Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries

Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow k...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 2
Main Authors Liu, Fanfan, Wang, Tiantian, Liu, Xiaobin, Fan, Li‐Zhen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research. This review comprehensively summarizes and discusses the recent progress in the key materials for rechargeable magnesium batteries (RMBs) including cathodes, anodes, and electrolytes. The challenges and opportunities in this field are systematically analyzed. This work will provide valuable references for achieving the high specific capacity and long‐lifespan RMBs in the near future.
AbstractList Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research. This review comprehensively summarizes and discusses the recent progress in the key materials for rechargeable magnesium batteries (RMBs) including cathodes, anodes, and electrolytes. The challenges and opportunities in this field are systematically analyzed. This work will provide valuable references for achieving the high specific capacity and long‐lifespan RMBs in the near future.
Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research.
Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries, have many advantages such as high volumetric capacity, low cost, and environmental friendliness. However, the strong polarization effect, slow kinetic de‐intercalation of Mg 2+ ions, and the incompatibility between electrodes and electrolytes limit their commercial application. Thus, developing stable and high‐efficiency electrode materials and optimization of electrolytes are key to promoting the practical application of RMBs. In this review, a summary and discussion are provided regarding the recent progress in the development of the key materials for RMBs, including cathodes, anodes, and electrolytes. The cathode materials including intercalation type cathodes and conversion type cathodes are classified and introduced in detail by the reaction mechanism, the effects of structure on the kinetics of Mg 2+ ion migration are clarified; the modification and interface issues of Mg anode materials are comprehensively stated, and the potential development prospects of RMB electrolytes are systematically analyzed. In addition, the main opportunities and challenges in this field are briefly elaborated and discussed. Finally, this review will provide a framework for the key materials for RMBs as a reference for future research.
Author Liu, Fanfan
Liu, Xiaobin
Wang, Tiantian
Fan, Li‐Zhen
Author_xml – sequence: 1
  givenname: Fanfan
  surname: Liu
  fullname: Liu, Fanfan
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Tiantian
  surname: Wang
  fullname: Wang, Tiantian
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Xiaobin
  surname: Liu
  fullname: Liu, Xiaobin
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Li‐Zhen
  orcidid: 0000-0003-2270-4458
  surname: Fan
  fullname: Fan, Li‐Zhen
  email: fanlizhen@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkEtLAzEURoNUsNZuXQdcT81rXsta6gPrA6nrkGTuTKdMk5pMkf57Z6hUEMTVvXDP-S5852hgnQWELimZUELYtQK7mTDCCCFplp6gIU2oiJJMkMFx5-wMjUNYdwwROSWcD9FytlJNA7aCgJUt8BsYsC1-9a7yEAJ2Fj_CHj-pFnytmoBL53topXwFSjfQnSoLod5t8I1qewrCBTotOxbG33OE3m_ny9l9tHi5e5hNF5ERgqZRHrOYCQ2sVEKLMslMmbBY0FikKc1ynWakLHjBNOOQJaZIOddgtNFKs7jICB-hq0Pu1ruPHYRWrt3O2-6lZF2GEDGN846aHCjjXQgeSrn19Ub5vaRE9uXJvjx5LK8TxC_B1K1qa2dbr-rmby0_aJ91A_t_nsjp_Pnpx_0COACF0Q
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c06433
crossref_primary_10_1002_smll_202400903
crossref_primary_10_1039_D4LF00124A
crossref_primary_10_1007_s10853_020_05358_z
crossref_primary_10_1016_j_cej_2023_142433
crossref_primary_10_1002_adma_202309339
crossref_primary_10_1002_aenm_202002128
crossref_primary_10_1007_s10854_024_13174_3
crossref_primary_10_1016_j_cej_2023_141345
crossref_primary_10_1021_acsami_0c12313
crossref_primary_10_1039_D0CC03099F
crossref_primary_10_1002_ange_202214054
crossref_primary_10_1016_j_jma_2024_11_025
crossref_primary_10_1002_cssc_202201821
crossref_primary_10_1002_ange_202200181
crossref_primary_10_1246_cl_220523
crossref_primary_10_3390_molecules29143349
crossref_primary_10_1002_aenm_202301980
crossref_primary_10_1021_acsami_4c03019
crossref_primary_10_1021_acsami_2c08470
crossref_primary_10_1002_batt_202200011
crossref_primary_10_1039_D3TA05143A
crossref_primary_10_1016_j_cej_2023_147440
crossref_primary_10_1021_acs_chemrev_2c00289
crossref_primary_10_1021_jacs_4c10106
crossref_primary_10_1002_eem2_12172
crossref_primary_10_1021_acs_jpcc_0c08268
crossref_primary_10_1002_adma_202005501
crossref_primary_10_3390_molecules27227751
crossref_primary_10_1021_acs_jpcc_1c07324
crossref_primary_10_1016_j_jechem_2021_12_016
crossref_primary_10_1002_celc_202101066
crossref_primary_10_1021_acsami_1c17023
crossref_primary_10_1039_D3TA02416D
crossref_primary_10_1016_S1872_5805_21_60039_2
crossref_primary_10_1021_acsnano_1c10253
crossref_primary_10_1016_j_jcis_2021_10_175
crossref_primary_10_1002_aenm_202201464
crossref_primary_10_1021_acs_chemrev_2c00739
crossref_primary_10_1016_j_est_2024_113890
crossref_primary_10_1002_aenm_202304342
crossref_primary_10_1002_smm2_1007
crossref_primary_10_1021_prechem_4c00030
crossref_primary_10_1002_aenm_202302683
crossref_primary_10_1016_j_jma_2024_11_031
crossref_primary_10_1021_acsami_4c20787
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1016_j_apsusc_2023_157528
crossref_primary_10_3390_molecules29194761
crossref_primary_10_1007_s40820_022_00864_y
crossref_primary_10_1016_j_cej_2021_130747
crossref_primary_10_1016_j_apsusc_2022_153141
crossref_primary_10_1021_acsenergylett_2c02525
crossref_primary_10_1016_j_coco_2023_101553
crossref_primary_10_1002_eem2_12486
crossref_primary_10_1007_s10008_023_05426_9
crossref_primary_10_1002_smll_202401215
crossref_primary_10_1021_acsnano_4c06653
crossref_primary_10_1039_D4QI02882A
crossref_primary_10_1002_anie_202407770
crossref_primary_10_1002_cssc_202301269
crossref_primary_10_1016_j_jechem_2022_08_037
crossref_primary_10_1021_acs_jpcc_3c08056
crossref_primary_10_1016_j_jma_2024_10_001
crossref_primary_10_1021_acsaem_4c00937
crossref_primary_10_1021_acsami_1c06669
crossref_primary_10_1002_cssc_202200999
crossref_primary_10_1002_adma_202103881
crossref_primary_10_1039_D4TA07625G
crossref_primary_10_1039_D1SE01188J
crossref_primary_10_1021_acs_nanolett_2c03710
crossref_primary_10_1088_1361_6528_ac21f2
crossref_primary_10_1007_s11581_023_05005_y
crossref_primary_10_1021_acsami_1c00170
crossref_primary_10_1002_adfm_202405586
crossref_primary_10_1021_acsenergylett_3c01959
crossref_primary_10_1039_D2EE04121A
crossref_primary_10_3390_nano14030271
crossref_primary_10_1002_cnl2_22
crossref_primary_10_1002_ange_202407770
crossref_primary_10_1016_j_flatc_2022_100444
crossref_primary_10_1002_batt_202400749
crossref_primary_10_1016_j_inoche_2024_112805
crossref_primary_10_1007_s42114_024_01121_z
crossref_primary_10_1021_acs_chemmater_0c02648
crossref_primary_10_1002_anie_202416582
crossref_primary_10_1007_s12274_021_3679_2
crossref_primary_10_1002_smtd_202400587
crossref_primary_10_1021_acsami_2c03389
crossref_primary_10_1557_s43578_022_00743_7
crossref_primary_10_1016_j_jcis_2022_11_070
crossref_primary_10_1016_j_jallcom_2022_167119
crossref_primary_10_1016_j_ensm_2022_03_039
crossref_primary_10_1002_adma_202208289
crossref_primary_10_1039_D2CS00810F
crossref_primary_10_1016_j_ensm_2022_06_014
crossref_primary_10_1039_D1SE00909E
crossref_primary_10_1016_j_cej_2023_148170
crossref_primary_10_1002_cplu_202100272
crossref_primary_10_1007_s11426_022_1454_0
crossref_primary_10_1002_ange_202416582
crossref_primary_10_1007_s11581_024_05699_8
crossref_primary_10_1002_batt_202400052
crossref_primary_10_1088_2515_7655_ad34fc
crossref_primary_10_1039_D1MA00351H
crossref_primary_10_1016_j_est_2025_116213
crossref_primary_10_1038_s41467_025_56556_9
crossref_primary_10_1002_ente_202001056
crossref_primary_10_1002_inf2_12549
crossref_primary_10_1016_j_ensm_2023_103142
crossref_primary_10_1103_PhysRevApplied_21_024038
crossref_primary_10_1021_acs_nanolett_4c04908
crossref_primary_10_1007_s40820_022_00976_5
crossref_primary_10_1016_j_cej_2022_138824
crossref_primary_10_1021_acs_cgd_4c01631
crossref_primary_10_1002_adma_202310245
crossref_primary_10_3390_nano11030810
crossref_primary_10_1039_D0TA09330K
crossref_primary_10_1039_D1CC02048J
crossref_primary_10_1021_acs_nanolett_3c02465
crossref_primary_10_1039_D3TA05912J
crossref_primary_10_1016_j_ceramint_2023_11_019
crossref_primary_10_1016_j_jelechem_2022_116413
crossref_primary_10_1002_eem2_12527
crossref_primary_10_1039_D2NR00128D
crossref_primary_10_1002_smtd_202400004
crossref_primary_10_1007_s13369_022_07597_5
crossref_primary_10_1177_16878140211003398
crossref_primary_10_1021_acs_jpcc_2c01724
crossref_primary_10_1021_acs_nanolett_2c04293
crossref_primary_10_1016_j_ensm_2021_11_012
crossref_primary_10_1515_zpch_2023_0492
crossref_primary_10_1002_anie_202214054
crossref_primary_10_1002_smll_202307396
crossref_primary_10_1002_chem_202302978
crossref_primary_10_1021_acsaem_3c03239
crossref_primary_10_1016_j_ensm_2024_103470
crossref_primary_10_3390_polym15051145
crossref_primary_10_1007_s00604_024_06470_6
crossref_primary_10_1021_acsami_4c11178
crossref_primary_10_1002_cey2_178
crossref_primary_10_1016_j_inoche_2022_110296
crossref_primary_10_1021_acsmaterialslett_4c01589
crossref_primary_10_1016_j_est_2023_106895
crossref_primary_10_1021_acsami_2c11911
crossref_primary_10_1021_acsaem_2c04182
crossref_primary_10_1039_D3CP02422A
crossref_primary_10_1021_acs_nanolett_4c04360
crossref_primary_10_3762_bjnano_12_75
crossref_primary_10_1002_ente_202200918
crossref_primary_10_1021_acsami_4c16113
crossref_primary_10_1021_acsnano_2c06915
crossref_primary_10_1002_admt_202200518
crossref_primary_10_1016_j_egyr_2022_07_124
crossref_primary_10_1002_adfm_202408535
crossref_primary_10_1039_D4TA00639A
crossref_primary_10_1002_smll_202404898
crossref_primary_10_1021_acs_nanolett_4c01651
crossref_primary_10_1039_D1CP02789A
crossref_primary_10_1021_acsenergylett_3c01192
crossref_primary_10_1016_j_est_2024_112543
crossref_primary_10_3389_fmats_2020_612134
crossref_primary_10_1002_adma_202418761
crossref_primary_10_1021_acsami_4c06153
crossref_primary_10_1039_D3QM00366C
crossref_primary_10_1002_anie_202200181
crossref_primary_10_1021_acs_chemmater_1c01983
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1002_smll_202306576
crossref_primary_10_1007_s10008_022_05215_w
crossref_primary_10_1007_s11581_023_05347_7
Cites_doi 10.1038/nmat4462
10.1016/j.nanoen.2015.10.029
10.1021/acsaem.8b02253
10.1039/C7CC01570D
10.1016/S0167-2738(03)00267-4
10.1021/acsenergylett.6b00213
10.1016/j.ssi.2017.06.002
10.1016/j.elecom.2017.03.018
10.1039/c3ra43206h
10.1038/srep46189
10.1002/smll.201902797
10.1021/jp0367575
10.1002/anie.200600099
10.1016/S0378-7753(02)00345-2
10.1038/srep05622
10.1016/S0378-7753(01)00480-3
10.1016/j.jpowsour.2009.01.057
10.1039/C8CC05366A
10.1021/ja1098512
10.1039/C2CC34673G
10.1039/c3ta13205f
10.1021/acsami.6b04198
10.1039/C3CC47896C
10.1016/j.electacta.2012.03.095
10.1002/adma.201802563
10.1039/c1jm11793a
10.1016/j.matchemphys.2016.07.019
10.1039/c3ta10786h
10.1002/adma.200701495
10.1021/acsami.6b05808
10.1016/j.elecom.2006.03.043
10.1039/C3CC47097K
10.1021/acs.jpcc.7b11488
10.1039/C6CP00448B
10.1016/j.elecom.2011.12.010
10.1021/acsami.6b01352
10.1016/j.pmatsci.2014.04.001
10.1039/c3ta14825d
10.1002/adma.201003560
10.1039/c3ee40871j
10.1002/anie.201812824
10.1021/am508702j
10.3389/fchem.2019.00024
10.1021/acs.chemmater.6b01245
10.1021/nn503921j
10.1016/j.elecom.2008.06.021
10.1038/ncomms1435
10.1021/acs.chemmater.6b02223
10.1016/j.jpowsour.2008.05.021
10.1016/j.jpowsour.2013.01.114
10.1016/j.ssi.2005.10.031
10.1002/smll.201902767
10.1038/s41557-018-0019-6
10.1021/cm901452z
10.1007/s10008-010-1240-4
10.1002/aenm.201903002
10.1021/acs.chemmater.8b00288
10.1021/acs.nanolett.5b01109
10.1016/j.ensm.2018.05.023
10.1021/acsnano.8b06917
10.1021/nn4032454
10.1016/j.electacta.2019.134864
10.1021/jacs.5b10987
10.1021/acs.nanolett.8b02854
10.1016/j.nanoen.2018.10.033
10.1021/cm900033v
10.1039/C5NR04383B
10.1021/acsenergylett.7b00269
10.1002/adma.201904987
10.1038/s41467-017-00431-9
10.1039/C7TA09330F
10.1021/acs.jpcc.6b05036
10.1021/acs.chemmater.8b00462
10.1039/C9TA02212K
10.1038/srep03130
10.1002/adfm.201505501
10.1149/2.0631613jes
10.1016/j.nanoen.2018.04.066
10.1149/1.2086553
10.1021/acsenergylett.6b00145
10.1002/smll.201906076
10.1016/j.electacta.2012.07.050
10.1016/j.electacta.2012.01.037
10.1039/C9CC02556A
10.1016/j.nanoen.2019.103902
10.1016/j.electacta.2016.05.202
10.1016/j.jpowsour.2017.07.094
10.1039/C8CS00319J
10.1021/acsnano.8b00959
10.1002/chem.201704303
10.1038/35037553
10.1016/j.elecom.2017.09.001
10.1021/nl403874y
10.1038/am.2014.61
10.1016/j.ccr.2014.11.005
10.1016/j.ensm.2018.11.033
10.1039/c2cc35857c
10.1016/j.ensm.2019.12.030
10.1002/smll.201900105
10.1039/C7CC00265C
10.1021/acsami.8b04674
10.1016/j.joule.2018.10.028
10.1021/acsaem.9b01455
10.1039/C5CE01436K
10.1016/j.nanoen.2014.12.028
10.5796/electrochemistry.80.421
10.1039/C5TA00118H
10.1039/C4CP05591H
10.1039/C9CC07012E
10.1002/anie.201412202
10.1007/s10853-016-0023-4
10.1021/la402391f
10.1002/adma.201502378
10.1016/0378-7753(94)02099-O
10.1021/acsami.9b16710
10.1021/jacs.5b07820
10.1039/c3nr02850j
10.1039/C7EE02304A
10.1016/j.nanoen.2018.03.061
10.1021/acssuschemeng.7b00306
10.1039/C7CC03517A
10.1002/aenm.201700317
10.1149/2.1091610jes
10.1016/j.solmat.2017.06.034
10.1016/j.jpowsour.2016.11.060
10.1021/acsenergylett.7b00040
10.1039/C6TA01684G
10.1021/acs.nanolett.5b00388
10.1038/s41467-017-01772-1
10.1016/j.jpowsour.2008.10.112
10.1021/acsenergylett.8b01426
10.1149/2.0021605jes
10.1002/adma.200304415
10.1002/smtd.201800020
10.1002/anie.201204913
10.1002/adma.201604007
10.1039/C7TA03201C
10.1016/j.ensm.2019.06.035
10.1021/acsenergylett.6b00308
10.1016/S0022-0728(99)00146-1
10.1016/j.nanoen.2018.02.060
10.1149/1.2056075
10.1016/j.electacta.2011.04.114
10.1149/2.061404jes
10.1021/acsami.6b03193
10.1002/cssc.201900225
10.1039/c3ee40847g
10.1021/ja3091438
10.1039/C7TA03392C
10.1016/j.electacta.2012.06.099
10.1016/j.electacta.2004.01.099
10.1021/jacs.8b05967
10.1016/0025-5408(76)90077-5
10.1016/j.jpowsour.2009.10.073
10.1021/acs.chemmater.7b00772
10.1002/aenm.201401155
10.1002/celc.201701347
10.1016/j.jpowsour.2016.08.109
10.1039/C7TA02237A
10.1039/C4CP02230K
10.1002/adma.201905524
10.1002/aenm.201602055
10.1039/C5RA15284D
10.1021/acsami.7b09924
10.1002/aenm.201600140
10.1016/j.jpowsour.2015.06.127
10.1039/C3EE42613K
10.1021/jacs.7b06313
10.1002/adma.201805930
10.1021/acs.chemmater.7b01252
10.1038/natrevmats.2016.103
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202000787
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202000787
AENM202000787
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2017YFE0113500
– fundername: National Natural Science Foundation of China
  funderid: 51532002; 51872027
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4417-952524be2fa4b4f68cf625415477189b780fd3d2b23e86cd733becbcbab25d803
ISSN 1614-6832
IngestDate Fri Jul 25 12:06:45 EDT 2025
Tue Jul 01 01:43:34 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Jan 22 16:30:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4417-952524be2fa4b4f68cf625415477189b780fd3d2b23e86cd733becbcbab25d803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2270-4458
PQID 2477445159
PQPubID 886389
PageCount 28
ParticipantIDs proquest_journals_2477445159
crossref_primary_10_1002_aenm_202000787
crossref_citationtrail_10_1002_aenm_202000787
wiley_primary_10_1002_aenm_202000787_AENM202000787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 83
2013; 3
2013; 1
2019; 12
2019; 15
2019; 324
2020; 16
2011; 56
2020; 12
2012; 16
2013; 7
2013; 5
2013; 6
2018; 49
2008; 184
2018; 48
2006; 177
2018; 47
2000; 407
2010; 22
2018; 6
2018; 3
2018; 2
2018; 5
2019; 20
2015; 137
2019; 22
2017; 78
2014; 16
2013; 233
2003; 161
2014; 14
2018; 30
2010; 195
2018; 180
2019; 7
2007; 19
2019; 9
2019; 3
2011; 2
2019; 31
2016; 329
2019; 2
1995; 54
2015; 54
1999; 466
2020; 32
2016; 18
2016; 15
2016; 163
2011; 133
2017; 139
2016; 4
2018; 18
2017; 53
2016; 6
2017; 308
2004; 50
2016; 1
2006; 45
2009; 190
2009; 187
2020; 26
2016; 210
2012; 48
2018; 12
2016; 28
2018; 10
2016; 26
2016; 8
2018; 14
2017; 5
2013; 29
2018; 122
2017; 7
2017; 8
2015; 36
2017; 2
2019; 55
2002; 112
2019; 58
2003; 15
2011; 15
2016; 182
2017; 9
2014; 66
2012; 51
2015; 294
1990; 137
2014; 2
2019; 65
2011; 21
2014; 161
2011; 23
2017; 363
2017; 121
2001; 99
2014; 8
2014; 7
2014; 50
2012; 66
2014; 6
2012; 82
2015; 12
2015; 15
2012; 80
2015; 17
2015; 5
2009; 21
2015; 4
2018; 140
2015; 18
2013; 49
2015; 3
2015; 287
2017; 23
2006; 8
1993; 140
2016; 51
2008; 10
2017; 29
2004; 108
2012; 79
2015; 7
2016; 120
2015; 27
1976; 11
2017; 10
2019
2013; 135
2016; 138
2017; 340
2018; 54
Arsentev M. (e_1_2_8_93_1) 2017; 121
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Cho W. (e_1_2_8_21_1) 2015; 36
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 182
  start-page: 167
  year: 2016
  publication-title: Mater. Chem. Phys.
– volume: 324
  year: 2019
  publication-title: Electrochim. Acta
– volume: 195
  start-page: 2096
  year: 2010
  publication-title: J. Power Sources
– volume: 15
  start-page: 169
  year: 2016
  publication-title: Nat. Mater.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 203
  year: 1976
  publication-title: Mater. Res. Bull.
– volume: 99
  start-page: 66
  year: 2001
  publication-title: J. Power Sources
– volume: 79
  start-page: 170
  year: 2012
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 149
  year: 2013
  publication-title: Chem. Commun.
– volume: 6
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 54
  start-page: 7900
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 140
  start-page: 140
  year: 1993
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 265
  year: 2015
  publication-title: Nano Energy
– volume: 50
  start-page: 243
  year: 2014
  publication-title: Chem. Commun.
– volume: 51
  start-page: 7355
  year: 2016
  publication-title: J. Mater. Sci.
– volume: 9
  start-page: 4296
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 8804
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 2194
  year: 2015
  publication-title: Nano Lett.
– volume: 15
  start-page: 2253
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 47
  start-page: 210
  year: 2018
  publication-title: Nano Energy
– volume: 163
  start-page: D682
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 161
  start-page: 173
  year: 2003
  publication-title: Solid State Ionics
– volume: 29
  start-page: 6245
  year: 2017
  publication-title: Chem. Mater.
– volume: 27
  start-page: 6598
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1115
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 6082
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 78
  start-page: 29
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 30
  start-page: 3199
  year: 2018
  publication-title: Chem. Mater.
– volume: 6
  start-page: 2338
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 297
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 627
  year: 2003
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3446
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 3665
  year: 2017
  publication-title: Chem. Commun.
– volume: 20
  start-page: 118
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 27
  year: 2019
  publication-title: Joule
– volume: 8
  start-page: 3296
  year: 2016
  publication-title: Nanoscale
– volume: 1
  start-page: 431
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 50
  start-page: 1320
  year: 2014
  publication-title: Chem. Commun.
– year: 2019
  publication-title: Small
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1197
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 83
  start-page: 72
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 82
  start-page: 243
  year: 2012
  publication-title: Electrochim. Acta
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 49
  start-page: 453
  year: 2018
  publication-title: Nano Energy
– volume: 54
  start-page: 346
  year: 1995
  publication-title: J. Power Sources
– volume: 36
  start-page: 1209
  year: 2015
  publication-title: Chem. Soc.
– volume: 26
  start-page: 23
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 5733
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 112
  start-page: 85
  year: 2002
  publication-title: J. Power Sources
– volume: 133
  start-page: 6270
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 9474
  year: 2018
  publication-title: Chem. Commun.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1041
  year: 2006
  publication-title: Electrochem. Commun.
– volume: 2
  start-page: 3430
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 750
  year: 2015
  publication-title: Nano Energy
– volume: 122
  start-page: 1513
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 3733
  year: 2018
  publication-title: ACS Nano
– volume: 407
  start-page: 724
  year: 2000
  publication-title: Nature
– volume: 14
  start-page: 351
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 177
  start-page: 343
  year: 2006
  publication-title: Solid State Ionics
– volume: 14
  start-page: 255
  year: 2014
  publication-title: Nano Lett.
– volume: 340
  start-page: 104
  year: 2017
  publication-title: J. Power Sources
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 187
  start-page: 627
  year: 2009
  publication-title: J. Power Sources
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3126
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 8728
  year: 2015
  publication-title: CrystEngComm
– volume: 4
  start-page: 7160
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 4453
  year: 2017
  publication-title: Chem. Commun.
– volume: 51
  start-page: 9780
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 638
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 466
  start-page: 203
  year: 1999
  publication-title: J. Electroanal. Chem.
– volume: 80
  start-page: 413
  year: 2012
  publication-title: Electrochim. Acta
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 7
  start-page: 7016
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  start-page: 328
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2265
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 360
  year: 2018
  publication-title: Nano Energy
– volume: 28
  start-page: 4593
  year: 2016
  publication-title: Chem. Mater.
– volume: 17
  start-page: 5256
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 5822
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 96
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 329
  start-page: 456
  year: 2016
  publication-title: J. Power Sources
– volume: 210
  start-page: 655
  year: 2016
  publication-title: Electrochim. Acta
– volume: 233
  start-page: 341
  year: 2013
  publication-title: J. Power Sources
– volume: 48
  year: 2012
  publication-title: Chem. Commun.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 12
  start-page: 2286
  year: 2019
  publication-title: ChemSusChem
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 80
  start-page: 421
  year: 2012
  publication-title: Electrochemistry
– volume: 137
  start-page: 775
  year: 1990
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 1291
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 7
  start-page: 8051
  year: 2013
  publication-title: ACS Nano
– volume: 18
  start-page: 6441
  year: 2018
  publication-title: Nano Lett.
– volume: 294
  start-page: 643
  year: 2015
  publication-title: J. Power Sources
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 7608
  year: 2017
  publication-title: Chem. Commun.
– volume: 58
  start-page: 7615
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 339
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 14
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 308
  start-page: 90
  year: 2017
  publication-title: Solid State Ionics
– volume: 29
  year: 2013
  publication-title: Langmuir
– volume: 184
  start-page: 604
  year: 2008
  publication-title: J. Power Sources
– volume: 48
  start-page: 227
  year: 2018
  publication-title: Nano Energy
– volume: 8
  start-page: 8554
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 66
  start-page: 75
  year: 2012
  publication-title: Electrochim. Acta
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 163
  start-page: A580
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 4260
  year: 2007
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1390
  year: 2009
  publication-title: Chem. Mater.
– volume: 15
  start-page: 4071
  year: 2015
  publication-title: Nano Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 363
  start-page: 269
  year: 2017
  publication-title: J. Power Sources
– volume: 5
  start-page: 9562
  year: 2013
  publication-title: Nanoscale
– volume: 2
  start-page: 427
  year: 2011
  publication-title: Nat. Commun.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 7980
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 287
  start-page: 15
  year: 2015
  publication-title: Coord. Chem. Rev.
– volume: 23
  start-page: 640
  year: 2011
  publication-title: Adv. Mater.
– volume: 190
  start-page: 563
  year: 2009
  publication-title: J. Power Sources
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem.
– volume: 50
  start-page: 903
  year: 2004
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 1572
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 30
  start-page: 3690
  year: 2018
  publication-title: Chem. Mater.
– volume: 4
  start-page: 5622
  year: 2015
  publication-title: Sci. Rep.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 3731
  year: 2017
  publication-title: Chem. Mater.
– volume: 55
  start-page: 6086
  year: 2019
  publication-title: Chem. Commun.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 161
  start-page: A593
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2616
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 6900
  year: 2016
  publication-title: Chem. Mater.
– volume: 45
  start-page: 6009
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 24
  year: 2019
  publication-title: Front. Chem.
– volume: 12
  start-page: 5226
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 180
  start-page: 253
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 3130
  year: 2013
  publication-title: Sci. Rep.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 532
  year: 2018
  publication-title: Nat. Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 9606
  year: 2014
  publication-title: ACS Nano
– volume: 56
  start-page: 6530
  year: 2011
  publication-title: Electrochim. Acta
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 66
  start-page: 1
  year: 2014
  publication-title: Prog. Mater. Sci.
– volume: 5
  start-page: 996
  year: 2018
  publication-title: ChemElectroChem
– volume: 16
  start-page: 103
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1759
  year: 2017
  publication-title: Nat. Commun.
– ident: e_1_2_8_7_1
  doi: 10.1038/nmat4462
– volume: 121
  start-page: 15509
  year: 2017
  ident: e_1_2_8_93_1
  publication-title: J. Phys. Chem.
– ident: e_1_2_8_31_1
  doi: 10.1016/j.nanoen.2015.10.029
– ident: e_1_2_8_52_1
  doi: 10.1021/acsaem.8b02253
– ident: e_1_2_8_139_1
  doi: 10.1039/C7CC01570D
– ident: e_1_2_8_29_1
  doi: 10.1016/S0167-2738(03)00267-4
– ident: e_1_2_8_88_1
  doi: 10.1021/acsenergylett.6b00213
– ident: e_1_2_8_171_1
  doi: 10.1016/j.ssi.2017.06.002
– ident: e_1_2_8_157_1
  doi: 10.1016/j.elecom.2017.03.018
– ident: e_1_2_8_144_1
  doi: 10.1039/c3ra43206h
– ident: e_1_2_8_161_1
  doi: 10.1038/srep46189
– ident: e_1_2_8_101_1
  doi: 10.1002/smll.201902797
– ident: e_1_2_8_40_1
  doi: 10.1021/jp0367575
– ident: e_1_2_8_105_1
  doi: 10.1002/anie.200600099
– ident: e_1_2_8_66_1
  doi: 10.1016/S0378-7753(02)00345-2
– ident: e_1_2_8_61_1
  doi: 10.1038/srep05622
– ident: e_1_2_8_65_1
  doi: 10.1016/S0378-7753(01)00480-3
– ident: e_1_2_8_170_1
  doi: 10.1016/j.jpowsour.2009.01.057
– ident: e_1_2_8_77_1
  doi: 10.1039/C8CC05366A
– ident: e_1_2_8_128_1
  doi: 10.1021/ja1098512
– ident: e_1_2_8_115_1
  doi: 10.1039/C2CC34673G
– ident: e_1_2_8_83_1
  doi: 10.1039/c3ta13205f
– ident: e_1_2_8_53_1
  doi: 10.1021/acsami.6b04198
– ident: e_1_2_8_149_1
  doi: 10.1039/C3CC47896C
– ident: e_1_2_8_37_1
  doi: 10.1016/j.electacta.2012.03.095
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201802563
– ident: e_1_2_8_80_1
  doi: 10.1039/c1jm11793a
– ident: e_1_2_8_114_1
  doi: 10.1016/j.matchemphys.2016.07.019
– ident: e_1_2_8_42_1
  doi: 10.1039/c3ta10786h
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.200701495
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.6b05808
– ident: e_1_2_8_26_1
  doi: 10.1016/j.elecom.2006.03.043
– ident: e_1_2_8_160_1
  doi: 10.1039/C3CC47097K
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.jpcc.7b11488
– ident: e_1_2_8_58_1
  doi: 10.1039/C6CP00448B
– ident: e_1_2_8_112_1
  doi: 10.1016/j.elecom.2011.12.010
– ident: e_1_2_8_81_1
  doi: 10.1021/acsami.6b01352
– ident: e_1_2_8_126_1
  doi: 10.1016/j.pmatsci.2014.04.001
– ident: e_1_2_8_150_1
  doi: 10.1039/c3ta14825d
– ident: e_1_2_8_104_1
  doi: 10.1002/adma.201003560
– ident: e_1_2_8_9_1
  doi: 10.1039/c3ee40871j
– ident: e_1_2_8_154_1
  doi: 10.1002/anie.201812824
– ident: e_1_2_8_20_1
  doi: 10.1021/am508702j
– ident: e_1_2_8_107_1
  doi: 10.3389/fchem.2019.00024
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.chemmater.6b01245
– ident: e_1_2_8_49_1
  doi: 10.1021/nn503921j
– ident: e_1_2_8_63_1
  doi: 10.1016/j.elecom.2008.06.021
– ident: e_1_2_8_85_1
  doi: 10.1038/ncomms1435
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.chemmater.6b02223
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jpowsour.2008.05.021
– ident: e_1_2_8_116_1
  doi: 10.1016/j.jpowsour.2013.01.114
– ident: e_1_2_8_165_1
  doi: 10.1016/j.ssi.2005.10.031
– ident: e_1_2_8_14_1
  doi: 10.1002/smll.201902767
– ident: e_1_2_8_109_1
  doi: 10.1038/s41557-018-0019-6
– ident: e_1_2_8_2_1
  doi: 10.1021/cm901452z
– ident: e_1_2_8_167_1
  doi: 10.1007/s10008-010-1240-4
– ident: e_1_2_8_99_1
  doi: 10.1002/aenm.201903002
– ident: e_1_2_8_120_1
  doi: 10.1021/acs.chemmater.8b00288
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.nanolett.5b01109
– ident: e_1_2_8_117_1
  doi: 10.1016/j.ensm.2018.05.023
– ident: e_1_2_8_73_1
  doi: 10.1021/acsnano.8b06917
– ident: e_1_2_8_48_1
  doi: 10.1021/nn4032454
– ident: e_1_2_8_100_1
  doi: 10.1016/j.electacta.2019.134864
– ident: e_1_2_8_151_1
  doi: 10.1021/jacs.5b10987
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.nanolett.8b02854
– ident: e_1_2_8_103_1
  doi: 10.1016/j.nanoen.2018.10.033
– ident: e_1_2_8_18_1
  doi: 10.1021/cm900033v
– ident: e_1_2_8_87_1
  doi: 10.1039/C5NR04383B
– ident: e_1_2_8_152_1
  doi: 10.1021/acsenergylett.7b00269
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201904987
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-017-00431-9
– ident: e_1_2_8_132_1
  doi: 10.1039/C7TA09330F
– ident: e_1_2_8_159_1
  doi: 10.1021/acs.jpcc.6b05036
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.chemmater.8b00462
– ident: e_1_2_8_51_1
  doi: 10.1039/C9TA02212K
– ident: e_1_2_8_134_1
  doi: 10.1038/srep03130
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201505501
– ident: e_1_2_8_135_1
  doi: 10.1149/2.0631613jes
– ident: e_1_2_8_147_1
  doi: 10.1016/j.nanoen.2018.04.066
– ident: e_1_2_8_10_1
  doi: 10.1149/1.2086553
– ident: e_1_2_8_47_1
  doi: 10.1021/acsenergylett.6b00145
– ident: e_1_2_8_54_1
  doi: 10.1002/smll.201906076
– ident: e_1_2_8_69_1
  doi: 10.1016/j.electacta.2012.07.050
– ident: e_1_2_8_62_1
  doi: 10.1016/j.electacta.2012.01.037
– ident: e_1_2_8_86_1
  doi: 10.1039/C9CC02556A
– ident: e_1_2_8_98_1
  doi: 10.1016/j.nanoen.2019.103902
– ident: e_1_2_8_102_1
  doi: 10.1016/j.electacta.2016.05.202
– ident: e_1_2_8_82_1
  doi: 10.1016/j.jpowsour.2017.07.094
– ident: e_1_2_8_16_1
  doi: 10.1039/C8CS00319J
– ident: e_1_2_8_50_1
  doi: 10.1021/acsnano.8b00959
– ident: e_1_2_8_68_1
  doi: 10.1002/chem.201704303
– ident: e_1_2_8_6_1
  doi: 10.1038/35037553
– ident: e_1_2_8_142_1
  doi: 10.1016/j.elecom.2017.09.001
– ident: e_1_2_8_113_1
  doi: 10.1021/nl403874y
– ident: e_1_2_8_121_1
  doi: 10.1038/am.2014.61
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ccr.2014.11.005
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ensm.2018.11.033
– ident: e_1_2_8_130_1
  doi: 10.1039/c2cc35857c
– ident: e_1_2_8_94_1
  doi: 10.1016/j.ensm.2019.12.030
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.201900105
– ident: e_1_2_8_78_1
  doi: 10.1039/C7CC00265C
– ident: e_1_2_8_136_1
  doi: 10.1021/acsami.8b04674
– ident: e_1_2_8_108_1
  doi: 10.1016/j.joule.2018.10.028
– ident: e_1_2_8_173_1
  doi: 10.1021/acsaem.9b01455
– ident: e_1_2_8_76_1
  doi: 10.1039/C5CE01436K
– ident: e_1_2_8_164_1
  doi: 10.1016/j.nanoen.2014.12.028
– ident: e_1_2_8_28_1
  doi: 10.5796/electrochemistry.80.421
– ident: e_1_2_8_146_1
  doi: 10.1039/C5TA00118H
– ident: e_1_2_8_38_1
  doi: 10.1039/C4CP05591H
– ident: e_1_2_8_55_1
  doi: 10.1039/C9CC07012E
– ident: e_1_2_8_137_1
  doi: 10.1002/anie.201412202
– ident: e_1_2_8_122_1
  doi: 10.1007/s10853-016-0023-4
– ident: e_1_2_8_34_1
  doi: 10.1021/la402391f
– ident: e_1_2_8_118_1
  doi: 10.1002/adma.201502378
– ident: e_1_2_8_33_1
  doi: 10.1016/0378-7753(94)02099-O
– ident: e_1_2_8_153_1
  doi: 10.1021/acsami.9b16710
– ident: e_1_2_8_148_1
  doi: 10.1021/jacs.5b07820
– ident: e_1_2_8_43_1
  doi: 10.1039/c3nr02850j
– ident: e_1_2_8_143_1
  doi: 10.1039/C7EE02304A
– ident: e_1_2_8_71_1
  doi: 10.1016/j.nanoen.2018.03.061
– ident: e_1_2_8_106_1
  doi: 10.1021/acssuschemeng.7b00306
– ident: e_1_2_8_92_1
  doi: 10.1039/C7CC03517A
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.201700317
– ident: e_1_2_8_72_1
  doi: 10.1149/2.1091610jes
– ident: e_1_2_8_124_1
  doi: 10.1016/j.solmat.2017.06.034
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jpowsour.2016.11.060
– ident: e_1_2_8_84_1
  doi: 10.1021/acsenergylett.7b00040
– ident: e_1_2_8_155_1
  doi: 10.1039/C6TA01684G
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.nanolett.5b00388
– ident: e_1_2_8_162_1
  doi: 10.1038/s41467-017-01772-1
– ident: e_1_2_8_168_1
  doi: 10.1016/j.jpowsour.2008.10.112
– ident: e_1_2_8_8_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_8_95_1
  doi: 10.1149/2.0021605jes
– ident: e_1_2_8_169_1
  doi: 10.1002/adma.200304415
– ident: e_1_2_8_13_1
  doi: 10.1002/smtd.201800020
– ident: e_1_2_8_133_1
  doi: 10.1002/anie.201204913
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201604007
– ident: e_1_2_8_60_1
  doi: 10.1039/C7TA03201C
– ident: e_1_2_8_111_1
  doi: 10.1016/j.ensm.2019.06.035
– ident: e_1_2_8_119_1
  doi: 10.1021/acsenergylett.6b00308
– ident: e_1_2_8_125_1
  doi: 10.1016/S0022-0728(99)00146-1
– ident: e_1_2_8_90_1
  doi: 10.1016/j.nanoen.2018.02.060
– ident: e_1_2_8_25_1
  doi: 10.1149/1.2056075
– volume: 36
  start-page: 1209
  year: 2015
  ident: e_1_2_8_21_1
  publication-title: Chem. Soc.
– ident: e_1_2_8_129_1
  doi: 10.1016/j.electacta.2011.04.114
– ident: e_1_2_8_19_1
  doi: 10.1149/2.061404jes
– ident: e_1_2_8_156_1
  doi: 10.1021/acsami.6b03193
– ident: e_1_2_8_163_1
  doi: 10.1002/cssc.201900225
– ident: e_1_2_8_4_1
  doi: 10.1039/c3ee40847g
– ident: e_1_2_8_3_1
  doi: 10.1021/ja3091438
– ident: e_1_2_8_67_1
  doi: 10.1039/C7TA03392C
– ident: e_1_2_8_70_1
  doi: 10.1016/j.electacta.2012.06.099
– ident: e_1_2_8_166_1
  doi: 10.1016/j.electacta.2004.01.099
– ident: e_1_2_8_138_1
  doi: 10.1021/jacs.8b05967
– ident: e_1_2_8_64_1
  doi: 10.1016/0025-5408(76)90077-5
– ident: e_1_2_8_131_1
  doi: 10.1016/j.jpowsour.2009.10.073
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.chemmater.7b00772
– ident: e_1_2_8_145_1
  doi: 10.1002/aenm.201401155
– ident: e_1_2_8_46_1
  doi: 10.1002/celc.201701347
– ident: e_1_2_8_123_1
  doi: 10.1016/j.jpowsour.2016.08.109
– ident: e_1_2_8_140_1
  doi: 10.1039/C7TA02237A
– ident: e_1_2_8_23_1
  doi: 10.1039/C4CP02230K
– ident: e_1_2_8_91_1
  doi: 10.1002/adma.201905524
– ident: e_1_2_8_141_1
  doi: 10.1002/aenm.201602055
– ident: e_1_2_8_30_1
  doi: 10.1039/C5RA15284D
– ident: e_1_2_8_74_1
  doi: 10.1021/acsami.7b09924
– ident: e_1_2_8_96_1
  doi: 10.1002/aenm.201600140
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jpowsour.2015.06.127
– ident: e_1_2_8_1_1
  doi: 10.1039/C3EE42613K
– ident: e_1_2_8_97_1
  doi: 10.1021/jacs.7b06313
– ident: e_1_2_8_172_1
  doi: 10.1002/adma.201805930
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.chemmater.7b01252
– ident: e_1_2_8_158_1
  doi: 10.1038/natrevmats.2016.103
SSID ssj0000491033
Score 2.6688073
SecondaryResourceType review_article
Snippet Rechargeable magnesium batteries (RMBs), which have attracted tremendous attention in large‐scale energy storage applications beyond lithium ion batteries,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Cathodes
Electrode materials
Electrode polarization
Electrodes
Electrolytes
Energy storage
Incompatibility
Intercalation
Ion migration
Lithium
Lithium-ion batteries
Magnesium
Optimization
Reaction mechanisms
Rechargeable batteries
rechargeable magnesium batteries
Storage batteries
Title Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000787
https://www.proquest.com/docview/2477445159
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoED4ilSWuQDEgdk2NjeR45VW1QB2wupiLisbK-XRqJb1G4uXPnjjJ_riHcvq8g7cbKez_bM7MxnhJ7TXLZgFZdEinlFeEsLUrWlJLzgYC2wQlF7NmB9Wpyc8berfDWZfE-yljaDfKW-_bKu5CZahTbQq6mS_Q_Nxk6hAT6DfuEKGobrP-n4MJyEcu3rDE2qpcn9t060eQ_wDqZ8LQb3Z2xKIQgZciRtS6Zq8RmWuvXm4qXj2QwZhYGWNiQIaFcheBF6imk86421fkXfjSj76EPQS0DekKDPC6_WwtScReD44od1TLv4dO7L03wwgs6TYIRbP2G3J0XlQ5Y6bXOsTHHRnSfgosn2Gzenn9Z2xxUrdG8IBKg1bspxFwtv7qNk_mdZx_l7fFrH-7fQDgVfg07RzsFR_f5DDNWBEzXPmC3VCI8X6D8z-nr7R7bNm9FnST0fa7os76G73ufABw5A99FE9w_QnYSJ8iFajlDCACXsoIQDlPBljwFKOEIJA5RwCiUcoYQjlB6hszfHy8MT4g_cIMqcREcWOYwal5p2gkveFZXqwD0GE4-XYMIsZFllXctaKinTVaHakjFYAqSSQtK8rTL2GE37y14_QZhbz8NED2TLK7hJFQPnRGjFwEXNxAyRME6N8mz05lCUL43j0aaNGdcmjusMvYjyXx0Py28l98KwN36uXjcUnsBQ8eWLGaJWFX_ppdmCxu5NvvQU3R6nyB6aDlcbvQ8W7CCfeYT9APb2kWc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Recent+Progress+on+Key+Materials+for+Rechargeable+Magnesium+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+Fanfan&rft.au=Wang%2C+Tiantian&rft.au=Liu%2C+Xiaobin&rft.au=Fan%2C+Li%E2%80%90Zhen&rft.date=2021-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000787&rft.externalDBID=10.1002%252Faenm.202000787&rft.externalDocID=AENM202000787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon