024_00675_x crossref_primary_10_1038_s41598_024_78424_0 crossref_primary_10_1016_j_inffus_2022_09_031 crossref_primary_10_1049_ipr2_12950 crossref_primary_10_1177_08953996241301685 crossref_primary_10_3390_electronics13234636 crossref_primary_10_1002_mp_17189 crossref_primary_10_1016_j_inffus_2025_103027 crossref_primary_10_1016_j_bspc_2022_104099 crossref_primary_10_1007_s11548_024_03077_3 crossref_primary_10_13104_imri_2024_0014 crossref_primary_10_1016_j_compbiomed_2023_107823 crossref_primary_10_3390_app15042169 crossref_primary_10_3390_bioengineering11030278 crossref_primary_10_1016_j_optlastec_2025_112422 crossref_primary_10_1002_ima_70035 crossref_primary_10_1007_s00170_023_12824_w crossref_primary_10_1088_2057_1976_ad28cc crossref_primary_10_1109_ACCESS_2025_3532631 crossref_primary_10_4236_jcc_2024_126013 crossref_primary_10_1016_j_compbiomed_2024_109182 crossref_primary_10_1016_j_imavis_2023_104761 crossref_primary_10_3390_cancers15235620 crossref_primary_10_1016_j_asoc_2024_111709 crossref_primary_10_1002_ima_23192 crossref_primary_10_1007_s11760_024_03781_2 crossref_primary_10_2478_amns_2025_0210 crossref_primary_10_1080_13682199_2022_2163531 crossref_primary_10_1038_s41598_023_45456_x crossref_primary_10_3233_JCM_247284 crossref_primary_10_1016_j_knosys_2024_112909 crossref_primary_10_1016_j_knee_2025_02_009 crossref_primary_10_1109_ACCESS_2022_3175188 crossref_primary_10_1002_mp_17727 crossref_primary_10_1007_s11760_022_02445_3 crossref_primary_10_1016_j_bspc_2023_104953 crossref_primary_10_1109_TIM_2025_3547131 crossref_primary_10_1145_3592614 crossref_primary_10_1088_1361_6560_ac8964 crossref_primary_10_1016_j_eswa_2024_126098 crossref_primary_10_1016_j_media_2023_102762 crossref_primary_10_3390_math12244003 crossref_primary_10_1109_TRPMS_2024_3465561 crossref_primary_10_1364_BOE_516541 |
Cites_doi | 10.1109/ISBI.2018.8363790 10.1002/mp.14732 10.1109/TMI.2017.2721362 10.1007/s10462-020-09854-1 10.1109/CVPR.2016.308 10.1109/WACV.2018.00163 10.1109/CVPR.2018.00916 10.1109/42.845178 10.1007/978-3-319-67389-9_34 10.1109/ICDEW.2019.000-4 10.1109/ISBI.2019.8759477 10.1109/JBHI.2019.2912935 10.1109/WACV.2018.00066 10.1007/s11548-019-02062-5 10.1145/1015706.1015720 10.1016/j.media.2017.07.005 10.1109/TNN.2008.2005605 10.1007/978-3-319-67389-9_44 10.1007/978-3-030-00931-1_70 10.1007/978-3-030-00934-2_65 10.1038/s42256-019-0052-1 10.1007/978-3-030-87193-2_4 10.1109/CVPR.2019.00017 10.1109/CVPR42600.2020.00386 10.1109/CVPR.2015.7298594 10.1109/ICCV.2001.937505 10.1002/mp.13649 10.1109/TMI.2019.2930068 10.1109/JBHI.2014.2370952 10.1007/978-3-030-32248-9_49 10.1146/annurev-bioeng-071516-044442 10.1016/j.ijmedinf.2018.06.003 10.1016/j.media.2016.07.009 10.1109/CVPR.2019.01190 10.1109/3DV.2016.79 10.1007/978-981-13-2291-4_16 10.1007/978-3-319-24574-4_28 10.1109/TMI.2020.3016144 10.1609/aaai.v34i04.6100 10.1016/j.eswa.2019.112855 10.1007/s10278-017-9983-4 10.1038/s41467-019-12621-8 10.1109/ISBI.2018.8363764 10.1016/j.media.2013.12.002 10.1007/978-981-15-1816-4_3 10.1109/ISBI.2018.8363547 10.1109/CVPR.2015.7298965 10.1016/j.compbiomed.2018.05.018 10.1007/978-3-030-00934-2_55 10.1109/TMI.2013.2247770 10.1109/ITME.2018.00080 10.1007/978-3-030-00934-2_81 10.1145/3065386 10.1007/s10278-019-00227-x 10.1109/NAECON.2018.8556686 10.1109/EMBC.2019.8857167 10.1007/978-3-030-32245-8_33 10.1109/CVPR.2018.00963 10.1093/nsr/nwx106 10.1007/978-3-319-46723-8_48 10.1109/TMI.2019.2963882 10.1016/j.media.2019.04.002 10.1109/AVSS.2014.6918687 10.1109/TBME.2017.2690863 10.1016/j.artmed.2021.102109 10.1109/CVPR.2018.00474 10.1109/ICCV.2017.324 10.1186/1472-6947-9-S1-S4 10.1109/TMI.2018.2791721 10.1109/CVPR.2018.00866 10.1109/CVPR.2018.00745 10.1118/1.3528204 10.1109/TMI.2019.2959609 10.2174/157340561101150423103441 10.1016/j.media.2020.101950 10.1007/s11548-019-02092-z 10.1109/TPAMI.2016.2577031 10.1109/ISBI45749.2020.9098360 10.1109/CVPR.2019.00874 10.1016/j.array.2019.100004 10.1109/TMI.2020.3002417 10.1007/978-3-030-59719-1_36 10.1109/ISBI45749.2020.9098656 10.3389/fcvm.2020.00025 10.1016/j.media.2017.05.001 10.1038/s41592-020-01008-z 10.1109/42.963823 10.1016/j.compmedimag.2019.04.005 10.1162/neco.1997.9.8.1735 10.1109/TMI.2018.2845918 10.1109/42.650883 10.1007/978-3-030-01234-2_49 10.1109/TMI.2018.2791488 10.1007/978-3-030-01421-6_14 10.1109/TPAMI.2017.2699184 10.1007/978-3-319-67558-9_28 10.1007/978-3-030-05318-5_3 10.1016/j.media.2019.101619 10.1007/978-3-319-68127-6_1 10.1109/CVPR.2019.00045 10.2196/jmir.2930 10.1016/j.media.2019.101556 10.1109/TPAMI.2018.2840695 10.1007/978-3-030-59719-1_77 10.1007/978-3-030-87199-4_6 10.1109/TBME.2013.2267212 10.1016/j.media.2020.101693 10.1109/ISBI.2019.8759555 10.1609/aaai.v33i01.3301865 10.1109/ICASSP40776.2020.9053454 10.1109/TMI.2017.2743464 10.1016/j.ics.2004.03.349 10.1109/ICB45273.2019.8987270 10.1038/sdata.2017.117 10.1109/TMI.2019.2948320 10.4236/jcc.2015.311023 10.1109/ICCV.2017.322 10.1016/j.media.2017.06.014 10.1109/TMI.2014.2377694 10.1007/978-3-319-66179-7_36 10.1109/ACCESS.2019.2908991 10.1109/ICCV.2017.74 10.1109/TPAMI.2015.2389824 10.1016/j.neunet.2019.08.025 10.1109/TMI.2002.808355 10.1109/ICCV.2017.244 10.1109/TMI.2019.2903562 10.1007/978-3-030-05318-5_2 10.1007/978-3-030-00937-3_67 10.1002/mp.14327 10.1109/BIBM47256.2019.8983266 10.1109/TNNLS.2020.2995319 10.1109/CVPR.2018.00892 10.1101/2019.12.13.19014902 10.1109/TMI.2020.3046579 10.1016/j.compmedimag.2020.101733 10.1007/978-3-030-00536-8_1 10.1016/j.knosys.2020.106622 10.1002/mp.14391 10.1007/978-3-319-60964-5_44 10.1016/j.media.2016.08.008 10.1007/978-3-319-46723-8_55 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ipr2.12419 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 1267 |
ExternalDocumentID | oai_doaj_org_article_b6197d5d75c143e38c025cf2871d6c00 10_1049_ipr2_12419 IPR212419 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China‐Royal Socie funderid: 61811530325; (IECnNSFCn170396 RoyalSociety) – fundername: Natural Science Basic Research Program of Shaanxi funderid: 2021J‐47 – fundername: National Natural Science Foundation of China funderid: 61871259; 61861024 – fundername: Key Research and Development Program of Shaanxi funderid: 2021ZDLGY08‐07 – fundername: Shaanxi Joint Laboratory of Artificial Intelligence funderid: 2020SS‐03 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ O9- OCL OK1 P2P P62 PTHSS QWB RIE RNS ROL RUI S0W ZL0 AAYXX CITATION IDLOA PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c4419-66e000212dbed6d00dae977122e9f8523a8183bd0aeada11223e03167816cdd03 |
IEDL.DBID | DOA |
ISSN | 1751-9659 |
IngestDate | Wed Aug 27 01:28:29 EDT 2025 Tue Jul 01 05:14:37 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Wed Jan 22 16:25:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4419-66e000212dbed6d00dae977122e9f8523a8183bd0aeada11223e03167816cdd03 |
ORCID | 0000-0002-2104-9298 0000-0002-8836-1382 0000-0001-6248-2875 |
OpenAccessLink | https://doaj.org/article/b6197d5d75c143e38c025cf2871d6c00 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b6197d5d75c143e38c025cf2871d6c00 crossref_citationtrail_10_1049_ipr2_12419 crossref_primary_10_1049_ipr2_12419 wiley_primary_10_1049_ipr2_12419_IPR212419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2022 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2017; 40 2017; 42 2015; 37 2017; 41 2015; 38 2017; 4 2020; 63 2020; 121 2019; 10 2020; 60 2019; 56 2004; 23 2019; 14 2019; 58 2014; 27 2020; 15 2018; 41 2016; 39 2004; 1268 1997; 9 2020; 7 2017; 30 2021; 32 2013; 15 2000; 19 2018; 5 2017; 37 2017; 36 2021; 117 2019; 24 2017; 35 2019; 69 2006; 2005 2013; 60 2020; 139 1997; 16 2020; 47 2014; 19 2014; 18 2020; 212 2008; 20 2021; 40 2018; 31 2018; 37 2015; 2 2019; 7 2017; 64 2021; 48 2019; 3 2017; 60 2015; 3 2019; 75 2019; 32 2020; 83 2019; 1 2017; 65 2015; 11 2020; 39 2019; 39 2019; 38 2011; 38 2001; 20 2021; 54 2018; 117 2013; 32 2021 2020 2021; 18 2019 2009; 9 2018 2017 2017; 19 2016 2015 2014 2001; 1 2018; 98 2014; 34 2003; 22 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 Goodfellow I. (e_1_2_9_65_1) 2014; 27 e_1_2_9_71_1 Vivanti R. (e_1_2_9_3_1) 2015; 2 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 Gao H. (e_1_2_9_141_1) 2019 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 Lee C.Y. (e_1_2_9_73_1) 2015; 38 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_172_1 Cherukuri V. (e_1_2_9_5_1) 2017; 65 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 Lei T. (e_1_2_9_91_1) 2021 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_156_1 e_1_2_9_179_1 Zhang J. (e_1_2_9_62_1) 2019 Zhang B. (e_1_2_9_176_1) 2021 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 Zhang Y. (e_1_2_9_175_1) 2020 Yu Qian Z. (e_1_2_9_14_1) 2006; 2005 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 Çiçek Ö. (e_1_2_9_35_1) 2016 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 Lopez M.M. (e_1_2_9_90_1) 2017 e_1_2_9_81_1 e_1_2_9_4_1 Ha H. (e_1_2_9_133_1) 2019 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 Jaderberg M. (e_1_2_9_83_1) 2015 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 Chen L.C. (e_1_2_9_135_1) 2018; 31 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 Wu Z. (e_1_2_9_139_1) 2020 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – start-page: 155 year: 2019 end-page: 164 – start-page: 291 year: 2017 end-page: 298 – year: 2020 article-title: Unpaired multi‐modal segmentation via knowledge distillation publication-title: IEEE Trans. Med. Imaging – start-page: 39 year: 2020 end-page: 52 – start-page: 1173 year: 2020 end-page: 1177 – volume: 69 year: 2019 article-title: Chaos‐combined (CT‐MR) healthy abdominal organ segmentation challenge data publication-title: Med. Image Anal. – start-page: 327 year: 2018 end-page: 331 – volume: 139 year: 2020 article-title: Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network publication-title: Expert Syst. Appl. – volume: 2 year: 2015 article-title: Automatic liver tumor segmentation in follow‐up CT studies using convolutional neural networks publication-title: Sci. Rep. – start-page: 415 year: 2016 end-page: 423 – volume: 117 start-page: 44 year: 2018 end-page: 54 article-title: A fully integrated computer‐aided diagnosis system for digital x‐ray mammograms via deep learning detection, segmentation, and classification publication-title: Int. J. Med. Inform. – start-page: 363 year: 2020 end-page: 373 – start-page: 565 year: 2016 end-page: 571 – volume: 36 start-page: 2319 issue: 11 year: 2017 end-page: 2330 article-title: Auto‐context convolutional neural network (auto‐net) for brain extraction in magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – volume: 58 year: 2019 article-title: Deep vessel segmentation by learning graphical connectivity publication-title: Med. Image Anal. – start-page: 3431 year: 2015 end-page: 3440 – volume: 35 start-page: 489 year: 2017 end-page: 502 article-title: Gland segmentation in colon histology images: The glas challenge contest publication-title: Med. Image Anal. – year: 2021 article-title: Defed‐net: Deformable encoder‐decoder network for liver and liver tumor segmentation publication-title: IEEE Trans. Radiat. Plasma Med. Sci. – year: 2019 article-title: Graph u‐nets publication-title: Nature – year: 2014 – start-page: 547 year: 2018 end-page: 556 – start-page: 313 year: 2014 end-page: 318 – start-page: 1451 year: 2018 end-page: 1460 – start-page: 11795 year: 2019 end-page: 11804 – start-page: 2980 year: 2017 end-page: 2988 – volume: 37 start-page: 1597 issue: 7 year: 2018 end-page: 1605 article-title: Joint optic disc and cup segmentation based on multi‐label deep network and polar transformation publication-title: IEEE Trans. Med. Image – start-page: 2223 year: 2017 end-page: 2232 – start-page: 6738 year: 2019 end-page: 6741 – start-page: 1217 year: 2018 end-page: 1220 – volume: 19 start-page: 203 issue: 3 year: 2000 end-page: 210 article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response publication-title: IEEE Trans. Med. Imag. – volume: 121 start-page: 74 year: 2020 end-page: 87 article-title: Multiresunet: rethinking the u‐net architecture for multimodal biomedical image segmentation publication-title: Neural Netw. – volume: 23 start-page: 309 issue: 3 year: 2004 end-page: 314 article-title: “Grabcut” interactive foreground extraction using iterated graph cuts publication-title: ACM Trans. Graph – start-page: 6315 year: 2020 end-page: 6322 – volume: 117 year: 2021 article-title: Abdominal multi‐organ segmentation with cascaded convolutional and adversarial deep networks publication-title: Artif. Intell. Med. – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation publication-title: Nature Methods. – volume: 15 start-page: 173 issue: 1 year: 2020 end-page: 178 article-title: Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 1 start-page: 105 year: 2001 end-page: 112 article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images publication-title: Proc. IEEE Conf. Comput. Vis. – volume: 37 start-page: 2663 issue: 12 year: 2018 end-page: 2674 article-title: H‐denseunet: hybrid densely connected UNet for liver and tumor segmentation from ct volumes publication-title: IEEE Trans. Med. Imag. – start-page: 240 year: 2017 end-page: 248 – volume: 3 year: 2019 article-title: A review: deep learning for medical image segmentation using multi‐modality fusion publication-title: Array – volume: 5 start-page: 44 issue: 1 year: 2018 end-page: 53 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. – year: 2019 – volume: 98 start-page: 126 year: 2018 end-page: 146 article-title: Survey on deep learning for radiotherapy publication-title: Comput. Biol. Med. – start-page: 1 year: 2019 end-page: 8 – volume: 19 start-page: 1283 issue: 4 year: 2014 end-page: 1290 article-title: Big heart data: advancing health informatics through data sharing in cardiovascular imaging publication-title: IEEE J. Biomed. Health Inform. – start-page: 234 year: 2015 end-page: 241 – volume: 83 year: 2020 article-title: Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder‐decoders publication-title: Comput. Med. Imaging Graph. – volume: 20 start-page: 1193 issue: 11 year: 2001 end-page: 1200 article-title: Fast and robust optic disc detection using pyramidal decomposition and Hausdorff‐based template matching publication-title: IEEE Trans. Med. Image. – volume: 24 start-page: 568 issue: 2 year: 2019 end-page: 576 article-title: Fully dense unet for 2‐d sparse photoacoustic tomography artifact removal publication-title: IEEE J. Biomed. Health Informat. – volume: 31 start-page: 8699 year: 2018 end-page: 8710 article-title: Searching for efficient multi‐scale architectures for dense image prediction publication-title: Neural Inform. Process Syst. – start-page: 2818 year: 2016 end-page: 2826 – start-page: 3 year: 2017 end-page: 13 – volume: 39 start-page: 1137 issue: 6 year: 2016 end-page: 1149 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 430 year: 2019 end-page: 433 – start-page: 732 year: 2018 end-page: 740 – start-page: 8551 year: 2018 end-page: 8561 – year: 2016 – volume: 14 start-page: 2069 issue: 12 year: 2019 end-page: 2081 article-title: Abdominal artery segmentation method from CT volumes using fully convolutional neural network publication-title: Int. J. Comput. Assist. Radiol. Surg. – start-page: 7132 year: 2018 end-page: 7141 – volume: 37 start-page: 384 issue: 2 year: 2017 end-page: 395 article-title: Anatomically constrained neural networks (ACNNS): application to cardiac image enhancement and segmentation publication-title: IEEE Trans. Med. Image – volume: 9 start-page: S4 issue: S1 year: 2009 article-title: Automated ventricular systems segmentation in brain CT images by combining low‐level segmentation and high‐level template matching publication-title: BMC Med. Inform. Decis. Mak. – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – volume: 20 start-page: 61 issue: 1 year: 2008 end-page: 80 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. – start-page: 8789 year: 2018 end-page: 8797 – volume: 47 start-page: 4164 issue: 9 year: 2020 end-page: 4176 article-title: Graph‐convolutional‐network‐based interactive prostate segmentation in MR images publication-title: Med. Phys. – volume: 35 start-page: 250 year: 2017 end-page: 269 article-title: Isles 2015‐a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. – start-page: 612 year: 2018 end-page: 619 – volume: 212 year: 2020 article-title: AutoML: a survey of the state‐of‐the‐art publication-title: Knowl.‐Based Syst. – volume: 7 start-page: 44247 year: 2019 end-page: 44257 article-title: Nas‐unet: neural architecture search for medical image segmentation publication-title: IEEE Access – start-page: 1 year: 2015 end-page: 9 – volume: 1268 start-page: 207 year: 2004 end-page: 212 article-title: A SVM‐based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets publication-title: Int. Congr. Series. – start-page: 291 year: 2019 end-page: 299 – volume: 40 start-page: 1123 issue: 4 year: 2021 end-page: 1133 article-title: A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI publication-title: IEEE Trans. Med. Imag. – start-page: 8543 year: 2019 end-page: 8553 – start-page: 586 year: 2018 end-page: 594 – start-page: 2017 year: 2015 end-page: 2025 – volume: 19 start-page: 221 year: 2017 end-page: 248 article-title: Deep learning in medical image analysis publication-title: Ann. Rev. Biomed. Eng. – start-page: 506 year: 2017 end-page: 517 – start-page: 137 year: 2018 end-page: 147 – volume: 37 start-page: 1562 issue: 7 year: 2018 end-page: 1573 article-title: Interactive medical image segmentation using deep learning with image‐specific fine tuning publication-title: IEEE Trans. Med. Imag. – volume: 65 start-page: 1871 issue: 8 year: 2017 end-page: 1884 article-title: Learning based segmentation of ct brain images: application to postoperative hydrocephalic scans publication-title: IEEE Trans. Bio‐Med. Eng. – volume: 41 start-page: 40 year: 2017 end-page: 54 article-title: 3D deeply supervised network for automated segmentation of volumetric medical images publication-title: Med. Image Anal. – volume: 15 issue: 11 year: 2013 article-title: The virtual skeleton database: an open access repository for biomedical research and collaboration publication-title: J. Med. Internet. Res. – volume: 11 start-page: 3 issue: 1 year: 2015 end-page: 14 article-title: A survey on medical image segmentation publication-title: Curr. Med. Imaging Rev. – start-page: 4271 year: 2019 end-page: 4277 article-title: Light‐weight hybrid convolutional network for liver tumor segmentation publication-title: Int. Joint Conf. Artif. Intell. (IJCAI) – start-page: 455 year: 2019 end-page: 458 – start-page: 129 year: 2020 end-page: 134 – volume: 64 start-page: 2913 issue: 12 year: 2017 end-page: 2923 article-title: Dual‐channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images publication-title: IEEE Trans. Bio‐Med. Eng. – volume: 38 start-page: 2281 issue: 10 year: 2019 end-page: 2292 article-title: Ce‐net: context encoder network for 2D medical image segmentation publication-title: IEEE Trans. Med. Imag. – start-page: 478 year: 2016 end-page: 486 – start-page: 1379 year: 2020 end-page: 1383 – year: 2021 – volume: 75 start-page: 24 year: 2019 end-page: 33 article-title: Combo loss: handling input and output imbalance in multi‐organ segmentation publication-title: Comput. Med. Imag. Graph – volume: 39 start-page: 4274 issue: 12 year: 2020 end-page: 4285 article-title: CF distance: a new domain discrepancy metric and application to explicit domain adaptation for cross‐modality cardiac image segmentation publication-title: IEEE Trans. Med. Imag. – volume: 30 start-page: 449 issue: 4 year: 2017 end-page: 459 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit Imaging – volume: 40 start-page: 834 issue: 4 year: 2017 end-page: 848 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 499 issue: 2 year: 2019 end-page: 513 article-title: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks publication-title: IEEE Trans. Med. Imag. – start-page: 82 year: 2019 end-page: 92 – volume: 1 start-page: 236 issue: 5 year: 2019 end-page: 245 article-title: Pathologist‐level interpretable whole‐slide cancer diagnosis with deep learning publication-title: Nat. Mach. Intell. – volume: 32 start-page: 1019 issue: 6 year: 2013 end-page: 1032 article-title: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening publication-title: IEEE Trans. Med. Image – start-page: 1164 year: 2020 end-page: 1167 – year: 2018 – volume: 7 start-page: 25 year: 2020 article-title: Deep learning for cardiac image segmentation: a review publication-title: Front. Cardiovas. Med. – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 56 start-page: 44 year: 2019 end-page: 67 article-title: Computational anatomy for multi‐organ analysis in medical imaging: a review publication-title: Med. Image Anal. – volume: 4 year: 2017 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Nat. Scient. Data – volume: 2005 start-page: 6492 year: 2006 end-page: 6495 article-title: Medical images edge detection based on mathematical morphology publication-title: Proc. IEEE Eng. Med. Biol. Soc. – volume: 40 start-page: 172 year: 2017 end-page: 183 article-title: Central focused convolutional neural networks: developing a data‐driven model for lung nodule segmentation publication-title: Med. Image Anal. – volume: 3 start-page: 146 issue: 11 year: 2015 end-page: 151 article-title: Automatic segmentation of liver tumor in ct images with deep convolutional neural networks publication-title: J. Comput. Commun. – volume: 60 year: 2020 article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps publication-title: Med. Image Anal. – start-page: 311 year: 2017 end-page: 319 – start-page: 3803 year: 2020 end-page: 3811 – start-page: 253 year: 2019 end-page: 258 – start-page: 1416 year: 2019 end-page: 1423 – volume: 63 year: 2020 article-title: ‘Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation publication-title: Med. Image Anal. – start-page: 168 year: 2018 end-page: 172 – year: 2021 article-title: Affinity attention graph neural network for weakly supervised semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2015 – start-page: 8300 year: 2018 end-page: 8308 – volume: 60 start-page: 2967 issue: 10 year: 2013 end-page: 2977 article-title: A likelihood and local constraint level set model for liver tumor segmentation from CT volumes publication-title: IEEE Trans. Biomed. Eng. – year: 2020 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 38 start-page: 562 year: 2015 end-page: 570 article-title: Deeply‐supervised nets publication-title: Artif. Intell. Statist. – volume: 54 start-page: 137 year: 2021 end-page: 178 article-title: Deep semantic segmentation of natural and medical images: a review publication-title: Artif. Intell. Rev. – start-page: 11632 year: 2019 end-page: 11640 – start-page: 2961 year: 2017 end-page: 2969 – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1104 year: 2018 end-page: 1108 – volume: 16 start-page: 878 issue: 6 year: 1997 end-page: 886 article-title: Markov random field segmentation of brain MR images publication-title: IEEE Trans. Med. Imaging – volume: 38 start-page: 915 issue: 2 year: 2011 end-page: 931 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. – volume: 39 start-page: 1316 issue: 5 year: 2019 end-page: 1325 article-title: Modified u‐net (mu‐net) with incorporation of object‐dependent high level features for improved liver and liver‐tumor segmentation in ct images publication-title: IEEE Trans. Med. Imag. – volume: 42 start-page: 60 year: 2017 end-page: 88 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – start-page: 580 year: 2018 end-page: 588 – start-page: 865 year: 2019 end-page: 872 – volume: 32 start-page: 582 issue: 4 year: 2019 end-page: 596 article-title: Deep learning techniques for medical image segmentation: achievements and challenges publication-title: J. Digit Imaging – volume: 27 start-page: 2672 year: 2014 end-page: 2680 article-title: Generative adversarial nets publication-title: Adv. Neural. Inform. Process Syst. – start-page: 424 year: 2016 end-page: 432 – start-page: 253 year: 2017 end-page: 262 – volume: 47 start-page: e148 issue: 5 year: 2020 end-page: e167 article-title: Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state‐of‐art applications publication-title: Med. Phys. – start-page: 364 year: 2019 end-page: 373 – volume: 18 start-page: 359 issue: 2 year: 2014 end-page: 373 article-title: Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge publication-title: Med. Image Anal. – volume: 32 start-page: 523 issue: 2 year: 2021 end-page: 534 article-title: Transformation‐Consistent Self‐Ensembling Model for Semisupervised Medical Image Segmentation publication-title: IEEE Trans. Neural. Netw. Learn. Syst. – start-page: 1 year: 2018 end-page: 11 – start-page: 379 year: 2017 end-page: 387 article-title: Tversky loss function for image segmentation using 3d fully convolutional deep networks publication-title: Int. Workshop Mach. Learn Med. Imag. – volume: 48 start-page: 1707 issue: 4 year: 2021 end-page: 1719 article-title: Automatic liver segmentation using 3D convolutional neural networks with a hybrid loss function publication-title: Medical Physics. – volume: 34 start-page: 1993 issue: 10 year: 2014 end-page: 2024 article-title: The multimodal brain tumor image segmentation benchmark (brats) publication-title: IEEE Trans. Med. Image. – start-page: 618 year: 2017 end-page: 626 – start-page: 9242 year: 2018 end-page: 9251 – year: 2020 – volume: 39 start-page: 3679 issue: 11 year: 2020 end-page: 3690 article-title: Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 137 issue: 2 year: 2003 end-page: 154 article-title: A shape‐based approach to the segmentation of medical imagery using level sets publication-title: IEEE Trans. Med. Imag. – start-page: 490 year: 2018 end-page: 498 – volume: 41 start-page: 1559 issue: 7 year: 2018 end-page: 1572 article-title: Deepigeos: a deep interactive geodesic framework for medical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2017 – start-page: 4510 year: 2018 end-page: 4520 – volume: 39 start-page: 1856 issue: 6 year: 2019 end-page: 1867 article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imag. – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 14 article-title: Interpretable classification of alzheimer's disease pathologies with a convolutional neural network pipeline publication-title: Nat. Commun. – ident: e_1_2_9_117_1 doi: 10.1109/ISBI.2018.8363790 – ident: e_1_2_9_163_1 doi: 10.1002/mp.14732 – ident: e_1_2_9_57_1 doi: 10.1109/TMI.2017.2721362 – ident: e_1_2_9_25_1 doi: 10.1007/s10462-020-09854-1 – ident: e_1_2_9_75_1 doi: 10.1109/CVPR.2016.308 – ident: e_1_2_9_92_1 doi: 10.1109/WACV.2018.00163 – ident: e_1_2_9_114_1 doi: 10.1109/CVPR.2018.00916 – ident: e_1_2_9_174_1 doi: 10.1109/42.845178 – ident: e_1_2_9_120_1 doi: 10.1007/978-3-319-67389-9_34 – ident: e_1_2_9_177_1 doi: 10.1109/ICDEW.2019.000-4 – ident: e_1_2_9_86_1 doi: 10.1109/ISBI.2019.8759477 – start-page: 2017 volume-title: Proceedings of the Advances in Neural Information Process Systems year: 2015 ident: e_1_2_9_83_1 – ident: e_1_2_9_71_1 doi: 10.1109/JBHI.2019.2912935 – ident: e_1_2_9_121_1 doi: 10.1109/WACV.2018.00066 – ident: e_1_2_9_155_1 – ident: e_1_2_9_59_1 doi: 10.1007/s11548-019-02062-5 – ident: e_1_2_9_125_1 doi: 10.1145/1015706.1015720 – ident: e_1_2_9_24_1 doi: 10.1016/j.media.2017.07.005 – ident: e_1_2_9_96_1 – ident: e_1_2_9_140_1 doi: 10.1109/TNN.2008.2005605 – ident: e_1_2_9_108_1 – ident: e_1_2_9_66_1 – ident: e_1_2_9_94_1 doi: 10.1007/978-3-319-67389-9_44 – ident: e_1_2_9_98_1 doi: 10.1007/978-3-030-00931-1_70 – ident: e_1_2_9_167_1 – ident: e_1_2_9_110_1 doi: 10.1007/978-3-030-00934-2_65 – volume: 27 start-page: 2672 year: 2014 ident: e_1_2_9_65_1 article-title: Generative adversarial nets publication-title: Adv. Neural. Inform. Process Syst. – ident: e_1_2_9_149_1 doi: 10.1038/s42256-019-0052-1 – year: 2019 ident: e_1_2_9_141_1 article-title: Graph u‐nets publication-title: Nature – ident: e_1_2_9_183_1 doi: 10.1007/978-3-030-87193-2_4 – ident: e_1_2_9_136_1 doi: 10.1109/CVPR.2019.00017 – ident: e_1_2_9_142_1 doi: 10.1109/CVPR42600.2020.00386 – ident: e_1_2_9_74_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_9_49_1 – volume: 2005 start-page: 6492 year: 2006 ident: e_1_2_9_14_1 article-title: Medical images edge detection based on mathematical morphology publication-title: Proc. IEEE Eng. Med. Biol. Soc. – ident: e_1_2_9_124_1 doi: 10.1109/ICCV.2001.937505 – ident: e_1_2_9_26_1 doi: 10.1002/mp.13649 – ident: e_1_2_9_101_1 doi: 10.1109/TMI.2019.2930068 – ident: e_1_2_9_168_1 doi: 10.1109/JBHI.2014.2370952 – volume: 38 start-page: 562 year: 2015 ident: e_1_2_9_73_1 article-title: Deeply‐supervised nets publication-title: Artif. Intell. Statist. – ident: e_1_2_9_81_1 doi: 10.1007/978-3-030-32248-9_49 – ident: e_1_2_9_23_1 doi: 10.1146/annurev-bioeng-071516-044442 – ident: e_1_2_9_54_1 doi: 10.1016/j.ijmedinf.2018.06.003 – ident: e_1_2_9_156_1 doi: 10.1016/j.media.2016.07.009 – ident: e_1_2_9_99_1 doi: 10.1109/CVPR.2019.01190 – ident: e_1_2_9_36_1 doi: 10.1109/3DV.2016.79 – ident: e_1_2_9_50_1 doi: 10.1007/978-981-13-2291-4_16 – ident: e_1_2_9_84_1 – ident: e_1_2_9_160_1 – start-page: 4271 year: 2019 ident: e_1_2_9_62_1 article-title: Light‐weight hybrid convolutional network for liver tumor segmentation publication-title: Int. Joint Conf. Artif. Intell. (IJCAI) – ident: e_1_2_9_8_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_12_1 doi: 10.1109/TMI.2020.3016144 – ident: e_1_2_9_157_1 – ident: e_1_2_9_88_1 doi: 10.1609/aaai.v34i04.6100 – start-page: 424 volume-title: Proceedings of the International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI) year: 2016 ident: e_1_2_9_35_1 – ident: e_1_2_9_67_1 doi: 10.1016/j.eswa.2019.112855 – ident: e_1_2_9_30_1 doi: 10.1007/s10278-017-9983-4 – ident: e_1_2_9_147_1 doi: 10.1038/s41467-019-12621-8 – start-page: 253 volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI) Workshop year: 2017 ident: e_1_2_9_90_1 – ident: e_1_2_9_42_1 doi: 10.1109/ISBI.2018.8363764 – ident: e_1_2_9_161_1 doi: 10.1016/j.media.2013.12.002 – ident: e_1_2_9_115_1 doi: 10.1007/978-981-15-1816-4_3 – ident: e_1_2_9_173_1 doi: 10.1109/ISBI.2018.8363547 – ident: e_1_2_9_33_1 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_9_151_1 – ident: e_1_2_9_29_1 doi: 10.1016/j.compbiomed.2018.05.018 – ident: e_1_2_9_129_1 doi: 10.1007/978-3-030-00934-2_55 – ident: e_1_2_9_6_1 doi: 10.1109/TMI.2013.2247770 – ident: e_1_2_9_39_1 doi: 10.1109/ITME.2018.00080 – ident: e_1_2_9_112_1 doi: 10.1007/978-3-030-00934-2_81 – ident: e_1_2_9_21_1 doi: 10.1145/3065386 – ident: e_1_2_9_28_1 doi: 10.1007/s10278-019-00227-x – ident: e_1_2_9_41_1 doi: 10.1109/NAECON.2018.8556686 – ident: e_1_2_9_58_1 doi: 10.1109/EMBC.2019.8857167 – ident: e_1_2_9_80_1 doi: 10.1007/978-3-030-32245-8_33 – ident: e_1_2_9_127_1 doi: 10.1109/CVPR.2018.00963 – start-page: 129 volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention year: 2020 ident: e_1_2_9_175_1 – ident: e_1_2_9_31_1 doi: 10.1093/nsr/nwx106 – ident: e_1_2_9_47_1 doi: 10.1007/978-3-319-46723-8_48 – ident: e_1_2_9_150_1 doi: 10.1109/TMI.2019.2963882 – ident: e_1_2_9_162_1 doi: 10.1016/j.media.2019.04.002 – ident: e_1_2_9_170_1 doi: 10.1109/AVSS.2014.6918687 – ident: e_1_2_9_9_1 doi: 10.1109/TBME.2017.2690863 – ident: e_1_2_9_68_1 doi: 10.1016/j.artmed.2021.102109 – ident: e_1_2_9_78_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_9_97_1 doi: 10.1109/ICCV.2017.324 – ident: e_1_2_9_16_1 doi: 10.1186/1472-6947-9-S1-S4 – ident: e_1_2_9_109_1 – ident: e_1_2_9_123_1 doi: 10.1109/TMI.2018.2791721 – ident: e_1_2_9_82_1 doi: 10.1109/CVPR.2018.00866 – year: 2021 ident: e_1_2_9_176_1 article-title: Affinity attention graph neural network for weakly supervised semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_2_9_85_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_9_169_1 doi: 10.1118/1.3528204 – ident: e_1_2_9_72_1 doi: 10.1109/TMI.2019.2959609 – ident: e_1_2_9_22_1 doi: 10.2174/157340561101150423103441 – ident: e_1_2_9_166_1 doi: 10.1016/j.media.2020.101950 – ident: e_1_2_9_11_1 doi: 10.1007/s11548-019-02092-z – ident: e_1_2_9_55_1 doi: 10.1109/TPAMI.2016.2577031 – ident: e_1_2_9_70_1 doi: 10.1109/ISBI45749.2020.9098360 – ident: e_1_2_9_130_1 doi: 10.1109/CVPR.2019.00874 – ident: e_1_2_9_153_1 doi: 10.1016/j.array.2019.100004 – ident: e_1_2_9_32_1 doi: 10.1109/TMI.2020.3002417 – ident: e_1_2_9_37_1 – ident: e_1_2_9_103_1 – ident: e_1_2_9_64_1 doi: 10.1007/978-3-030-59719-1_36 – ident: e_1_2_9_53_1 – ident: e_1_2_9_63_1 doi: 10.1109/ISBI45749.2020.9098656 – ident: e_1_2_9_13_1 doi: 10.3389/fcvm.2020.00025 – ident: e_1_2_9_104_1 doi: 10.1016/j.media.2017.05.001 – ident: e_1_2_9_137_1 doi: 10.1038/s41592-020-01008-z – ident: e_1_2_9_15_1 doi: 10.1109/42.963823 – ident: e_1_2_9_102_1 doi: 10.1016/j.compmedimag.2019.04.005 – ident: e_1_2_9_40_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_9_61_1 doi: 10.1109/TMI.2018.2845918 – ident: e_1_2_9_146_1 – ident: e_1_2_9_20_1 doi: 10.1109/42.650883 – ident: e_1_2_9_34_1 doi: 10.1007/978-3-030-01234-2_49 – volume: 2 year: 2015 ident: e_1_2_9_3_1 article-title: Automatic liver tumor segmentation in follow‐up CT studies using convolutional neural networks publication-title: Sci. Rep. – ident: e_1_2_9_7_1 doi: 10.1109/TMI.2018.2791488 – ident: e_1_2_9_48_1 doi: 10.1007/978-3-030-01421-6_14 – ident: e_1_2_9_56_1 doi: 10.1109/TPAMI.2017.2699184 – ident: e_1_2_9_95_1 doi: 10.1007/978-3-319-67558-9_28 – ident: e_1_2_9_131_1 doi: 10.1007/978-3-030-05318-5_3 – ident: e_1_2_9_144_1 doi: 10.1016/j.media.2019.101619 – ident: e_1_2_9_119_1 doi: 10.1007/978-3-319-68127-6_1 – ident: e_1_2_9_93_1 doi: 10.1109/CVPR.2019.00045 – ident: e_1_2_9_172_1 doi: 10.2196/jmir.2930 – ident: e_1_2_9_38_1 – ident: e_1_2_9_178_1 doi: 10.1016/j.media.2019.101556 – ident: e_1_2_9_164_1 – ident: e_1_2_9_122_1 doi: 10.1109/TPAMI.2018.2840695 – ident: e_1_2_9_143_1 doi: 10.1007/978-3-030-59719-1_77 – ident: e_1_2_9_182_1 doi: 10.1007/978-3-030-87199-4_6 – ident: e_1_2_9_18_1 doi: 10.1109/TBME.2013.2267212 – ident: e_1_2_9_27_1 doi: 10.1016/j.media.2020.101693 – ident: e_1_2_9_46_1 doi: 10.1109/ISBI.2019.8759555 – ident: e_1_2_9_118_1 doi: 10.1609/aaai.v33i01.3301865 – ident: e_1_2_9_79_1 doi: 10.1109/ICASSP40776.2020.9053454 – ident: e_1_2_9_69_1 doi: 10.1109/TMI.2017.2743464 – ident: e_1_2_9_180_1 – volume: 65 start-page: 1871 issue: 8 year: 2017 ident: e_1_2_9_5_1 article-title: Learning based segmentation of ct brain images: application to postoperative hydrocephalic scans publication-title: IEEE Trans. Bio‐Med. Eng. – ident: e_1_2_9_145_1 – ident: e_1_2_9_19_1 doi: 10.1016/j.ics.2004.03.349 – ident: e_1_2_9_87_1 doi: 10.1109/ICB45273.2019.8987270 – ident: e_1_2_9_154_1 doi: 10.1038/sdata.2017.117 – ident: e_1_2_9_45_1 doi: 10.1109/TMI.2019.2948320 – ident: e_1_2_9_2_1 doi: 10.4236/jcc.2015.311023 – ident: e_1_2_9_159_1 doi: 10.1016/j.media.2020.101950 – ident: e_1_2_9_52_1 doi: 10.1109/ICCV.2017.322 – ident: e_1_2_9_10_1 doi: 10.1016/j.media.2017.06.014 – volume: 31 start-page: 8699 year: 2018 ident: e_1_2_9_135_1 article-title: Searching for efficient multi‐scale architectures for dense image prediction publication-title: Neural Inform. Process Syst. – ident: e_1_2_9_4_1 doi: 10.1109/TMI.2014.2377694 – start-page: 11795 volume-title: NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: e_1_2_9_133_1 – ident: e_1_2_9_128_1 doi: 10.1007/978-3-319-66179-7_36 – ident: e_1_2_9_138_1 doi: 10.1109/ACCESS.2019.2908991 – ident: e_1_2_9_148_1 doi: 10.1109/ICCV.2017.74 – ident: e_1_2_9_89_1 doi: 10.1109/TPAMI.2015.2389824 – ident: e_1_2_9_44_1 doi: 10.1016/j.neunet.2019.08.025 – ident: e_1_2_9_77_1 – ident: e_1_2_9_158_1 – ident: e_1_2_9_17_1 doi: 10.1109/TMI.2002.808355 – ident: e_1_2_9_113_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_9_76_1 doi: 10.1109/TMI.2019.2903562 – ident: e_1_2_9_134_1 doi: 10.1007/978-3-030-05318-5_2 – ident: e_1_2_9_43_1 doi: 10.1007/978-3-030-00937-3_67 – ident: e_1_2_9_179_1 doi: 10.1002/mp.14327 – ident: e_1_2_9_184_1 – ident: e_1_2_9_51_1 doi: 10.1109/BIBM47256.2019.8983266 – ident: e_1_2_9_100_1 doi: 10.1109/TNNLS.2020.2995319 – ident: e_1_2_9_181_1 – year: 2020 ident: e_1_2_9_139_1 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2021 ident: e_1_2_9_91_1 article-title: Defed‐net: Deformable encoder‐decoder network for liver and liver tumor segmentation publication-title: IEEE Trans. Radiat. Plasma Med. Sci. – ident: e_1_2_9_165_1 – ident: e_1_2_9_126_1 doi: 10.1109/CVPR.2018.00892 – ident: e_1_2_9_171_1 doi: 10.1101/2019.12.13.19014902 – ident: e_1_2_9_105_1 doi: 10.1109/TMI.2020.3046579 – ident: e_1_2_9_116_1 doi: 10.1016/j.compmedimag.2020.101733 – ident: e_1_2_9_111_1 doi: 10.1007/978-3-030-00536-8_1 – ident: e_1_2_9_132_1 doi: 10.1016/j.knosys.2020.106622 – ident: e_1_2_9_60_1 doi: 10.1002/mp.14391 – ident: e_1_2_9_107_1 doi: 10.1007/978-3-319-60964-5_44 – ident: e_1_2_9_106_1 doi: 10.1016/j.media.2016.08.008 – ident: e_1_2_9_152_1 doi: 10.1007/978-3-319-46723-8_55 |
SSID | ssj0059085 |
Score | 2.682359 |
Snippet | Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the... Abstract Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1243 |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5DX3zxtzh_EdAXhWqWNG0jvqgoU1BEFHwrbe46Bq4bmwr-916ydCKI4FNLuVK45HLfNbnvY-yA4geUisvIKJ1EMRQ2MoAl1TxVAalCbbxM59190n2Ob1_0S4udNb0wU36I2Q83Fxl-vXYBXpRTFRICtTSI_dFYHlN2cpyf86631jHny_ihWYedmLf27ZBOSD7RpiEnjc3J97s_0pFn7f-JUn2auV5miwEf8vPpgK6wFtarbClgRR4icbLGsrDDwvsDWhH4BHuD0EVUc3eWvccBccSDKETvlJ_zyfv4Az_X2fP11dNlNwoqCJElqGKiJEHhidihREhACCiQQFtHSjRVRnVkQTlXlSAKmhQFwSepULj-9qyTWAChNthcPaxxk_FKVRqrSmrIYirLZFYYTde0AwJlKm2bHTbOyG2gCHdKFa-536qOTe4cl3vHtdn-zHY0Jcb41erC-XRm4cis_YPhuJeH2MhLKuJS0JBqS-gNVWYJiNnK1XKQWCHa7MiPyB_fyW8eHqW_2_qP8TZbkK6dwZ_E2WFzb-N33CWQ8Vbu-bn0BZrhyWw priority: 102 providerName: Wiley-Blackwell |
Title | Medical image segmentation using deep learning: A survey |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12419 https://doaj.org/article/b6197d5d75c143e38c025cf2871d6c00 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86X3zxW5wfI6AvCnVd0rSNb1McU1CGWBm-lDa5joGbYx-C_72XNBsTRF98aimBlLskv9-Ru98Rcob7R3Me5J7kIvQCnSlPasgx5ikyHXEQ0rbpfHgM20lw3xXdpVZfJieslAcuDVfPkeFHWuhIKIR24LFClFaFIfo6VL6N1hHz5sFUeQabRt7ClkKaJvKhkHNh0kDW-6Mxu0RUM9o6S1BkFfu_M1QLMa0tsuG4IW2W_7RNVmC4QzYdT6RuF052SexuV2h_gKcBnUBv4CqIhtTksfeoBhhR1xCid0WbdDIbf8DnHklat883bc91QPAU0hTphSH4VoRd56BD7fs6AyRsDcZAFjHGkBniLc-1n-GCyJA6MQ6-qW2PG6HS2uf7pDJ8H8IBoQUvBBQFEzoOMCRjcSYFPtGKPrCIqSo5nxsjVU4e3HSpeEvtNXUgU2O41BquSk4XY0elKMaPo66NTRcjjJC1_YDuTZ1707_cWyUX1iO_zJPedZ6YfTv8jxmPyDozJQ42O-eYVKbjGZwg8ZjmNbLKgk6NrDVfktekZlfcF_5N0vk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBYlPbSX9E3cp6C9tLCNrNeuenNLjd06IZQEclt2NbPGUK-NH4H--2i0sksgBHLaZRmxMNJovpFmvmHsU7AfUErXmVPGZhoqnznAOsQ8TQW5QuNim86TUzu60L8uzWXKzaFamI4fYn_gRpYR92sycDqQ7gJOTSSZs-VKfg3uiUg_H2orc7JLqc92GzF18zaxHpI6yVvjduyk2h3_H3vDH0Xa_pswNfqZ4VN2mAAiH3Qz-ow9wPY5e5LAIk-muH7BinTFwmfzsCXwNU7nqYyo5ZTMPuWAuOSpK8T0Gx_w9XZ1hf9esovhz_Mfoyy1Qch8wCousxZFZGKHGsGCEFBhQG19KdE1RQgkq-B0VQ2iCquiCvhJKhRU4F70rQcQ6hU7aBctHjHeqMZg00gDhQ5xmSwqZ8Iz74NAmUvfY593yih94ginVhV_y3hXrV1Jiiuj4nrs41522TFj3Cr1nXS6lyA26_hhsZqWyTjKOkRxORjIjQ_wDVXhAxLzDQVzYL0QPfYlzsgd_ynHZ39kfHt9H-EP7NHo_GRSTsanv9-wx5JqG2Jazlt2sFlt8V1AHJv6fVxX143zzNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEF-KgtzL-XXHVT1d0BcPcm53s0n28KV-FL8ph5XiS0h2JkXQWloV_O-d3W4rBRF8SggTArPz8Zvszm8Y2yH_AaXiMjJKJ1EMhY0MYEk1T1VAqlAbP6bz8io56cRnXd2tsf1JL8yYH2L6w815ho_XzsEHUI3rzdhxZN4NhvIvZSfH-TnvaPLIpuebN53bziQSu3He2jdEulHyiTYTetLY7L2_PZOQPG__LE71iaa1xL4HhMib4yVdZjXsr7DFgBZ58MXRKsvCHgu_e6CYwEfYewh9RH3uTrP3OCAOeBgL0fvHm3z0PHzB1x-s0zq-PjyJwhyEyBJYMVGSoPBU7FAiJCAEFEiwrSElmiqjSrKgrKtKEAWZRUEASioUrsM9ayQWQKifbK7_2MdfjFeq0lhVUkMWU2Ems8JouqYNEChTaetsd6KM3AaScDer4j73m9WxyZ3icq-4Otueyg7G1BgfSh04nU4lHJ21f_A47OXBO_KSyrgUNKTaEn5DlVmCYrZy1RwkVog6--NX5JPv5Kft_9LfrX1FeIsttI9a-cXp1fk6-yZdb4M_lrPB5p6Gz_ibEMdTuRkM6w1vzM3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+image+segmentation+using+deep+learning%3A+A+survey&rft.jtitle=IET+image+processing&rft.au=Risheng+Wang&rft.au=Tao+Lei&rft.au=Ruixia+Cui&rft.au=Bingtao+Zhang&rft.date=2022-04-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=16&rft.issue=5&rft.spage=1243&rft.epage=1267&rft_id=info:doi/10.1049%2Fipr2.12419&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6197d5d75c143e38c025cf2871d6c00 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |