Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries
Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow k...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research.
This review comprehensively summarizes and discusses the recent progress in the key materials for rechargeable magnesium batteries (RMBs) including cathodes, anodes, and electrolytes. The challenges and opportunities in this field are systematically analyzed. This work will provide valuable references for achieving the high specific capacity and long‐lifespan RMBs in the near future. |
---|---|
AbstractList | Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research.
This review comprehensively summarizes and discusses the recent progress in the key materials for rechargeable magnesium batteries (RMBs) including cathodes, anodes, and electrolytes. The challenges and opportunities in this field are systematically analyzed. This work will provide valuable references for achieving the high specific capacity and long‐lifespan RMBs in the near future. Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research. Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg 2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg 2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research. |
Author | Liu, Fanfan Liu, Xiaobin Wang, Tiantian Fan, Li‐Zhen |
Author_xml | – sequence: 1 givenname: Fanfan surname: Liu fullname: Liu, Fanfan organization: University of Science and Technology Beijing – sequence: 2 givenname: Tiantian surname: Wang fullname: Wang, Tiantian organization: University of Science and Technology Beijing – sequence: 3 givenname: Xiaobin surname: Liu fullname: Liu, Xiaobin organization: University of Science and Technology Beijing – sequence: 4 givenname: Li‐Zhen orcidid: 0000-0003-2270-4458 surname: Fan fullname: Fan, Li‐Zhen email: fanlizhen@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkEtLAzEURoNUsNZuXQdcT81rXsta6gPrA6nrkGTuTKdMk5pMkf57Z6hUEMTVvXDP-S5852hgnQWELimZUELYtQK7mTDCCCFplp6gIU2oiJJMkMFx5-wMjUNYdwwROSWcD9FytlJNA7aCgJUt8BsYsC1-9a7yEAJ2Fj_CHj-pFnytmoBL53topXwFSjfQnSoLod5t8I1qewrCBTotOxbG33OE3m_ny9l9tHi5e5hNF5ERgqZRHrOYCQ2sVEKLMslMmbBY0FikKc1ynWakLHjBNOOQJaZIOddgtNFKs7jICB-hq0Pu1ruPHYRWrt3O2-6lZF2GEDGN846aHCjjXQgeSrn19Ub5vaRE9uXJvjx5LK8TxC_B1K1qa2dbr-rmby0_aJ91A_t_nsjp_Pnpx_0COACF0Q |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c06433 crossref_primary_10_1002_smll_202400903 crossref_primary_10_1039_D4LF00124A crossref_primary_10_1007_s10853_020_05358_z crossref_primary_10_1016_j_cej_2023_142433 crossref_primary_10_1002_adma_202309339 crossref_primary_10_1002_aenm_202002128 crossref_primary_10_1007_s10854_024_13174_3 crossref_primary_10_1016_j_cej_2023_141345 crossref_primary_10_1021_acsami_0c12313 crossref_primary_10_1039_D0CC03099F crossref_primary_10_1002_ange_202214054 crossref_primary_10_1016_j_jma_2024_11_025 crossref_primary_10_1002_cssc_202201821 crossref_primary_10_1002_ange_202200181 crossref_primary_10_1246_cl_220523 crossref_primary_10_3390_molecules29143349 crossref_primary_10_1002_aenm_202301980 crossref_primary_10_1021_acsami_4c03019 crossref_primary_10_1021_acsami_2c08470 crossref_primary_10_1002_batt_202200011 crossref_primary_10_1039_D3TA05143A crossref_primary_10_1016_j_cej_2023_147440 crossref_primary_10_1021_acs_chemrev_2c00289 crossref_primary_10_1021_jacs_4c10106 crossref_primary_10_1002_eem2_12172 crossref_primary_10_1021_acs_jpcc_0c08268 crossref_primary_10_1002_adma_202005501 crossref_primary_10_3390_molecules27227751 crossref_primary_10_1021_acs_jpcc_1c07324 crossref_primary_10_1016_j_jechem_2021_12_016 crossref_primary_10_1002_celc_202101066 crossref_primary_10_1021_acsami_1c17023 crossref_primary_10_1039_D3TA02416D crossref_primary_10_1016_S1872_5805_21_60039_2 crossref_primary_10_1021_acsnano_1c10253 crossref_primary_10_1016_j_jcis_2021_10_175 crossref_primary_10_1002_aenm_202201464 crossref_primary_10_1021_acs_chemrev_2c00739 crossref_primary_10_1016_j_est_2024_113890 crossref_primary_10_1002_aenm_202304342 crossref_primary_10_1002_smm2_1007 crossref_primary_10_1021_prechem_4c00030 crossref_primary_10_1002_aenm_202302683 crossref_primary_10_1016_j_jma_2024_11_031 crossref_primary_10_1021_acsami_4c20787 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1016_j_apsusc_2023_157528 crossref_primary_10_3390_molecules29194761 crossref_primary_10_1007_s40820_022_00864_y crossref_primary_10_1016_j_cej_2021_130747 crossref_primary_10_1016_j_apsusc_2022_153141 crossref_primary_10_1021_acsenergylett_2c02525 crossref_primary_10_1016_j_coco_2023_101553 crossref_primary_10_1002_eem2_12486 crossref_primary_10_1007_s10008_023_05426_9 crossref_primary_10_1002_smll_202401215 crossref_primary_10_1021_acsnano_4c06653 crossref_primary_10_1039_D4QI02882A crossref_primary_10_1002_anie_202407770 crossref_primary_10_1002_cssc_202301269 crossref_primary_10_1016_j_jechem_2022_08_037 crossref_primary_10_1021_acs_jpcc_3c08056 crossref_primary_10_1016_j_jma_2024_10_001 crossref_primary_10_1021_acsaem_4c00937 crossref_primary_10_1021_acsami_1c06669 crossref_primary_10_1002_cssc_202200999 crossref_primary_10_1002_adma_202103881 crossref_primary_10_1039_D4TA07625G crossref_primary_10_1039_D1SE01188J crossref_primary_10_1021_acs_nanolett_2c03710 crossref_primary_10_1088_1361_6528_ac21f2 crossref_primary_10_1007_s11581_023_05005_y crossref_primary_10_1021_acsami_1c00170 crossref_primary_10_1002_adfm_202405586 crossref_primary_10_1021_acsenergylett_3c01959 crossref_primary_10_1039_D2EE04121A crossref_primary_10_3390_nano14030271 crossref_primary_10_1002_cnl2_22 crossref_primary_10_1002_ange_202407770 crossref_primary_10_1016_j_flatc_2022_100444 crossref_primary_10_1002_batt_202400749 crossref_primary_10_1016_j_inoche_2024_112805 crossref_primary_10_1007_s42114_024_01121_z crossref_primary_10_1021_acs_chemmater_0c02648 crossref_primary_10_1002_anie_202416582 crossref_primary_10_1007_s12274_021_3679_2 crossref_primary_10_1002_smtd_202400587 crossref_primary_10_1021_acsami_2c03389 crossref_primary_10_1557_s43578_022_00743_7 crossref_primary_10_1016_j_jcis_2022_11_070 crossref_primary_10_1016_j_jallcom_2022_167119 crossref_primary_10_1016_j_ensm_2022_03_039 crossref_primary_10_1002_adma_202208289 crossref_primary_10_1039_D2CS00810F crossref_primary_10_1016_j_ensm_2022_06_014 crossref_primary_10_1039_D1SE00909E crossref_primary_10_1016_j_cej_2023_148170 crossref_primary_10_1002_cplu_202100272 crossref_primary_10_1007_s11426_022_1454_0 crossref_primary_10_1002_ange_202416582 crossref_primary_10_1007_s11581_024_05699_8 crossref_primary_10_1002_batt_202400052 crossref_primary_10_1088_2515_7655_ad34fc crossref_primary_10_1039_D1MA00351H crossref_primary_10_1016_j_est_2025_116213 crossref_primary_10_1038_s41467_025_56556_9 crossref_primary_10_1002_ente_202001056 crossref_primary_10_1002_inf2_12549 crossref_primary_10_1016_j_ensm_2023_103142 crossref_primary_10_1103_PhysRevApplied_21_024038 crossref_primary_10_1021_acs_nanolett_4c04908 crossref_primary_10_1007_s40820_022_00976_5 crossref_primary_10_1016_j_cej_2022_138824 crossref_primary_10_1021_acs_cgd_4c01631 crossref_primary_10_1002_adma_202310245 crossref_primary_10_3390_nano11030810 crossref_primary_10_1039_D0TA09330K crossref_primary_10_1039_D1CC02048J crossref_primary_10_1021_acs_nanolett_3c02465 crossref_primary_10_1039_D3TA05912J crossref_primary_10_1016_j_ceramint_2023_11_019 crossref_primary_10_1016_j_jelechem_2022_116413 crossref_primary_10_1002_eem2_12527 crossref_primary_10_1039_D2NR00128D crossref_primary_10_1002_smtd_202400004 crossref_primary_10_1007_s13369_022_07597_5 crossref_primary_10_1177_16878140211003398 crossref_primary_10_1021_acs_jpcc_2c01724 crossref_primary_10_1021_acs_nanolett_2c04293 crossref_primary_10_1016_j_ensm_2021_11_012 crossref_primary_10_1515_zpch_2023_0492 crossref_primary_10_1002_anie_202214054 crossref_primary_10_1002_smll_202307396 crossref_primary_10_1002_chem_202302978 crossref_primary_10_1021_acsaem_3c03239 crossref_primary_10_1016_j_ensm_2024_103470 crossref_primary_10_3390_polym15051145 crossref_primary_10_1007_s00604_024_06470_6 crossref_primary_10_1021_acsami_4c11178 crossref_primary_10_1002_cey2_178 crossref_primary_10_1016_j_inoche_2022_110296 crossref_primary_10_1021_acsmaterialslett_4c01589 crossref_primary_10_1016_j_est_2023_106895 crossref_primary_10_1021_acsami_2c11911 crossref_primary_10_1021_acsaem_2c04182 crossref_primary_10_1039_D3CP02422A crossref_primary_10_1021_acs_nanolett_4c04360 crossref_primary_10_3762_bjnano_12_75 crossref_primary_10_1002_ente_202200918 crossref_primary_10_1021_acsami_4c16113 crossref_primary_10_1021_acsnano_2c06915 crossref_primary_10_1002_admt_202200518 crossref_primary_10_1016_j_egyr_2022_07_124 crossref_primary_10_1002_adfm_202408535 crossref_primary_10_1039_D4TA00639A crossref_primary_10_1002_smll_202404898 crossref_primary_10_1021_acs_nanolett_4c01651 crossref_primary_10_1039_D1CP02789A crossref_primary_10_1021_acsenergylett_3c01192 crossref_primary_10_1016_j_est_2024_112543 crossref_primary_10_3389_fmats_2020_612134 crossref_primary_10_1002_adma_202418761 crossref_primary_10_1021_acsami_4c06153 crossref_primary_10_1039_D3QM00366C crossref_primary_10_1002_anie_202200181 crossref_primary_10_1021_acs_chemmater_1c01983 crossref_primary_10_1039_D0EE02111C crossref_primary_10_1002_smll_202306576 crossref_primary_10_1007_s10008_022_05215_w crossref_primary_10_1007_s11581_023_05347_7 |
Cites_doi | 10.1038/nmat4462 10.1016/j.nanoen.2015.10.029 10.1021/acsaem.8b02253 10.1039/C7CC01570D 10.1016/S0167-2738(03)00267-4 10.1021/acsenergylett.6b00213 10.1016/j.ssi.2017.06.002 10.1016/j.elecom.2017.03.018 10.1039/c3ra43206h 10.1038/srep46189 10.1002/smll.201902797 10.1021/jp0367575 10.1002/anie.200600099 10.1016/S0378-7753(02)00345-2 10.1038/srep05622 10.1016/S0378-7753(01)00480-3 10.1016/j.jpowsour.2009.01.057 10.1039/C8CC05366A 10.1021/ja1098512 10.1039/C2CC34673G 10.1039/c3ta13205f 10.1021/acsami.6b04198 10.1039/C3CC47896C 10.1016/j.electacta.2012.03.095 10.1002/adma.201802563 10.1039/c1jm11793a 10.1016/j.matchemphys.2016.07.019 10.1039/c3ta10786h 10.1002/adma.200701495 10.1021/acsami.6b05808 10.1016/j.elecom.2006.03.043 10.1039/C3CC47097K 10.1021/acs.jpcc.7b11488 10.1039/C6CP00448B 10.1016/j.elecom.2011.12.010 10.1021/acsami.6b01352 10.1016/j.pmatsci.2014.04.001 10.1039/c3ta14825d 10.1002/adma.201003560 10.1039/c3ee40871j 10.1002/anie.201812824 10.1021/am508702j 10.3389/fchem.2019.00024 10.1021/acs.chemmater.6b01245 10.1021/nn503921j 10.1016/j.elecom.2008.06.021 10.1038/ncomms1435 10.1021/acs.chemmater.6b02223 10.1016/j.jpowsour.2008.05.021 10.1016/j.jpowsour.2013.01.114 10.1016/j.ssi.2005.10.031 10.1002/smll.201902767 10.1038/s41557-018-0019-6 10.1021/cm901452z 10.1007/s10008-010-1240-4 10.1002/aenm.201903002 10.1021/acs.chemmater.8b00288 10.1021/acs.nanolett.5b01109 10.1016/j.ensm.2018.05.023 10.1021/acsnano.8b06917 10.1021/nn4032454 10.1016/j.electacta.2019.134864 10.1021/jacs.5b10987 10.1021/acs.nanolett.8b02854 10.1016/j.nanoen.2018.10.033 10.1021/cm900033v 10.1039/C5NR04383B 10.1021/acsenergylett.7b00269 10.1002/adma.201904987 10.1038/s41467-017-00431-9 10.1039/C7TA09330F 10.1021/acs.jpcc.6b05036 10.1021/acs.chemmater.8b00462 10.1039/C9TA02212K 10.1038/srep03130 10.1002/adfm.201505501 10.1149/2.0631613jes 10.1016/j.nanoen.2018.04.066 10.1149/1.2086553 10.1021/acsenergylett.6b00145 10.1002/smll.201906076 10.1016/j.electacta.2012.07.050 10.1016/j.electacta.2012.01.037 10.1039/C9CC02556A 10.1016/j.nanoen.2019.103902 10.1016/j.electacta.2016.05.202 10.1016/j.jpowsour.2017.07.094 10.1039/C8CS00319J 10.1021/acsnano.8b00959 10.1002/chem.201704303 10.1038/35037553 10.1016/j.elecom.2017.09.001 10.1021/nl403874y 10.1038/am.2014.61 10.1016/j.ccr.2014.11.005 10.1016/j.ensm.2018.11.033 10.1039/c2cc35857c 10.1016/j.ensm.2019.12.030 10.1002/smll.201900105 10.1039/C7CC00265C 10.1021/acsami.8b04674 10.1016/j.joule.2018.10.028 10.1021/acsaem.9b01455 10.1039/C5CE01436K 10.1016/j.nanoen.2014.12.028 10.5796/electrochemistry.80.421 10.1039/C5TA00118H 10.1039/C4CP05591H 10.1039/C9CC07012E 10.1002/anie.201412202 10.1007/s10853-016-0023-4 10.1021/la402391f 10.1002/adma.201502378 10.1016/0378-7753(94)02099-O 10.1021/acsami.9b16710 10.1021/jacs.5b07820 10.1039/c3nr02850j 10.1039/C7EE02304A 10.1016/j.nanoen.2018.03.061 10.1021/acssuschemeng.7b00306 10.1039/C7CC03517A 10.1002/aenm.201700317 10.1149/2.1091610jes 10.1016/j.solmat.2017.06.034 10.1016/j.jpowsour.2016.11.060 10.1021/acsenergylett.7b00040 10.1039/C6TA01684G 10.1021/acs.nanolett.5b00388 10.1038/s41467-017-01772-1 10.1016/j.jpowsour.2008.10.112 10.1021/acsenergylett.8b01426 10.1149/2.0021605jes 10.1002/adma.200304415 10.1002/smtd.201800020 10.1002/anie.201204913 10.1002/adma.201604007 10.1039/C7TA03201C 10.1016/j.ensm.2019.06.035 10.1021/acsenergylett.6b00308 10.1016/S0022-0728(99)00146-1 10.1016/j.nanoen.2018.02.060 10.1149/1.2056075 10.1016/j.electacta.2011.04.114 10.1149/2.061404jes 10.1021/acsami.6b03193 10.1002/cssc.201900225 10.1039/c3ee40847g 10.1021/ja3091438 10.1039/C7TA03392C 10.1016/j.electacta.2012.06.099 10.1016/j.electacta.2004.01.099 10.1021/jacs.8b05967 10.1016/0025-5408(76)90077-5 10.1016/j.jpowsour.2009.10.073 10.1021/acs.chemmater.7b00772 10.1002/aenm.201401155 10.1002/celc.201701347 10.1016/j.jpowsour.2016.08.109 10.1039/C7TA02237A 10.1039/C4CP02230K 10.1002/adma.201905524 10.1002/aenm.201602055 10.1039/C5RA15284D 10.1021/acsami.7b09924 10.1002/aenm.201600140 10.1016/j.jpowsour.2015.06.127 10.1039/C3EE42613K 10.1021/jacs.7b06313 10.1002/adma.201805930 10.1021/acs.chemmater.7b01252 10.1038/natrevmats.2016.103 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202000787 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202000787 AENM202000787 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2017YFE0113500 – fundername: National Natural Science Foundation of China funderid: 51532002; 51872027 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4417-952524be2fa4b4f68cf625415477189b780fd3d2b23e86cd733becbcbab25d803 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:06:45 EDT 2025 Tue Jul 01 01:43:34 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Wed Jan 22 16:30:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4417-952524be2fa4b4f68cf625415477189b780fd3d2b23e86cd733becbcbab25d803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2270-4458 |
PQID | 2477445159 |
PQPubID | 886389 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2477445159 crossref_primary_10_1002_aenm_202000787 crossref_citationtrail_10_1002_aenm_202000787 wiley_primary_10_1002_aenm_202000787_AENM202000787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 83 2013; 3 2013; 1 2019; 12 2019; 15 2019; 324 2020; 16 2011; 56 2020; 12 2012; 16 2013; 7 2013; 5 2013; 6 2018; 49 2008; 184 2018; 48 2006; 177 2018; 47 2000; 407 2010; 22 2018; 6 2018; 3 2018; 2 2018; 5 2019; 20 2015; 137 2019; 22 2017; 78 2014; 16 2013; 233 2003; 161 2014; 14 2018; 30 2010; 195 2018; 180 2019; 7 2007; 19 2019; 9 2019; 3 2011; 2 2019; 31 2016; 329 2019; 2 1995; 54 2015; 54 1999; 466 2020; 32 2016; 18 2016; 15 2016; 163 2011; 133 2017; 139 2016; 4 2018; 18 2017; 53 2016; 6 2017; 308 2004; 50 2016; 1 2006; 45 2009; 190 2009; 187 2020; 26 2016; 210 2012; 48 2018; 12 2016; 28 2018; 10 2016; 26 2016; 8 2018; 14 2017; 5 2013; 29 2018; 122 2017; 7 2017; 8 2015; 36 2017; 2 2019; 55 2002; 112 2019; 58 2003; 15 2011; 15 2016; 182 2017; 9 2014; 66 2012; 51 2015; 294 1990; 137 2014; 2 2019; 65 2011; 21 2014; 161 2011; 23 2017; 363 2017; 121 2001; 99 2014; 8 2014; 7 2014; 50 2012; 66 2014; 6 2012; 82 2015; 12 2015; 15 2012; 80 2015; 17 2015; 5 2009; 21 2015; 4 2018; 140 2015; 18 2013; 49 2015; 3 2015; 287 2017; 23 2006; 8 1993; 140 2016; 51 2008; 10 2017; 29 2004; 108 2012; 79 2015; 7 2016; 120 2015; 27 1976; 11 2017; 10 2019 2013; 135 2016; 138 2017; 340 2018; 54 Arsentev M. (e_1_2_8_93_1) 2017; 121 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Cho W. (e_1_2_8_21_1) 2015; 36 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 182 start-page: 167 year: 2016 publication-title: Mater. Chem. Phys. – volume: 324 year: 2019 publication-title: Electrochim. Acta – volume: 195 start-page: 2096 year: 2010 publication-title: J. Power Sources – volume: 15 start-page: 169 year: 2016 publication-title: Nat. Mater. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 203 year: 1976 publication-title: Mater. Res. Bull. – volume: 99 start-page: 66 year: 2001 publication-title: J. Power Sources – volume: 79 start-page: 170 year: 2012 publication-title: Electrochim. Acta – volume: 49 start-page: 149 year: 2013 publication-title: Chem. Commun. – volume: 6 year: 2014 publication-title: NPG Asia Mater. – volume: 54 start-page: 7900 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 140 start-page: 140 year: 1993 publication-title: J. Electrochem. Soc. – volume: 18 start-page: 265 year: 2015 publication-title: Nano Energy – volume: 50 start-page: 243 year: 2014 publication-title: Chem. Commun. – volume: 51 start-page: 7355 year: 2016 publication-title: J. Mater. Sci. – volume: 9 start-page: 4296 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 8804 year: 2018 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 2194 year: 2015 publication-title: Nano Lett. – volume: 15 start-page: 2253 year: 2011 publication-title: J. Solid State Electrochem. – volume: 47 start-page: 210 year: 2018 publication-title: Nano Energy – volume: 163 start-page: D682 year: 2016 publication-title: J. Electrochem. Soc. – volume: 161 start-page: 173 year: 2003 publication-title: Solid State Ionics – volume: 29 start-page: 6245 year: 2017 publication-title: Chem. Mater. – volume: 27 start-page: 6598 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 1115 year: 2017 publication-title: ACS Energy Lett. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 6082 year: 2015 publication-title: J. Mater. Chem. A – volume: 78 start-page: 29 year: 2017 publication-title: Electrochem. Commun. – volume: 30 start-page: 3199 year: 2018 publication-title: Chem. Mater. – volume: 6 start-page: 2338 year: 2013 publication-title: Energy Environ. Sci. – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 297 year: 2016 publication-title: ACS Energy Lett. – volume: 15 start-page: 627 year: 2003 publication-title: Adv. Mater. – volume: 26 start-page: 3446 year: 2016 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 3665 year: 2017 publication-title: Chem. Commun. – volume: 20 start-page: 118 year: 2019 publication-title: Energy Storage Mater. – volume: 3 start-page: 27 year: 2019 publication-title: Joule – volume: 8 start-page: 3296 year: 2016 publication-title: Nanoscale – volume: 1 start-page: 431 year: 2016 publication-title: ACS Energy Lett. – volume: 50 start-page: 1320 year: 2014 publication-title: Chem. Commun. – year: 2019 publication-title: Small – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 2 start-page: 1197 year: 2017 publication-title: ACS Energy Lett. – volume: 83 start-page: 72 year: 2017 publication-title: Electrochem. Commun. – volume: 163 year: 2016 publication-title: J. Electrochem. Soc. – volume: 82 start-page: 243 year: 2012 publication-title: Electrochim. Acta – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 49 start-page: 453 year: 2018 publication-title: Nano Energy – volume: 54 start-page: 346 year: 1995 publication-title: J. Power Sources – volume: 36 start-page: 1209 year: 2015 publication-title: Chem. Soc. – volume: 26 start-page: 23 year: 2020 publication-title: Energy Storage Mater. – volume: 5 start-page: 5733 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 112 start-page: 85 year: 2002 publication-title: J. Power Sources – volume: 133 start-page: 6270 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 9474 year: 2018 publication-title: Chem. Commun. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 1041 year: 2006 publication-title: Electrochem. Commun. – volume: 2 start-page: 3430 year: 2014 publication-title: J. Mater. Chem. A – volume: 12 start-page: 750 year: 2015 publication-title: Nano Energy – volume: 122 start-page: 1513 year: 2018 publication-title: J. Phys. Chem. C – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 12 start-page: 3733 year: 2018 publication-title: ACS Nano – volume: 407 start-page: 724 year: 2000 publication-title: Nature – volume: 14 start-page: 351 year: 2018 publication-title: Energy Storage Mater. – volume: 177 start-page: 343 year: 2006 publication-title: Solid State Ionics – volume: 14 start-page: 255 year: 2014 publication-title: Nano Lett. – volume: 340 start-page: 104 year: 2017 publication-title: J. Power Sources – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 187 start-page: 627 year: 2009 publication-title: J. Power Sources – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 start-page: 3126 year: 2018 publication-title: J. Mater. Chem. A – volume: 17 start-page: 8728 year: 2015 publication-title: CrystEngComm – volume: 4 start-page: 7160 year: 2016 publication-title: J. Mater. Chem. A – volume: 53 start-page: 4453 year: 2017 publication-title: Chem. Commun. – volume: 51 start-page: 9780 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 638 year: 2016 publication-title: ACS Energy Lett. – volume: 466 start-page: 203 year: 1999 publication-title: J. Electroanal. Chem. – volume: 80 start-page: 413 year: 2012 publication-title: Electrochim. Acta – volume: 65 year: 2019 publication-title: Nano Energy – volume: 7 start-page: 7016 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 328 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2265 year: 2013 publication-title: Energy Environ. Sci. – volume: 54 start-page: 360 year: 2018 publication-title: Nano Energy – volume: 28 start-page: 4593 year: 2016 publication-title: Chem. Mater. – volume: 17 start-page: 5256 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 5822 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 96 year: 2019 publication-title: Energy Storage Mater. – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 329 start-page: 456 year: 2016 publication-title: J. Power Sources – volume: 210 start-page: 655 year: 2016 publication-title: Electrochim. Acta – volume: 233 start-page: 341 year: 2013 publication-title: J. Power Sources – volume: 48 year: 2012 publication-title: Chem. Commun. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 12 start-page: 2286 year: 2019 publication-title: ChemSusChem – volume: 2 year: 2018 publication-title: Small Methods – volume: 80 start-page: 421 year: 2012 publication-title: Electrochemistry – volume: 137 start-page: 775 year: 1990 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 1291 year: 2008 publication-title: Electrochem. Commun. – volume: 7 start-page: 8051 year: 2013 publication-title: ACS Nano – volume: 18 start-page: 6441 year: 2018 publication-title: Nano Lett. – volume: 294 start-page: 643 year: 2015 publication-title: J. Power Sources – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2020 publication-title: Small – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 53 start-page: 7608 year: 2017 publication-title: Chem. Commun. – volume: 58 start-page: 7615 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 339 year: 2017 publication-title: Nat. Commun. – volume: 7 start-page: 14 year: 2014 publication-title: Energy Environ. Sci. – volume: 308 start-page: 90 year: 2017 publication-title: Solid State Ionics – volume: 29 year: 2013 publication-title: Langmuir – volume: 184 start-page: 604 year: 2008 publication-title: J. Power Sources – volume: 48 start-page: 227 year: 2018 publication-title: Nano Energy – volume: 8 start-page: 8554 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 66 start-page: 75 year: 2012 publication-title: Electrochim. Acta – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 163 start-page: A580 year: 2016 publication-title: J. Electrochem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 19 start-page: 4260 year: 2007 publication-title: Adv. Mater. – volume: 21 start-page: 1390 year: 2009 publication-title: Chem. Mater. – volume: 15 start-page: 4071 year: 2015 publication-title: Nano Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 363 start-page: 269 year: 2017 publication-title: J. Power Sources – volume: 5 start-page: 9562 year: 2013 publication-title: Nanoscale – volume: 2 start-page: 427 year: 2011 publication-title: Nat. Commun. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 7980 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 287 start-page: 15 year: 2015 publication-title: Coord. Chem. Rev. – volume: 23 start-page: 640 year: 2011 publication-title: Adv. Mater. – volume: 190 start-page: 563 year: 2009 publication-title: J. Power Sources – volume: 15 year: 2019 publication-title: Small – volume: 12 year: 2018 publication-title: ACS Nano – volume: 121 year: 2017 publication-title: J. Phys. Chem. – volume: 50 start-page: 903 year: 2004 publication-title: Electrochim. Acta – volume: 2 start-page: 1572 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 30 start-page: 3690 year: 2018 publication-title: Chem. Mater. – volume: 4 start-page: 5622 year: 2015 publication-title: Sci. Rep. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 29 start-page: 3731 year: 2017 publication-title: Chem. Mater. – volume: 55 start-page: 6086 year: 2019 publication-title: Chem. Commun. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 161 start-page: A593 year: 2014 publication-title: J. Electrochem. Soc. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2616 year: 2017 publication-title: Energy Environ. Sci. – volume: 28 start-page: 6900 year: 2016 publication-title: Chem. Mater. – volume: 45 start-page: 6009 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 24 year: 2019 publication-title: Front. Chem. – volume: 12 start-page: 5226 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 180 start-page: 253 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 3130 year: 2013 publication-title: Sci. Rep. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 10 start-page: 532 year: 2018 publication-title: Nat. Chem. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 9606 year: 2014 publication-title: ACS Nano – volume: 56 start-page: 6530 year: 2011 publication-title: Electrochim. Acta – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 66 start-page: 1 year: 2014 publication-title: Prog. Mater. Sci. – volume: 5 start-page: 996 year: 2018 publication-title: ChemElectroChem – volume: 16 start-page: 103 year: 2012 publication-title: Electrochem. Commun. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1759 year: 2017 publication-title: Nat. Commun. – ident: e_1_2_8_7_1 doi: 10.1038/nmat4462 – volume: 121 start-page: 15509 year: 2017 ident: e_1_2_8_93_1 publication-title: J. Phys. Chem. – ident: e_1_2_8_31_1 doi: 10.1016/j.nanoen.2015.10.029 – ident: e_1_2_8_52_1 doi: 10.1021/acsaem.8b02253 – ident: e_1_2_8_139_1 doi: 10.1039/C7CC01570D – ident: e_1_2_8_29_1 doi: 10.1016/S0167-2738(03)00267-4 – ident: e_1_2_8_88_1 doi: 10.1021/acsenergylett.6b00213 – ident: e_1_2_8_171_1 doi: 10.1016/j.ssi.2017.06.002 – ident: e_1_2_8_157_1 doi: 10.1016/j.elecom.2017.03.018 – ident: e_1_2_8_144_1 doi: 10.1039/c3ra43206h – ident: e_1_2_8_161_1 doi: 10.1038/srep46189 – ident: e_1_2_8_101_1 doi: 10.1002/smll.201902797 – ident: e_1_2_8_40_1 doi: 10.1021/jp0367575 – ident: e_1_2_8_105_1 doi: 10.1002/anie.200600099 – ident: e_1_2_8_66_1 doi: 10.1016/S0378-7753(02)00345-2 – ident: e_1_2_8_61_1 doi: 10.1038/srep05622 – ident: e_1_2_8_65_1 doi: 10.1016/S0378-7753(01)00480-3 – ident: e_1_2_8_170_1 doi: 10.1016/j.jpowsour.2009.01.057 – ident: e_1_2_8_77_1 doi: 10.1039/C8CC05366A – ident: e_1_2_8_128_1 doi: 10.1021/ja1098512 – ident: e_1_2_8_115_1 doi: 10.1039/C2CC34673G – ident: e_1_2_8_83_1 doi: 10.1039/c3ta13205f – ident: e_1_2_8_53_1 doi: 10.1021/acsami.6b04198 – ident: e_1_2_8_149_1 doi: 10.1039/C3CC47896C – ident: e_1_2_8_37_1 doi: 10.1016/j.electacta.2012.03.095 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201802563 – ident: e_1_2_8_80_1 doi: 10.1039/c1jm11793a – ident: e_1_2_8_114_1 doi: 10.1016/j.matchemphys.2016.07.019 – ident: e_1_2_8_42_1 doi: 10.1039/c3ta10786h – ident: e_1_2_8_127_1 doi: 10.1002/adma.200701495 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.6b05808 – ident: e_1_2_8_26_1 doi: 10.1016/j.elecom.2006.03.043 – ident: e_1_2_8_160_1 doi: 10.1039/C3CC47097K – ident: e_1_2_8_24_1 doi: 10.1021/acs.jpcc.7b11488 – ident: e_1_2_8_58_1 doi: 10.1039/C6CP00448B – ident: e_1_2_8_112_1 doi: 10.1016/j.elecom.2011.12.010 – ident: e_1_2_8_81_1 doi: 10.1021/acsami.6b01352 – ident: e_1_2_8_126_1 doi: 10.1016/j.pmatsci.2014.04.001 – ident: e_1_2_8_150_1 doi: 10.1039/c3ta14825d – ident: e_1_2_8_104_1 doi: 10.1002/adma.201003560 – ident: e_1_2_8_9_1 doi: 10.1039/c3ee40871j – ident: e_1_2_8_154_1 doi: 10.1002/anie.201812824 – ident: e_1_2_8_20_1 doi: 10.1021/am508702j – ident: e_1_2_8_107_1 doi: 10.3389/fchem.2019.00024 – ident: e_1_2_8_36_1 doi: 10.1021/acs.chemmater.6b01245 – ident: e_1_2_8_49_1 doi: 10.1021/nn503921j – ident: e_1_2_8_63_1 doi: 10.1016/j.elecom.2008.06.021 – ident: e_1_2_8_85_1 doi: 10.1038/ncomms1435 – ident: e_1_2_8_35_1 doi: 10.1021/acs.chemmater.6b02223 – ident: e_1_2_8_59_1 doi: 10.1016/j.jpowsour.2008.05.021 – ident: e_1_2_8_116_1 doi: 10.1016/j.jpowsour.2013.01.114 – ident: e_1_2_8_165_1 doi: 10.1016/j.ssi.2005.10.031 – ident: e_1_2_8_14_1 doi: 10.1002/smll.201902767 – ident: e_1_2_8_109_1 doi: 10.1038/s41557-018-0019-6 – ident: e_1_2_8_2_1 doi: 10.1021/cm901452z – ident: e_1_2_8_167_1 doi: 10.1007/s10008-010-1240-4 – ident: e_1_2_8_99_1 doi: 10.1002/aenm.201903002 – ident: e_1_2_8_120_1 doi: 10.1021/acs.chemmater.8b00288 – ident: e_1_2_8_39_1 doi: 10.1021/acs.nanolett.5b01109 – ident: e_1_2_8_117_1 doi: 10.1016/j.ensm.2018.05.023 – ident: e_1_2_8_73_1 doi: 10.1021/acsnano.8b06917 – ident: e_1_2_8_48_1 doi: 10.1021/nn4032454 – ident: e_1_2_8_100_1 doi: 10.1016/j.electacta.2019.134864 – ident: e_1_2_8_151_1 doi: 10.1021/jacs.5b10987 – ident: e_1_2_8_56_1 doi: 10.1021/acs.nanolett.8b02854 – ident: e_1_2_8_103_1 doi: 10.1016/j.nanoen.2018.10.033 – ident: e_1_2_8_18_1 doi: 10.1021/cm900033v – ident: e_1_2_8_87_1 doi: 10.1039/C5NR04383B – ident: e_1_2_8_152_1 doi: 10.1021/acsenergylett.7b00269 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201904987 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-017-00431-9 – ident: e_1_2_8_132_1 doi: 10.1039/C7TA09330F – ident: e_1_2_8_159_1 doi: 10.1021/acs.jpcc.6b05036 – ident: e_1_2_8_57_1 doi: 10.1021/acs.chemmater.8b00462 – ident: e_1_2_8_51_1 doi: 10.1039/C9TA02212K – ident: e_1_2_8_134_1 doi: 10.1038/srep03130 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201505501 – ident: e_1_2_8_135_1 doi: 10.1149/2.0631613jes – ident: e_1_2_8_147_1 doi: 10.1016/j.nanoen.2018.04.066 – ident: e_1_2_8_10_1 doi: 10.1149/1.2086553 – ident: e_1_2_8_47_1 doi: 10.1021/acsenergylett.6b00145 – ident: e_1_2_8_54_1 doi: 10.1002/smll.201906076 – ident: e_1_2_8_69_1 doi: 10.1016/j.electacta.2012.07.050 – ident: e_1_2_8_62_1 doi: 10.1016/j.electacta.2012.01.037 – ident: e_1_2_8_86_1 doi: 10.1039/C9CC02556A – ident: e_1_2_8_98_1 doi: 10.1016/j.nanoen.2019.103902 – ident: e_1_2_8_102_1 doi: 10.1016/j.electacta.2016.05.202 – ident: e_1_2_8_82_1 doi: 10.1016/j.jpowsour.2017.07.094 – ident: e_1_2_8_16_1 doi: 10.1039/C8CS00319J – ident: e_1_2_8_50_1 doi: 10.1021/acsnano.8b00959 – ident: e_1_2_8_68_1 doi: 10.1002/chem.201704303 – ident: e_1_2_8_6_1 doi: 10.1038/35037553 – ident: e_1_2_8_142_1 doi: 10.1016/j.elecom.2017.09.001 – ident: e_1_2_8_113_1 doi: 10.1021/nl403874y – ident: e_1_2_8_121_1 doi: 10.1038/am.2014.61 – ident: e_1_2_8_11_1 doi: 10.1016/j.ccr.2014.11.005 – ident: e_1_2_8_17_1 doi: 10.1016/j.ensm.2018.11.033 – ident: e_1_2_8_130_1 doi: 10.1039/c2cc35857c – ident: e_1_2_8_94_1 doi: 10.1016/j.ensm.2019.12.030 – ident: e_1_2_8_15_1 doi: 10.1002/smll.201900105 – ident: e_1_2_8_78_1 doi: 10.1039/C7CC00265C – ident: e_1_2_8_136_1 doi: 10.1021/acsami.8b04674 – ident: e_1_2_8_108_1 doi: 10.1016/j.joule.2018.10.028 – ident: e_1_2_8_173_1 doi: 10.1021/acsaem.9b01455 – ident: e_1_2_8_76_1 doi: 10.1039/C5CE01436K – ident: e_1_2_8_164_1 doi: 10.1016/j.nanoen.2014.12.028 – ident: e_1_2_8_28_1 doi: 10.5796/electrochemistry.80.421 – ident: e_1_2_8_146_1 doi: 10.1039/C5TA00118H – ident: e_1_2_8_38_1 doi: 10.1039/C4CP05591H – ident: e_1_2_8_55_1 doi: 10.1039/C9CC07012E – ident: e_1_2_8_137_1 doi: 10.1002/anie.201412202 – ident: e_1_2_8_122_1 doi: 10.1007/s10853-016-0023-4 – ident: e_1_2_8_34_1 doi: 10.1021/la402391f – ident: e_1_2_8_118_1 doi: 10.1002/adma.201502378 – ident: e_1_2_8_33_1 doi: 10.1016/0378-7753(94)02099-O – ident: e_1_2_8_153_1 doi: 10.1021/acsami.9b16710 – ident: e_1_2_8_148_1 doi: 10.1021/jacs.5b07820 – ident: e_1_2_8_43_1 doi: 10.1039/c3nr02850j – ident: e_1_2_8_143_1 doi: 10.1039/C7EE02304A – ident: e_1_2_8_71_1 doi: 10.1016/j.nanoen.2018.03.061 – ident: e_1_2_8_106_1 doi: 10.1021/acssuschemeng.7b00306 – ident: e_1_2_8_92_1 doi: 10.1039/C7CC03517A – ident: e_1_2_8_45_1 doi: 10.1002/aenm.201700317 – ident: e_1_2_8_72_1 doi: 10.1149/2.1091610jes – ident: e_1_2_8_124_1 doi: 10.1016/j.solmat.2017.06.034 – ident: e_1_2_8_44_1 doi: 10.1016/j.jpowsour.2016.11.060 – ident: e_1_2_8_84_1 doi: 10.1021/acsenergylett.7b00040 – ident: e_1_2_8_155_1 doi: 10.1039/C6TA01684G – ident: e_1_2_8_41_1 doi: 10.1021/acs.nanolett.5b00388 – ident: e_1_2_8_162_1 doi: 10.1038/s41467-017-01772-1 – ident: e_1_2_8_168_1 doi: 10.1016/j.jpowsour.2008.10.112 – ident: e_1_2_8_8_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_8_95_1 doi: 10.1149/2.0021605jes – ident: e_1_2_8_169_1 doi: 10.1002/adma.200304415 – ident: e_1_2_8_13_1 doi: 10.1002/smtd.201800020 – ident: e_1_2_8_133_1 doi: 10.1002/anie.201204913 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201604007 – ident: e_1_2_8_60_1 doi: 10.1039/C7TA03201C – ident: e_1_2_8_111_1 doi: 10.1016/j.ensm.2019.06.035 – ident: e_1_2_8_119_1 doi: 10.1021/acsenergylett.6b00308 – ident: e_1_2_8_125_1 doi: 10.1016/S0022-0728(99)00146-1 – ident: e_1_2_8_90_1 doi: 10.1016/j.nanoen.2018.02.060 – ident: e_1_2_8_25_1 doi: 10.1149/1.2056075 – volume: 36 start-page: 1209 year: 2015 ident: e_1_2_8_21_1 publication-title: Chem. Soc. – ident: e_1_2_8_129_1 doi: 10.1016/j.electacta.2011.04.114 – ident: e_1_2_8_19_1 doi: 10.1149/2.061404jes – ident: e_1_2_8_156_1 doi: 10.1021/acsami.6b03193 – ident: e_1_2_8_163_1 doi: 10.1002/cssc.201900225 – ident: e_1_2_8_4_1 doi: 10.1039/c3ee40847g – ident: e_1_2_8_3_1 doi: 10.1021/ja3091438 – ident: e_1_2_8_67_1 doi: 10.1039/C7TA03392C – ident: e_1_2_8_70_1 doi: 10.1016/j.electacta.2012.06.099 – ident: e_1_2_8_166_1 doi: 10.1016/j.electacta.2004.01.099 – ident: e_1_2_8_138_1 doi: 10.1021/jacs.8b05967 – ident: e_1_2_8_64_1 doi: 10.1016/0025-5408(76)90077-5 – ident: e_1_2_8_131_1 doi: 10.1016/j.jpowsour.2009.10.073 – ident: e_1_2_8_22_1 doi: 10.1021/acs.chemmater.7b00772 – ident: e_1_2_8_145_1 doi: 10.1002/aenm.201401155 – ident: e_1_2_8_46_1 doi: 10.1002/celc.201701347 – ident: e_1_2_8_123_1 doi: 10.1016/j.jpowsour.2016.08.109 – ident: e_1_2_8_140_1 doi: 10.1039/C7TA02237A – ident: e_1_2_8_23_1 doi: 10.1039/C4CP02230K – ident: e_1_2_8_91_1 doi: 10.1002/adma.201905524 – ident: e_1_2_8_141_1 doi: 10.1002/aenm.201602055 – ident: e_1_2_8_30_1 doi: 10.1039/C5RA15284D – ident: e_1_2_8_74_1 doi: 10.1021/acsami.7b09924 – ident: e_1_2_8_96_1 doi: 10.1002/aenm.201600140 – ident: e_1_2_8_89_1 doi: 10.1016/j.jpowsour.2015.06.127 – ident: e_1_2_8_1_1 doi: 10.1039/C3EE42613K – ident: e_1_2_8_97_1 doi: 10.1021/jacs.7b06313 – ident: e_1_2_8_172_1 doi: 10.1002/adma.201805930 – ident: e_1_2_8_79_1 doi: 10.1021/acs.chemmater.7b01252 – ident: e_1_2_8_158_1 doi: 10.1038/natrevmats.2016.103 |
SSID | ssj0000491033 |
Score | 2.6688073 |
SecondaryResourceType | review_article |
Snippet | Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Cathodes Electrode materials Electrode polarization Electrodes Electrolytes Energy storage Incompatibility Intercalation Ion migration Lithium Lithium-ion batteries Magnesium Optimization Reaction mechanisms Rechargeable batteries rechargeable magnesium batteries Storage batteries |
Title | Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000787 https://www.proquest.com/docview/2477445159 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoED4ilSWuQDEgdk2NjeR45VW1QB2wupiLisbK-XRqJb1G4uXPnjjJ_riHcvq8g7cbKez_bM7MxnhJ7TXLZgFZdEinlFeEsLUrWlJLzgYC2wQlF7NmB9Wpyc8berfDWZfE-yljaDfKW-_bKu5CZahTbQq6mS_Q_Nxk6hAT6DfuEKGobrP-n4MJyEcu3rDE2qpcn9t060eQ_wDqZ8LQb3Z2xKIQgZciRtS6Zq8RmWuvXm4qXj2QwZhYGWNiQIaFcheBF6imk86421fkXfjSj76EPQS0DekKDPC6_WwtScReD44od1TLv4dO7L03wwgs6TYIRbP2G3J0XlQ5Y6bXOsTHHRnSfgosn2Gzenn9Z2xxUrdG8IBKg1bspxFwtv7qNk_mdZx_l7fFrH-7fQDgVfg07RzsFR_f5DDNWBEzXPmC3VCI8X6D8z-nr7R7bNm9FnST0fa7os76G73ufABw5A99FE9w_QnYSJ8iFajlDCACXsoIQDlPBljwFKOEIJA5RwCiUcoYQjlB6hszfHy8MT4g_cIMqcREcWOYwal5p2gkveFZXqwD0GE4-XYMIsZFllXctaKinTVaHakjFYAqSSQtK8rTL2GE37y14_QZhbz8NED2TLK7hJFQPnRGjFwEXNxAyRME6N8mz05lCUL43j0aaNGdcmjusMvYjyXx0Py28l98KwN36uXjcUnsBQ8eWLGaJWFX_ppdmCxu5NvvQU3R6nyB6aDlcbvQ8W7CCfeYT9APb2kWc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Recent+Progress+on+Key+Materials+for+Rechargeable+Magnesium+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+Fanfan&rft.au=Wang%2C+Tiantian&rft.au=Liu%2C+Xiaobin&rft.au=Fan%2C+Li%E2%80%90Zhen&rft.date=2021-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000787&rft.externalDBID=10.1002%252Faenm.202000787&rft.externalDocID=AENM202000787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |