Medical image segmentation using deep learning: A survey

Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two origi...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 16; no. 5; pp. 1243 - 1267
Main Authors Wang, Risheng, Lei, Tao, Cui, Ruixia, Zhang, Bingtao, Meng, Hongying, Nandi, Asoke K.
Format Journal Article
LanguageEnglish
Published Wiley 01.04.2022
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/ipr2.12419

Cover

Loading…
Abstract Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two original contributions. Firstly, compared to traditional surveys that directly divide literatures of deep learning on medical image segmentation into many groups and introduce literatures in detail for each group, we classify currently popular literatures according to a multi‐level structure from coarse to fine. Secondly, this paper focuses on supervised and weakly supervised learning approaches, without including unsupervised approaches since they have been introduced in many old surveys and they are not popular currently. For supervised learning approaches, we analyse literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions. For weakly supervised learning approaches, we investigate literature according to data augmentation, transfer learning, and interactive segmentation, separately. Compared to existing surveys, this survey classifies the literatures very differently from before and is more convenient for readers to understand the relevant rationale and will guide them to think of appropriate improvements in medical image segmentation based on deep learning approaches.
AbstractList Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two original contributions. Firstly, compared to traditional surveys that directly divide literatures of deep learning on medical image segmentation into many groups and introduce literatures in detail for each group, we classify currently popular literatures according to a multi‐level structure from coarse to fine. Secondly, this paper focuses on supervised and weakly supervised learning approaches, without including unsupervised approaches since they have been introduced in many old surveys and they are not popular currently. For supervised learning approaches, we analyse literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions. For weakly supervised learning approaches, we investigate literature according to data augmentation, transfer learning, and interactive segmentation, separately. Compared to existing surveys, this survey classifies the literatures very differently from before and is more convenient for readers to understand the relevant rationale and will guide them to think of appropriate improvements in medical image segmentation based on deep learning approaches.
Abstract Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. A comprehensive thematic survey on medical image segmentation using deep learning techniques is presented. This paper makes two original contributions. Firstly, compared to traditional surveys that directly divide literatures of deep learning on medical image segmentation into many groups and introduce literatures in detail for each group, we classify currently popular literatures according to a multi‐level structure from coarse to fine. Secondly, this paper focuses on supervised and weakly supervised learning approaches, without including unsupervised approaches since they have been introduced in many old surveys and they are not popular currently. For supervised learning approaches, we analyse literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions. For weakly supervised learning approaches, we investigate literature according to data augmentation, transfer learning, and interactive segmentation, separately. Compared to existing surveys, this survey classifies the literatures very differently from before and is more convenient for readers to understand the relevant rationale and will guide them to think of appropriate improvements in medical image segmentation based on deep learning approaches.
Author Meng, Hongying
Zhang, Bingtao
Wang, Risheng
Lei, Tao
Cui, Ruixia
Nandi, Asoke K.
Author_xml – sequence: 1
  givenname: Risheng
  surname: Wang
  fullname: Wang, Risheng
  organization: Shaanxi University of Science and Technology
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  email: leitao@sust.edu.cn
  organization: Shaanxi University of Science and Technology
– sequence: 3
  givenname: Ruixia
  surname: Cui
  fullname: Cui, Ruixia
  organization: First Affiliated Hospital' and 'National Engineering Laboratory of Big Data Algorithm and Analysis Technology Research'(Xi'an Jiaotong University)
– sequence: 4
  givenname: Bingtao
  surname: Zhang
  fullname: Zhang, Bingtao
  organization: Lanzhou Jiaotong University
– sequence: 5
  givenname: Hongying
  orcidid: 0000-0002-8836-1382
  surname: Meng
  fullname: Meng, Hongying
  organization: Brunel University London
– sequence: 6
  givenname: Asoke K.
  orcidid: 0000-0001-6248-2875
  surname: Nandi
  fullname: Nandi, Asoke K.
  organization: Brunel University London
BookMark eNp9UE1Lw0AQXaSCbfXiL8hZaJ3ZZDdZb6X4UagooudluzsJW9KkbFKl_960UQ8inmbm8d7jzRuxQVVXxNglwhQhUdd-G_gUeYLqhA0xFThRUqaDn12oMzZqmjWAUJCJIcseyXlryshvTEFRQ8WGqta0vq6iXeOrInJE26gkE6ruuolmUbML77Q_Z6e5KRu6-Jpj9nZ3-zp_mCyf7hfz2XJiky7FREoCAI7crchJB-AMqTRFzknlmeCxyTCLVw4MGWeww2OCGGWaobTOQTxmi97X1Watt6HLGfa6Nl4fgToU2oTW25L0SqJKnXCpsJjEFGcWuLA5z1J00sLBC3ovG-qmCZRr6_tf22B8qRH0oUV9aFEfW-wkV78k3xH-JGNP_vAl7f9h6sXzC-81n-dEgsU
CitedBy_id crossref_primary_10_32604_cmc_2024_046094
crossref_primary_10_1007_s12204_024_2786_0
crossref_primary_10_1016_j_compbiomed_2024_108302
crossref_primary_10_1016_j_radonc_2023_109871
crossref_primary_10_2139_ssrn_4185484
crossref_primary_10_1007_s11042_024_19799_0
crossref_primary_10_1109_ACCESS_2024_3365544
crossref_primary_10_1109_TUFFC_2024_3393026
crossref_primary_10_1371_journal_pone_0288658
crossref_primary_10_1016_j_media_2025_103461
crossref_primary_10_1007_s10103_024_04053_8
crossref_primary_10_54097_31ag9n29
crossref_primary_10_1038_s41368_024_00294_z
crossref_primary_10_4108_eetsis_4788
crossref_primary_10_1186_s12938_024_01238_8
crossref_primary_10_1007_s11517_024_03252_3
crossref_primary_10_1016_j_bspc_2024_107439
crossref_primary_10_1002_ima_70042
crossref_primary_10_1016_j_amc_2023_128050
crossref_primary_10_1016_j_eswa_2024_124816
crossref_primary_10_1002_mp_16389
crossref_primary_10_1038_s41598_024_59436_2
crossref_primary_10_1007_s40747_024_01625_7
crossref_primary_10_1016_j_ynirp_2024_100215
crossref_primary_10_1109_TMI_2022_3225687
crossref_primary_10_3389_fonc_2022_950706
crossref_primary_10_1007_s13139_022_00772_4
crossref_primary_10_1007_s11042_024_18482_8
crossref_primary_10_1016_j_adro_2022_101163
crossref_primary_10_1016_j_knosys_2024_112170
crossref_primary_10_1038_s41598_024_53997_y
crossref_primary_10_2478_amns_2024_0337
crossref_primary_10_1049_ipr2_13029
crossref_primary_10_3390_s24041117
crossref_primary_10_1109_ACCESS_2024_3377428
crossref_primary_10_4018_IJITSA_340774
crossref_primary_10_1117_1_JEI_33_3_031209
crossref_primary_10_3390_s25072043
crossref_primary_10_1371_journal_pone_0309421
crossref_primary_10_1109_TRPMS_2023_3272209
crossref_primary_10_3390_coatings12101551
crossref_primary_10_1088_1361_6560_ace1cf
crossref_primary_10_3390_w16121755
crossref_primary_10_1016_j_cmpb_2025_108705
crossref_primary_10_3390_jcm12072646
crossref_primary_10_1002_aisy_202400654
crossref_primary_10_3390_computation11100195
crossref_primary_10_1038_s42003_023_05441_6
crossref_primary_10_3390_app14135382
crossref_primary_10_1016_j_imavis_2024_105055
crossref_primary_10_1016_j_vrih_2024_04_001
crossref_primary_10_1371_journal_pone_0296031
crossref_primary_10_1038_s41598_024_84629_0
crossref_primary_10_3390_rs16173218
crossref_primary_10_7717_peerj_17509
crossref_primary_10_1007_s10489_024_05900_5
crossref_primary_10_1007_s40846_024_00863_x
crossref_primary_10_1049_ipr2_13290
crossref_primary_10_1016_j_jpi_2025_100435
crossref_primary_10_1016_j_engmed_2024_100004
crossref_primary_10_1007_s11517_024_03225_6
crossref_primary_10_3389_fnins_2024_1351387
crossref_primary_10_1016_j_swevo_2023_101388
crossref_primary_10_1007_s00530_023_01165_z
crossref_primary_10_1089_aipo_2024_0003
crossref_primary_10_3390_info15040198
crossref_primary_10_12677_mos_2025_141011
crossref_primary_10_32604_cmes_2023_031229
crossref_primary_10_3389_fphy_2023_1266500
crossref_primary_10_1002_mp_17323
crossref_primary_10_1038_s41598_024_68768_y
crossref_primary_10_3390_app13010329
crossref_primary_10_1038_s41598_024_66873_6
crossref_primary_10_3390_app14072986
crossref_primary_10_1007_s00464_024_10880_1
crossref_primary_10_1016_j_imu_2024_101504
crossref_primary_10_1016_j_neucom_2024_128740
crossref_primary_10_1109_TRPMS_2023_3286866
crossref_primary_10_1007_s11548_022_02701_4
crossref_primary_10_1016_j_eswa_2024_124179
crossref_primary_10_1016_j_foodcont_2025_111314
crossref_primary_10_1007_s11042_024_18334_5
crossref_primary_10_1016_j_compbiomed_2024_108115
crossref_primary_10_3390_app122211557
crossref_primary_10_1016_j_bspc_2025_107854
crossref_primary_10_1088_1361_6560_acaae9
crossref_primary_10_3389_fmed_2024_1401473
crossref_primary_10_1109_TMI_2024_3483221
crossref_primary_10_3390_s23156781
crossref_primary_10_1007_s12555_024_0550_8
crossref_primary_10_1155_2024_6621199
crossref_primary_10_1007_s11042_023_15505_8
crossref_primary_10_1016_j_bspc_2025_107728
crossref_primary_10_1016_j_joule_2023_10_011
crossref_primary_10_3390_rs14122885
crossref_primary_10_1007_s40747_024_01359_6
crossref_primary_10_1007_s11042_024_20081_6
crossref_primary_10_3390_cancers15061750
crossref_primary_10_1016_j_neucom_2024_129287
crossref_primary_10_3390_aerospace11120961
crossref_primary_10_1016_j_medengphy_2024_104118
crossref_primary_10_1186_s42492_023_00140_9
crossref_primary_10_1016_j_compmedimag_2024_102453
crossref_primary_10_1371_journal_pone_0311228
crossref_primary_10_32604_cmc_2024_053565
crossref_primary_10_32604_cmes_2023_027425
crossref_primary_10_3390_jmmp9030069
crossref_primary_10_1109_TSMC_2024_3416268
crossref_primary_10_1016_j_knosys_2025_113234
crossref_primary_10_1016_j_compeleceng_2024_109654
crossref_primary_10_1038_s41598_024_57618_6
crossref_primary_10_1016_j_image_2023_117076
crossref_primary_10_3389_fonc_2022_970425
crossref_primary_10_1177_13872877241300278
crossref_primary_10_1038_s41598_024_53707_8
crossref_primary_10_3233_JAD_221261
crossref_primary_10_3390_diagnostics14121213
crossref_primary_10_1109_TMI_2022_3224459
crossref_primary_10_1016_j_bspc_2024_106487
crossref_primary_10_3389_fphy_2024_1334298
crossref_primary_10_1016_j_compeleceng_2024_109522
crossref_primary_10_3390_app15010186
crossref_primary_10_1038_s41598_024_76035_3
crossref_primary_10_3390_biomedicines10102545
crossref_primary_10_1088_2057_1976_ace4d0
crossref_primary_10_1016_j_patcog_2024_110375
crossref_primary_10_1148_ryai_240353
crossref_primary_10_1007_s11548_024_03133_y
crossref_primary_10_1007_s11517_024_03150_8
crossref_primary_10_1109_TMI_2023_3327942
crossref_primary_10_1016_j_cmpb_2023_107788
crossref_primary_10_1002_mrm_29671
crossref_primary_10_1007_s42979_024_03262_w
crossref_primary_10_1038_s41598_023_49337_1
crossref_primary_10_3390_diagnostics13213364
crossref_primary_10_1016_j_compbiomed_2023_107567
crossref_primary_10_1109_JBHI_2024_3397047
crossref_primary_10_1002_cam4_70574
crossref_primary_10_1007_s11042_024_19072_4
crossref_primary_10_1007_s11042_024_20287_8
crossref_primary_10_1016_j_knosys_2024_112202
crossref_primary_10_1051_bioconf_202516304001
crossref_primary_10_1186_s12938_023_01171_2
crossref_primary_10_1093_bioinformatics_btae606
crossref_primary_10_1109_ACCESS_2023_3275966
crossref_primary_10_1109_JBHI_2024_3492540
crossref_primary_10_1038_s41598_024_83031_0
crossref_primary_10_1051_bioconf_202515201036
crossref_primary_10_1016_j_jbo_2024_100606
crossref_primary_10_3934_mbe_2025022
crossref_primary_10_1002_cpe_8386
crossref_primary_10_1016_j_procs_2024_09_577
crossref_primary_10_3390_a17040168
crossref_primary_10_3390_stats7010013
crossref_primary_10_3390_bioengineering11020194
crossref_primary_10_3390_bioengineering10121349
crossref_primary_10_1038_s41598_024_77001_9
crossref_primary_10_1007_s44244_024_00020_y
crossref_primary_10_1109_TMI_2023_3313786
crossref_primary_10_1016_j_inffus_2024_102634
crossref_primary_10_1016_j_trgeo_2025_101490
crossref_primary_10_1016_j_compeleceng_2025_110224
crossref_primary_10_1016_j_knosys_2025_113120
crossref_primary_10_1364_OE_486984
crossref_primary_10_1111_cgf_15083
crossref_primary_10_1093_dmfr_twae009
crossref_primary_10_1002_mp_17423
crossref_primary_10_2196_57723
crossref_primary_10_3389_fmats_2022_1033505
crossref_primary_10_1109_ACCESS_2024_3511430
crossref_primary_10_1016_j_compbiomed_2024_108967
crossref_primary_10_1007_s10559_023_00555_5
crossref_primary_10_3389_fonc_2022_1087438
crossref_primary_10_1016_j_imu_2023_101248
crossref_primary_10_1371_journal_pone_0315631
crossref_primary_10_1016_j_neunet_2024_106914
crossref_primary_10_1088_2057_1976_adaec7
crossref_primary_10_1038_s41597_024_03775_2
crossref_primary_10_1016_j_compbiomed_2023_107460
crossref_primary_10_1109_ACCESS_2023_3244197
crossref_primary_10_3390_bioengineering9100578
crossref_primary_10_1016_j_knosys_2023_110987
crossref_primary_10_1016_j_neunet_2023_06_047
crossref_primary_10_3390_electronics12234835
crossref_primary_10_1016_j_bspc_2023_105331
crossref_primary_10_3389_fpls_2023_1115713
crossref_primary_10_3390_technologies12020015
crossref_primary_10_1016_j_cag_2023_05_009
crossref_primary_10_1016_j_bspc_2024_107257
crossref_primary_10_1007_s40747_023_01166_5
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_3390_app13148295
crossref_primary_10_1109_JBHI_2024_3460745
crossref_primary_10_1515_bmt_2024_0439
crossref_primary_10_1080_23311916_2023_2229571
crossref_primary_10_3390_jpm15010020
crossref_primary_10_1109_ACCESS_2024_3381523
crossref_primary_10_1016_j_asoc_2023_110869
crossref_primary_10_1002_aisy_202400007
crossref_primary_10_1159_000541980
crossref_primary_10_3390_computers13090237
crossref_primary_10_1186_s13040_024_00381_1
crossref_primary_10_1016_j_compag_2023_107717
crossref_primary_10_1016_j_jvcir_2025_104434
crossref_primary_10_1007_s10489_023_04570_z
crossref_primary_10_1049_ipr2_70017
crossref_primary_10_1109_ACCESS_2024_3512664
crossref_primary_10_1038_s41592_024_02499_w
crossref_primary_10_1016_j_tsep_2025_103265
crossref_primary_10_1016_j_bspc_2024_106658
crossref_primary_10_1109_TGRS_2024_3442732
crossref_primary_10_1142_S0219519424400621
crossref_primary_10_3389_fnins_2024_1363930
crossref_primary_10_1002_btm2_10553
crossref_primary_10_1016_j_copbio_2023_103055
crossref_primary_10_1109_TMI_2023_3335406
crossref_primary_10_1007_s11042_025_20752_y
crossref_primary_10_1016_j_postharvbio_2024_112814
crossref_primary_10_3390_bioengineering10080981
crossref_primary_10_1016_j_phro_2023_100483
crossref_primary_10_1002_widm_1574
crossref_primary_10_1049_ipr2_13219
crossref_primary_10_3389_fonc_2025_1536039
crossref_primary_10_3390_math10193571
crossref_primary_10_3390_app132312771
crossref_primary_10_3390_info15100633
crossref_primary_10_3389_fmed_2023_1273441
crossref_primary_10_1002_eqe_3966
crossref_primary_10_1109_ACCESS_2024_3428572
crossref_primary_10_2478_amns_2025_0351
crossref_primary_10_1016_j_engappai_2023_106299
crossref_primary_10_1007_s12559_024_10257_5
crossref_primary_10_1016_j_compbiomed_2025_109822
crossref_primary_10_1038_s41597_024_03814_y
crossref_primary_10_1109_ACCESS_2024_3467117
crossref_primary_10_1002_pro6_1242
crossref_primary_10_1016_j_eswa_2023_121926
crossref_primary_10_1111_jcmm_70315
crossref_primary_10_1016_j_procs_2023_10_295
crossref_primary_10_1016_j_carbon_2023_118230
crossref_primary_10_1038_s41598_024_71066_2
crossref_primary_10_1016_j_ndteint_2024_103088
crossref_primary_10_1186_s40644_024_00675_x
crossref_primary_10_1038_s41598_024_78424_0
crossref_primary_10_1016_j_inffus_2022_09_031
crossref_primary_10_1049_ipr2_12950
crossref_primary_10_1177_08953996241301685
crossref_primary_10_3390_electronics13234636
crossref_primary_10_1002_mp_17189
crossref_primary_10_1016_j_inffus_2025_103027
crossref_primary_10_1016_j_bspc_2022_104099
crossref_primary_10_1007_s11548_024_03077_3
crossref_primary_10_13104_imri_2024_0014
crossref_primary_10_1016_j_compbiomed_2023_107823
crossref_primary_10_3390_app15042169
crossref_primary_10_3390_bioengineering11030278
crossref_primary_10_1016_j_optlastec_2025_112422
crossref_primary_10_1002_ima_70035
crossref_primary_10_1007_s00170_023_12824_w
crossref_primary_10_1088_2057_1976_ad28cc
crossref_primary_10_1109_ACCESS_2025_3532631
crossref_primary_10_4236_jcc_2024_126013
crossref_primary_10_1016_j_compbiomed_2024_109182
crossref_primary_10_1016_j_imavis_2023_104761
crossref_primary_10_3390_cancers15235620
crossref_primary_10_1016_j_asoc_2024_111709
crossref_primary_10_1002_ima_23192
crossref_primary_10_1007_s11760_024_03781_2
crossref_primary_10_2478_amns_2025_0210
crossref_primary_10_1080_13682199_2022_2163531
crossref_primary_10_1038_s41598_023_45456_x
crossref_primary_10_3233_JCM_247284
crossref_primary_10_1016_j_knosys_2024_112909
crossref_primary_10_1016_j_knee_2025_02_009
crossref_primary_10_1109_ACCESS_2022_3175188
crossref_primary_10_1002_mp_17727
crossref_primary_10_1007_s11760_022_02445_3
crossref_primary_10_1016_j_bspc_2023_104953
crossref_primary_10_1109_TIM_2025_3547131
crossref_primary_10_1145_3592614
crossref_primary_10_1088_1361_6560_ac8964
crossref_primary_10_1016_j_eswa_2024_126098
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_3390_math12244003
crossref_primary_10_1109_TRPMS_2024_3465561
crossref_primary_10_1364_BOE_516541
Cites_doi 10.1109/ISBI.2018.8363790
10.1002/mp.14732
10.1109/TMI.2017.2721362
10.1007/s10462-020-09854-1
10.1109/CVPR.2016.308
10.1109/WACV.2018.00163
10.1109/CVPR.2018.00916
10.1109/42.845178
10.1007/978-3-319-67389-9_34
10.1109/ICDEW.2019.000-4
10.1109/ISBI.2019.8759477
10.1109/JBHI.2019.2912935
10.1109/WACV.2018.00066
10.1007/s11548-019-02062-5
10.1145/1015706.1015720
10.1016/j.media.2017.07.005
10.1109/TNN.2008.2005605
10.1007/978-3-319-67389-9_44
10.1007/978-3-030-00931-1_70
10.1007/978-3-030-00934-2_65
10.1038/s42256-019-0052-1
10.1007/978-3-030-87193-2_4
10.1109/CVPR.2019.00017
10.1109/CVPR42600.2020.00386
10.1109/CVPR.2015.7298594
10.1109/ICCV.2001.937505
10.1002/mp.13649
10.1109/TMI.2019.2930068
10.1109/JBHI.2014.2370952
10.1007/978-3-030-32248-9_49
10.1146/annurev-bioeng-071516-044442
10.1016/j.ijmedinf.2018.06.003
10.1016/j.media.2016.07.009
10.1109/CVPR.2019.01190
10.1109/3DV.2016.79
10.1007/978-981-13-2291-4_16
10.1007/978-3-319-24574-4_28
10.1109/TMI.2020.3016144
10.1609/aaai.v34i04.6100
10.1016/j.eswa.2019.112855
10.1007/s10278-017-9983-4
10.1038/s41467-019-12621-8
10.1109/ISBI.2018.8363764
10.1016/j.media.2013.12.002
10.1007/978-981-15-1816-4_3
10.1109/ISBI.2018.8363547
10.1109/CVPR.2015.7298965
10.1016/j.compbiomed.2018.05.018
10.1007/978-3-030-00934-2_55
10.1109/TMI.2013.2247770
10.1109/ITME.2018.00080
10.1007/978-3-030-00934-2_81
10.1145/3065386
10.1007/s10278-019-00227-x
10.1109/NAECON.2018.8556686
10.1109/EMBC.2019.8857167
10.1007/978-3-030-32245-8_33
10.1109/CVPR.2018.00963
10.1093/nsr/nwx106
10.1007/978-3-319-46723-8_48
10.1109/TMI.2019.2963882
10.1016/j.media.2019.04.002
10.1109/AVSS.2014.6918687
10.1109/TBME.2017.2690863
10.1016/j.artmed.2021.102109
10.1109/CVPR.2018.00474
10.1109/ICCV.2017.324
10.1186/1472-6947-9-S1-S4
10.1109/TMI.2018.2791721
10.1109/CVPR.2018.00866
10.1109/CVPR.2018.00745
10.1118/1.3528204
10.1109/TMI.2019.2959609
10.2174/157340561101150423103441
10.1016/j.media.2020.101950
10.1007/s11548-019-02092-z
10.1109/TPAMI.2016.2577031
10.1109/ISBI45749.2020.9098360
10.1109/CVPR.2019.00874
10.1016/j.array.2019.100004
10.1109/TMI.2020.3002417
10.1007/978-3-030-59719-1_36
10.1109/ISBI45749.2020.9098656
10.3389/fcvm.2020.00025
10.1016/j.media.2017.05.001
10.1038/s41592-020-01008-z
10.1109/42.963823
10.1016/j.compmedimag.2019.04.005
10.1162/neco.1997.9.8.1735
10.1109/TMI.2018.2845918
10.1109/42.650883
10.1007/978-3-030-01234-2_49
10.1109/TMI.2018.2791488
10.1007/978-3-030-01421-6_14
10.1109/TPAMI.2017.2699184
10.1007/978-3-319-67558-9_28
10.1007/978-3-030-05318-5_3
10.1016/j.media.2019.101619
10.1007/978-3-319-68127-6_1
10.1109/CVPR.2019.00045
10.2196/jmir.2930
10.1016/j.media.2019.101556
10.1109/TPAMI.2018.2840695
10.1007/978-3-030-59719-1_77
10.1007/978-3-030-87199-4_6
10.1109/TBME.2013.2267212
10.1016/j.media.2020.101693
10.1109/ISBI.2019.8759555
10.1609/aaai.v33i01.3301865
10.1109/ICASSP40776.2020.9053454
10.1109/TMI.2017.2743464
10.1016/j.ics.2004.03.349
10.1109/ICB45273.2019.8987270
10.1038/sdata.2017.117
10.1109/TMI.2019.2948320
10.4236/jcc.2015.311023
10.1109/ICCV.2017.322
10.1016/j.media.2017.06.014
10.1109/TMI.2014.2377694
10.1007/978-3-319-66179-7_36
10.1109/ACCESS.2019.2908991
10.1109/ICCV.2017.74
10.1109/TPAMI.2015.2389824
10.1016/j.neunet.2019.08.025
10.1109/TMI.2002.808355
10.1109/ICCV.2017.244
10.1109/TMI.2019.2903562
10.1007/978-3-030-05318-5_2
10.1007/978-3-030-00937-3_67
10.1002/mp.14327
10.1109/BIBM47256.2019.8983266
10.1109/TNNLS.2020.2995319
10.1109/CVPR.2018.00892
10.1101/2019.12.13.19014902
10.1109/TMI.2020.3046579
10.1016/j.compmedimag.2020.101733
10.1007/978-3-030-00536-8_1
10.1016/j.knosys.2020.106622
10.1002/mp.14391
10.1007/978-3-319-60964-5_44
10.1016/j.media.2016.08.008
10.1007/978-3-319-46723-8_55
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12419
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1267
ExternalDocumentID oai_doaj_org_article_b6197d5d75c143e38c025cf2871d6c00
10_1049_ipr2_12419
IPR212419
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China‐Royal Socie
  funderid: 61811530325; (IECnNSFCn170396 RoyalSociety)
– fundername: Natural Science Basic Research Program of Shaanxi
  funderid: 2021J‐47
– fundername: National Natural Science Foundation of China
  funderid: 61871259; 61861024
– fundername: Key Research and Development Program of Shaanxi
  funderid: 2021ZDLGY08‐07
– fundername: Shaanxi Joint Laboratory of Artificial Intelligence
  funderid: 2020SS‐03
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
WIN
ID FETCH-LOGICAL-c4419-66e000212dbed6d00dae977122e9f8523a8183bd0aeada11223e03167816cdd03
IEDL.DBID DOA
ISSN 1751-9659
IngestDate Wed Aug 27 01:28:29 EDT 2025
Tue Jul 01 05:14:37 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Wed Jan 22 16:25:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4419-66e000212dbed6d00dae977122e9f8523a8183bd0aeada11223e03167816cdd03
ORCID 0000-0002-2104-9298
0000-0002-8836-1382
0000-0001-6248-2875
OpenAccessLink https://doaj.org/article/b6197d5d75c143e38c025cf2871d6c00
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_b6197d5d75c143e38c025cf2871d6c00
crossref_citationtrail_10_1049_ipr2_12419
crossref_primary_10_1049_ipr2_12419
wiley_primary_10_1049_ipr2_12419_IPR212419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 40
2017; 42
2015; 37
2017; 41
2015; 38
2017; 4
2020; 63
2020; 121
2019; 10
2020; 60
2019; 56
2004; 23
2019; 14
2019; 58
2014; 27
2020; 15
2018; 41
2016; 39
2004; 1268
1997; 9
2020; 7
2017; 30
2021; 32
2013; 15
2000; 19
2018; 5
2017; 37
2017; 36
2021; 117
2019; 24
2017; 35
2019; 69
2006; 2005
2013; 60
2020; 139
1997; 16
2020; 47
2014; 19
2014; 18
2020; 212
2008; 20
2021; 40
2018; 31
2018; 37
2015; 2
2019; 7
2017; 64
2021; 48
2019; 3
2017; 60
2015; 3
2019; 75
2019; 32
2020; 83
2019; 1
2017; 65
2015; 11
2020; 39
2019; 39
2019; 38
2011; 38
2001; 20
2021; 54
2018; 117
2013; 32
2021
2020
2021; 18
2019
2009; 9
2018
2017
2017; 19
2016
2015
2014
2001; 1
2018; 98
2014; 34
2003; 22
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
Goodfellow I. (e_1_2_9_65_1) 2014; 27
e_1_2_9_71_1
Vivanti R. (e_1_2_9_3_1) 2015; 2
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
Gao H. (e_1_2_9_141_1) 2019
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Lee C.Y. (e_1_2_9_73_1) 2015; 38
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_172_1
Cherukuri V. (e_1_2_9_5_1) 2017; 65
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
Lei T. (e_1_2_9_91_1) 2021
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_156_1
e_1_2_9_179_1
Zhang J. (e_1_2_9_62_1) 2019
Zhang B. (e_1_2_9_176_1) 2021
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
Zhang Y. (e_1_2_9_175_1) 2020
Yu Qian Z. (e_1_2_9_14_1) 2006; 2005
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
Çiçek Ö. (e_1_2_9_35_1) 2016
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
Lopez M.M. (e_1_2_9_90_1) 2017
e_1_2_9_81_1
e_1_2_9_4_1
Ha H. (e_1_2_9_133_1) 2019
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
Jaderberg M. (e_1_2_9_83_1) 2015
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_158_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
Chen L.C. (e_1_2_9_135_1) 2018; 31
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
Wu Z. (e_1_2_9_139_1) 2020
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – start-page: 155
  year: 2019
  end-page: 164
– start-page: 291
  year: 2017
  end-page: 298
– year: 2020
  article-title: Unpaired multi‐modal segmentation via knowledge distillation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 39
  year: 2020
  end-page: 52
– start-page: 1173
  year: 2020
  end-page: 1177
– volume: 69
  year: 2019
  article-title: Chaos‐combined (CT‐MR) healthy abdominal organ segmentation challenge data
  publication-title: Med. Image Anal.
– start-page: 327
  year: 2018
  end-page: 331
– volume: 139
  year: 2020
  article-title: Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network
  publication-title: Expert Syst. Appl.
– volume: 2
  year: 2015
  article-title: Automatic liver tumor segmentation in follow‐up CT studies using convolutional neural networks
  publication-title: Sci. Rep.
– start-page: 415
  year: 2016
  end-page: 423
– volume: 117
  start-page: 44
  year: 2018
  end-page: 54
  article-title: A fully integrated computer‐aided diagnosis system for digital x‐ray mammograms via deep learning detection, segmentation, and classification
  publication-title: Int. J. Med. Inform.
– start-page: 363
  year: 2020
  end-page: 373
– start-page: 565
  year: 2016
  end-page: 571
– volume: 36
  start-page: 2319
  issue: 11
  year: 2017
  end-page: 2330
  article-title: Auto‐context convolutional neural network (auto‐net) for brain extraction in magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 58
  year: 2019
  article-title: Deep vessel segmentation by learning graphical connectivity
  publication-title: Med. Image Anal.
– start-page: 3431
  year: 2015
  end-page: 3440
– volume: 35
  start-page: 489
  year: 2017
  end-page: 502
  article-title: Gland segmentation in colon histology images: The glas challenge contest
  publication-title: Med. Image Anal.
– year: 2021
  article-title: Defed‐net: Deformable encoder‐decoder network for liver and liver tumor segmentation
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
– year: 2019
  article-title: Graph u‐nets
  publication-title: Nature
– year: 2014
– start-page: 547
  year: 2018
  end-page: 556
– start-page: 313
  year: 2014
  end-page: 318
– start-page: 1451
  year: 2018
  end-page: 1460
– start-page: 11795
  year: 2019
  end-page: 11804
– start-page: 2980
  year: 2017
  end-page: 2988
– volume: 37
  start-page: 1597
  issue: 7
  year: 2018
  end-page: 1605
  article-title: Joint optic disc and cup segmentation based on multi‐label deep network and polar transformation
  publication-title: IEEE Trans. Med. Image
– start-page: 2223
  year: 2017
  end-page: 2232
– start-page: 6738
  year: 2019
  end-page: 6741
– start-page: 1217
  year: 2018
  end-page: 1220
– volume: 19
  start-page: 203
  issue: 3
  year: 2000
  end-page: 210
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans. Med. Imag.
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  article-title: Multiresunet: rethinking the u‐net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
– volume: 23
  start-page: 309
  issue: 3
  year: 2004
  end-page: 314
  article-title: “Grabcut” interactive foreground extraction using iterated graph cuts
  publication-title: ACM Trans. Graph
– start-page: 6315
  year: 2020
  end-page: 6322
– volume: 117
  year: 2021
  article-title: Abdominal multi‐organ segmentation with cascaded convolutional and adversarial deep networks
  publication-title: Artif. Intell. Med.
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nature Methods.
– volume: 15
  start-page: 173
  issue: 1
  year: 2020
  end-page: 178
  article-title: Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 1
  start-page: 105
  year: 2001
  end-page: 112
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images
  publication-title: Proc. IEEE Conf. Comput. Vis.
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  end-page: 2674
  article-title: H‐denseunet: hybrid densely connected UNet for liver and tumor segmentation from ct volumes
  publication-title: IEEE Trans. Med. Imag.
– start-page: 240
  year: 2017
  end-page: 248
– volume: 3
  year: 2019
  article-title: A review: deep learning for medical image segmentation using multi‐modality fusion
  publication-title: Array
– volume: 5
  start-page: 44
  issue: 1
  year: 2018
  end-page: 53
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
– year: 2019
– volume: 98
  start-page: 126
  year: 2018
  end-page: 146
  article-title: Survey on deep learning for radiotherapy
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2019
  end-page: 8
– volume: 19
  start-page: 1283
  issue: 4
  year: 2014
  end-page: 1290
  article-title: Big heart data: advancing health informatics through data sharing in cardiovascular imaging
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 234
  year: 2015
  end-page: 241
– volume: 83
  year: 2020
  article-title: Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder‐decoders
  publication-title: Comput. Med. Imaging Graph.
– volume: 20
  start-page: 1193
  issue: 11
  year: 2001
  end-page: 1200
  article-title: Fast and robust optic disc detection using pyramidal decomposition and Hausdorff‐based template matching
  publication-title: IEEE Trans. Med. Image.
– volume: 24
  start-page: 568
  issue: 2
  year: 2019
  end-page: 576
  article-title: Fully dense unet for 2‐d sparse photoacoustic tomography artifact removal
  publication-title: IEEE J. Biomed. Health Informat.
– volume: 31
  start-page: 8699
  year: 2018
  end-page: 8710
  article-title: Searching for efficient multi‐scale architectures for dense image prediction
  publication-title: Neural Inform. Process Syst.
– start-page: 2818
  year: 2016
  end-page: 2826
– start-page: 3
  year: 2017
  end-page: 13
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  end-page: 1149
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 430
  year: 2019
  end-page: 433
– start-page: 732
  year: 2018
  end-page: 740
– start-page: 8551
  year: 2018
  end-page: 8561
– year: 2016
– volume: 14
  start-page: 2069
  issue: 12
  year: 2019
  end-page: 2081
  article-title: Abdominal artery segmentation method from CT volumes using fully convolutional neural network
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– start-page: 7132
  year: 2018
  end-page: 7141
– volume: 37
  start-page: 384
  issue: 2
  year: 2017
  end-page: 395
  article-title: Anatomically constrained neural networks (ACNNS): application to cardiac image enhancement and segmentation
  publication-title: IEEE Trans. Med. Image
– volume: 9
  start-page: S4
  issue: S1
  year: 2009
  article-title: Automated ventricular systems segmentation in brain CT images by combining low‐level segmentation and high‐level template matching
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  end-page: 80
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
– start-page: 8789
  year: 2018
  end-page: 8797
– volume: 47
  start-page: 4164
  issue: 9
  year: 2020
  end-page: 4176
  article-title: Graph‐convolutional‐network‐based interactive prostate segmentation in MR images
  publication-title: Med. Phys.
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  article-title: Isles 2015‐a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
– start-page: 612
  year: 2018
  end-page: 619
– volume: 212
  year: 2020
  article-title: AutoML: a survey of the state‐of‐the‐art
  publication-title: Knowl.‐Based Syst.
– volume: 7
  start-page: 44247
  year: 2019
  end-page: 44257
  article-title: Nas‐unet: neural architecture search for medical image segmentation
  publication-title: IEEE Access
– start-page: 1
  year: 2015
  end-page: 9
– volume: 1268
  start-page: 207
  year: 2004
  end-page: 212
  article-title: A SVM‐based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets
  publication-title: Int. Congr. Series.
– start-page: 291
  year: 2019
  end-page: 299
– volume: 40
  start-page: 1123
  issue: 4
  year: 2021
  end-page: 1133
  article-title: A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI
  publication-title: IEEE Trans. Med. Imag.
– start-page: 8543
  year: 2019
  end-page: 8553
– start-page: 586
  year: 2018
  end-page: 594
– start-page: 2017
  year: 2015
  end-page: 2025
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  article-title: Deep learning in medical image analysis
  publication-title: Ann. Rev. Biomed. Eng.
– start-page: 506
  year: 2017
  end-page: 517
– start-page: 137
  year: 2018
  end-page: 147
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  end-page: 1573
  article-title: Interactive medical image segmentation using deep learning with image‐specific fine tuning
  publication-title: IEEE Trans. Med. Imag.
– volume: 65
  start-page: 1871
  issue: 8
  year: 2017
  end-page: 1884
  article-title: Learning based segmentation of ct brain images: application to postoperative hydrocephalic scans
  publication-title: IEEE Trans. Bio‐Med. Eng.
– volume: 41
  start-page: 40
  year: 2017
  end-page: 54
  article-title: 3D deeply supervised network for automated segmentation of volumetric medical images
  publication-title: Med. Image Anal.
– volume: 15
  issue: 11
  year: 2013
  article-title: The virtual skeleton database: an open access repository for biomedical research and collaboration
  publication-title: J. Med. Internet. Res.
– volume: 11
  start-page: 3
  issue: 1
  year: 2015
  end-page: 14
  article-title: A survey on medical image segmentation
  publication-title: Curr. Med. Imaging Rev.
– start-page: 4271
  year: 2019
  end-page: 4277
  article-title: Light‐weight hybrid convolutional network for liver tumor segmentation
  publication-title: Int. Joint Conf. Artif. Intell. (IJCAI)
– start-page: 455
  year: 2019
  end-page: 458
– start-page: 129
  year: 2020
  end-page: 134
– volume: 64
  start-page: 2913
  issue: 12
  year: 2017
  end-page: 2923
  article-title: Dual‐channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images
  publication-title: IEEE Trans. Bio‐Med. Eng.
– volume: 38
  start-page: 2281
  issue: 10
  year: 2019
  end-page: 2292
  article-title: Ce‐net: context encoder network for 2D medical image segmentation
  publication-title: IEEE Trans. Med. Imag.
– start-page: 478
  year: 2016
  end-page: 486
– start-page: 1379
  year: 2020
  end-page: 1383
– year: 2021
– volume: 75
  start-page: 24
  year: 2019
  end-page: 33
  article-title: Combo loss: handling input and output imbalance in multi‐organ segmentation
  publication-title: Comput. Med. Imag. Graph
– volume: 39
  start-page: 4274
  issue: 12
  year: 2020
  end-page: 4285
  article-title: CF distance: a new domain discrepancy metric and application to explicit domain adaptation for cross‐modality cardiac image segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  end-page: 459
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit Imaging
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  end-page: 848
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 499
  issue: 2
  year: 2019
  end-page: 513
  article-title: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks
  publication-title: IEEE Trans. Med. Imag.
– start-page: 82
  year: 2019
  end-page: 92
– volume: 1
  start-page: 236
  issue: 5
  year: 2019
  end-page: 245
  article-title: Pathologist‐level interpretable whole‐slide cancer diagnosis with deep learning
  publication-title: Nat. Mach. Intell.
– volume: 32
  start-page: 1019
  issue: 6
  year: 2013
  end-page: 1032
  article-title: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening
  publication-title: IEEE Trans. Med. Image
– start-page: 1164
  year: 2020
  end-page: 1167
– year: 2018
– volume: 7
  start-page: 25
  year: 2020
  article-title: Deep learning for cardiac image segmentation: a review
  publication-title: Front. Cardiovas. Med.
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 56
  start-page: 44
  year: 2019
  end-page: 67
  article-title: Computational anatomy for multi‐organ analysis in medical imaging: a review
  publication-title: Med. Image Anal.
– volume: 4
  year: 2017
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Nat. Scient. Data
– volume: 2005
  start-page: 6492
  year: 2006
  end-page: 6495
  article-title: Medical images edge detection based on mathematical morphology
  publication-title: Proc. IEEE Eng. Med. Biol. Soc.
– volume: 40
  start-page: 172
  year: 2017
  end-page: 183
  article-title: Central focused convolutional neural networks: developing a data‐driven model for lung nodule segmentation
  publication-title: Med. Image Anal.
– volume: 3
  start-page: 146
  issue: 11
  year: 2015
  end-page: 151
  article-title: Automatic segmentation of liver tumor in ct images with deep convolutional neural networks
  publication-title: J. Comput. Commun.
– volume: 60
  year: 2020
  article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps
  publication-title: Med. Image Anal.
– start-page: 311
  year: 2017
  end-page: 319
– start-page: 3803
  year: 2020
  end-page: 3811
– start-page: 253
  year: 2019
  end-page: 258
– start-page: 1416
  year: 2019
  end-page: 1423
– volume: 63
  year: 2020
  article-title: ‘Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation
  publication-title: Med. Image Anal.
– start-page: 168
  year: 2018
  end-page: 172
– year: 2021
  article-title: Affinity attention graph neural network for weakly supervised semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2015
– start-page: 8300
  year: 2018
  end-page: 8308
– volume: 60
  start-page: 2967
  issue: 10
  year: 2013
  end-page: 2977
  article-title: A likelihood and local constraint level set model for liver tumor segmentation from CT volumes
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2020
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 38
  start-page: 562
  year: 2015
  end-page: 570
  article-title: Deeply‐supervised nets
  publication-title: Artif. Intell. Statist.
– volume: 54
  start-page: 137
  year: 2021
  end-page: 178
  article-title: Deep semantic segmentation of natural and medical images: a review
  publication-title: Artif. Intell. Rev.
– start-page: 11632
  year: 2019
  end-page: 11640
– start-page: 2961
  year: 2017
  end-page: 2969
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1104
  year: 2018
  end-page: 1108
– volume: 16
  start-page: 878
  issue: 6
  year: 1997
  end-page: 886
  article-title: Markov random field segmentation of brain MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  end-page: 931
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
– volume: 39
  start-page: 1316
  issue: 5
  year: 2019
  end-page: 1325
  article-title: Modified u‐net (mu‐net) with incorporation of object‐dependent high level features for improved liver and liver‐tumor segmentation in ct images
  publication-title: IEEE Trans. Med. Imag.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– start-page: 580
  year: 2018
  end-page: 588
– start-page: 865
  year: 2019
  end-page: 872
– volume: 32
  start-page: 582
  issue: 4
  year: 2019
  end-page: 596
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: J. Digit Imaging
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial nets
  publication-title: Adv. Neural. Inform. Process Syst.
– start-page: 424
  year: 2016
  end-page: 432
– start-page: 253
  year: 2017
  end-page: 262
– volume: 47
  start-page: e148
  issue: 5
  year: 2020
  end-page: e167
  article-title: Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state‐of‐art applications
  publication-title: Med. Phys.
– start-page: 364
  year: 2019
  end-page: 373
– volume: 18
  start-page: 359
  issue: 2
  year: 2014
  end-page: 373
  article-title: Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge
  publication-title: Med. Image Anal.
– volume: 32
  start-page: 523
  issue: 2
  year: 2021
  end-page: 534
  article-title: Transformation‐Consistent Self‐Ensembling Model for Semisupervised Medical Image Segmentation
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
– start-page: 1
  year: 2018
  end-page: 11
– start-page: 379
  year: 2017
  end-page: 387
  article-title: Tversky loss function for image segmentation using 3d fully convolutional deep networks
  publication-title: Int. Workshop Mach. Learn Med. Imag.
– volume: 48
  start-page: 1707
  issue: 4
  year: 2021
  end-page: 1719
  article-title: Automatic liver segmentation using 3D convolutional neural networks with a hybrid loss function
  publication-title: Medical Physics.
– volume: 34
  start-page: 1993
  issue: 10
  year: 2014
  end-page: 2024
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Image.
– start-page: 618
  year: 2017
  end-page: 626
– start-page: 9242
  year: 2018
  end-page: 9251
– year: 2020
– volume: 39
  start-page: 3679
  issue: 11
  year: 2020
  end-page: 3690
  article-title: Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 137
  issue: 2
  year: 2003
  end-page: 154
  article-title: A shape‐based approach to the segmentation of medical imagery using level sets
  publication-title: IEEE Trans. Med. Imag.
– start-page: 490
  year: 2018
  end-page: 498
– volume: 41
  start-page: 1559
  issue: 7
  year: 2018
  end-page: 1572
  article-title: Deepigeos: a deep interactive geodesic framework for medical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
– start-page: 4510
  year: 2018
  end-page: 4520
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  end-page: 1867
  article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 14
  article-title: Interpretable classification of alzheimer's disease pathologies with a convolutional neural network pipeline
  publication-title: Nat. Commun.
– ident: e_1_2_9_117_1
  doi: 10.1109/ISBI.2018.8363790
– ident: e_1_2_9_163_1
  doi: 10.1002/mp.14732
– ident: e_1_2_9_57_1
  doi: 10.1109/TMI.2017.2721362
– ident: e_1_2_9_25_1
  doi: 10.1007/s10462-020-09854-1
– ident: e_1_2_9_75_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_9_92_1
  doi: 10.1109/WACV.2018.00163
– ident: e_1_2_9_114_1
  doi: 10.1109/CVPR.2018.00916
– ident: e_1_2_9_174_1
  doi: 10.1109/42.845178
– ident: e_1_2_9_120_1
  doi: 10.1007/978-3-319-67389-9_34
– ident: e_1_2_9_177_1
  doi: 10.1109/ICDEW.2019.000-4
– ident: e_1_2_9_86_1
  doi: 10.1109/ISBI.2019.8759477
– start-page: 2017
  volume-title: Proceedings of the Advances in Neural Information Process Systems
  year: 2015
  ident: e_1_2_9_83_1
– ident: e_1_2_9_71_1
  doi: 10.1109/JBHI.2019.2912935
– ident: e_1_2_9_121_1
  doi: 10.1109/WACV.2018.00066
– ident: e_1_2_9_155_1
– ident: e_1_2_9_59_1
  doi: 10.1007/s11548-019-02062-5
– ident: e_1_2_9_125_1
  doi: 10.1145/1015706.1015720
– ident: e_1_2_9_24_1
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_2_9_96_1
– ident: e_1_2_9_140_1
  doi: 10.1109/TNN.2008.2005605
– ident: e_1_2_9_108_1
– ident: e_1_2_9_66_1
– ident: e_1_2_9_94_1
  doi: 10.1007/978-3-319-67389-9_44
– ident: e_1_2_9_98_1
  doi: 10.1007/978-3-030-00931-1_70
– ident: e_1_2_9_167_1
– ident: e_1_2_9_110_1
  doi: 10.1007/978-3-030-00934-2_65
– volume: 27
  start-page: 2672
  year: 2014
  ident: e_1_2_9_65_1
  article-title: Generative adversarial nets
  publication-title: Adv. Neural. Inform. Process Syst.
– ident: e_1_2_9_149_1
  doi: 10.1038/s42256-019-0052-1
– year: 2019
  ident: e_1_2_9_141_1
  article-title: Graph u‐nets
  publication-title: Nature
– ident: e_1_2_9_183_1
  doi: 10.1007/978-3-030-87193-2_4
– ident: e_1_2_9_136_1
  doi: 10.1109/CVPR.2019.00017
– ident: e_1_2_9_142_1
  doi: 10.1109/CVPR42600.2020.00386
– ident: e_1_2_9_74_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_9_49_1
– volume: 2005
  start-page: 6492
  year: 2006
  ident: e_1_2_9_14_1
  article-title: Medical images edge detection based on mathematical morphology
  publication-title: Proc. IEEE Eng. Med. Biol. Soc.
– ident: e_1_2_9_124_1
  doi: 10.1109/ICCV.2001.937505
– ident: e_1_2_9_26_1
  doi: 10.1002/mp.13649
– ident: e_1_2_9_101_1
  doi: 10.1109/TMI.2019.2930068
– ident: e_1_2_9_168_1
  doi: 10.1109/JBHI.2014.2370952
– volume: 38
  start-page: 562
  year: 2015
  ident: e_1_2_9_73_1
  article-title: Deeply‐supervised nets
  publication-title: Artif. Intell. Statist.
– ident: e_1_2_9_81_1
  doi: 10.1007/978-3-030-32248-9_49
– ident: e_1_2_9_23_1
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: e_1_2_9_54_1
  doi: 10.1016/j.ijmedinf.2018.06.003
– ident: e_1_2_9_156_1
  doi: 10.1016/j.media.2016.07.009
– ident: e_1_2_9_99_1
  doi: 10.1109/CVPR.2019.01190
– ident: e_1_2_9_36_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_9_50_1
  doi: 10.1007/978-981-13-2291-4_16
– ident: e_1_2_9_84_1
– ident: e_1_2_9_160_1
– start-page: 4271
  year: 2019
  ident: e_1_2_9_62_1
  article-title: Light‐weight hybrid convolutional network for liver tumor segmentation
  publication-title: Int. Joint Conf. Artif. Intell. (IJCAI)
– ident: e_1_2_9_8_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_12_1
  doi: 10.1109/TMI.2020.3016144
– ident: e_1_2_9_157_1
– ident: e_1_2_9_88_1
  doi: 10.1609/aaai.v34i04.6100
– start-page: 424
  volume-title: Proceedings of the International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI)
  year: 2016
  ident: e_1_2_9_35_1
– ident: e_1_2_9_67_1
  doi: 10.1016/j.eswa.2019.112855
– ident: e_1_2_9_30_1
  doi: 10.1007/s10278-017-9983-4
– ident: e_1_2_9_147_1
  doi: 10.1038/s41467-019-12621-8
– start-page: 253
  volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI) Workshop
  year: 2017
  ident: e_1_2_9_90_1
– ident: e_1_2_9_42_1
  doi: 10.1109/ISBI.2018.8363764
– ident: e_1_2_9_161_1
  doi: 10.1016/j.media.2013.12.002
– ident: e_1_2_9_115_1
  doi: 10.1007/978-981-15-1816-4_3
– ident: e_1_2_9_173_1
  doi: 10.1109/ISBI.2018.8363547
– ident: e_1_2_9_33_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_9_151_1
– ident: e_1_2_9_29_1
  doi: 10.1016/j.compbiomed.2018.05.018
– ident: e_1_2_9_129_1
  doi: 10.1007/978-3-030-00934-2_55
– ident: e_1_2_9_6_1
  doi: 10.1109/TMI.2013.2247770
– ident: e_1_2_9_39_1
  doi: 10.1109/ITME.2018.00080
– ident: e_1_2_9_112_1
  doi: 10.1007/978-3-030-00934-2_81
– ident: e_1_2_9_21_1
  doi: 10.1145/3065386
– ident: e_1_2_9_28_1
  doi: 10.1007/s10278-019-00227-x
– ident: e_1_2_9_41_1
  doi: 10.1109/NAECON.2018.8556686
– ident: e_1_2_9_58_1
  doi: 10.1109/EMBC.2019.8857167
– ident: e_1_2_9_80_1
  doi: 10.1007/978-3-030-32245-8_33
– ident: e_1_2_9_127_1
  doi: 10.1109/CVPR.2018.00963
– start-page: 129
  volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention
  year: 2020
  ident: e_1_2_9_175_1
– ident: e_1_2_9_31_1
  doi: 10.1093/nsr/nwx106
– ident: e_1_2_9_47_1
  doi: 10.1007/978-3-319-46723-8_48
– ident: e_1_2_9_150_1
  doi: 10.1109/TMI.2019.2963882
– ident: e_1_2_9_162_1
  doi: 10.1016/j.media.2019.04.002
– ident: e_1_2_9_170_1
  doi: 10.1109/AVSS.2014.6918687
– ident: e_1_2_9_9_1
  doi: 10.1109/TBME.2017.2690863
– ident: e_1_2_9_68_1
  doi: 10.1016/j.artmed.2021.102109
– ident: e_1_2_9_78_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_9_97_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_9_16_1
  doi: 10.1186/1472-6947-9-S1-S4
– ident: e_1_2_9_109_1
– ident: e_1_2_9_123_1
  doi: 10.1109/TMI.2018.2791721
– ident: e_1_2_9_82_1
  doi: 10.1109/CVPR.2018.00866
– year: 2021
  ident: e_1_2_9_176_1
  article-title: Affinity attention graph neural network for weakly supervised semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_9_85_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_9_169_1
  doi: 10.1118/1.3528204
– ident: e_1_2_9_72_1
  doi: 10.1109/TMI.2019.2959609
– ident: e_1_2_9_22_1
  doi: 10.2174/157340561101150423103441
– ident: e_1_2_9_166_1
  doi: 10.1016/j.media.2020.101950
– ident: e_1_2_9_11_1
  doi: 10.1007/s11548-019-02092-z
– ident: e_1_2_9_55_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_9_70_1
  doi: 10.1109/ISBI45749.2020.9098360
– ident: e_1_2_9_130_1
  doi: 10.1109/CVPR.2019.00874
– ident: e_1_2_9_153_1
  doi: 10.1016/j.array.2019.100004
– ident: e_1_2_9_32_1
  doi: 10.1109/TMI.2020.3002417
– ident: e_1_2_9_37_1
– ident: e_1_2_9_103_1
– ident: e_1_2_9_64_1
  doi: 10.1007/978-3-030-59719-1_36
– ident: e_1_2_9_53_1
– ident: e_1_2_9_63_1
  doi: 10.1109/ISBI45749.2020.9098656
– ident: e_1_2_9_13_1
  doi: 10.3389/fcvm.2020.00025
– ident: e_1_2_9_104_1
  doi: 10.1016/j.media.2017.05.001
– ident: e_1_2_9_137_1
  doi: 10.1038/s41592-020-01008-z
– ident: e_1_2_9_15_1
  doi: 10.1109/42.963823
– ident: e_1_2_9_102_1
  doi: 10.1016/j.compmedimag.2019.04.005
– ident: e_1_2_9_40_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_61_1
  doi: 10.1109/TMI.2018.2845918
– ident: e_1_2_9_146_1
– ident: e_1_2_9_20_1
  doi: 10.1109/42.650883
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-030-01234-2_49
– volume: 2
  year: 2015
  ident: e_1_2_9_3_1
  article-title: Automatic liver tumor segmentation in follow‐up CT studies using convolutional neural networks
  publication-title: Sci. Rep.
– ident: e_1_2_9_7_1
  doi: 10.1109/TMI.2018.2791488
– ident: e_1_2_9_48_1
  doi: 10.1007/978-3-030-01421-6_14
– ident: e_1_2_9_56_1
  doi: 10.1109/TPAMI.2017.2699184
– ident: e_1_2_9_95_1
  doi: 10.1007/978-3-319-67558-9_28
– ident: e_1_2_9_131_1
  doi: 10.1007/978-3-030-05318-5_3
– ident: e_1_2_9_144_1
  doi: 10.1016/j.media.2019.101619
– ident: e_1_2_9_119_1
  doi: 10.1007/978-3-319-68127-6_1
– ident: e_1_2_9_93_1
  doi: 10.1109/CVPR.2019.00045
– ident: e_1_2_9_172_1
  doi: 10.2196/jmir.2930
– ident: e_1_2_9_38_1
– ident: e_1_2_9_178_1
  doi: 10.1016/j.media.2019.101556
– ident: e_1_2_9_164_1
– ident: e_1_2_9_122_1
  doi: 10.1109/TPAMI.2018.2840695
– ident: e_1_2_9_143_1
  doi: 10.1007/978-3-030-59719-1_77
– ident: e_1_2_9_182_1
  doi: 10.1007/978-3-030-87199-4_6
– ident: e_1_2_9_18_1
  doi: 10.1109/TBME.2013.2267212
– ident: e_1_2_9_27_1
  doi: 10.1016/j.media.2020.101693
– ident: e_1_2_9_46_1
  doi: 10.1109/ISBI.2019.8759555
– ident: e_1_2_9_118_1
  doi: 10.1609/aaai.v33i01.3301865
– ident: e_1_2_9_79_1
  doi: 10.1109/ICASSP40776.2020.9053454
– ident: e_1_2_9_69_1
  doi: 10.1109/TMI.2017.2743464
– ident: e_1_2_9_180_1
– volume: 65
  start-page: 1871
  issue: 8
  year: 2017
  ident: e_1_2_9_5_1
  article-title: Learning based segmentation of ct brain images: application to postoperative hydrocephalic scans
  publication-title: IEEE Trans. Bio‐Med. Eng.
– ident: e_1_2_9_145_1
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ics.2004.03.349
– ident: e_1_2_9_87_1
  doi: 10.1109/ICB45273.2019.8987270
– ident: e_1_2_9_154_1
  doi: 10.1038/sdata.2017.117
– ident: e_1_2_9_45_1
  doi: 10.1109/TMI.2019.2948320
– ident: e_1_2_9_2_1
  doi: 10.4236/jcc.2015.311023
– ident: e_1_2_9_159_1
  doi: 10.1016/j.media.2020.101950
– ident: e_1_2_9_52_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_9_10_1
  doi: 10.1016/j.media.2017.06.014
– volume: 31
  start-page: 8699
  year: 2018
  ident: e_1_2_9_135_1
  article-title: Searching for efficient multi‐scale architectures for dense image prediction
  publication-title: Neural Inform. Process Syst.
– ident: e_1_2_9_4_1
  doi: 10.1109/TMI.2014.2377694
– start-page: 11795
  volume-title: NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems
  year: 2019
  ident: e_1_2_9_133_1
– ident: e_1_2_9_128_1
  doi: 10.1007/978-3-319-66179-7_36
– ident: e_1_2_9_138_1
  doi: 10.1109/ACCESS.2019.2908991
– ident: e_1_2_9_148_1
  doi: 10.1109/ICCV.2017.74
– ident: e_1_2_9_89_1
  doi: 10.1109/TPAMI.2015.2389824
– ident: e_1_2_9_44_1
  doi: 10.1016/j.neunet.2019.08.025
– ident: e_1_2_9_77_1
– ident: e_1_2_9_158_1
– ident: e_1_2_9_17_1
  doi: 10.1109/TMI.2002.808355
– ident: e_1_2_9_113_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_9_76_1
  doi: 10.1109/TMI.2019.2903562
– ident: e_1_2_9_134_1
  doi: 10.1007/978-3-030-05318-5_2
– ident: e_1_2_9_43_1
  doi: 10.1007/978-3-030-00937-3_67
– ident: e_1_2_9_179_1
  doi: 10.1002/mp.14327
– ident: e_1_2_9_184_1
– ident: e_1_2_9_51_1
  doi: 10.1109/BIBM47256.2019.8983266
– ident: e_1_2_9_100_1
  doi: 10.1109/TNNLS.2020.2995319
– ident: e_1_2_9_181_1
– year: 2020
  ident: e_1_2_9_139_1
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2021
  ident: e_1_2_9_91_1
  article-title: Defed‐net: Deformable encoder‐decoder network for liver and liver tumor segmentation
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
– ident: e_1_2_9_165_1
– ident: e_1_2_9_126_1
  doi: 10.1109/CVPR.2018.00892
– ident: e_1_2_9_171_1
  doi: 10.1101/2019.12.13.19014902
– ident: e_1_2_9_105_1
  doi: 10.1109/TMI.2020.3046579
– ident: e_1_2_9_116_1
  doi: 10.1016/j.compmedimag.2020.101733
– ident: e_1_2_9_111_1
  doi: 10.1007/978-3-030-00536-8_1
– ident: e_1_2_9_132_1
  doi: 10.1016/j.knosys.2020.106622
– ident: e_1_2_9_60_1
  doi: 10.1002/mp.14391
– ident: e_1_2_9_107_1
  doi: 10.1007/978-3-319-60964-5_44
– ident: e_1_2_9_106_1
  doi: 10.1016/j.media.2016.08.008
– ident: e_1_2_9_152_1
  doi: 10.1007/978-3-319-46723-8_55
SSID ssj0059085
Score 2.682359
Snippet Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the...
Abstract Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1243
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5DX3zxtzh_EdAXhWqWNG0jvqgoU1BEFHwrbe46Bq4bmwr-916ydCKI4FNLuVK45HLfNbnvY-yA4geUisvIKJ1EMRQ2MoAl1TxVAalCbbxM59190n2Ob1_0S4udNb0wU36I2Q83Fxl-vXYBXpRTFRICtTSI_dFYHlN2cpyf86631jHny_ihWYedmLf27ZBOSD7RpiEnjc3J97s_0pFn7f-JUn2auV5miwEf8vPpgK6wFtarbClgRR4icbLGsrDDwvsDWhH4BHuD0EVUc3eWvccBccSDKETvlJ_zyfv4Az_X2fP11dNlNwoqCJElqGKiJEHhidihREhACCiQQFtHSjRVRnVkQTlXlSAKmhQFwSepULj-9qyTWAChNthcPaxxk_FKVRqrSmrIYirLZFYYTde0AwJlKm2bHTbOyG2gCHdKFa-536qOTe4cl3vHtdn-zHY0Jcb41erC-XRm4cis_YPhuJeH2MhLKuJS0JBqS-gNVWYJiNnK1XKQWCHa7MiPyB_fyW8eHqW_2_qP8TZbkK6dwZ_E2WFzb-N33CWQ8Vbu-bn0BZrhyWw
  priority: 102
  providerName: Wiley-Blackwell
Title Medical image segmentation using deep learning: A survey
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12419
https://doaj.org/article/b6197d5d75c143e38c025cf2871d6c00
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86X3zxW5wfI6AvCnVd0rSNb1McU1CGWBm-lDa5joGbYx-C_72XNBsTRF98aimBlLskv9-Ru98Rcob7R3Me5J7kIvQCnSlPasgx5ikyHXEQ0rbpfHgM20lw3xXdpVZfJieslAcuDVfPkeFHWuhIKIR24LFClFaFIfo6VL6N1hHz5sFUeQabRt7ClkKaJvKhkHNh0kDW-6Mxu0RUM9o6S1BkFfu_M1QLMa0tsuG4IW2W_7RNVmC4QzYdT6RuF052SexuV2h_gKcBnUBv4CqIhtTksfeoBhhR1xCid0WbdDIbf8DnHklat883bc91QPAU0hTphSH4VoRd56BD7fs6AyRsDcZAFjHGkBniLc-1n-GCyJA6MQ6-qW2PG6HS2uf7pDJ8H8IBoQUvBBQFEzoOMCRjcSYFPtGKPrCIqSo5nxsjVU4e3HSpeEvtNXUgU2O41BquSk4XY0elKMaPo66NTRcjjJC1_YDuTZ1707_cWyUX1iO_zJPedZ6YfTv8jxmPyDozJQ42O-eYVKbjGZwg8ZjmNbLKgk6NrDVfktekZlfcF_5N0vk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBYlPbSX9E3cp6C9tLCNrNeuenNLjd06IZQEclt2NbPGUK-NH4H--2i0sksgBHLaZRmxMNJovpFmvmHsU7AfUErXmVPGZhoqnznAOsQ8TQW5QuNim86TUzu60L8uzWXKzaFamI4fYn_gRpYR92sycDqQ7gJOTSSZs-VKfg3uiUg_H2orc7JLqc92GzF18zaxHpI6yVvjduyk2h3_H3vDH0Xa_pswNfqZ4VN2mAAiH3Qz-ow9wPY5e5LAIk-muH7BinTFwmfzsCXwNU7nqYyo5ZTMPuWAuOSpK8T0Gx_w9XZ1hf9esovhz_Mfoyy1Qch8wCousxZFZGKHGsGCEFBhQG19KdE1RQgkq-B0VQ2iCquiCvhJKhRU4F70rQcQ6hU7aBctHjHeqMZg00gDhQ5xmSwqZ8Iz74NAmUvfY593yih94ginVhV_y3hXrV1Jiiuj4nrs41522TFj3Cr1nXS6lyA26_hhsZqWyTjKOkRxORjIjQ_wDVXhAxLzDQVzYL0QPfYlzsgd_ynHZ39kfHt9H-EP7NHo_GRSTsanv9-wx5JqG2Jazlt2sFlt8V1AHJv6fVxX143zzNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEF-KgtzL-XXHVT1d0BcPcm53s0n28KV-FL8ph5XiS0h2JkXQWloV_O-d3W4rBRF8SggTArPz8Zvszm8Y2yH_AaXiMjJKJ1EMhY0MYEk1T1VAqlAbP6bz8io56cRnXd2tsf1JL8yYH2L6w815ho_XzsEHUI3rzdhxZN4NhvIvZSfH-TnvaPLIpuebN53bziQSu3He2jdEulHyiTYTetLY7L2_PZOQPG__LE71iaa1xL4HhMib4yVdZjXsr7DFgBZ58MXRKsvCHgu_e6CYwEfYewh9RH3uTrP3OCAOeBgL0fvHm3z0PHzB1x-s0zq-PjyJwhyEyBJYMVGSoPBU7FAiJCAEFEiwrSElmiqjSrKgrKtKEAWZRUEASioUrsM9ayQWQKifbK7_2MdfjFeq0lhVUkMWU2Ems8JouqYNEChTaetsd6KM3AaScDer4j73m9WxyZ3icq-4Otueyg7G1BgfSh04nU4lHJ21f_A47OXBO_KSyrgUNKTaEn5DlVmCYrZy1RwkVog6--NX5JPv5Kft_9LfrX1FeIsttI9a-cXp1fk6-yZdb4M_lrPB5p6Gz_ibEMdTuRkM6w1vzM3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+image+segmentation+using+deep+learning%3A+A+survey&rft.jtitle=IET+image+processing&rft.au=Risheng+Wang&rft.au=Tao+Lei&rft.au=Ruixia+Cui&rft.au=Bingtao+Zhang&rft.date=2022-04-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=16&rft.issue=5&rft.spage=1243&rft.epage=1267&rft_id=info:doi/10.1049%2Fipr2.12419&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6197d5d75c143e38c025cf2871d6c00
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon