Fatigue Behavior of Alumina-Zirconia Multilayered Ceramics

The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resista...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 91; no. 5; pp. 1618 - 1625
Main Authors Bermejo, Raúl, Torres, Yadir, Anglada, Marc, Llanes, Luis
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.05.2008
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental‐assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics.
AbstractList The influence of sustained and cyclic loading on the crack growth behaviour of a multilayered alumina-zirconia composite exhibiting high internal compressive stresses was investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it was found that the layered composite was prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, was observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied was restricted to the intrinsic environmental-assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics. 64 refs.
The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina-zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental-assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics. [PUBLICATION ABSTRACT]
The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental‐assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics.
Author Torres, Yadir
Bermejo, Raúl
Llanes, Luis
Anglada, Marc
Author_xml – sequence: 1
  givenname: Raúl
  surname: Bermejo
  fullname: Bermejo, Raúl
  email: raul.bermejo@mu-leoben.at
  organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain
– sequence: 2
  givenname: Yadir
  surname: Torres
  fullname: Torres, Yadir
  organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain
– sequence: 3
  givenname: Marc
  surname: Anglada
  fullname: Anglada, Marc
  organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain
– sequence: 4
  givenname: Luis
  surname: Llanes
  fullname: Llanes, Luis
  organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20353466$$DView record in Pascal Francis
BookMark eNqNkEFv0zAYQC00JLqN_xAhwS3hsx07MQdQl21laIwLCMTF-prY4JLGm51A--9x16mHneaLbfn52XrH5GjwgyEko1DQNN6uCioEzZmismAAdQGMc1lsnpHZ4eCIzACA5VXN4AU5jnGVtlTV5Yy8u8TR_ZpMdmZ-41_nQ-ZtNu-ntRsw_-lC6weH2eepH12PWxNMlzUm4Nq18ZQ8t9hH8_JhPiHfLi--Nh_z6y-Lq2Z-nbdlSWWO1loBnRJV3ZXd0gBXUkJphAIml7ZLTGURlxJQYtdViFJwxiljS1VKC_yEvNl7b4O_m0wc9drF1vQ9DsZPUfOyBsUlS-CrR-DKT2FIf9OMVkpyECpBrx8gjC32NuDQuqhvg1tj2GoGXPBSysTVe64NPsZg7AGhoHfl9UrvAutdYL0rr-_L6026-v7R1daNKbMfxoCuf4rgw17wz_Vm--SH9ad5c3G_ToZ8b3BxNJuDAcMfLSteCf39ZqH5j0V13vAbLfl_f2usXw
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_prostr_2016_06_253
crossref_primary_10_1016_j_surfcoat_2011_12_012
crossref_primary_10_1016_j_matchemphys_2011_12_055
crossref_primary_10_1002_ppap_200931501
crossref_primary_10_1016_j_matdes_2014_01_076
crossref_primary_10_1007_s42452_024_05654_2
crossref_primary_10_1016_j_proeng_2010_03_033
crossref_primary_10_1016_j_tafmec_2012_08_005
crossref_primary_10_1016_j_ceramint_2012_02_098
crossref_primary_10_4028_www_scientific_net_KEM_409_94
crossref_primary_10_1016_j_engfracmech_2016_03_039
crossref_primary_10_1016_j_compositesb_2013_11_012
crossref_primary_10_1016_j_engfracmech_2010_02_023
crossref_primary_10_1016_j_ceramint_2016_01_059
crossref_primary_10_1016_j_engfracmech_2010_02_020
crossref_primary_10_1039_C5RA01018G
crossref_primary_10_1179_1743676114Y_0000000215
crossref_primary_10_1016_j_jeurceramsoc_2022_10_013
crossref_primary_10_4028_www_scientific_net_KEM_465_41
crossref_primary_10_1016_j_triboint_2017_09_032
crossref_primary_10_1016_j_ceramint_2013_11_018
crossref_primary_10_3139_146_110523
crossref_primary_10_1016_S0022_3913_13_60037_2
crossref_primary_10_1016_j_jeurceramsoc_2022_11_046
crossref_primary_10_1002_adem_201600683
crossref_primary_10_1016_j_ijlmm_2018_08_002
crossref_primary_10_1016_j_ijrmhm_2008_05_003
crossref_primary_10_1139_cgj_2017_0543
Cites_doi 10.1016/j.actamat.2004.09.022
10.1016/0955-2219(95)93055-8
10.1016/j.actamat.2006.03.040
10.1111/j.1151-2916.1996.tb08946.x
10.1016/0020-7683(89)90021-8
10.1016/j.jeurceramsoc.2006.05.037
10.1016/S0142-9612(01)00206-X
10.1111/j.1151-2916.1995.tb08668.x
10.1016/S1359-835X(98)00145-6
10.1111/j.1151-2916.1993.tb04001.x
10.1016/j.actamat.2006.06.008
10.1007/s10853-006-0439-3
10.1007/BF00349872
10.1016/0956-7151(93)90014-J
10.1023/A:1018655917051
10.1111/j.1151-2916.1998.tb02509.x
10.1111/j.1151-2916.1988.tb05818.x
10.1016/S0955-2219(97)00118-0
10.1016/S0263-4368(98)00036-5
10.1111/j.1151-2916.1996.tb08003.x
10.1046/j.1460-2695.2002.00522.x
10.1111/j.1151-2916.1987.tb04952.x
10.1038/347455a0
10.1016/S0955-2219(02)00072-9
10.1016/S0955-2219(00)00002-9
10.1111/j.1151-2916.1990.tb05132.x
10.1016/j.compscitech.2006.10.010
10.1016/j.jeurceramsoc.2004.09.011
10.1111/j.1551-2916.2005.00479.x
10.1111/j.1460-2695.2006.00962.x
10.1016/j.scriptamat.2005.02.011
10.1126/science.286.5437.102
10.1111/j.1151-2916.1989.tb07692.x
10.1016/j.actamat.2006.06.019
10.1111/j.1151-2916.1989.tb06323.x
10.1016/0956-7151(94)90493-6
10.1007/978-1-4615-5853-8_5
10.1111/j.1151-2916.1999.tb01949.x
10.1016/j.actamat.2007.05.005
10.1016/0956-7151(92)90471-P
10.1016/S0921-5093(97)00498-X
10.1111/j.1151-2916.1996.tb07883.x
10.1007/s10853-005-1923-x
10.1111/j.1151-2916.1997.tb03192.x
10.1111/j.1151-2916.1991.tb04290.x
10.1017/CBO9780511806575
10.2109/jcersj.98.1114
10.1016/S0955-2219(98)00281-7
10.1111/j.1151-2916.1989.tb06133.x
ContentType Journal Article
Copyright 2008 The American Ceramic Society
2008 INIST-CNRS
Copyright American Ceramic Society May 2008
Copyright_xml – notice: 2008 The American Ceramic Society
– notice: 2008 INIST-CNRS
– notice: Copyright American Ceramic Society May 2008
DBID BSCLL
AAYXX
CITATION
IQODW
7QQ
7SR
8FD
JG9
DOI 10.1111/j.1551-2916.2008.02336.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Applied Sciences
Physics
EISSN 1551-2916
EndPage 1625
ExternalDocumentID 1480193451
20353466
10_1111_j_1551_2916_2008_02336_x
JACE02336
ark_67375_WNG_3XG7DC3N_6
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c4416-afff50d9578d4dbe0396604e59026bfd4167faab60a6add7aa65323122b946f03
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Jul 11 00:28:27 EDT 2025
Fri Jul 25 19:20:48 EDT 2025
Mon Jul 21 09:15:12 EDT 2025
Tue Jul 01 00:21:42 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Wed Jan 22 16:26:37 EST 2025
Wed Oct 30 09:55:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Slip casting
Scanning electron microscopy
Stratified material
Multiple layer
Mechanical properties
Fatigue
Stabilized zirconia
Sustained load
Experimental study
Oxide ceramics
Composite material
Compressive stress
Yttrium Oxides
Internal stress
Cyclic load
Technical ceramics
Zirconium Oxides
Manufacturing
Alumina
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4416-afff50d9578d4dbe0396604e59026bfd4167faab60a6add7aa65323122b946f03
Notes ark:/67375/WNG-3XG7DC3N-6
ArticleID:JACE02336
istex:D916B1AD1DE68A450640AE5F1871CA9A7883F712
V. Salavo—contributing editor
This investigation was financially supported by the Spanish Ministerio de Educación y Ciencia (MAT2006‐13480) as well as by the European Community's Human Potential Program under contract HPRN‐CT‐2002‐00203 [SICMAC].
Current address: Departmento de Ingeniería Mecánica y de los Materiales, Escuela Técnica Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain.

ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 217963059
PQPubID 41752
PageCount 8
ParticipantIDs proquest_miscellaneous_34809362
proquest_journals_217963059
pascalfrancis_primary_20353466
crossref_primary_10_1111_j_1551_2916_2008_02336_x
crossref_citationtrail_10_1111_j_1551_2916_2008_02336_x
wiley_primary_10_1111_j_1551_2916_2008_02336_x_JACE02336
istex_primary_ark_67375_WNG_3XG7DC3N_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2008
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: May 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Malden,MA
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2008
Publisher Blackwell Publishing Inc
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell
– name: Wiley Subscription Services, Inc
References R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, "Toughening of Layered Ceramic Composites with Residual Surface Compression," J. Am. Ceram. Soc., 79 [1] 79-87 (1996).
M. J. Hoffman, Y.-W. May, R. H. Dauskardt, J. Ager, and R. O. Ritchie, "Grain Size Effects on Cyclic Fatigue and Crack-Growth Resistance Behaviour of Partially Stabilized Zirconia," J. Mat. Sci., 30, 3291-9 (1995).
J.-F. Tsai, J. D. Belnap, and D. K. Shetty, "Crack Shielding in Ce-TZP/Al2O3 Composites: Comparison of Fatigue and Sustained Load Crack Growth Specimens," J. Am. Ceram. Soc., 77, 105-17 (1994).
N. A. Fleck, K. J. Kang, and M. F. Ashby, "The Cyclic Properties of Engineering Materials," Acta Metall. Mater., 42, 365-81 (1994).
R. H. Dauskardt, M. R. James, J. R. Porter, and R. O. Ritchie, "Cyclic Fatigue-Crack Growth in a SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behaviour," J. Am. Ceram. Soc., 75, 759-71 (1992).
C. K. L. Davies, F. Guiu, M. Li, M. J. Reece, and R. Torrecillas, "Subcritical Crack Propagation Under Cyclic and Static Loading in Mullite and Mullite-Zirconia," J. Eur. Ceram. Soc., 18, 221-7 (1998).
M. Knechtel, D. Garcia, J. Rödel, and N. Claussen, "Subcritical Crack Growth in Y-TZP and Al2O3-Toughened Y-TZP," J. Am. Ceram. Soc., 76, 2681-4 (1993).
J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Monotonic and Cyclic Hertzian Fracture of a Glass Coating on Titanium-Based Implants," Acta Mater., 54, 3593-603 (2006).
G. Grathwohl and T. Liu, "Crack Resistance and Fatigue Transforming Ceramics: I, Materials in the ZrO2-Y2O3-Al2O3 System," J. Am. Ceram. Soc., 74, 318-25 (1991).
J. Chevalier, C. Olagnon, and G. Fantozzi, "Crack Propagation and Fatigue in Zirconia-Based Composites," Comp A., 30, 525-30 (1999).
R. Bermejo, A. J. Sanchez-Herencia, L. Llanes, and C. Baudín, "High-Temperature Mechanical Behaviour of Flaw Tolerant Alumina-Zirconia Multilayered Ceramics," Acta Mater., 55 [14] 4891-901 (2007).
W. J. Clegg, "The Fabrication and Failure of Laminar Ceramic Composites," Acta Metall. Mater., 40 [11] 3085-93 (1992).
R. Bermejo, Y. Torres, C. Baudin, A. J. Sánchez-Herencia, J. Pascual, M. Anglada, and L. Llanes, "Threshold Strength Evaluation on an Al2O3-ZrO2 Multilayered System," J. Eur. Ceram. Soc., 27 [2-3] 1443-8 (2007).
T. Chartier, D. Merle, and J. L. Besson, "Laminar Ceramic Composites," J. Eur. Ceram. Soc., 15, 101-7 (1995).
M. Y. He and J. W. Hutchinson, "Crack Deflection at an Interface Between Dissimilar Elastic Materials," Int. J. Solids Structures, 25 [9] 1053-67 (1989).
J. Chevalier, C. Olagnon, and G. Fantozzi, "Subcritical Crack Growth in 3Y-TZP Ceramics: Static and Cyclic Fatigue," J. Am. Ceram. Soc., 82, 3129-38 (1999).
M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler, and M. Lewis, "Apparent Fracture Toughness of Si3N4-Based Laminates with Residual Compressive or Tensile Stresses in Surface Layers," Acta Mater., 53, 289-96 (2005).
J. Requena, R. Moreno, and J. Moya, "Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting," J. Am. Ceram. Soc., 72, 1511 (1989).
R. K. Nalla, J. P. Campbell, and R. O. Ritchie, "Effect of Microstructure on Mixed-Mode, High-Cycle Fatigue Crack-Growth Thresholds in Ti-6Al-4V Alloys," Fatigue Fract. Eng. Mat. Struct., 25, 587-606 (2002).
R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fracture, 100, 55-83 (1999).
R. Bermejo, Y. Torres, A. J. Sanchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Residual Stresses, Strength and Toughness of Laminates with Different Layer Thickness Ratios," Acta Mater., 54, 4745-57 (2006).
J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Delamination Under Hertzian Cyclic Loading of a Glass Coating on Ti6Al4V for Implants," J. Mat. Sci., 41, 5134-45 (2006).
J. J. Hansen, R. A. Cutler, D. K. Shetty, and A. V. Virkar, "Indentation Fracture Response and Damage Resistance of Al2O3-ZrO2 Composites Strengthened by Transformation-Induced Residual Stresses," J. Am. Ceram. Soc., 71 [12] C501-5 (1988).
R. Bermejo, C. Baudín, R. Moreno, L. Llanes, and A. J. Sánchez-Herencia, "Processing Optimisation and Fracture Behaviour of Layered Ceramic Composites with Highly Compressive Layers," Comp. Sci. Tech., 67 [9] 1930-8 (2007).
R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie, "Cyclic Fatigue Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics," J. Am. Ceram. Soc., 73, 893-903 (1990).
C. J. Gilbert and R. O. Ritchie, "Mechanisms of Cyclic Fatigue - Crack Propagation in a Fine-Grained Alumina Ceramic: Role of Crack Closure," Fatigue Fract. Eng. Mater. Struct., 20, 1453-66 (1997).
C. Hillman, Z. Suo, and F. Lange, "Cracking of Laminates Subjected to Biaxial Tensile Stresses," J. Am. Ceram. Soc., 79 [8] 2127-33 (1996).
S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Bilayer Structures," J. Mat. Res., 20, 2792-800 (2005).
V. M. Sglavo and M. Bertoldi, "Design and Production of Ceramic Laminates with High Mechanical Resistance and Reliability," Acta Mater., 54, 4929-37 (2006).
A. V. Virkar, J. L. Huang, and R. A. Cutler, "Strengthening of Oxide Ceramics by Transformation-Induced Stresses," J. Am. Ceram. Soc., 70 [3] 164-70 (1987).
V. M. Sglavo, M. Paternoster, and M. Bertoldi, "Tailored Residual Stresses in High Reliability Alumina-Mullite Ceramic Laminates," J. Am. Ceram. Soc., 88 [10] 2826-32 (2005).
A. Krell, E. Pippel, J. Woltersdorf, and W. Burger, "Subcritical Crack Growth in Al2O3 with Submicron Grain Size," J. Eur. Ceram. Soc., 23, 81-9 (2003).
N. Orlovskaya, M. Lugovy, V. Subbotin, O. Rachenko, J. Adams, M. Chheda, J. Shih, J. Sankar, and S. Yarmolenko, "Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness," J. Mat. Sci., 40, 5483-90 (2005).
M. Oechsner, C. Hillman, and F. Lange, "Crack Bifurcation in Laminar Ceramic Composites," J. Am. Ceram. Soc., 79 [7] 1834-8 (1996).
D. C. Pender, S. C. Thompson, N. P. Padture, A. E. Giannakopoulos, and S. Suresh, "Gradients in Elastic Modulus for Improved Contact-Damage Resistance. Part II: The Silicon Nitride-Silicon Carbide System," Acta Mater., 49 [16] 3263-8 (2001).
M. Rao, J. Sanchez-Herencia, G. Beltz, R. M. McMeeking, and F. Lange, "Laminar Ceramics that Exhibit a Threshold Strength," Science, 286, 102-5 (1999).
S. Lathabai, Y.-W. Mai, and B. R. Lawn, "Cyclic Fatigue Behaviour of an Alumina Ceramic with Crack-Resistance Characteristics," J. Am. Ceram. Soc., 72, 1760-3 (1989).
J. Alcala and M. Anglada, "Fatigue and Static Crack Propagation in Y-TZP," J. Am. Ceram. Soc., 80, 2759-72 (1997).
A. J. Sanchez-Herencia, C. Pascual, J. He, and F. F. Lange, "ZrO2/ZrO2 Layered Composites for Crack Bifurcation," J. Am. Ceram. Soc., 82 [6] 1512-8 (1999).
S. Ho, C. Hillman, F. F. Lange, and Z. Suo, "Surface Cracking in Layers Under Biaxial, Residual Compressive Stress," J. Am. Ceram. Soc., 78 [9] 2353-9 (1995).
W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, "A Simple Way to Make Tough Ceramics," Nature, 347, 455-7 (1990).
A. J. Phillipps, W. J. Clegg, and T. W. Clyne, "Fracture-Behavior of Ceramic Laminates in Bending. 1. Modeling of Crack-Propagation," Acta Metall. Mater., 41 [3] 805-17 (1993).
J. Moya, J. Sanchez-Herencia, J. F. Bartolome, and T. Tanimoto, "Elastic Modulus in Rigid Al2O3/ZrO2 Ceramic Laminates," J. Am. Ceram. Soc., 37 [7] 1095-103 (1997).
M. J. Reece, F. Guiu, and M. F. R. Sammur, "Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension-Compression Loading," J. Am. Ceram. Soc., 72, 348-52 (1989).
D. Kuo and W. Kriven, "Fracture of Multilayer Oxide Composites," Material Science and Engineering A, 241, 241-50 (1998).
J. F. Bartolome, J. S. Moya, J. Requena, J. Llorca, and M. Anglada, "Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics," J. Am. Ceram. Soc., 81 [6] 1502-8 (1998).
A. J. Sanchez-Herencia, L. James, and F. F. Lange, "Bifurcation in Alumina Plates Produced by a Phase Transformation in Central, Alumina/Zirconia Thin Layers," J. Eur. Ceram. Soc., 20 [9] 1297-300 (2000).
D. B. Marshall, J. J. Ratto, and F. Lange, "Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrO2 and Al2O3," J. Am. Ceram. Soc., 74 [12] 2979-87 (1991).
I. Hermann, S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Trilayer Structures," J. Mat. Res., 21, 512-21 (2006).
E. Jimenez-Piqué, L. Cesseraciu, F. Chalvet, M. Anglada, and G. De Portu, "Hertzian Contact Fatigue on Alumina/Alumina-Zirconia Laminated Composites," J. Eur. Ceram. Soc., 25 [15] 3393-401 (2005).
R. Bermejo, Y. Torres Hernández, A. J. Sánchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Fracture Behaviour of an Al2O3-ZrO2 Multi-Layered Ceramic with Residual Stresses Due to Phase Transformations," Fatigue Fract. Eng. Mater. Struct., 29, 71-8 (2006).
S. Suresh, Fatigue of Materials, 2nd edition. Cambridge, U.K, 1998.
R. Fernández, F. Meschke, G. De Portu, M. Anglada, and L. Llanes, "Fatigue and Fracture Characteristics of a Fine-Grained (Mg, Y)-PSZ Zirconia Ceramic," J. Eur. Ceram. Soc., 19, 1705-15 (1999).
J. Kübler, Fracture Resistance Testing of Monolithic and Composite Brittle Materials. ASTM STP 1409. ASTM, Philadelphia, PA, 2002.
H. M. Chan, "Layered Ceramics: Processing and Mechanical Behavior," Annu. Rev. Mater. Sci., 27, 249-82 (1997).
R. Fernández, D. Casellas, F. L. Cumbrera, F. Sánchez-Bajo, M. Anglada, and L. Llanes, "Phase Assemblage Effects on the Fracture and Fatigue Characteristics of Magnesia-Partially-Stabilized Zirconia," Int. J. Refract. Met. Hard Mater., 16, 291-301 (1998).
A. H. Aza, G. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, "Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses," Biomaterials, 23, 937-45 (2002).
G. Grathwohl a
1997; 80
1995; 30
1990; 98
1990; 347
1987; 70
1995; 78
1999; 286
2005; 20
1998; 81
2001; 49
1999; 82
1996; 79
1988; 71
2005; 25
1998; 16
1998; 18
1989; 72
2006; 21
1999; 19
1967; 50
1993; 76
1994; 77
2006; 29
2007; 67
1998; 241
1992; 40
2007; 27
2005; 284‐86
1990; 73
1995; 15
2006; 54
1997; 20
1991; 74
1993; 41
2000; 20
2005; 40
1998
1996
1997; 27
1999; 100
2002
1992; 75
2007; 55
1989; 25
2005; 88
1994; 42
2002; 25
2006; 41
1997; 37
2002; 23
2005; 52
2005; 53
1999; 30
2003; 23
Bartolome J. F. (e_1_2_8_32_2) 1998; 81
e_1_2_8_28_2
e_1_2_8_49_2
Hansen J. J. (e_1_2_8_12_2) 1988; 71
Grathwohl G. (e_1_2_8_57_2) 1991; 74
e_1_2_8_24_2
e_1_2_8_26_2
e_1_2_8_47_2
Kübler J. (e_1_2_8_41_2) 2002
Grathwohl G. (e_1_2_8_52_2) 1991; 74
e_1_2_8_3_2
e_1_2_8_5_2
Hermann I. (e_1_2_8_35_2) 2006; 21
e_1_2_8_20_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_15_2
e_1_2_8_36_2
Dauskardt R. H. (e_1_2_8_50_2) 1992; 75
Zhang Y. (e_1_2_8_33_2) 2005; 284
Oel H. J. (e_1_2_8_9_2) 1967; 50
Gilbert C. J. (e_1_2_8_45_2) 1997; 20
e_1_2_8_30_2
e_1_2_8_55_2
Chevalier J. (e_1_2_8_56_2) 1999; 82
e_1_2_8_11_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
Liu S. (e_1_2_8_53_2) 1991; 74
He M. Y. (e_1_2_8_6_2) 1989; 25
e_1_2_8_4_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_61_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
Moya J. (e_1_2_8_21_2) 1997; 37
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_37_2
Tsai J.‐F. (e_1_2_8_62_2) 1994; 77
Bhowmick S. (e_1_2_8_34_2) 2005; 20
Sanchez‐Herencia A. J. (e_1_2_8_23_2) 1999; 82
Pender D. C. (e_1_2_8_7_2) 2001; 49
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_10_2
Chan H. M. (e_1_2_8_2_2) 1997; 27
References_xml – reference: R. Bermejo, Y. Torres, A. J. Sanchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Residual Stresses, Strength and Toughness of Laminates with Different Layer Thickness Ratios," Acta Mater., 54, 4745-57 (2006).
– reference: R. H. Dauskardt, M. R. James, J. R. Porter, and R. O. Ritchie, "Cyclic Fatigue-Crack Growth in a SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behaviour," J. Am. Ceram. Soc., 75, 759-71 (1992).
– reference: H. M. Chan, "Layered Ceramics: Processing and Mechanical Behavior," Annu. Rev. Mater. Sci., 27, 249-82 (1997).
– reference: H. J. Oel and V. D. Fréchette, "Stress Distribution in Multiphase Systems: I, Composites with Planar Interfaces," J. Am. Ceram. Soc., 50 [10] 542-9 (1967).
– reference: M. Knechtel, D. Garcia, J. Rödel, and N. Claussen, "Subcritical Crack Growth in Y-TZP and Al2O3-Toughened Y-TZP," J. Am. Ceram. Soc., 76, 2681-4 (1993).
– reference: A. J. Phillipps, W. J. Clegg, and T. W. Clyne, "Fracture-Behavior of Ceramic Laminates in Bending. 1. Modeling of Crack-Propagation," Acta Metall. Mater., 41 [3] 805-17 (1993).
– reference: D. C. Pender, S. C. Thompson, N. P. Padture, A. E. Giannakopoulos, and S. Suresh, "Gradients in Elastic Modulus for Improved Contact-Damage Resistance. Part II: The Silicon Nitride-Silicon Carbide System," Acta Mater., 49 [16] 3263-8 (2001).
– reference: J. Requena, R. Moreno, and J. Moya, "Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting," J. Am. Ceram. Soc., 72, 1511 (1989).
– reference: A. V. Virkar, J. L. Huang, and R. A. Cutler, "Strengthening of Oxide Ceramics by Transformation-Induced Stresses," J. Am. Ceram. Soc., 70 [3] 164-70 (1987).
– reference: H. Katsuki and Y. Hirata, "Coat of Alumina Sheet with Needle-Like Mullite," J. Ceram. Soc. Jpn, 98, 1114-9 (1990).
– reference: N. Orlovskaya, M. Lugovy, V. Subbotin, O. Rachenko, J. Adams, M. Chheda, J. Shih, J. Sankar, and S. Yarmolenko, "Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness," J. Mat. Sci., 40, 5483-90 (2005).
– reference: C. J. Gilbert and R. O. Ritchie, "Mechanisms of Cyclic Fatigue - Crack Propagation in a Fine-Grained Alumina Ceramic: Role of Crack Closure," Fatigue Fract. Eng. Mater. Struct., 20, 1453-66 (1997).
– reference: R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie, "Cyclic Fatigue Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics," J. Am. Ceram. Soc., 73, 893-903 (1990).
– reference: R. Bermejo, C. Baudín, R. Moreno, L. Llanes, and A. J. Sánchez-Herencia, "Processing Optimisation and Fracture Behaviour of Layered Ceramic Composites with Highly Compressive Layers," Comp. Sci. Tech., 67 [9] 1930-8 (2007).
– reference: J. F. Bartolome, J. S. Moya, J. Requena, J. Llorca, and M. Anglada, "Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics," J. Am. Ceram. Soc., 81 [6] 1502-8 (1998).
– reference: I. Hermann, S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Trilayer Structures," J. Mat. Res., 21, 512-21 (2006).
– reference: R. Fernández, D. Casellas, F. L. Cumbrera, F. Sánchez-Bajo, M. Anglada, and L. Llanes, "Phase Assemblage Effects on the Fracture and Fatigue Characteristics of Magnesia-Partially-Stabilized Zirconia," Int. J. Refract. Met. Hard Mater., 16, 291-301 (1998).
– reference: E. Jimenez-Piqué, L. Cesseraciu, F. Chalvet, M. Anglada, and G. De Portu, "Hertzian Contact Fatigue on Alumina/Alumina-Zirconia Laminated Composites," J. Eur. Ceram. Soc., 25 [15] 3393-401 (2005).
– reference: A. J. Sanchez-Herencia, C. Pascual, J. He, and F. F. Lange, "ZrO2/ZrO2 Layered Composites for Crack Bifurcation," J. Am. Ceram. Soc., 82 [6] 1512-8 (1999).
– reference: N. A. Fleck, K. J. Kang, and M. F. Ashby, "The Cyclic Properties of Engineering Materials," Acta Metall. Mater., 42, 365-81 (1994).
– reference: C. K. L. Davies, F. Guiu, M. Li, M. J. Reece, and R. Torrecillas, "Subcritical Crack Propagation Under Cyclic and Static Loading in Mullite and Mullite-Zirconia," J. Eur. Ceram. Soc., 18, 221-7 (1998).
– reference: J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Delamination Under Hertzian Cyclic Loading of a Glass Coating on Ti6Al4V for Implants," J. Mat. Sci., 41, 5134-45 (2006).
– reference: S. Ho, C. Hillman, F. F. Lange, and Z. Suo, "Surface Cracking in Layers Under Biaxial, Residual Compressive Stress," J. Am. Ceram. Soc., 78 [9] 2353-9 (1995).
– reference: A. Krell, E. Pippel, J. Woltersdorf, and W. Burger, "Subcritical Crack Growth in Al2O3 with Submicron Grain Size," J. Eur. Ceram. Soc., 23, 81-9 (2003).
– reference: Y. Zhang and B. R. Lawn, "Competing Damage Modes in All-Ceramic Crowns: Fatigue and Lifetime," Key Engng. Mat., 284-86, 697-700 (2005).
– reference: J. Kübler, Fracture Resistance Testing of Monolithic and Composite Brittle Materials. ASTM STP 1409. ASTM, Philadelphia, PA, 2002.
– reference: R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, "Toughening of Layered Ceramic Composites with Residual Surface Compression," J. Am. Ceram. Soc., 79 [1] 79-87 (1996).
– reference: J. Moya, J. Sanchez-Herencia, J. F. Bartolome, and T. Tanimoto, "Elastic Modulus in Rigid Al2O3/ZrO2 Ceramic Laminates," J. Am. Ceram. Soc., 37 [7] 1095-103 (1997).
– reference: T. Chartier, D. Merle, and J. L. Besson, "Laminar Ceramic Composites," J. Eur. Ceram. Soc., 15, 101-7 (1995).
– reference: J. Alcala and M. Anglada, "Fatigue and Static Crack Propagation in Y-TZP," J. Am. Ceram. Soc., 80, 2759-72 (1997).
– reference: M. Rao, J. Sanchez-Herencia, G. Beltz, R. M. McMeeking, and F. Lange, "Laminar Ceramics that Exhibit a Threshold Strength," Science, 286, 102-5 (1999).
– reference: V. M. Sglavo, M. Paternoster, and M. Bertoldi, "Tailored Residual Stresses in High Reliability Alumina-Mullite Ceramic Laminates," J. Am. Ceram. Soc., 88 [10] 2826-32 (2005).
– reference: S. Lathabai, Y.-W. Mai, and B. R. Lawn, "Cyclic Fatigue Behaviour of an Alumina Ceramic with Crack-Resistance Characteristics," J. Am. Ceram. Soc., 72, 1760-3 (1989).
– reference: S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Bilayer Structures," J. Mat. Res., 20, 2792-800 (2005).
– reference: J. Chevalier, C. Olagnon, and G. Fantozzi, "Subcritical Crack Growth in 3Y-TZP Ceramics: Static and Cyclic Fatigue," J. Am. Ceram. Soc., 82, 3129-38 (1999).
– reference: J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Monotonic and Cyclic Hertzian Fracture of a Glass Coating on Titanium-Based Implants," Acta Mater., 54, 3593-603 (2006).
– reference: M. J. Reece, F. Guiu, and M. F. R. Sammur, "Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension-Compression Loading," J. Am. Ceram. Soc., 72, 348-52 (1989).
– reference: R. Bermejo, A. J. Sanchez-Herencia, L. Llanes, and C. Baudín, "High-Temperature Mechanical Behaviour of Flaw Tolerant Alumina-Zirconia Multilayered Ceramics," Acta Mater., 55 [14] 4891-901 (2007).
– reference: D. B. Marshall, J. J. Ratto, and F. Lange, "Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrO2 and Al2O3," J. Am. Ceram. Soc., 74 [12] 2979-87 (1991).
– reference: S. Suresh, Fatigue of Materials, 2nd edition. Cambridge, U.K, 1998.
– reference: A. J. Sanchez-Herencia, L. James, and F. F. Lange, "Bifurcation in Alumina Plates Produced by a Phase Transformation in Central, Alumina/Zirconia Thin Layers," J. Eur. Ceram. Soc., 20 [9] 1297-300 (2000).
– reference: R. K. Nalla, J. P. Campbell, and R. O. Ritchie, "Effect of Microstructure on Mixed-Mode, High-Cycle Fatigue Crack-Growth Thresholds in Ti-6Al-4V Alloys," Fatigue Fract. Eng. Mat. Struct., 25, 587-606 (2002).
– reference: Y. Torres, V. K. Sarin, M. Anglada, and L. Llanes, "Loading Mode Effects on the Fracture Toughness and Fatigue Crack Growth Resistance of WC-Co Cemented Carbides," Scripta Mater., 52, 1087-91 (2005).
– reference: G. Grathwohl and T. Liu, "Crack Resistance and Fatigue Transforming Ceramics: I, Materials in the ZrO2-Y2O3-Al2O3 System," J. Am. Ceram. Soc., 74, 318-25 (1991).
– reference: J. J. Hansen, R. A. Cutler, D. K. Shetty, and A. V. Virkar, "Indentation Fracture Response and Damage Resistance of Al2O3-ZrO2 Composites Strengthened by Transformation-Induced Residual Stresses," J. Am. Ceram. Soc., 71 [12] C501-5 (1988).
– reference: M. Oechsner, C. Hillman, and F. Lange, "Crack Bifurcation in Laminar Ceramic Composites," J. Am. Ceram. Soc., 79 [7] 1834-8 (1996).
– reference: R. Bermejo, Y. Torres Hernández, A. J. Sánchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Fracture Behaviour of an Al2O3-ZrO2 Multi-Layered Ceramic with Residual Stresses Due to Phase Transformations," Fatigue Fract. Eng. Mater. Struct., 29, 71-8 (2006).
– reference: W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, "A Simple Way to Make Tough Ceramics," Nature, 347, 455-7 (1990).
– reference: G. Grathwohl and T. Liu, "Crack Resistance and Fatigue Transforming Ceramics: II, CeO2-Stabilzed ZrO2," J. Am. Ceram. Soc., 74, 3028-34 (1991).
– reference: M. J. Hoffman, Y.-W. May, R. H. Dauskardt, J. Ager, and R. O. Ritchie, "Grain Size Effects on Cyclic Fatigue and Crack-Growth Resistance Behaviour of Partially Stabilized Zirconia," J. Mat. Sci., 30, 3291-9 (1995).
– reference: A. H. Aza, G. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, "Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses," Biomaterials, 23, 937-45 (2002).
– reference: J. Chevalier, C. Olagnon, and G. Fantozzi, "Crack Propagation and Fatigue in Zirconia-Based Composites," Comp A., 30, 525-30 (1999).
– reference: C. Hillman, Z. Suo, and F. Lange, "Cracking of Laminates Subjected to Biaxial Tensile Stresses," J. Am. Ceram. Soc., 79 [8] 2127-33 (1996).
– reference: S. Liu and I. W. Chen, "Fatigue of Yttria-Stabilized Zirconia: II, Crack Propagation, Fatigue Striations, and Short-Crack Behaviour," J. Am. Ceram. Soc., 74, 1206-16 (1991).
– reference: D. Kuo and W. Kriven, "Fracture of Multilayer Oxide Composites," Material Science and Engineering A, 241, 241-50 (1998).
– reference: V. M. Sglavo and M. Bertoldi, "Design and Production of Ceramic Laminates with High Mechanical Resistance and Reliability," Acta Mater., 54, 4929-37 (2006).
– reference: R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fracture, 100, 55-83 (1999).
– reference: W. J. Clegg, "The Fabrication and Failure of Laminar Ceramic Composites," Acta Metall. Mater., 40 [11] 3085-93 (1992).
– reference: R. Fernández, F. Meschke, G. De Portu, M. Anglada, and L. Llanes, "Fatigue and Fracture Characteristics of a Fine-Grained (Mg, Y)-PSZ Zirconia Ceramic," J. Eur. Ceram. Soc., 19, 1705-15 (1999).
– reference: M. Y. He and J. W. Hutchinson, "Crack Deflection at an Interface Between Dissimilar Elastic Materials," Int. J. Solids Structures, 25 [9] 1053-67 (1989).
– reference: R. Bermejo, Y. Torres, C. Baudin, A. J. Sánchez-Herencia, J. Pascual, M. Anglada, and L. Llanes, "Threshold Strength Evaluation on an Al2O3-ZrO2 Multilayered System," J. Eur. Ceram. Soc., 27 [2-3] 1443-8 (2007).
– reference: M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler, and M. Lewis, "Apparent Fracture Toughness of Si3N4-Based Laminates with Residual Compressive or Tensile Stresses in Surface Layers," Acta Mater., 53, 289-96 (2005).
– reference: J.-F. Tsai, J. D. Belnap, and D. K. Shetty, "Crack Shielding in Ce-TZP/Al2O3 Composites: Comparison of Fatigue and Sustained Load Crack Growth Specimens," J. Am. Ceram. Soc., 77, 105-17 (1994).
– volume: 37
  start-page: 1095
  issue: [7]
  year: 1997
  end-page: 103
  article-title: Elastic Modulus in Rigid Al O /ZrO Ceramic Laminates
  publication-title: J. Am. Ceram. Soc.
– volume: 41
  start-page: 805
  issue: [3]
  year: 1993
  end-page: 17
  article-title: Fracture‐Behavior of Ceramic Laminates in Bending. 1. Modeling of Crack‐Propagation
  publication-title: Acta Metall. Mater.
– volume: 80
  start-page: 2759
  year: 1997
  end-page: 72
  article-title: Fatigue and Static Crack Propagation in Y‐TZP
  publication-title: J. Am. Ceram. Soc.
– volume: 40
  start-page: 5483
  year: 2005
  end-page: 90
  article-title: Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness
  publication-title: J. Mat. Sci.
– volume: 18
  start-page: 221
  year: 1998
  end-page: 7
  article-title: Subcritical Crack Propagation Under Cyclic and Static Loading in Mullite and Mullite‐Zirconia
  publication-title: J. Eur. Ceram. Soc.
– volume: 16
  start-page: 291
  year: 1998
  end-page: 301
  article-title: Phase Assemblage Effects on the Fracture and Fatigue Characteristics of Magnesia‐Partially‐Stabilized Zirconia
  publication-title: Int. J. Refract. Met. Hard Mater.
– volume: 74
  start-page: 3028
  year: 1991
  end-page: 34
  article-title: Crack Resistance and Fatigue Transforming Ceramics
  publication-title: II, CeO2-Stabilzed ZrO2
– volume: 25
  start-page: 3393
  issue: [15]
  year: 2005
  end-page: 401
  article-title: Hertzian Contact Fatigue on Alumina/Alumina‐Zirconia Laminated Composites
  publication-title: J. Eur. Ceram. Soc.
– volume: 347
  start-page: 455
  year: 1990
  end-page: 7
  article-title: A Simple Way to Make Tough Ceramics
  publication-title: Nature
– volume: 81
  start-page: 1502
  issue: [6]
  year: 1998
  end-page: 8
  article-title: Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 21
  start-page: 512
  year: 2006
  end-page: 21
  article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments
  publication-title: Trilayer Structures
– volume: 74
  start-page: 2979
  issue: [12]
  year: 1991
  end-page: 87
  article-title: Enhanced Fracture Toughness in Layered Microcomposites of Ce‐ZrO and Al O
  publication-title: J. Am. Ceram. Soc.
– volume: 71
  start-page: C501
  issue: [12]
  year: 1988
  end-page: 5
  article-title: Indentation Fracture Response and Damage Resistance of Al O ‐ZrO Composites Strengthened by Transformation‐Induced Residual Stresses
  publication-title: J. Am. Ceram. Soc.
– volume: 79
  start-page: 1834
  issue: [7]
  year: 1996
  end-page: 8
  article-title: Crack Bifurcation in Laminar Ceramic Composites
  publication-title: J. Am. Ceram. Soc.
– volume: 54
  start-page: 4745
  year: 2006
  end-page: 57
  article-title: Residual Stresses, Strength and Toughness of Laminates with Different Layer Thickness Ratios
  publication-title: Acta Mater.
– volume: 20
  start-page: 2792
  year: 2005
  end-page: 800
  article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments
  publication-title: Bilayer Structures
– volume: 241
  start-page: 241
  year: 1998
  end-page: 50
  article-title: Fracture of Multilayer Oxide Composites
  publication-title: Material Science and Engineering A
– volume: 54
  start-page: 4929
  year: 2006
  end-page: 37
  article-title: Design and Production of Ceramic Laminates with High Mechanical Resistance and Reliability
  publication-title: Acta Mater.
– volume: 74
  start-page: 1206
  year: 1991
  end-page: 16
  article-title: Fatigue of Yttria‐Stabilized Zirconia
  publication-title: II, Crack Propagation, Fatigue Striations, and Short-Crack Behaviour
– volume: 55
  start-page: 4891
  issue: [14]
  year: 2007
  end-page: 901
  article-title: High‐Temperature Mechanical Behaviour of Flaw Tolerant Alumina‐Zirconia Multilayered Ceramics
  publication-title: Acta Mater.
– volume: 15
  start-page: 101
  year: 1995
  end-page: 7
  article-title: Laminar Ceramic Composites
  publication-title: J. Eur. Ceram. Soc.
– volume: 20
  start-page: 1297
  issue: [9]
  year: 2000
  end-page: 300
  article-title: Bifurcation in Alumina Plates Produced by a Phase Transformation in Central, Alumina/Zirconia Thin Layers
  publication-title: J. Eur. Ceram. Soc.
– year: 1998
– volume: 29
  start-page: 71
  year: 2006
  end-page: 8
  article-title: Fracture Behaviour of an Al O ‐ZrO Multi‐Layered Ceramic with Residual Stresses Due to Phase Transformations
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 72
  start-page: 1511
  year: 1989
  article-title: Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting
  publication-title: J. Am. Ceram. Soc.
– volume: 67
  start-page: 1930
  issue: [9]
  year: 2007
  end-page: 8
  article-title: Processing Optimisation and Fracture Behaviour of Layered Ceramic Composites with Highly Compressive Layers
  publication-title: Comp. Sci. Tech.
– volume: 82
  start-page: 3129
  year: 1999
  end-page: 38
  article-title: Subcritical Crack Growth in 3Y‐TZP Ceramics
  publication-title: Static and Cyclic Fatigue
– volume: 19
  start-page: 1705
  year: 1999
  end-page: 15
  article-title: Fatigue and Fracture Characteristics of a Fine‐Grained (Mg, Y)–PSZ Zirconia Ceramic
  publication-title: J. Eur. Ceram. Soc.
– volume: 27
  start-page: 1443
  issue: [2–3]
  year: 2007
  end-page: 8
  article-title: Threshold Strength Evaluation on an Al O –ZrO Multilayered System
  publication-title: J. Eur. Ceram. Soc.
– volume: 30
  start-page: 525
  year: 1999
  end-page: 30
  article-title: Crack Propagation and Fatigue in Zirconia‐Based Composites
  publication-title: Comp A.
– volume: 72
  start-page: 348
  year: 1989
  end-page: 52
  article-title: Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension‐Compression Loading
  publication-title: J. Am. Ceram. Soc.
– volume: 20
  start-page: 1453
  year: 1997
  end-page: 66
  article-title: Mechanisms of Cyclic Fatigue ‐ Crack Propagation in a Fine‐Grained Alumina Ceramic
  publication-title: Role of Crack Closure
– volume: 79
  start-page: 79
  issue: [1]
  year: 1996
  end-page: 87
  article-title: Toughening of Layered Ceramic Composites with Residual Surface Compression
  publication-title: J. Am. Ceram. Soc.
– volume: 40
  start-page: 3085
  issue: [11]
  year: 1992
  end-page: 93
  article-title: The Fabrication and Failure of Laminar Ceramic Composites
  publication-title: Acta Metall. Mater.
– volume: 284‐86
  start-page: 697
  year: 2005
  end-page: 700
  article-title: Competing Damage Modes in All‐Ceramic Crowns
  publication-title: Fatigue and Lifetime
– volume: 49
  start-page: 3263
  issue: [16]
  year: 2001
  end-page: 8
  article-title: Gradients in Elastic Modulus for Improved Contact‐Damage Resistance. Part II
  publication-title: The Silicon Nitride-Silicon Carbide System
– volume: 50
  start-page: 542
  issue: [10]
  year: 1967
  end-page: 9
  article-title: Stress Distribution in Multiphase Systems
  publication-title: I, Composites with Planar Interfaces
– volume: 74
  start-page: 318
  year: 1991
  end-page: 25
  article-title: Crack Resistance and Fatigue Transforming Ceramics
  publication-title: I, Materials in the ZrO2-Y2O3-Al2O3 System
– volume: 82
  start-page: 1512
  issue: [6]
  year: 1999
  end-page: 8
  article-title: ZrO /ZrO Layered Composites for Crack Bifurcation
  publication-title: J. Am. Ceram. Soc.
– volume: 72
  start-page: 1760
  year: 1989
  end-page: 3
  article-title: Cyclic Fatigue Behaviour of an Alumina Ceramic with Crack‐Resistance Characteristics
  publication-title: J. Am. Ceram. Soc.
– volume: 27
  start-page: 249
  year: 1997
  end-page: 82
  article-title: Layered Ceramics
  publication-title: Processing and Mechanical Behavior
– volume: 100
  start-page: 55
  year: 1999
  end-page: 83
  article-title: Mechanisms of Fatigue‐Crack Propagation in Ductile and Brittle Solids
  publication-title: Int. J. Fracture
– start-page: 61
  year: 1996
  end-page: 76
– volume: 75
  start-page: 759
  year: 1992
  end-page: 71
  article-title: Cyclic Fatigue‐Crack Growth in a SiC‐Whisker‐Reinforced Alumina Ceramic Composite
  publication-title: Long- and Small-Crack Behaviour
– volume: 23
  start-page: 937
  year: 2002
  end-page: 45
  article-title: Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses
  publication-title: Biomaterials
– volume: 77
  start-page: 105
  year: 1994
  end-page: 17
  article-title: Crack Shielding in Ce‐TZP/Al O Composites
  publication-title: Comparison of Fatigue and Sustained Load Crack Growth Specimens
– volume: 73
  start-page: 893
  year: 1990
  end-page: 903
  article-title: Cyclic Fatigue Crack Propagation in Magnesia‐Partially‐Stabilized Zirconia Ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 88
  start-page: 2826
  issue: [10]
  year: 2005
  end-page: 32
  article-title: Tailored Residual Stresses in High Reliability Alumina‐Mullite Ceramic Laminates
  publication-title: J. Am. Ceram. Soc.
– volume: 41
  start-page: 5134
  year: 2006
  end-page: 45
  article-title: Delamination Under Hertzian Cyclic Loading of a Glass Coating on Ti6Al4V for Implants
  publication-title: J. Mat. Sci.
– volume: 53
  start-page: 289
  year: 2005
  end-page: 96
  article-title: Apparent Fracture Toughness of Si N ‐Based Laminates with Residual Compressive or Tensile Stresses in Surface Layers
  publication-title: Acta Mater.
– volume: 79
  start-page: 2127
  issue: [8]
  year: 1996
  end-page: 33
  article-title: Cracking of Laminates Subjected to Biaxial Tensile Stresses
  publication-title: J. Am. Ceram. Soc.
– volume: 70
  start-page: 164
  issue: [3]
  year: 1987
  end-page: 70
  article-title: Strengthening of Oxide Ceramics by Transformation‐Induced Stresses
  publication-title: J. Am. Ceram. Soc.
– volume: 78
  start-page: 2353
  issue: [9]
  year: 1995
  end-page: 9
  article-title: Surface Cracking in Layers Under Biaxial, Residual Compressive Stress
  publication-title: J. Am. Ceram. Soc.
– volume: 25
  start-page: 587
  year: 2002
  end-page: 606
  article-title: Effect of Microstructure on Mixed‐Mode, High‐Cycle Fatigue Crack‐Growth Thresholds in Ti‐6Al‐4V Alloys
  publication-title: Fatigue Fract. Eng. Mat. Struct.
– year: 2002
– volume: 76
  start-page: 2681
  year: 1993
  end-page: 4
  article-title: Subcritical Crack Growth in Y‐TZP and Al O ‐Toughened Y‐TZP
  publication-title: J. Am. Ceram. Soc.
– volume: 98
  start-page: 1114
  year: 1990
  end-page: 9
  article-title: Coat of Alumina Sheet with Needle‐Like Mullite
  publication-title: J. Ceram. Soc. Jpn
– volume: 23
  start-page: 81
  year: 2003
  end-page: 9
  article-title: Subcritical Crack Growth in Al O with Submicron Grain Size
  publication-title: J. Eur. Ceram. Soc.
– volume: 30
  start-page: 3291
  year: 1995
  end-page: 9
  article-title: Grain Size Effects on Cyclic Fatigue and Crack‐Growth Resistance Behaviour of Partially Stabilized Zirconia
  publication-title: J. Mat. Sci.
– volume: 25
  start-page: 1053
  issue: [9]
  year: 1989
  end-page: 67
  article-title: Crack Deflection at an Interface Between Dissimilar Elastic Materials
  publication-title: Int. J. Solids Structures
– volume: 54
  start-page: 3593
  year: 2006
  end-page: 603
  article-title: Monotonic and Cyclic Hertzian Fracture of a Glass Coating on Titanium‐Based Implants
  publication-title: Acta Mater.
– volume: 42
  start-page: 365
  year: 1994
  end-page: 81
  article-title: The Cyclic Properties of Engineering Materials
  publication-title: Acta Metall. Mater.
– volume: 52
  start-page: 1087
  year: 2005
  end-page: 91
  article-title: Loading Mode Effects on the Fracture Toughness and Fatigue Crack Growth Resistance of WC‐Co Cemented Carbides
  publication-title: Scripta Mater.
– volume: 286
  start-page: 102
  year: 1999
  end-page: 5
  article-title: Laminar Ceramics that Exhibit a Threshold Strength
  publication-title: Science
– volume: 20
  start-page: 2792
  year: 2005
  ident: e_1_2_8_34_2
  article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments
  publication-title: Bilayer Structures
– ident: e_1_2_8_26_2
  doi: 10.1016/j.actamat.2004.09.022
– volume: 82
  start-page: 3129
  year: 1999
  ident: e_1_2_8_56_2
  article-title: Subcritical Crack Growth in 3Y‐TZP Ceramics
  publication-title: Static and Cyclic Fatigue
– volume: 27
  start-page: 249
  year: 1997
  ident: e_1_2_8_2_2
  article-title: Layered Ceramics
  publication-title: Processing and Mechanical Behavior
– volume: 284
  start-page: 697
  year: 2005
  ident: e_1_2_8_33_2
  article-title: Competing Damage Modes in All‐Ceramic Crowns
  publication-title: Fatigue and Lifetime
– ident: e_1_2_8_10_2
  doi: 10.1016/0955-2219(95)93055-8
– ident: e_1_2_8_36_2
  doi: 10.1016/j.actamat.2006.03.040
– ident: e_1_2_8_20_2
  doi: 10.1111/j.1151-2916.1996.tb08946.x
– volume: 25
  start-page: 1053
  issue: 9
  year: 1989
  ident: e_1_2_8_6_2
  article-title: Crack Deflection at an Interface Between Dissimilar Elastic Materials
  publication-title: Int. J. Solids Structures
  doi: 10.1016/0020-7683(89)90021-8
– ident: e_1_2_8_28_2
  doi: 10.1016/j.jeurceramsoc.2006.05.037
– ident: e_1_2_8_46_2
  doi: 10.1016/S0142-9612(01)00206-X
– volume: 74
  start-page: 1206
  year: 1991
  ident: e_1_2_8_53_2
  article-title: Fatigue of Yttria‐Stabilized Zirconia
  publication-title: II, Crack Propagation, Fatigue Striations, and Short-Crack Behaviour
– ident: e_1_2_8_40_2
  doi: 10.1111/j.1151-2916.1995.tb08668.x
– ident: e_1_2_8_49_2
  doi: 10.1016/S1359-835X(98)00145-6
– ident: e_1_2_8_54_2
  doi: 10.1111/j.1151-2916.1993.tb04001.x
– ident: e_1_2_8_27_2
  doi: 10.1016/j.actamat.2006.06.008
– volume: 77
  start-page: 105
  year: 1994
  ident: e_1_2_8_62_2
  article-title: Crack Shielding in Ce‐TZP/Al2O3 Composites
  publication-title: Comparison of Fatigue and Sustained Load Crack Growth Specimens
– ident: e_1_2_8_37_2
  doi: 10.1007/s10853-006-0439-3
– ident: e_1_2_8_59_2
  doi: 10.1007/BF00349872
– ident: e_1_2_8_4_2
  doi: 10.1016/0956-7151(93)90014-J
– ident: e_1_2_8_31_2
  doi: 10.1023/A:1018655917051
– volume: 81
  start-page: 1502
  issue: 6
  year: 1998
  ident: e_1_2_8_32_2
  article-title: Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1998.tb02509.x
– volume: 71
  start-page: C501
  issue: 12
  year: 1988
  ident: e_1_2_8_12_2
  article-title: Indentation Fracture Response and Damage Resistance of Al2O3‐ZrO2 Composites Strengthened by Transformation‐Induced Residual Stresses
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1988.tb05818.x
– ident: e_1_2_8_51_2
  doi: 10.1016/S0955-2219(97)00118-0
– volume: 21
  start-page: 512
  year: 2006
  ident: e_1_2_8_35_2
  article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments
  publication-title: Trilayer Structures
– volume: 74
  start-page: 3028
  year: 1991
  ident: e_1_2_8_57_2
  article-title: Crack Resistance and Fatigue Transforming Ceramics
  publication-title: II, CeO2-Stabilzed ZrO2
– ident: e_1_2_8_60_2
  doi: 10.1016/S0263-4368(98)00036-5
– volume: 49
  start-page: 3263
  issue: 16
  year: 2001
  ident: e_1_2_8_7_2
  article-title: Gradients in Elastic Modulus for Improved Contact‐Damage Resistance. Part II
  publication-title: The Silicon Nitride-Silicon Carbide System
– ident: e_1_2_8_19_2
  doi: 10.1111/j.1151-2916.1996.tb08003.x
– ident: e_1_2_8_63_2
  doi: 10.1046/j.1460-2695.2002.00522.x
– ident: e_1_2_8_11_2
  doi: 10.1111/j.1151-2916.1987.tb04952.x
– ident: e_1_2_8_3_2
  doi: 10.1038/347455a0
– ident: e_1_2_8_47_2
  doi: 10.1016/S0955-2219(02)00072-9
– ident: e_1_2_8_24_2
  doi: 10.1016/S0955-2219(00)00002-9
– ident: e_1_2_8_58_2
  doi: 10.1111/j.1151-2916.1990.tb05132.x
– ident: e_1_2_8_39_2
  doi: 10.1016/j.compscitech.2006.10.010
– ident: e_1_2_8_38_2
  doi: 10.1016/j.jeurceramsoc.2004.09.011
– ident: e_1_2_8_25_2
  doi: 10.1111/j.1551-2916.2005.00479.x
– ident: e_1_2_8_42_2
  doi: 10.1111/j.1460-2695.2006.00962.x
– ident: e_1_2_8_64_2
  doi: 10.1016/j.scriptamat.2005.02.011
– ident: e_1_2_8_22_2
  doi: 10.1126/science.286.5437.102
– ident: e_1_2_8_16_2
  doi: 10.1111/j.1151-2916.1989.tb07692.x
– volume: 20
  start-page: 1453
  year: 1997
  ident: e_1_2_8_45_2
  article-title: Mechanisms of Cyclic Fatigue ‐ Crack Propagation in a Fine‐Grained Alumina Ceramic
  publication-title: Role of Crack Closure
– ident: e_1_2_8_15_2
  doi: 10.1016/j.actamat.2006.06.019
– ident: e_1_2_8_44_2
  doi: 10.1111/j.1151-2916.1989.tb06323.x
– volume: 74
  start-page: 318
  year: 1991
  ident: e_1_2_8_52_2
  article-title: Crack Resistance and Fatigue Transforming Ceramics
  publication-title: I, Materials in the ZrO2-Y2O3-Al2O3 System
– ident: e_1_2_8_29_2
  doi: 10.1016/0956-7151(94)90493-6
– ident: e_1_2_8_48_2
  doi: 10.1007/978-1-4615-5853-8_5
– volume: 82
  start-page: 1512
  issue: 6
  year: 1999
  ident: e_1_2_8_23_2
  article-title: ZrO2/ZrO2 Layered Composites for Crack Bifurcation
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb01949.x
– ident: e_1_2_8_65_2
  doi: 10.1016/j.actamat.2007.05.005
– ident: e_1_2_8_8_2
  doi: 10.1016/0956-7151(92)90471-P
– ident: e_1_2_8_5_2
  doi: 10.1016/S0921-5093(97)00498-X
– volume: 37
  start-page: 1095
  issue: 7
  year: 1997
  ident: e_1_2_8_21_2
  article-title: Elastic Modulus in Rigid Al2O3/ZrO2 Ceramic Laminates
  publication-title: J. Am. Ceram. Soc.
– ident: e_1_2_8_13_2
  doi: 10.1111/j.1151-2916.1996.tb07883.x
– ident: e_1_2_8_14_2
  doi: 10.1007/s10853-005-1923-x
– volume: 50
  start-page: 542
  issue: 10
  year: 1967
  ident: e_1_2_8_9_2
  article-title: Stress Distribution in Multiphase Systems
  publication-title: I, Composites with Planar Interfaces
– volume: 75
  start-page: 759
  year: 1992
  ident: e_1_2_8_50_2
  article-title: Cyclic Fatigue‐Crack Growth in a SiC‐Whisker‐Reinforced Alumina Ceramic Composite
  publication-title: Long- and Small-Crack Behaviour
– ident: e_1_2_8_55_2
  doi: 10.1111/j.1151-2916.1997.tb03192.x
– volume-title: Fracture Resistance Testing of Monolithic and Composite Brittle Materials. ASTM STP 1409
  year: 2002
  ident: e_1_2_8_41_2
– ident: e_1_2_8_18_2
  doi: 10.1111/j.1151-2916.1991.tb04290.x
– ident: e_1_2_8_30_2
  doi: 10.1017/CBO9780511806575
– ident: e_1_2_8_17_2
  doi: 10.2109/jcersj.98.1114
– ident: e_1_2_8_61_2
  doi: 10.1016/S0955-2219(98)00281-7
– ident: e_1_2_8_43_2
  doi: 10.1111/j.1151-2916.1989.tb06133.x
SSID ssj0001984
Score 2.0832596
Snippet The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive...
The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina-zirconia composite exhibiting high internal compressive...
The influence of sustained and cyclic loading on the crack growth behaviour of a multilayered alumina-zirconia composite exhibiting high internal compressive...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1618
SubjectTerms Alumina
Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Ceramics
Cermets, ceramic and refractory composites
Chemical industry and chemicals
Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Materials fatigue
Materials science
Miscellaneous
Other materials
Physics
Specific materials
Technical ceramics
Zirconium
Title Fatigue Behavior of Alumina-Zirconia Multilayered Ceramics
URI https://api.istex.fr/ark:/67375/WNG-3XG7DC3N-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2008.02336.x
https://www.proquest.com/docview/217963059
https://www.proquest.com/docview/34809362
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hcoEDlC9hWooPiJujze567UhcorRpVYkcEIWIy2rWu4ustA6yY6lw4j_wD_klnbUdEyMOFeLmyDuWPZmZfZM8vyHkNWKMcaKFjuKx5pEAyqM0BofpjvGkHaRpI-rzbiHPLsT5Ml52_Cf_LkyrD9H_4OYzo6nXPsFBV8Mkx90-YohvOkok41yOPJ701C2Pj97_VpLC3lpskbCXiBuSev56ocFOddc7_dozJ6FC57l26sUAlu6C22Z3mj8kq-1ztaSU1aje6FH2_Q_Jx__z4PvkQQdiw2kbdY_IHVs8Jvd3pA3x08e8qts11RPydo4B8KW2YSfHWIZrF06xLuYF_Prx83NeYlueQ9i8DnwJ3_wA0XBmS7jKs-opuZiffJidRd3chihDcCUjcM7F1EywGBhhtKXcS4AK65VipHYG1yQOQEsKEstrAiBjjjiTMT0R0lH-jOwV68I-JyHPTEYNM04ag62ngMROMuoYSwwDK0xAku13pLJO1NzP1rhUO80Nekt5b3UjN7231HVAxr3l11bY4xY2b5ow6A2gXHliXBKrT4tTxZenyfGML5QMyNEgTnoDRnnMhcQFB9vAUV3RqBR2h1gOEe8G5FV_FrPd_4UDhV3XleIipRPEHAFJmxC59a2r8-nspDl-8e-mB-ReS5fxfM9Dsrcpa_sSMdlGHzXZdgMdLiTW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQewAO_CNCoc0BccsqaztOVuKy2na7lHYPqIUVF2sc21XUJYuSjVQ48Q68IU_COMmGDeJQIW6J4oniycz4G2fyDSGvEGMMY8VVEA0VCziELEgisOjuaE_KQpLUpD5nczG74CeLaNG2A3L_wjT8EN2Gm_OMOl47B3cb0n0vx-U-oAhw2ppIypgYIKDcdQ2-HZH-4fvfXFKYXfMNFnYkcf2ynr_eqbdW7Tq1X7vaSShRfbbpe9EDptvwtl6fpvfJcjOzpizlalCt1SD99gfp43-a-gNyr8Wx_rgxvIfklskfkbtb7IZ49iErq2ZM-Zi8maINXFbGbxkZC39l_TGGxiyHn99_fMoKzMwz8Os_gpfw1fUQ9SemgM9ZWj4hF9Oj88ksaFs3BCniKxGAtTYK9QjjgeZamZA5FlBuHFmMUFbjmNgCKBGCwAgbA4iIIdSkVI24sCF7SnbyVW6eEZ-lOg011VZojdknh9iM0tBSGmsKhmuPxJuXJNOW19y111jKrfwGtSWdttqum05b8tojw07yS8PtcQOZ17UddAJQXLnauDiSH-fHki2O48MJm0vhkf2eoXQCNGQR4wIH7G0sR7Zxo5SYIGJERMjrkYPuKjq8-4oDuVlVpWQ8CUcIOzyS1DZy40eXJ-PJUX38_N9FD8jt2fnZqTx9O3-3R-401TOu_PMF2VkXlXmJEG2t9mvX-wV1Lyjy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQKyE4lH-RFtocELesvLbjJFIvq91uS4EVQhRWXCw7tlG0bbZKNlLhxDvwhn2SjpNs2CAOFeKWKJ4onsyMv0nG3yD0CjDGMFJMBeFQ0YBJTIM4lBbcHexJWRnHNanP-xk_OWOn83De1j-5vTANP0T3wc15Rh2vnYNfatt3cljtAwL4pi2JJJTyAeDJbcZx4to4TD7-ppKC5JqtobDjiOtX9fz1Tr2lattp_cqVTsoStGebthc9XLqJbuvlafoALdYTa6pSFoNqpQbpjz84H__PzB-inRbF-qPG7B6hOyZ_jO5vcBvC2eesrJox5RN0OAUL-FYZv-VjLPyl9UcQGLNcXv_89TUrIC_PpF_vBz6X310HUX9sCnmRpeVTdDY9-jQ-CdrGDUEK6IoH0lobYp1ANNBMK4Op4wBlxlHFcGU1jImslIpjySG-RlLykALQJEQljFtMn6GtfJmb58inqU6xJtpyrSH3ZDIySYotIZEm0jDtoWj9jkTaspq75hrnYiO7AW0Jp62256bTlrjy0LCTvGyYPW4h87o2g05AFgtXGReF4svsWND5cTQZ05ngHtrv2UknQDANKeMwYG9tOKKNGqWA9BDiIQBeDx10V8Hd3T8cmZtlVQrKYpwA6PBQXJvIrR9dnI7GR_Xx7r-LHqC7HyZT8e7N7O0euteUzrjazxdoa1VU5iXgs5Xarx3vBsIlJ6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+Behavior+of+Alumina-Zirconia+Multilayered+Ceramics&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Bermejo%2C+Ra%C3%BAl&rft.au=Torres%2C+Yadir&rft.au=Anglada%2C+Marc&rft.au=Llanes%2C+Luis&rft.date=2008-05-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=91&rft.issue=5&rft.spage=1618&rft.epage=1625&rft_id=info:doi/10.1111%2Fj.1551-2916.2008.02336.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_3XG7DC3N_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon