Fatigue Behavior of Alumina-Zirconia Multilayered Ceramics
The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resista...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 91; no. 5; pp. 1618 - 1625 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.05.2008
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental‐assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics. |
---|---|
AbstractList | The influence of sustained and cyclic loading on the crack growth behaviour of a multilayered alumina-zirconia composite exhibiting high internal compressive stresses was investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it was found that the layered composite was prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, was observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied was restricted to the intrinsic environmental-assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics. 64 refs. The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina-zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental-assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics. [PUBLICATION ABSTRACT] The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental‐assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics. |
Author | Torres, Yadir Bermejo, Raúl Llanes, Luis Anglada, Marc |
Author_xml | – sequence: 1 givenname: Raúl surname: Bermejo fullname: Bermejo, Raúl email: raul.bermejo@mu-leoben.at organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain – sequence: 2 givenname: Yadir surname: Torres fullname: Torres, Yadir organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain – sequence: 3 givenname: Marc surname: Anglada fullname: Anglada, Marc organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain – sequence: 4 givenname: Luis surname: Llanes fullname: Llanes, Luis organization: Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB, Universidad Politécnica de Cataluña, 08028 Barcelona, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20353466$$DView record in Pascal Francis |
BookMark | eNqNkEFv0zAYQC00JLqN_xAhwS3hsx07MQdQl21laIwLCMTF-prY4JLGm51A--9x16mHneaLbfn52XrH5GjwgyEko1DQNN6uCioEzZmismAAdQGMc1lsnpHZ4eCIzACA5VXN4AU5jnGVtlTV5Yy8u8TR_ZpMdmZ-41_nQ-ZtNu-ntRsw_-lC6weH2eepH12PWxNMlzUm4Nq18ZQ8t9hH8_JhPiHfLi--Nh_z6y-Lq2Z-nbdlSWWO1loBnRJV3ZXd0gBXUkJphAIml7ZLTGURlxJQYtdViFJwxiljS1VKC_yEvNl7b4O_m0wc9drF1vQ9DsZPUfOyBsUlS-CrR-DKT2FIf9OMVkpyECpBrx8gjC32NuDQuqhvg1tj2GoGXPBSysTVe64NPsZg7AGhoHfl9UrvAutdYL0rr-_L6026-v7R1daNKbMfxoCuf4rgw17wz_Vm--SH9ad5c3G_ToZ8b3BxNJuDAcMfLSteCf39ZqH5j0V13vAbLfl_f2usXw |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1016_j_prostr_2016_06_253 crossref_primary_10_1016_j_surfcoat_2011_12_012 crossref_primary_10_1016_j_matchemphys_2011_12_055 crossref_primary_10_1002_ppap_200931501 crossref_primary_10_1016_j_matdes_2014_01_076 crossref_primary_10_1007_s42452_024_05654_2 crossref_primary_10_1016_j_proeng_2010_03_033 crossref_primary_10_1016_j_tafmec_2012_08_005 crossref_primary_10_1016_j_ceramint_2012_02_098 crossref_primary_10_4028_www_scientific_net_KEM_409_94 crossref_primary_10_1016_j_engfracmech_2016_03_039 crossref_primary_10_1016_j_compositesb_2013_11_012 crossref_primary_10_1016_j_engfracmech_2010_02_023 crossref_primary_10_1016_j_ceramint_2016_01_059 crossref_primary_10_1016_j_engfracmech_2010_02_020 crossref_primary_10_1039_C5RA01018G crossref_primary_10_1179_1743676114Y_0000000215 crossref_primary_10_1016_j_jeurceramsoc_2022_10_013 crossref_primary_10_4028_www_scientific_net_KEM_465_41 crossref_primary_10_1016_j_triboint_2017_09_032 crossref_primary_10_1016_j_ceramint_2013_11_018 crossref_primary_10_3139_146_110523 crossref_primary_10_1016_S0022_3913_13_60037_2 crossref_primary_10_1016_j_jeurceramsoc_2022_11_046 crossref_primary_10_1002_adem_201600683 crossref_primary_10_1016_j_ijlmm_2018_08_002 crossref_primary_10_1016_j_ijrmhm_2008_05_003 crossref_primary_10_1139_cgj_2017_0543 |
Cites_doi | 10.1016/j.actamat.2004.09.022 10.1016/0955-2219(95)93055-8 10.1016/j.actamat.2006.03.040 10.1111/j.1151-2916.1996.tb08946.x 10.1016/0020-7683(89)90021-8 10.1016/j.jeurceramsoc.2006.05.037 10.1016/S0142-9612(01)00206-X 10.1111/j.1151-2916.1995.tb08668.x 10.1016/S1359-835X(98)00145-6 10.1111/j.1151-2916.1993.tb04001.x 10.1016/j.actamat.2006.06.008 10.1007/s10853-006-0439-3 10.1007/BF00349872 10.1016/0956-7151(93)90014-J 10.1023/A:1018655917051 10.1111/j.1151-2916.1998.tb02509.x 10.1111/j.1151-2916.1988.tb05818.x 10.1016/S0955-2219(97)00118-0 10.1016/S0263-4368(98)00036-5 10.1111/j.1151-2916.1996.tb08003.x 10.1046/j.1460-2695.2002.00522.x 10.1111/j.1151-2916.1987.tb04952.x 10.1038/347455a0 10.1016/S0955-2219(02)00072-9 10.1016/S0955-2219(00)00002-9 10.1111/j.1151-2916.1990.tb05132.x 10.1016/j.compscitech.2006.10.010 10.1016/j.jeurceramsoc.2004.09.011 10.1111/j.1551-2916.2005.00479.x 10.1111/j.1460-2695.2006.00962.x 10.1016/j.scriptamat.2005.02.011 10.1126/science.286.5437.102 10.1111/j.1151-2916.1989.tb07692.x 10.1016/j.actamat.2006.06.019 10.1111/j.1151-2916.1989.tb06323.x 10.1016/0956-7151(94)90493-6 10.1007/978-1-4615-5853-8_5 10.1111/j.1151-2916.1999.tb01949.x 10.1016/j.actamat.2007.05.005 10.1016/0956-7151(92)90471-P 10.1016/S0921-5093(97)00498-X 10.1111/j.1151-2916.1996.tb07883.x 10.1007/s10853-005-1923-x 10.1111/j.1151-2916.1997.tb03192.x 10.1111/j.1151-2916.1991.tb04290.x 10.1017/CBO9780511806575 10.2109/jcersj.98.1114 10.1016/S0955-2219(98)00281-7 10.1111/j.1151-2916.1989.tb06133.x |
ContentType | Journal Article |
Copyright | 2008 The American Ceramic Society 2008 INIST-CNRS Copyright American Ceramic Society May 2008 |
Copyright_xml | – notice: 2008 The American Ceramic Society – notice: 2008 INIST-CNRS – notice: Copyright American Ceramic Society May 2008 |
DBID | BSCLL AAYXX CITATION IQODW 7QQ 7SR 8FD JG9 |
DOI | 10.1111/j.1551-2916.2008.02336.x |
DatabaseName | Istex CrossRef Pascal-Francis Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering Applied Sciences Physics |
EISSN | 1551-2916 |
EndPage | 1625 |
ExternalDocumentID | 1480193451 20353466 10_1111_j_1551_2916_2008_02336_x JACE02336 ark_67375_WNG_3XG7DC3N_6 |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7QQ 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c4416-afff50d9578d4dbe0396604e59026bfd4167faab60a6add7aa65323122b946f03 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Jul 11 00:28:27 EDT 2025 Fri Jul 25 19:20:48 EDT 2025 Mon Jul 21 09:15:12 EDT 2025 Tue Jul 01 00:21:42 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Wed Jan 22 16:26:37 EST 2025 Wed Oct 30 09:55:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Slip casting Scanning electron microscopy Stratified material Multiple layer Mechanical properties Fatigue Stabilized zirconia Sustained load Experimental study Oxide ceramics Composite material Compressive stress Yttrium Oxides Internal stress Cyclic load Technical ceramics Zirconium Oxides Manufacturing Alumina |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4416-afff50d9578d4dbe0396604e59026bfd4167faab60a6add7aa65323122b946f03 |
Notes | ark:/67375/WNG-3XG7DC3N-6 ArticleID:JACE02336 istex:D916B1AD1DE68A450640AE5F1871CA9A7883F712 V. Salavo—contributing editor This investigation was financially supported by the Spanish Ministerio de Educación y Ciencia (MAT2006‐13480) as well as by the European Community's Human Potential Program under contract HPRN‐CT‐2002‐00203 [SICMAC]. Current address: Departmento de Ingeniería Mecánica y de los Materiales, Escuela Técnica Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain. ¶ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 217963059 |
PQPubID | 41752 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_34809362 proquest_journals_217963059 pascalfrancis_primary_20353466 crossref_primary_10_1111_j_1551_2916_2008_02336_x crossref_citationtrail_10_1111_j_1551_2916_2008_02336_x wiley_primary_10_1111_j_1551_2916_2008_02336_x_JACE02336 istex_primary_ark_67375_WNG_3XG7DC3N_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2008 |
PublicationDateYYYYMMDD | 2008-05-01 |
PublicationDate_xml | – month: 05 year: 2008 text: May 2008 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: Malden,MA – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Inc Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell – name: Wiley Subscription Services, Inc |
References | R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, "Toughening of Layered Ceramic Composites with Residual Surface Compression," J. Am. Ceram. Soc., 79 [1] 79-87 (1996). M. J. Hoffman, Y.-W. May, R. H. Dauskardt, J. Ager, and R. O. Ritchie, "Grain Size Effects on Cyclic Fatigue and Crack-Growth Resistance Behaviour of Partially Stabilized Zirconia," J. Mat. Sci., 30, 3291-9 (1995). J.-F. Tsai, J. D. Belnap, and D. K. Shetty, "Crack Shielding in Ce-TZP/Al2O3 Composites: Comparison of Fatigue and Sustained Load Crack Growth Specimens," J. Am. Ceram. Soc., 77, 105-17 (1994). N. A. Fleck, K. J. Kang, and M. F. Ashby, "The Cyclic Properties of Engineering Materials," Acta Metall. Mater., 42, 365-81 (1994). R. H. Dauskardt, M. R. James, J. R. Porter, and R. O. Ritchie, "Cyclic Fatigue-Crack Growth in a SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behaviour," J. Am. Ceram. Soc., 75, 759-71 (1992). C. K. L. Davies, F. Guiu, M. Li, M. J. Reece, and R. Torrecillas, "Subcritical Crack Propagation Under Cyclic and Static Loading in Mullite and Mullite-Zirconia," J. Eur. Ceram. Soc., 18, 221-7 (1998). M. Knechtel, D. Garcia, J. Rödel, and N. Claussen, "Subcritical Crack Growth in Y-TZP and Al2O3-Toughened Y-TZP," J. Am. Ceram. Soc., 76, 2681-4 (1993). J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Monotonic and Cyclic Hertzian Fracture of a Glass Coating on Titanium-Based Implants," Acta Mater., 54, 3593-603 (2006). G. Grathwohl and T. Liu, "Crack Resistance and Fatigue Transforming Ceramics: I, Materials in the ZrO2-Y2O3-Al2O3 System," J. Am. Ceram. Soc., 74, 318-25 (1991). J. Chevalier, C. Olagnon, and G. Fantozzi, "Crack Propagation and Fatigue in Zirconia-Based Composites," Comp A., 30, 525-30 (1999). R. Bermejo, A. J. Sanchez-Herencia, L. Llanes, and C. Baudín, "High-Temperature Mechanical Behaviour of Flaw Tolerant Alumina-Zirconia Multilayered Ceramics," Acta Mater., 55 [14] 4891-901 (2007). W. J. Clegg, "The Fabrication and Failure of Laminar Ceramic Composites," Acta Metall. Mater., 40 [11] 3085-93 (1992). R. Bermejo, Y. Torres, C. Baudin, A. J. Sánchez-Herencia, J. Pascual, M. Anglada, and L. Llanes, "Threshold Strength Evaluation on an Al2O3-ZrO2 Multilayered System," J. Eur. Ceram. Soc., 27 [2-3] 1443-8 (2007). T. Chartier, D. Merle, and J. L. Besson, "Laminar Ceramic Composites," J. Eur. Ceram. Soc., 15, 101-7 (1995). M. Y. He and J. W. Hutchinson, "Crack Deflection at an Interface Between Dissimilar Elastic Materials," Int. J. Solids Structures, 25 [9] 1053-67 (1989). J. Chevalier, C. Olagnon, and G. Fantozzi, "Subcritical Crack Growth in 3Y-TZP Ceramics: Static and Cyclic Fatigue," J. Am. Ceram. Soc., 82, 3129-38 (1999). M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler, and M. Lewis, "Apparent Fracture Toughness of Si3N4-Based Laminates with Residual Compressive or Tensile Stresses in Surface Layers," Acta Mater., 53, 289-96 (2005). J. Requena, R. Moreno, and J. Moya, "Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting," J. Am. Ceram. Soc., 72, 1511 (1989). R. K. Nalla, J. P. Campbell, and R. O. Ritchie, "Effect of Microstructure on Mixed-Mode, High-Cycle Fatigue Crack-Growth Thresholds in Ti-6Al-4V Alloys," Fatigue Fract. Eng. Mat. Struct., 25, 587-606 (2002). R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fracture, 100, 55-83 (1999). R. Bermejo, Y. Torres, A. J. Sanchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Residual Stresses, Strength and Toughness of Laminates with Different Layer Thickness Ratios," Acta Mater., 54, 4745-57 (2006). J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Delamination Under Hertzian Cyclic Loading of a Glass Coating on Ti6Al4V for Implants," J. Mat. Sci., 41, 5134-45 (2006). J. J. Hansen, R. A. Cutler, D. K. Shetty, and A. V. Virkar, "Indentation Fracture Response and Damage Resistance of Al2O3-ZrO2 Composites Strengthened by Transformation-Induced Residual Stresses," J. Am. Ceram. Soc., 71 [12] C501-5 (1988). R. Bermejo, C. Baudín, R. Moreno, L. Llanes, and A. J. Sánchez-Herencia, "Processing Optimisation and Fracture Behaviour of Layered Ceramic Composites with Highly Compressive Layers," Comp. Sci. Tech., 67 [9] 1930-8 (2007). R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie, "Cyclic Fatigue Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics," J. Am. Ceram. Soc., 73, 893-903 (1990). C. J. Gilbert and R. O. Ritchie, "Mechanisms of Cyclic Fatigue - Crack Propagation in a Fine-Grained Alumina Ceramic: Role of Crack Closure," Fatigue Fract. Eng. Mater. Struct., 20, 1453-66 (1997). C. Hillman, Z. Suo, and F. Lange, "Cracking of Laminates Subjected to Biaxial Tensile Stresses," J. Am. Ceram. Soc., 79 [8] 2127-33 (1996). S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Bilayer Structures," J. Mat. Res., 20, 2792-800 (2005). V. M. Sglavo and M. Bertoldi, "Design and Production of Ceramic Laminates with High Mechanical Resistance and Reliability," Acta Mater., 54, 4929-37 (2006). A. V. Virkar, J. L. Huang, and R. A. Cutler, "Strengthening of Oxide Ceramics by Transformation-Induced Stresses," J. Am. Ceram. Soc., 70 [3] 164-70 (1987). V. M. Sglavo, M. Paternoster, and M. Bertoldi, "Tailored Residual Stresses in High Reliability Alumina-Mullite Ceramic Laminates," J. Am. Ceram. Soc., 88 [10] 2826-32 (2005). A. Krell, E. Pippel, J. Woltersdorf, and W. Burger, "Subcritical Crack Growth in Al2O3 with Submicron Grain Size," J. Eur. Ceram. Soc., 23, 81-9 (2003). N. Orlovskaya, M. Lugovy, V. Subbotin, O. Rachenko, J. Adams, M. Chheda, J. Shih, J. Sankar, and S. Yarmolenko, "Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness," J. Mat. Sci., 40, 5483-90 (2005). M. Oechsner, C. Hillman, and F. Lange, "Crack Bifurcation in Laminar Ceramic Composites," J. Am. Ceram. Soc., 79 [7] 1834-8 (1996). D. C. Pender, S. C. Thompson, N. P. Padture, A. E. Giannakopoulos, and S. Suresh, "Gradients in Elastic Modulus for Improved Contact-Damage Resistance. Part II: The Silicon Nitride-Silicon Carbide System," Acta Mater., 49 [16] 3263-8 (2001). M. Rao, J. Sanchez-Herencia, G. Beltz, R. M. McMeeking, and F. Lange, "Laminar Ceramics that Exhibit a Threshold Strength," Science, 286, 102-5 (1999). S. Lathabai, Y.-W. Mai, and B. R. Lawn, "Cyclic Fatigue Behaviour of an Alumina Ceramic with Crack-Resistance Characteristics," J. Am. Ceram. Soc., 72, 1760-3 (1989). J. Alcala and M. Anglada, "Fatigue and Static Crack Propagation in Y-TZP," J. Am. Ceram. Soc., 80, 2759-72 (1997). A. J. Sanchez-Herencia, C. Pascual, J. He, and F. F. Lange, "ZrO2/ZrO2 Layered Composites for Crack Bifurcation," J. Am. Ceram. Soc., 82 [6] 1512-8 (1999). S. Ho, C. Hillman, F. F. Lange, and Z. Suo, "Surface Cracking in Layers Under Biaxial, Residual Compressive Stress," J. Am. Ceram. Soc., 78 [9] 2353-9 (1995). W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, "A Simple Way to Make Tough Ceramics," Nature, 347, 455-7 (1990). A. J. Phillipps, W. J. Clegg, and T. W. Clyne, "Fracture-Behavior of Ceramic Laminates in Bending. 1. Modeling of Crack-Propagation," Acta Metall. Mater., 41 [3] 805-17 (1993). J. Moya, J. Sanchez-Herencia, J. F. Bartolome, and T. Tanimoto, "Elastic Modulus in Rigid Al2O3/ZrO2 Ceramic Laminates," J. Am. Ceram. Soc., 37 [7] 1095-103 (1997). M. J. Reece, F. Guiu, and M. F. R. Sammur, "Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension-Compression Loading," J. Am. Ceram. Soc., 72, 348-52 (1989). D. Kuo and W. Kriven, "Fracture of Multilayer Oxide Composites," Material Science and Engineering A, 241, 241-50 (1998). J. F. Bartolome, J. S. Moya, J. Requena, J. Llorca, and M. Anglada, "Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics," J. Am. Ceram. Soc., 81 [6] 1502-8 (1998). A. J. Sanchez-Herencia, L. James, and F. F. Lange, "Bifurcation in Alumina Plates Produced by a Phase Transformation in Central, Alumina/Zirconia Thin Layers," J. Eur. Ceram. Soc., 20 [9] 1297-300 (2000). D. B. Marshall, J. J. Ratto, and F. Lange, "Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrO2 and Al2O3," J. Am. Ceram. Soc., 74 [12] 2979-87 (1991). I. Hermann, S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Trilayer Structures," J. Mat. Res., 21, 512-21 (2006). E. Jimenez-Piqué, L. Cesseraciu, F. Chalvet, M. Anglada, and G. De Portu, "Hertzian Contact Fatigue on Alumina/Alumina-Zirconia Laminated Composites," J. Eur. Ceram. Soc., 25 [15] 3393-401 (2005). R. Bermejo, Y. Torres Hernández, A. J. Sánchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Fracture Behaviour of an Al2O3-ZrO2 Multi-Layered Ceramic with Residual Stresses Due to Phase Transformations," Fatigue Fract. Eng. Mater. Struct., 29, 71-8 (2006). S. Suresh, Fatigue of Materials, 2nd edition. Cambridge, U.K, 1998. R. Fernández, F. Meschke, G. De Portu, M. Anglada, and L. Llanes, "Fatigue and Fracture Characteristics of a Fine-Grained (Mg, Y)-PSZ Zirconia Ceramic," J. Eur. Ceram. Soc., 19, 1705-15 (1999). J. Kübler, Fracture Resistance Testing of Monolithic and Composite Brittle Materials. ASTM STP 1409. ASTM, Philadelphia, PA, 2002. H. M. Chan, "Layered Ceramics: Processing and Mechanical Behavior," Annu. Rev. Mater. Sci., 27, 249-82 (1997). R. Fernández, D. Casellas, F. L. Cumbrera, F. Sánchez-Bajo, M. Anglada, and L. Llanes, "Phase Assemblage Effects on the Fracture and Fatigue Characteristics of Magnesia-Partially-Stabilized Zirconia," Int. J. Refract. Met. Hard Mater., 16, 291-301 (1998). A. H. Aza, G. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, "Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses," Biomaterials, 23, 937-45 (2002). G. Grathwohl a 1997; 80 1995; 30 1990; 98 1990; 347 1987; 70 1995; 78 1999; 286 2005; 20 1998; 81 2001; 49 1999; 82 1996; 79 1988; 71 2005; 25 1998; 16 1998; 18 1989; 72 2006; 21 1999; 19 1967; 50 1993; 76 1994; 77 2006; 29 2007; 67 1998; 241 1992; 40 2007; 27 2005; 284‐86 1990; 73 1995; 15 2006; 54 1997; 20 1991; 74 1993; 41 2000; 20 2005; 40 1998 1996 1997; 27 1999; 100 2002 1992; 75 2007; 55 1989; 25 2005; 88 1994; 42 2002; 25 2006; 41 1997; 37 2002; 23 2005; 52 2005; 53 1999; 30 2003; 23 Bartolome J. F. (e_1_2_8_32_2) 1998; 81 e_1_2_8_28_2 e_1_2_8_49_2 Hansen J. J. (e_1_2_8_12_2) 1988; 71 Grathwohl G. (e_1_2_8_57_2) 1991; 74 e_1_2_8_24_2 e_1_2_8_26_2 e_1_2_8_47_2 Kübler J. (e_1_2_8_41_2) 2002 Grathwohl G. (e_1_2_8_52_2) 1991; 74 e_1_2_8_3_2 e_1_2_8_5_2 Hermann I. (e_1_2_8_35_2) 2006; 21 e_1_2_8_20_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_60_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_15_2 e_1_2_8_36_2 Dauskardt R. H. (e_1_2_8_50_2) 1992; 75 Zhang Y. (e_1_2_8_33_2) 2005; 284 Oel H. J. (e_1_2_8_9_2) 1967; 50 Gilbert C. J. (e_1_2_8_45_2) 1997; 20 e_1_2_8_30_2 e_1_2_8_55_2 Chevalier J. (e_1_2_8_56_2) 1999; 82 e_1_2_8_11_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 Liu S. (e_1_2_8_53_2) 1991; 74 He M. Y. (e_1_2_8_6_2) 1989; 25 e_1_2_8_4_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_61_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 Moya J. (e_1_2_8_21_2) 1997; 37 e_1_2_8_58_2 e_1_2_8_14_2 e_1_2_8_37_2 Tsai J.‐F. (e_1_2_8_62_2) 1994; 77 Bhowmick S. (e_1_2_8_34_2) 2005; 20 Sanchez‐Herencia A. J. (e_1_2_8_23_2) 1999; 82 Pender D. C. (e_1_2_8_7_2) 2001; 49 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_10_2 Chan H. M. (e_1_2_8_2_2) 1997; 27 |
References_xml | – reference: R. Bermejo, Y. Torres, A. J. Sanchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Residual Stresses, Strength and Toughness of Laminates with Different Layer Thickness Ratios," Acta Mater., 54, 4745-57 (2006). – reference: R. H. Dauskardt, M. R. James, J. R. Porter, and R. O. Ritchie, "Cyclic Fatigue-Crack Growth in a SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behaviour," J. Am. Ceram. Soc., 75, 759-71 (1992). – reference: H. M. Chan, "Layered Ceramics: Processing and Mechanical Behavior," Annu. Rev. Mater. Sci., 27, 249-82 (1997). – reference: H. J. Oel and V. D. Fréchette, "Stress Distribution in Multiphase Systems: I, Composites with Planar Interfaces," J. Am. Ceram. Soc., 50 [10] 542-9 (1967). – reference: M. Knechtel, D. Garcia, J. Rödel, and N. Claussen, "Subcritical Crack Growth in Y-TZP and Al2O3-Toughened Y-TZP," J. Am. Ceram. Soc., 76, 2681-4 (1993). – reference: A. J. Phillipps, W. J. Clegg, and T. W. Clyne, "Fracture-Behavior of Ceramic Laminates in Bending. 1. Modeling of Crack-Propagation," Acta Metall. Mater., 41 [3] 805-17 (1993). – reference: D. C. Pender, S. C. Thompson, N. P. Padture, A. E. Giannakopoulos, and S. Suresh, "Gradients in Elastic Modulus for Improved Contact-Damage Resistance. Part II: The Silicon Nitride-Silicon Carbide System," Acta Mater., 49 [16] 3263-8 (2001). – reference: J. Requena, R. Moreno, and J. Moya, "Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting," J. Am. Ceram. Soc., 72, 1511 (1989). – reference: A. V. Virkar, J. L. Huang, and R. A. Cutler, "Strengthening of Oxide Ceramics by Transformation-Induced Stresses," J. Am. Ceram. Soc., 70 [3] 164-70 (1987). – reference: H. Katsuki and Y. Hirata, "Coat of Alumina Sheet with Needle-Like Mullite," J. Ceram. Soc. Jpn, 98, 1114-9 (1990). – reference: N. Orlovskaya, M. Lugovy, V. Subbotin, O. Rachenko, J. Adams, M. Chheda, J. Shih, J. Sankar, and S. Yarmolenko, "Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness," J. Mat. Sci., 40, 5483-90 (2005). – reference: C. J. Gilbert and R. O. Ritchie, "Mechanisms of Cyclic Fatigue - Crack Propagation in a Fine-Grained Alumina Ceramic: Role of Crack Closure," Fatigue Fract. Eng. Mater. Struct., 20, 1453-66 (1997). – reference: R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie, "Cyclic Fatigue Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics," J. Am. Ceram. Soc., 73, 893-903 (1990). – reference: R. Bermejo, C. Baudín, R. Moreno, L. Llanes, and A. J. Sánchez-Herencia, "Processing Optimisation and Fracture Behaviour of Layered Ceramic Composites with Highly Compressive Layers," Comp. Sci. Tech., 67 [9] 1930-8 (2007). – reference: J. F. Bartolome, J. S. Moya, J. Requena, J. Llorca, and M. Anglada, "Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics," J. Am. Ceram. Soc., 81 [6] 1502-8 (1998). – reference: I. Hermann, S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Trilayer Structures," J. Mat. Res., 21, 512-21 (2006). – reference: R. Fernández, D. Casellas, F. L. Cumbrera, F. Sánchez-Bajo, M. Anglada, and L. Llanes, "Phase Assemblage Effects on the Fracture and Fatigue Characteristics of Magnesia-Partially-Stabilized Zirconia," Int. J. Refract. Met. Hard Mater., 16, 291-301 (1998). – reference: E. Jimenez-Piqué, L. Cesseraciu, F. Chalvet, M. Anglada, and G. De Portu, "Hertzian Contact Fatigue on Alumina/Alumina-Zirconia Laminated Composites," J. Eur. Ceram. Soc., 25 [15] 3393-401 (2005). – reference: A. J. Sanchez-Herencia, C. Pascual, J. He, and F. F. Lange, "ZrO2/ZrO2 Layered Composites for Crack Bifurcation," J. Am. Ceram. Soc., 82 [6] 1512-8 (1999). – reference: N. A. Fleck, K. J. Kang, and M. F. Ashby, "The Cyclic Properties of Engineering Materials," Acta Metall. Mater., 42, 365-81 (1994). – reference: C. K. L. Davies, F. Guiu, M. Li, M. J. Reece, and R. Torrecillas, "Subcritical Crack Propagation Under Cyclic and Static Loading in Mullite and Mullite-Zirconia," J. Eur. Ceram. Soc., 18, 221-7 (1998). – reference: J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Delamination Under Hertzian Cyclic Loading of a Glass Coating on Ti6Al4V for Implants," J. Mat. Sci., 41, 5134-45 (2006). – reference: S. Ho, C. Hillman, F. F. Lange, and Z. Suo, "Surface Cracking in Layers Under Biaxial, Residual Compressive Stress," J. Am. Ceram. Soc., 78 [9] 2353-9 (1995). – reference: A. Krell, E. Pippel, J. Woltersdorf, and W. Burger, "Subcritical Crack Growth in Al2O3 with Submicron Grain Size," J. Eur. Ceram. Soc., 23, 81-9 (2003). – reference: Y. Zhang and B. R. Lawn, "Competing Damage Modes in All-Ceramic Crowns: Fatigue and Lifetime," Key Engng. Mat., 284-86, 697-700 (2005). – reference: J. Kübler, Fracture Resistance Testing of Monolithic and Composite Brittle Materials. ASTM STP 1409. ASTM, Philadelphia, PA, 2002. – reference: R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, "Toughening of Layered Ceramic Composites with Residual Surface Compression," J. Am. Ceram. Soc., 79 [1] 79-87 (1996). – reference: J. Moya, J. Sanchez-Herencia, J. F. Bartolome, and T. Tanimoto, "Elastic Modulus in Rigid Al2O3/ZrO2 Ceramic Laminates," J. Am. Ceram. Soc., 37 [7] 1095-103 (1997). – reference: T. Chartier, D. Merle, and J. L. Besson, "Laminar Ceramic Composites," J. Eur. Ceram. Soc., 15, 101-7 (1995). – reference: J. Alcala and M. Anglada, "Fatigue and Static Crack Propagation in Y-TZP," J. Am. Ceram. Soc., 80, 2759-72 (1997). – reference: M. Rao, J. Sanchez-Herencia, G. Beltz, R. M. McMeeking, and F. Lange, "Laminar Ceramics that Exhibit a Threshold Strength," Science, 286, 102-5 (1999). – reference: V. M. Sglavo, M. Paternoster, and M. Bertoldi, "Tailored Residual Stresses in High Reliability Alumina-Mullite Ceramic Laminates," J. Am. Ceram. Soc., 88 [10] 2826-32 (2005). – reference: S. Lathabai, Y.-W. Mai, and B. R. Lawn, "Cyclic Fatigue Behaviour of an Alumina Ceramic with Crack-Resistance Characteristics," J. Am. Ceram. Soc., 72, 1760-3 (1989). – reference: S. Bhowmick, Y. Zhang, and B. R. Lawn, "Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments: Bilayer Structures," J. Mat. Res., 20, 2792-800 (2005). – reference: J. Chevalier, C. Olagnon, and G. Fantozzi, "Subcritical Crack Growth in 3Y-TZP Ceramics: Static and Cyclic Fatigue," J. Am. Ceram. Soc., 82, 3129-38 (1999). – reference: J. J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, and A. P. Tomsia, "Monotonic and Cyclic Hertzian Fracture of a Glass Coating on Titanium-Based Implants," Acta Mater., 54, 3593-603 (2006). – reference: M. J. Reece, F. Guiu, and M. F. R. Sammur, "Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension-Compression Loading," J. Am. Ceram. Soc., 72, 348-52 (1989). – reference: R. Bermejo, A. J. Sanchez-Herencia, L. Llanes, and C. Baudín, "High-Temperature Mechanical Behaviour of Flaw Tolerant Alumina-Zirconia Multilayered Ceramics," Acta Mater., 55 [14] 4891-901 (2007). – reference: D. B. Marshall, J. J. Ratto, and F. Lange, "Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrO2 and Al2O3," J. Am. Ceram. Soc., 74 [12] 2979-87 (1991). – reference: S. Suresh, Fatigue of Materials, 2nd edition. Cambridge, U.K, 1998. – reference: A. J. Sanchez-Herencia, L. James, and F. F. Lange, "Bifurcation in Alumina Plates Produced by a Phase Transformation in Central, Alumina/Zirconia Thin Layers," J. Eur. Ceram. Soc., 20 [9] 1297-300 (2000). – reference: R. K. Nalla, J. P. Campbell, and R. O. Ritchie, "Effect of Microstructure on Mixed-Mode, High-Cycle Fatigue Crack-Growth Thresholds in Ti-6Al-4V Alloys," Fatigue Fract. Eng. Mat. Struct., 25, 587-606 (2002). – reference: Y. Torres, V. K. Sarin, M. Anglada, and L. Llanes, "Loading Mode Effects on the Fracture Toughness and Fatigue Crack Growth Resistance of WC-Co Cemented Carbides," Scripta Mater., 52, 1087-91 (2005). – reference: G. Grathwohl and T. Liu, "Crack Resistance and Fatigue Transforming Ceramics: I, Materials in the ZrO2-Y2O3-Al2O3 System," J. Am. Ceram. Soc., 74, 318-25 (1991). – reference: J. J. Hansen, R. A. Cutler, D. K. Shetty, and A. V. Virkar, "Indentation Fracture Response and Damage Resistance of Al2O3-ZrO2 Composites Strengthened by Transformation-Induced Residual Stresses," J. Am. Ceram. Soc., 71 [12] C501-5 (1988). – reference: M. Oechsner, C. Hillman, and F. Lange, "Crack Bifurcation in Laminar Ceramic Composites," J. Am. Ceram. Soc., 79 [7] 1834-8 (1996). – reference: R. Bermejo, Y. Torres Hernández, A. J. Sánchez-Herencia, C. Baudín, M. Anglada, and L. Llanes, "Fracture Behaviour of an Al2O3-ZrO2 Multi-Layered Ceramic with Residual Stresses Due to Phase Transformations," Fatigue Fract. Eng. Mater. Struct., 29, 71-8 (2006). – reference: W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, "A Simple Way to Make Tough Ceramics," Nature, 347, 455-7 (1990). – reference: G. Grathwohl and T. Liu, "Crack Resistance and Fatigue Transforming Ceramics: II, CeO2-Stabilzed ZrO2," J. Am. Ceram. Soc., 74, 3028-34 (1991). – reference: M. J. Hoffman, Y.-W. May, R. H. Dauskardt, J. Ager, and R. O. Ritchie, "Grain Size Effects on Cyclic Fatigue and Crack-Growth Resistance Behaviour of Partially Stabilized Zirconia," J. Mat. Sci., 30, 3291-9 (1995). – reference: A. H. Aza, G. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, "Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses," Biomaterials, 23, 937-45 (2002). – reference: J. Chevalier, C. Olagnon, and G. Fantozzi, "Crack Propagation and Fatigue in Zirconia-Based Composites," Comp A., 30, 525-30 (1999). – reference: C. Hillman, Z. Suo, and F. Lange, "Cracking of Laminates Subjected to Biaxial Tensile Stresses," J. Am. Ceram. Soc., 79 [8] 2127-33 (1996). – reference: S. Liu and I. W. Chen, "Fatigue of Yttria-Stabilized Zirconia: II, Crack Propagation, Fatigue Striations, and Short-Crack Behaviour," J. Am. Ceram. Soc., 74, 1206-16 (1991). – reference: D. Kuo and W. Kriven, "Fracture of Multilayer Oxide Composites," Material Science and Engineering A, 241, 241-50 (1998). – reference: V. M. Sglavo and M. Bertoldi, "Design and Production of Ceramic Laminates with High Mechanical Resistance and Reliability," Acta Mater., 54, 4929-37 (2006). – reference: R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fracture, 100, 55-83 (1999). – reference: W. J. Clegg, "The Fabrication and Failure of Laminar Ceramic Composites," Acta Metall. Mater., 40 [11] 3085-93 (1992). – reference: R. Fernández, F. Meschke, G. De Portu, M. Anglada, and L. Llanes, "Fatigue and Fracture Characteristics of a Fine-Grained (Mg, Y)-PSZ Zirconia Ceramic," J. Eur. Ceram. Soc., 19, 1705-15 (1999). – reference: M. Y. He and J. W. Hutchinson, "Crack Deflection at an Interface Between Dissimilar Elastic Materials," Int. J. Solids Structures, 25 [9] 1053-67 (1989). – reference: R. Bermejo, Y. Torres, C. Baudin, A. J. Sánchez-Herencia, J. Pascual, M. Anglada, and L. Llanes, "Threshold Strength Evaluation on an Al2O3-ZrO2 Multilayered System," J. Eur. Ceram. Soc., 27 [2-3] 1443-8 (2007). – reference: M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler, and M. Lewis, "Apparent Fracture Toughness of Si3N4-Based Laminates with Residual Compressive or Tensile Stresses in Surface Layers," Acta Mater., 53, 289-96 (2005). – reference: J.-F. Tsai, J. D. Belnap, and D. K. Shetty, "Crack Shielding in Ce-TZP/Al2O3 Composites: Comparison of Fatigue and Sustained Load Crack Growth Specimens," J. Am. Ceram. Soc., 77, 105-17 (1994). – volume: 37 start-page: 1095 issue: [7] year: 1997 end-page: 103 article-title: Elastic Modulus in Rigid Al O /ZrO Ceramic Laminates publication-title: J. Am. Ceram. Soc. – volume: 41 start-page: 805 issue: [3] year: 1993 end-page: 17 article-title: Fracture‐Behavior of Ceramic Laminates in Bending. 1. Modeling of Crack‐Propagation publication-title: Acta Metall. Mater. – volume: 80 start-page: 2759 year: 1997 end-page: 72 article-title: Fatigue and Static Crack Propagation in Y‐TZP publication-title: J. Am. Ceram. Soc. – volume: 40 start-page: 5483 year: 2005 end-page: 90 article-title: Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness publication-title: J. Mat. Sci. – volume: 18 start-page: 221 year: 1998 end-page: 7 article-title: Subcritical Crack Propagation Under Cyclic and Static Loading in Mullite and Mullite‐Zirconia publication-title: J. Eur. Ceram. Soc. – volume: 16 start-page: 291 year: 1998 end-page: 301 article-title: Phase Assemblage Effects on the Fracture and Fatigue Characteristics of Magnesia‐Partially‐Stabilized Zirconia publication-title: Int. J. Refract. Met. Hard Mater. – volume: 74 start-page: 3028 year: 1991 end-page: 34 article-title: Crack Resistance and Fatigue Transforming Ceramics publication-title: II, CeO2-Stabilzed ZrO2 – volume: 25 start-page: 3393 issue: [15] year: 2005 end-page: 401 article-title: Hertzian Contact Fatigue on Alumina/Alumina‐Zirconia Laminated Composites publication-title: J. Eur. Ceram. Soc. – volume: 347 start-page: 455 year: 1990 end-page: 7 article-title: A Simple Way to Make Tough Ceramics publication-title: Nature – volume: 81 start-page: 1502 issue: [6] year: 1998 end-page: 8 article-title: Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics publication-title: J. Am. Ceram. Soc. – volume: 21 start-page: 512 year: 2006 end-page: 21 article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments publication-title: Trilayer Structures – volume: 74 start-page: 2979 issue: [12] year: 1991 end-page: 87 article-title: Enhanced Fracture Toughness in Layered Microcomposites of Ce‐ZrO and Al O publication-title: J. Am. Ceram. Soc. – volume: 71 start-page: C501 issue: [12] year: 1988 end-page: 5 article-title: Indentation Fracture Response and Damage Resistance of Al O ‐ZrO Composites Strengthened by Transformation‐Induced Residual Stresses publication-title: J. Am. Ceram. Soc. – volume: 79 start-page: 1834 issue: [7] year: 1996 end-page: 8 article-title: Crack Bifurcation in Laminar Ceramic Composites publication-title: J. Am. Ceram. Soc. – volume: 54 start-page: 4745 year: 2006 end-page: 57 article-title: Residual Stresses, Strength and Toughness of Laminates with Different Layer Thickness Ratios publication-title: Acta Mater. – volume: 20 start-page: 2792 year: 2005 end-page: 800 article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments publication-title: Bilayer Structures – volume: 241 start-page: 241 year: 1998 end-page: 50 article-title: Fracture of Multilayer Oxide Composites publication-title: Material Science and Engineering A – volume: 54 start-page: 4929 year: 2006 end-page: 37 article-title: Design and Production of Ceramic Laminates with High Mechanical Resistance and Reliability publication-title: Acta Mater. – volume: 74 start-page: 1206 year: 1991 end-page: 16 article-title: Fatigue of Yttria‐Stabilized Zirconia publication-title: II, Crack Propagation, Fatigue Striations, and Short-Crack Behaviour – volume: 55 start-page: 4891 issue: [14] year: 2007 end-page: 901 article-title: High‐Temperature Mechanical Behaviour of Flaw Tolerant Alumina‐Zirconia Multilayered Ceramics publication-title: Acta Mater. – volume: 15 start-page: 101 year: 1995 end-page: 7 article-title: Laminar Ceramic Composites publication-title: J. Eur. Ceram. Soc. – volume: 20 start-page: 1297 issue: [9] year: 2000 end-page: 300 article-title: Bifurcation in Alumina Plates Produced by a Phase Transformation in Central, Alumina/Zirconia Thin Layers publication-title: J. Eur. Ceram. Soc. – year: 1998 – volume: 29 start-page: 71 year: 2006 end-page: 8 article-title: Fracture Behaviour of an Al O ‐ZrO Multi‐Layered Ceramic with Residual Stresses Due to Phase Transformations publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 72 start-page: 1511 year: 1989 article-title: Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting publication-title: J. Am. Ceram. Soc. – volume: 67 start-page: 1930 issue: [9] year: 2007 end-page: 8 article-title: Processing Optimisation and Fracture Behaviour of Layered Ceramic Composites with Highly Compressive Layers publication-title: Comp. Sci. Tech. – volume: 82 start-page: 3129 year: 1999 end-page: 38 article-title: Subcritical Crack Growth in 3Y‐TZP Ceramics publication-title: Static and Cyclic Fatigue – volume: 19 start-page: 1705 year: 1999 end-page: 15 article-title: Fatigue and Fracture Characteristics of a Fine‐Grained (Mg, Y)–PSZ Zirconia Ceramic publication-title: J. Eur. Ceram. Soc. – volume: 27 start-page: 1443 issue: [2–3] year: 2007 end-page: 8 article-title: Threshold Strength Evaluation on an Al O –ZrO Multilayered System publication-title: J. Eur. Ceram. Soc. – volume: 30 start-page: 525 year: 1999 end-page: 30 article-title: Crack Propagation and Fatigue in Zirconia‐Based Composites publication-title: Comp A. – volume: 72 start-page: 348 year: 1989 end-page: 52 article-title: Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension‐Compression Loading publication-title: J. Am. Ceram. Soc. – volume: 20 start-page: 1453 year: 1997 end-page: 66 article-title: Mechanisms of Cyclic Fatigue ‐ Crack Propagation in a Fine‐Grained Alumina Ceramic publication-title: Role of Crack Closure – volume: 79 start-page: 79 issue: [1] year: 1996 end-page: 87 article-title: Toughening of Layered Ceramic Composites with Residual Surface Compression publication-title: J. Am. Ceram. Soc. – volume: 40 start-page: 3085 issue: [11] year: 1992 end-page: 93 article-title: The Fabrication and Failure of Laminar Ceramic Composites publication-title: Acta Metall. Mater. – volume: 284‐86 start-page: 697 year: 2005 end-page: 700 article-title: Competing Damage Modes in All‐Ceramic Crowns publication-title: Fatigue and Lifetime – volume: 49 start-page: 3263 issue: [16] year: 2001 end-page: 8 article-title: Gradients in Elastic Modulus for Improved Contact‐Damage Resistance. Part II publication-title: The Silicon Nitride-Silicon Carbide System – volume: 50 start-page: 542 issue: [10] year: 1967 end-page: 9 article-title: Stress Distribution in Multiphase Systems publication-title: I, Composites with Planar Interfaces – volume: 74 start-page: 318 year: 1991 end-page: 25 article-title: Crack Resistance and Fatigue Transforming Ceramics publication-title: I, Materials in the ZrO2-Y2O3-Al2O3 System – volume: 82 start-page: 1512 issue: [6] year: 1999 end-page: 8 article-title: ZrO /ZrO Layered Composites for Crack Bifurcation publication-title: J. Am. Ceram. Soc. – volume: 72 start-page: 1760 year: 1989 end-page: 3 article-title: Cyclic Fatigue Behaviour of an Alumina Ceramic with Crack‐Resistance Characteristics publication-title: J. Am. Ceram. Soc. – volume: 27 start-page: 249 year: 1997 end-page: 82 article-title: Layered Ceramics publication-title: Processing and Mechanical Behavior – volume: 100 start-page: 55 year: 1999 end-page: 83 article-title: Mechanisms of Fatigue‐Crack Propagation in Ductile and Brittle Solids publication-title: Int. J. Fracture – start-page: 61 year: 1996 end-page: 76 – volume: 75 start-page: 759 year: 1992 end-page: 71 article-title: Cyclic Fatigue‐Crack Growth in a SiC‐Whisker‐Reinforced Alumina Ceramic Composite publication-title: Long- and Small-Crack Behaviour – volume: 23 start-page: 937 year: 2002 end-page: 45 article-title: Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses publication-title: Biomaterials – volume: 77 start-page: 105 year: 1994 end-page: 17 article-title: Crack Shielding in Ce‐TZP/Al O Composites publication-title: Comparison of Fatigue and Sustained Load Crack Growth Specimens – volume: 73 start-page: 893 year: 1990 end-page: 903 article-title: Cyclic Fatigue Crack Propagation in Magnesia‐Partially‐Stabilized Zirconia Ceramics publication-title: J. Am. Ceram. Soc. – volume: 88 start-page: 2826 issue: [10] year: 2005 end-page: 32 article-title: Tailored Residual Stresses in High Reliability Alumina‐Mullite Ceramic Laminates publication-title: J. Am. Ceram. Soc. – volume: 41 start-page: 5134 year: 2006 end-page: 45 article-title: Delamination Under Hertzian Cyclic Loading of a Glass Coating on Ti6Al4V for Implants publication-title: J. Mat. Sci. – volume: 53 start-page: 289 year: 2005 end-page: 96 article-title: Apparent Fracture Toughness of Si N ‐Based Laminates with Residual Compressive or Tensile Stresses in Surface Layers publication-title: Acta Mater. – volume: 79 start-page: 2127 issue: [8] year: 1996 end-page: 33 article-title: Cracking of Laminates Subjected to Biaxial Tensile Stresses publication-title: J. Am. Ceram. Soc. – volume: 70 start-page: 164 issue: [3] year: 1987 end-page: 70 article-title: Strengthening of Oxide Ceramics by Transformation‐Induced Stresses publication-title: J. Am. Ceram. Soc. – volume: 78 start-page: 2353 issue: [9] year: 1995 end-page: 9 article-title: Surface Cracking in Layers Under Biaxial, Residual Compressive Stress publication-title: J. Am. Ceram. Soc. – volume: 25 start-page: 587 year: 2002 end-page: 606 article-title: Effect of Microstructure on Mixed‐Mode, High‐Cycle Fatigue Crack‐Growth Thresholds in Ti‐6Al‐4V Alloys publication-title: Fatigue Fract. Eng. Mat. Struct. – year: 2002 – volume: 76 start-page: 2681 year: 1993 end-page: 4 article-title: Subcritical Crack Growth in Y‐TZP and Al O ‐Toughened Y‐TZP publication-title: J. Am. Ceram. Soc. – volume: 98 start-page: 1114 year: 1990 end-page: 9 article-title: Coat of Alumina Sheet with Needle‐Like Mullite publication-title: J. Ceram. Soc. Jpn – volume: 23 start-page: 81 year: 2003 end-page: 9 article-title: Subcritical Crack Growth in Al O with Submicron Grain Size publication-title: J. Eur. Ceram. Soc. – volume: 30 start-page: 3291 year: 1995 end-page: 9 article-title: Grain Size Effects on Cyclic Fatigue and Crack‐Growth Resistance Behaviour of Partially Stabilized Zirconia publication-title: J. Mat. Sci. – volume: 25 start-page: 1053 issue: [9] year: 1989 end-page: 67 article-title: Crack Deflection at an Interface Between Dissimilar Elastic Materials publication-title: Int. J. Solids Structures – volume: 54 start-page: 3593 year: 2006 end-page: 603 article-title: Monotonic and Cyclic Hertzian Fracture of a Glass Coating on Titanium‐Based Implants publication-title: Acta Mater. – volume: 42 start-page: 365 year: 1994 end-page: 81 article-title: The Cyclic Properties of Engineering Materials publication-title: Acta Metall. Mater. – volume: 52 start-page: 1087 year: 2005 end-page: 91 article-title: Loading Mode Effects on the Fracture Toughness and Fatigue Crack Growth Resistance of WC‐Co Cemented Carbides publication-title: Scripta Mater. – volume: 286 start-page: 102 year: 1999 end-page: 5 article-title: Laminar Ceramics that Exhibit a Threshold Strength publication-title: Science – volume: 20 start-page: 2792 year: 2005 ident: e_1_2_8_34_2 article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments publication-title: Bilayer Structures – ident: e_1_2_8_26_2 doi: 10.1016/j.actamat.2004.09.022 – volume: 82 start-page: 3129 year: 1999 ident: e_1_2_8_56_2 article-title: Subcritical Crack Growth in 3Y‐TZP Ceramics publication-title: Static and Cyclic Fatigue – volume: 27 start-page: 249 year: 1997 ident: e_1_2_8_2_2 article-title: Layered Ceramics publication-title: Processing and Mechanical Behavior – volume: 284 start-page: 697 year: 2005 ident: e_1_2_8_33_2 article-title: Competing Damage Modes in All‐Ceramic Crowns publication-title: Fatigue and Lifetime – ident: e_1_2_8_10_2 doi: 10.1016/0955-2219(95)93055-8 – ident: e_1_2_8_36_2 doi: 10.1016/j.actamat.2006.03.040 – ident: e_1_2_8_20_2 doi: 10.1111/j.1151-2916.1996.tb08946.x – volume: 25 start-page: 1053 issue: 9 year: 1989 ident: e_1_2_8_6_2 article-title: Crack Deflection at an Interface Between Dissimilar Elastic Materials publication-title: Int. J. Solids Structures doi: 10.1016/0020-7683(89)90021-8 – ident: e_1_2_8_28_2 doi: 10.1016/j.jeurceramsoc.2006.05.037 – ident: e_1_2_8_46_2 doi: 10.1016/S0142-9612(01)00206-X – volume: 74 start-page: 1206 year: 1991 ident: e_1_2_8_53_2 article-title: Fatigue of Yttria‐Stabilized Zirconia publication-title: II, Crack Propagation, Fatigue Striations, and Short-Crack Behaviour – ident: e_1_2_8_40_2 doi: 10.1111/j.1151-2916.1995.tb08668.x – ident: e_1_2_8_49_2 doi: 10.1016/S1359-835X(98)00145-6 – ident: e_1_2_8_54_2 doi: 10.1111/j.1151-2916.1993.tb04001.x – ident: e_1_2_8_27_2 doi: 10.1016/j.actamat.2006.06.008 – volume: 77 start-page: 105 year: 1994 ident: e_1_2_8_62_2 article-title: Crack Shielding in Ce‐TZP/Al2O3 Composites publication-title: Comparison of Fatigue and Sustained Load Crack Growth Specimens – ident: e_1_2_8_37_2 doi: 10.1007/s10853-006-0439-3 – ident: e_1_2_8_59_2 doi: 10.1007/BF00349872 – ident: e_1_2_8_4_2 doi: 10.1016/0956-7151(93)90014-J – ident: e_1_2_8_31_2 doi: 10.1023/A:1018655917051 – volume: 81 start-page: 1502 issue: 6 year: 1998 ident: e_1_2_8_32_2 article-title: Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1998.tb02509.x – volume: 71 start-page: C501 issue: 12 year: 1988 ident: e_1_2_8_12_2 article-title: Indentation Fracture Response and Damage Resistance of Al2O3‐ZrO2 Composites Strengthened by Transformation‐Induced Residual Stresses publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1988.tb05818.x – ident: e_1_2_8_51_2 doi: 10.1016/S0955-2219(97)00118-0 – volume: 21 start-page: 512 year: 2006 ident: e_1_2_8_35_2 article-title: Competing Damage Modes in Brittle Materials Subjected to Concentrated Cyclic Loading in Liquid Environments publication-title: Trilayer Structures – volume: 74 start-page: 3028 year: 1991 ident: e_1_2_8_57_2 article-title: Crack Resistance and Fatigue Transforming Ceramics publication-title: II, CeO2-Stabilzed ZrO2 – ident: e_1_2_8_60_2 doi: 10.1016/S0263-4368(98)00036-5 – volume: 49 start-page: 3263 issue: 16 year: 2001 ident: e_1_2_8_7_2 article-title: Gradients in Elastic Modulus for Improved Contact‐Damage Resistance. Part II publication-title: The Silicon Nitride-Silicon Carbide System – ident: e_1_2_8_19_2 doi: 10.1111/j.1151-2916.1996.tb08003.x – ident: e_1_2_8_63_2 doi: 10.1046/j.1460-2695.2002.00522.x – ident: e_1_2_8_11_2 doi: 10.1111/j.1151-2916.1987.tb04952.x – ident: e_1_2_8_3_2 doi: 10.1038/347455a0 – ident: e_1_2_8_47_2 doi: 10.1016/S0955-2219(02)00072-9 – ident: e_1_2_8_24_2 doi: 10.1016/S0955-2219(00)00002-9 – ident: e_1_2_8_58_2 doi: 10.1111/j.1151-2916.1990.tb05132.x – ident: e_1_2_8_39_2 doi: 10.1016/j.compscitech.2006.10.010 – ident: e_1_2_8_38_2 doi: 10.1016/j.jeurceramsoc.2004.09.011 – ident: e_1_2_8_25_2 doi: 10.1111/j.1551-2916.2005.00479.x – ident: e_1_2_8_42_2 doi: 10.1111/j.1460-2695.2006.00962.x – ident: e_1_2_8_64_2 doi: 10.1016/j.scriptamat.2005.02.011 – ident: e_1_2_8_22_2 doi: 10.1126/science.286.5437.102 – ident: e_1_2_8_16_2 doi: 10.1111/j.1151-2916.1989.tb07692.x – volume: 20 start-page: 1453 year: 1997 ident: e_1_2_8_45_2 article-title: Mechanisms of Cyclic Fatigue ‐ Crack Propagation in a Fine‐Grained Alumina Ceramic publication-title: Role of Crack Closure – ident: e_1_2_8_15_2 doi: 10.1016/j.actamat.2006.06.019 – ident: e_1_2_8_44_2 doi: 10.1111/j.1151-2916.1989.tb06323.x – volume: 74 start-page: 318 year: 1991 ident: e_1_2_8_52_2 article-title: Crack Resistance and Fatigue Transforming Ceramics publication-title: I, Materials in the ZrO2-Y2O3-Al2O3 System – ident: e_1_2_8_29_2 doi: 10.1016/0956-7151(94)90493-6 – ident: e_1_2_8_48_2 doi: 10.1007/978-1-4615-5853-8_5 – volume: 82 start-page: 1512 issue: 6 year: 1999 ident: e_1_2_8_23_2 article-title: ZrO2/ZrO2 Layered Composites for Crack Bifurcation publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb01949.x – ident: e_1_2_8_65_2 doi: 10.1016/j.actamat.2007.05.005 – ident: e_1_2_8_8_2 doi: 10.1016/0956-7151(92)90471-P – ident: e_1_2_8_5_2 doi: 10.1016/S0921-5093(97)00498-X – volume: 37 start-page: 1095 issue: 7 year: 1997 ident: e_1_2_8_21_2 article-title: Elastic Modulus in Rigid Al2O3/ZrO2 Ceramic Laminates publication-title: J. Am. Ceram. Soc. – ident: e_1_2_8_13_2 doi: 10.1111/j.1151-2916.1996.tb07883.x – ident: e_1_2_8_14_2 doi: 10.1007/s10853-005-1923-x – volume: 50 start-page: 542 issue: 10 year: 1967 ident: e_1_2_8_9_2 article-title: Stress Distribution in Multiphase Systems publication-title: I, Composites with Planar Interfaces – volume: 75 start-page: 759 year: 1992 ident: e_1_2_8_50_2 article-title: Cyclic Fatigue‐Crack Growth in a SiC‐Whisker‐Reinforced Alumina Ceramic Composite publication-title: Long- and Small-Crack Behaviour – ident: e_1_2_8_55_2 doi: 10.1111/j.1151-2916.1997.tb03192.x – volume-title: Fracture Resistance Testing of Monolithic and Composite Brittle Materials. ASTM STP 1409 year: 2002 ident: e_1_2_8_41_2 – ident: e_1_2_8_18_2 doi: 10.1111/j.1151-2916.1991.tb04290.x – ident: e_1_2_8_30_2 doi: 10.1017/CBO9780511806575 – ident: e_1_2_8_17_2 doi: 10.2109/jcersj.98.1114 – ident: e_1_2_8_61_2 doi: 10.1016/S0955-2219(98)00281-7 – ident: e_1_2_8_43_2 doi: 10.1111/j.1151-2916.1989.tb06133.x |
SSID | ssj0001984 |
Score | 2.0832596 |
Snippet | The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive... The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina-zirconia composite exhibiting high internal compressive... The influence of sustained and cyclic loading on the crack growth behaviour of a multilayered alumina-zirconia composite exhibiting high internal compressive... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1618 |
SubjectTerms | Alumina Applied sciences Building materials. Ceramics. Glasses Ceramic industries Ceramics Cermets, ceramic and refractory composites Chemical industry and chemicals Cross-disciplinary physics: materials science; rheology Exact sciences and technology Materials fatigue Materials science Miscellaneous Other materials Physics Specific materials Technical ceramics Zirconium |
Title | Fatigue Behavior of Alumina-Zirconia Multilayered Ceramics |
URI | https://api.istex.fr/ark:/67375/WNG-3XG7DC3N-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2008.02336.x https://www.proquest.com/docview/217963059 https://www.proquest.com/docview/34809362 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hcoEDlC9hWooPiJujze567UhcorRpVYkcEIWIy2rWu4ustA6yY6lw4j_wD_klnbUdEyMOFeLmyDuWPZmZfZM8vyHkNWKMcaKFjuKx5pEAyqM0BofpjvGkHaRpI-rzbiHPLsT5Ml52_Cf_LkyrD9H_4OYzo6nXPsFBV8Mkx90-YohvOkok41yOPJ701C2Pj97_VpLC3lpskbCXiBuSev56ocFOddc7_dozJ6FC57l26sUAlu6C22Z3mj8kq-1ztaSU1aje6FH2_Q_Jx__z4PvkQQdiw2kbdY_IHVs8Jvd3pA3x08e8qts11RPydo4B8KW2YSfHWIZrF06xLuYF_Prx83NeYlueQ9i8DnwJ3_wA0XBmS7jKs-opuZiffJidRd3chihDcCUjcM7F1EywGBhhtKXcS4AK65VipHYG1yQOQEsKEstrAiBjjjiTMT0R0lH-jOwV68I-JyHPTEYNM04ag62ngMROMuoYSwwDK0xAku13pLJO1NzP1rhUO80Nekt5b3UjN7231HVAxr3l11bY4xY2b5ow6A2gXHliXBKrT4tTxZenyfGML5QMyNEgTnoDRnnMhcQFB9vAUV3RqBR2h1gOEe8G5FV_FrPd_4UDhV3XleIipRPEHAFJmxC59a2r8-nspDl-8e-mB-ReS5fxfM9Dsrcpa_sSMdlGHzXZdgMdLiTW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQewAO_CNCoc0BccsqaztOVuKy2na7lHYPqIUVF2sc21XUJYuSjVQ48Q68IU_COMmGDeJQIW6J4oniycz4G2fyDSGvEGMMY8VVEA0VCziELEgisOjuaE_KQpLUpD5nczG74CeLaNG2A3L_wjT8EN2Gm_OMOl47B3cb0n0vx-U-oAhw2ppIypgYIKDcdQ2-HZH-4fvfXFKYXfMNFnYkcf2ynr_eqbdW7Tq1X7vaSShRfbbpe9EDptvwtl6fpvfJcjOzpizlalCt1SD99gfp43-a-gNyr8Wx_rgxvIfklskfkbtb7IZ49iErq2ZM-Zi8maINXFbGbxkZC39l_TGGxiyHn99_fMoKzMwz8Os_gpfw1fUQ9SemgM9ZWj4hF9Oj88ksaFs3BCniKxGAtTYK9QjjgeZamZA5FlBuHFmMUFbjmNgCKBGCwAgbA4iIIdSkVI24sCF7SnbyVW6eEZ-lOg011VZojdknh9iM0tBSGmsKhmuPxJuXJNOW19y111jKrfwGtSWdttqum05b8tojw07yS8PtcQOZ17UddAJQXLnauDiSH-fHki2O48MJm0vhkf2eoXQCNGQR4wIH7G0sR7Zxo5SYIGJERMjrkYPuKjq8-4oDuVlVpWQ8CUcIOzyS1DZy40eXJ-PJUX38_N9FD8jt2fnZqTx9O3-3R-401TOu_PMF2VkXlXmJEG2t9mvX-wV1Lyjy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQKyE4lH-RFtocELesvLbjJFIvq91uS4EVQhRWXCw7tlG0bbZKNlLhxDvwhn2SjpNs2CAOFeKWKJ4onsyMv0nG3yD0CjDGMFJMBeFQ0YBJTIM4lBbcHexJWRnHNanP-xk_OWOn83De1j-5vTANP0T3wc15Rh2vnYNfatt3cljtAwL4pi2JJJTyAeDJbcZx4to4TD7-ppKC5JqtobDjiOtX9fz1Tr2lattp_cqVTsoStGebthc9XLqJbuvlafoALdYTa6pSFoNqpQbpjz84H__PzB-inRbF-qPG7B6hOyZ_jO5vcBvC2eesrJox5RN0OAUL-FYZv-VjLPyl9UcQGLNcXv_89TUrIC_PpF_vBz6X310HUX9sCnmRpeVTdDY9-jQ-CdrGDUEK6IoH0lobYp1ANNBMK4Op4wBlxlHFcGU1jImslIpjySG-RlLykALQJEQljFtMn6GtfJmb58inqU6xJtpyrSH3ZDIySYotIZEm0jDtoWj9jkTaspq75hrnYiO7AW0Jp62256bTlrjy0LCTvGyYPW4h87o2g05AFgtXGReF4svsWND5cTQZ05ngHtrv2UknQDANKeMwYG9tOKKNGqWA9BDiIQBeDx10V8Hd3T8cmZtlVQrKYpwA6PBQXJvIrR9dnI7GR_Xx7r-LHqC7HyZT8e7N7O0euteUzrjazxdoa1VU5iXgs5Xarx3vBsIlJ6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+Behavior+of+Alumina-Zirconia+Multilayered+Ceramics&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Bermejo%2C+Ra%C3%BAl&rft.au=Torres%2C+Yadir&rft.au=Anglada%2C+Marc&rft.au=Llanes%2C+Luis&rft.date=2008-05-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=91&rft.issue=5&rft.spage=1618&rft.epage=1625&rft_id=info:doi/10.1111%2Fj.1551-2916.2008.02336.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_3XG7DC3N_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |