Anomaly detection by robust statistics
Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In either case, the ability to detect such anomalies is essential. A useful tool for this purpose is robust statistics, which aims to detect the out...
Saved in:
Published in | Wiley interdisciplinary reviews. Data mining and knowledge discovery Vol. 8; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.03.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In either case, the ability to detect such anomalies is essential. A useful tool for this purpose is robust statistics, which aims to detect the outliers by first fitting the majority of the data and then flagging data points that deviate from it. We present an overview of several robust methods and the resulting graphical outlier detection tools. We discuss robust procedures for univariate, low‐dimensional, and high‐dimensional data, such as estimating location and scatter, linear regression, principal component analysis, classification, clustering, and functional data analysis. Also the challenging new topic of cellwise outliers is introduced. WIREs Data Mining Knowl Discov 2018, 8:e1236. doi: 10.1002/widm.1236
This article is categorized under:
Algorithmic Development > Spatial and Temporal Data Mining
Technologies > Classification
Technologies > Structure Discovery and Clustering
Technologies > Visualization
Fitting a line to data with outliers: classical (red) and robust (blue). |
---|---|
AbstractList | Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In either case, the ability to detect such anomalies is essential. A useful tool for this purpose is robust statistics, which aims to detect the outliers by first fitting the majority of the data and then flagging data points that deviate from it. We present an overview of several robust methods and the resulting graphical outlier detection tools. We discuss robust procedures for univariate, low‐dimensional, and high‐dimensional data, such as estimating location and scatter, linear regression, principal component analysis, classification, clustering, and functional data analysis. Also the challenging new topic of cellwise outliers is introduced. WIREs Data Mining Knowl Discov 2018, 8:e1236. doi: 10.1002/widm.1236
This article is categorized under:
Algorithmic Development > Spatial and Temporal Data Mining
Technologies > Classification
Technologies > Structure Discovery and Clustering
Technologies > Visualization
Fitting a line to data with outliers: classical (red) and robust (blue). |
Author | Rousseeuw, Peter J. Hubert, Mia |
Author_xml | – sequence: 1 givenname: Peter J. surname: Rousseeuw fullname: Rousseeuw, Peter J. email: peter@rousseeuw.net organization: KU Leuven – sequence: 2 givenname: Mia surname: Hubert fullname: Hubert, Mia organization: KU Leuven |
BookMark | eNo9j0tLw0AURi9SwVq78B9k5S7tPG4mk2WpWgsVN4rLYZ4wkodkRkr-vQbFb_Od1YFzDYt-6D3ALSUbSgjbnqPrNpRxcQFL2iArsW6qxT_L-grWKX2Qn3EmpWRLuNv1Q6fbqXA-e5vj0BdmKsbBfKVcpKxzTDnadAOXQbfJr_9-BW-PD6_7p_L0cjjud6fSIlJRShlqYUTtLA_ILEXUFk2gGk1TOe_QG26EdIGwCmWosCGWWMN1MDp4iXwF21_vObZ-Up9j7PQ4KUrUHKjmQDUHqvfj_fMM_BunkUfD |
CitedBy_id | crossref_primary_10_1016_j_isci_2020_101819 crossref_primary_10_3390_min14090925 crossref_primary_10_1080_00949655_2018_1452238 crossref_primary_10_1109_JSEN_2022_3149721 crossref_primary_10_1109_TIM_2022_3187742 crossref_primary_10_3390_math10111797 crossref_primary_10_1080_00401706_2018_1562989 crossref_primary_10_26833_ijeg_996340 crossref_primary_10_3390_rs10101523 crossref_primary_10_2478_cejpp_2021_0007 crossref_primary_10_1007_s11633_020_1243_2 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_3390_sym12081251 crossref_primary_10_1109_ACCESS_2024_3513714 crossref_primary_10_3233_MAS_210523 crossref_primary_10_1007_JHEP01_2023_008 crossref_primary_10_2478_amns_2024_2906 crossref_primary_10_1016_j_inffus_2023_102069 crossref_primary_10_1093_aje_kwac024 crossref_primary_10_3390_s23218918 crossref_primary_10_1002_widm_1479 crossref_primary_10_1126_scirobotics_add7385 crossref_primary_10_1038_s41467_020_18282_2 crossref_primary_10_26833_ijeg_404426 crossref_primary_10_1109_ACCESS_2023_3239212 crossref_primary_10_1007_s00371_023_02942_7 crossref_primary_10_1109_ACCESS_2024_3494264 crossref_primary_10_1186_s40537_020_00324_7 crossref_primary_10_3390_e23010033 crossref_primary_10_1109_ACCESS_2021_3131402 crossref_primary_10_1002_qre_3472 crossref_primary_10_1016_j_jfludis_2024_106085 crossref_primary_10_1038_s41598_021_91002_y crossref_primary_10_1007_s12083_019_00822_3 crossref_primary_10_1590_1808_057x20221624_pt crossref_primary_10_29333_ejosdr_12561 crossref_primary_10_1002_sam_70001 crossref_primary_10_1145_3604432 crossref_primary_10_1038_s41598_022_04787_x crossref_primary_10_1038_s41598_023_33318_5 crossref_primary_10_3390_sym16060698 crossref_primary_10_3390_info15010061 crossref_primary_10_1177_1094428121999096 crossref_primary_10_1016_j_apenergy_2025_125357 crossref_primary_10_3389_fenrg_2022_907027 crossref_primary_10_3390_app11199290 crossref_primary_10_37394_232015_2024_20_96 crossref_primary_10_3390_children12030278 crossref_primary_10_3390_math9010105 crossref_primary_10_1007_s00184_019_00731_8 crossref_primary_10_1016_j_chemolab_2021_104486 crossref_primary_10_1007_s41060_022_00366_5 crossref_primary_10_3390_rs15123185 crossref_primary_10_3390_electronics13010202 crossref_primary_10_1002_sim_10209 crossref_primary_10_1016_j_cmpb_2020_105771 crossref_primary_10_3390_app132312618 crossref_primary_10_3390_molecules25184350 crossref_primary_10_31185_wjcm_58 crossref_primary_10_1016_j_jechem_2024_09_043 crossref_primary_10_3390_atmos14101497 crossref_primary_10_3390_agriculture11111083 crossref_primary_10_1016_j_neuroimage_2020_117151 crossref_primary_10_1186_s13007_024_01295_z crossref_primary_10_1049_ipr2_12532 crossref_primary_10_1186_s12874_019_0737_5 crossref_primary_10_1136_thorax_2024_222142 crossref_primary_10_15672_hujms_1383910 crossref_primary_10_3390_en15238835 crossref_primary_10_1109_JSEN_2024_3407158 crossref_primary_10_1016_j_marmicro_2021_102053 crossref_primary_10_1002_cem_3433 crossref_primary_10_1007_s10342_021_01379_8 crossref_primary_10_1080_03610918_2025_2450714 crossref_primary_10_1590_1808_057x20221624_en crossref_primary_10_1109_ACCESS_2021_3070659 crossref_primary_10_1088_1752_7163_ad9b46 crossref_primary_10_1145_3722214 crossref_primary_10_1016_j_ecosta_2018_05_001 crossref_primary_10_3390_app12104986 crossref_primary_10_1016_j_ins_2019_12_060 crossref_primary_10_3390_app13127313 crossref_primary_10_1016_j_dss_2024_114228 crossref_primary_10_1371_journal_pone_0284768 crossref_primary_10_1111_anzs_12374 crossref_primary_10_3390_math9080882 crossref_primary_10_1007_s13369_020_05270_3 crossref_primary_10_1007_s42979_020_00418_2 crossref_primary_10_1016_j_jmr_2021_106936 crossref_primary_10_1016_j_promfg_2020_05_012 crossref_primary_10_1080_17461391_2022_2064771 crossref_primary_10_2478_jaiscr_2025_0001 crossref_primary_10_54033_cadpedv21n10_113 crossref_primary_10_3390_app14167016 crossref_primary_10_3389_fnsys_2019_00083 crossref_primary_10_3390_math9111288 crossref_primary_10_1088_1361_6560_ad6b72 crossref_primary_10_3390_s21227521 crossref_primary_10_7475_kjan_2022_34_4_403 crossref_primary_10_1007_s10877_024_01164_z crossref_primary_10_1515_cclm_2025_0065 crossref_primary_10_1007_s10618_019_00661_z crossref_primary_10_3390_d16110666 crossref_primary_10_1080_10408347_2022_2036943 crossref_primary_10_1002_navi_445 crossref_primary_10_3390_s18040967 crossref_primary_10_1007_s10617_024_09282_2 crossref_primary_10_1364_AO_444847 crossref_primary_10_1080_00401706_2020_1769734 crossref_primary_10_1109_ACCESS_2020_2973214 crossref_primary_10_1177_1536867X241297918 crossref_primary_10_3390_metabo11040237 crossref_primary_10_1089_cmb_2022_0243 crossref_primary_10_1088_2631_8695_aceb2e |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 The Authors. published by Wiley Periodicals, Inc. |
DBID | 24P |
DOI | 10.1002/widm.1236 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1942-4795 |
EndPage | n/a |
ExternalDocumentID | WIDM1236 |
Genre | reviewArticle |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 8-0 8-1 AAESR AAHQN AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADZMN AEFGJ AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W PQQKQ ROL SUPJJ WBKPD WIH WIK WMRSR WOHZO WSUWO WXSBR ZZTAW |
ID | FETCH-LOGICAL-c4416-88f76b67dc3f42c144ac4bf1a4b95ded4eb3b68df02548f5490c0cb3afbafe843 |
IEDL.DBID | 24P |
ISSN | 1942-4787 |
IngestDate | Wed Aug 20 07:26:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4416-88f76b67dc3f42c144ac4bf1a4b95ded4eb3b68df02548f5490c0cb3afbafe843 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1236 |
PageCount | 14 |
ParticipantIDs | wiley_primary_10_1002_widm_1236_WIDM1236 |
PublicationCentury | 2000 |
PublicationDate | March/April 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March/April 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
PublicationYear | 2018 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
References | 1971; 42 2002; 14 2007; 102 2010; 19 2000; 87 2002; 55 2008; 36 1999; 41 2002; 60 2013; 7 2003; 12 1990; 85 1997; 92 1987; 82 2000; 14 1990 2002; 44 1987 2011; 20 1986 2014; 15 2008; 23 2005; 75 1984 1983 1982 1981 1964; 35 2010; 2 2010; 4 2012; 21 2005; 33 2005; 79 1995; 90 2000; 28 2006; 12 1995; 17 1993; 88 1997; 25 2004; 45 2008; 17 2000; 72 2008 2006 2005 2008; 52 2007; 52 2001; 29 2005; 48 1999; 8 1976; 8 1985; B 2016; 58 1976; 4 1987; 15 1991; 6 2005; 47 2015; 24 1967; 1 2017; 11 2004; 13 1984; 79 2015; 110 1965 2017 2016 2007; 87 2009; 1 2006; 101 2009; 37 |
References_xml | – volume: 33 start-page: 347 year: 2005 end-page: 380 article-title: A robust method for cluster analysis publication-title: Ann Stat – volume: 1 start-page: 281 year: 1967 end-page: 297 – volume: 47 start-page: 64 year: 2005 end-page: 79 article-title: ROBPCA: a new approach to robust principal components analysis publication-title: Technometrics – volume: 72 start-page: 151 year: 2000 end-page: 162 article-title: High breakdown estimation for multiple populations with applications to discriminant analysis publication-title: J Multivar Anal – volume: 102 start-page: 1289 year: 2007 end-page: 1299 article-title: Robust linear model selection based on least angle regression publication-title: J Am Stat Assoc – year: 1981 – volume: 11 start-page: 445 year: 2017 end-page: 466 article-title: Multivariate and functional classification using depth and distance publication-title: Adv Data Anal Classif – volume: 48 start-page: 703 year: 2005 end-page: 715 article-title: Fast and robust bootstrap for LTS publication-title: Comput Stat Data Anal – volume: 8 start-page: 1 year: 1999 end-page: 73 article-title: Robust principal component analysis for functional data publication-title: TEST – year: 2005 – volume: 23 start-page: 92 year: 2008 end-page: 119 article-title: High breakdown robust multivariate methods publication-title: Stat Sci – volume: 44 start-page: 307 year: 2002 end-page: 317 article-title: Robust estimates of location and dispersion for high‐dimensional data sets publication-title: Technometrics – volume: 25 start-page: 553 year: 1997 end-page: 576 article-title: Trimmed ‐means: an attempt to robustify quantizers publication-title: Ann Stat – volume: 4 start-page: 151 year: 2010 end-page: 167 article-title: Robust kernel principal component analysis and classification publication-title: Adv Data Anal Classif – year: 1990 – volume: 19 start-page: 29 year: 2010 end-page: 45 article-title: Rainbow plots, bagplots, and boxplots for functional data publication-title: J Comput Graph Stat – volume: 24 start-page: 177 year: 2015 end-page: 246 article-title: Multivariate functional outlier detection (with discussion) publication-title: Stat Methods Appl – volume: 41 start-page: 212 year: 1999 end-page: 223 article-title: A fast algorithm for the minimum covariance determinant estimator publication-title: Technometrics – volume: 55 start-page: 111 year: 2002 end-page: 123 article-title: Small sample corrections for LTS and MCD publication-title: Metrika – volume: 42 start-page: 1887 year: 1971 end-page: 1896 article-title: A general qualitative definition of robustness publication-title: Ann Math Stat – start-page: 256 year: 1984 end-page: 272 – year: 1986 – year: 1982 – volume: 21 start-page: 618 year: 2012 end-page: 637 article-title: A deterministic algorithm for robust location and scatter publication-title: J Comput Graph Stat – volume: 28 start-page: 1219 year: 2000 end-page: 1243 article-title: On the uniqueness of S‐functionals and M‐functionals under nonelliptical distributions publication-title: Ann Stat – volume: 6 start-page: 59 year: 1991 end-page: 70 article-title: Robust regression methods in computer vision: a review publication-title: Int J Comput Vis – year: 1965 – year: 2008 – volume: 20 start-page: 316 year: 2011 end-page: 334 article-title: Functional boxplots publication-title: J Comput Graph Stat – year: 2017 article-title: A measure of directional outlyingness with applications to image data and video publication-title: J Comput Graph Stat – volume: 12 start-page: 29 year: 2006 end-page: 45 article-title: Computing LTS regression for large data sets publication-title: Data Min Knowl Disc – volume: 88 start-page: 1273 year: 1993 end-page: 1283 article-title: Alternatives to the median absolute deviation publication-title: J Am Stat Assoc – volume: 101 start-page: 1198 year: 2006 end-page: 1211 article-title: PCA based on multivariate MM‐estimators with fast and robust bootstrap publication-title: J Am Stat Assoc – volume: 79 start-page: 871 year: 1984 end-page: 880 article-title: Least median of squares regression publication-title: J Am Stat Assoc – volume: 17 start-page: 41 year: 2008 end-page: 47 article-title: Fast and robust bootstrap publication-title: Stat. Methods Appl – volume: 17 start-page: 925 year: 1995 end-page: 938 article-title: MINPRAN: a new robust estimator for computer vision publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 13 start-page: 996 year: 2004 end-page: 1017 article-title: A robust measure of skewness publication-title: J Comput Graph Stat – volume: 45 start-page: 301 year: 2004 end-page: 320 article-title: Fast and robust discriminant analysis publication-title: Comput Stat Data Anal – volume: 12 start-page: 434 year: 2003 end-page: 449 article-title: Trimming tools in exploratory data analysis publication-title: J Comput Graph Stat – volume: 90 start-page: 330 year: 1995 end-page: 341 article-title: The behavior of the Stahel‐Donoho robust multivariate estimator publication-title: J Am Stat Assoc – volume: 42 start-page: 1328 year: 1971 end-page: 1338 article-title: Nonparametric estimate of regression coefficients publication-title: Ann Math Stat – year: 2017 article-title: Detecting deviating data cells publication-title: Technometrics – year: 1987 – volume: 37 start-page: 311 year: 2009 end-page: 331 article-title: Propagation of outliers in multivariate data publication-title: Ann Stat – volume: 58 start-page: 424 year: 2016 end-page: 434 article-title: Sparse PCA for high‐dimensional data with outliers publication-title: Technometrics – volume: 79 start-page: 10 year: 2005 end-page: 21 article-title: Robust classification in high dimensions based on the SIMCA method publication-title: Chemom Intell Lab Syst – volume: 29 start-page: 473 year: 2001 end-page: 492 article-title: Robust linear discriminant analysis using S‐estimators publication-title: Can J Stat – volume: 1 start-page: 296 year: 2009 end-page: 302 article-title: Breakdown value publication-title: Wiley Interdiscip Rev Comput Stat – volume: 8 start-page: 127 year: 1976 end-page: 139 article-title: Pattern recognition by means of disjoint principal components models publication-title: Pattern Recogn – volume: 52 start-page: 239 year: 2007 end-page: 248 article-title: Building a robust linear model with forward selection and stepwise procedures publication-title: Comput Stat Data Anal – year: 2016 – volume: 15 start-page: 603 year: 2014 end-page: 619 article-title: Shape outlier detection and visualization for functional data: the outliergram publication-title: Biostatistics – start-page: 157 year: 1983 end-page: 184 – volume: 4 start-page: 51 year: 1976 end-page: 67 article-title: Robust M‐estimators of multivariate location and scatter publication-title: Ann Stat – volume: 2 start-page: 509 year: 2010 end-page: 515 article-title: MATLAB library LIBRA publication-title: Wiley Interdiscip Rev Comput Stat – year: 2017 article-title: Minimum covariance determinant and extensions publication-title: Wiley Interdiscip Rev Comput Stat – volume: 36 start-page: 1324 year: 2008 end-page: 1345 article-title: A general trimming approach to robust cluster analysis publication-title: Ann Stat – volume: 52 start-page: 5186 year: 2008 end-page: 5201 article-title: An adjusted boxplot for skewed distributions publication-title: Comput Stat Data Anal – volume: B start-page: 283 year: 1985 end-page: 297 – volume: 87 start-page: 603 year: 2000 end-page: 618 article-title: Principal components analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies publication-title: Biometrika – volume: 110 start-page: 1100 year: 2015 end-page: 1111 article-title: S‐estimators for functional principal component analysis publication-title: J Am Stat Assoc – volume: 92 start-page: 136 year: 1997 end-page: 143 article-title: High‐breakdown linear discriminant analysis publication-title: J Am Stat Assoc – year: 2006 – volume: 82 start-page: 851 year: 1987 end-page: 857 article-title: L‐estimation for linear models publication-title: J Am Stat Assoc – volume: 14 start-page: 1003 year: 2002 end-page: 1016 article-title: CLARANS: a method for clustering objects for spatial data mining publication-title: IEEE Trans Knowl Data Eng – volume: 85 start-page: 633 year: 1990 end-page: 651 article-title: Unmasking multivariate outliers and leverage points publication-title: J Am Stat Assoc – volume: 35 start-page: 73 year: 1964 end-page: 101 article-title: Robust estimation of a location parameter publication-title: Ann Math Stat – volume: 14 start-page: 751 year: 2000 end-page: 763 article-title: Quantitative Z‐analysis of 16th‐17th century archaeological glass vessels using PLS regression of EPXMA and ‐XRF data publication-title: J Chemom – volume: 60 start-page: 101 year: 2002 end-page: 111 article-title: A fast robust method for principal components with applications to chemometrics publication-title: Chemom Intell Lab Syst – year: 2017 – volume: 87 start-page: 218 year: 2007 end-page: 225 article-title: Algorithms for projection‐pursuit robust principal component analysis publication-title: Chemom Intell Lab Syst – volume: 15 start-page: 1269 year: 1987 end-page: 1292 article-title: Asymptotic behavior of S‐estimators of multivariate location parameters and dispersion matrices publication-title: Ann Stat – volume: 15 start-page: 642 year: 1987 end-page: 656 article-title: High breakdown point and high efficiency robust estimates for regression publication-title: Ann Stat – volume: 24 start-page: 441 year: 2015 end-page: 461 article-title: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination publication-title: TEST – volume: 7 start-page: 226 year: 2013 end-page: 248 article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets publication-title: Ann Appl Stat – volume: 75 start-page: 127 year: 2005 end-page: 136 article-title: LIBRA: a Matlab library for robust analysis publication-title: Chemom Intell Lab Syst |
SSID | ssj0000328882 |
Score | 2.5474613 |
Snippet | Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In... |
SourceID | wiley |
SourceType | Publisher |
Title | Anomaly detection by robust statistics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1236 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LSwMxEMeHWi9efItvchDxEt3uJtsUT6KWKlQ8WOxtyeQBgt1Ku0X67c1k24o3bzkkhyRMZv5h5jcAF-Rigp-2XLZMxoWSnqNzObcKU9WSmIjI6e6_5L2BeB7KYQNul7UwNR9i9eFGlhHfazJwjdObX2jo94cdXRM7ZA3WqbSW8vlS8br6YCFQnIrNooJOTzlBaJZkoSS9Wa3-G5RGr9Ldhs1FOMju6vvbgYYrd2Fr2WqBLSxvDy6DTB_pzzmzrorJUyXDOZuMcTatGBUF1bzlfRh0H9_ue3zR4oCbEIfkXCnfzjFvW5N5kZqgbrQR6FtaYEdaZ0XQupgr66loXfkg5hKTGMy0R-2dEtkBNMtx6Q6BERrdSk_4dCFcJrCdKJ0YITupts7gEVzFjRZfNcaiqIHFaUFHUdBRFO9PD30aHP9_6glshBBC1VlZp9CsJjN3Ftx0hefxOn4AhmyN7Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ05T8MwFICfShlg4UbceADEYpo4TuIODBWlaukhhlZ0C_ElIdEUtamq_id-JHaSFrGxdPMQWb5e3qH3vgdwY1WM0dMS-67wMGW-xlypAEvGCXN97tCM093tBc0BfRn6wxJ8L2thcj7EKuBmJSP7X1sBtwHpyi81dP4hRw8WHlKkVLbVYm4ctuljq25u95aQxnP_qYmLngJYGMUfYMZ0GPAglMLTlAjjTsSCcu3GlFd9qSQ1ziUPmNS2Spxp4z05whHcizWPtWLUM_NuwCYNSGj7JRD6uoroWDIdy7pTuVVKsKXeLFFGDqmsVvvXCs7UWGMPdgr7E9XyB7MPJZUcwO6ytwMqRP0Q7mrJeBR_LpBUaZatlSC-QJMxn01TZKuQcsDzEQzWsv9jKCfjRJ0Asix26WvLa6dUeZSHDosdQf0qiaUS_BTus41GXzk3I8oJySSyRxHZo4jeWvWuHZz9_9Nr2Gr2u52o0-q1z2Hb2C8sTwm7gHI6malLYyOk_Cq7GgTv634LP7UkzPE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT8JAEIAniInx4tv4dg9qvKy0221ZDh6ISECEcJDIrXZfiYkUAiWkv8k_6W5bMN68cNvDZtN9TGdmd-YbgBurYoyelth3hYcp8zXmSgVYMk6Y63OHZpzubi9oDejL0B-W4HuZC5PzIVYXblYysv-1FfCJ1JVfaOjiU44eLDukiKjsqHRh_LXZY7thNveWkObz21MLFyUFsDB6P8CM6WrAg6oUnqZEGG8iEpRrN6K85kslqfEtecCktkniTBvnyRGO4F6keaQVo54ZdwM27eOijR8jtL-60LFgOpYVp3JrlGALvVmSjBxSWX3tXyM402LNPdgpzE9Uz8_LPpRUfAC7y9IOqJD0Q7irx-NR9JUiqZIsWCtGPEXTMZ_PEmSTkHK-8xEM1jL_YyjH41idALIodulri2unVHmUVx0WOYL6NRJJJfgp3GcTDSc5NiPMAckktEsR2qUI39uNrm2c_b_rNWz1G83wtd3rnMO2sV5YHhB2AeVkOleXxkJI-FW2Mwg-1n0UfgCVdMwj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+by+robust+statistics&rft.jtitle=Wiley+interdisciplinary+reviews.+Data+mining+and+knowledge+discovery&rft.au=Rousseeuw%2C+Peter+J.&rft.au=Hubert%2C+Mia&rft.date=2018-03-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1942-4787&rft.eissn=1942-4795&rft.volume=8&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwidm.1236&rft.externalDBID=10.1002%252Fwidm.1236&rft.externalDocID=WIDM1236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-4787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-4787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-4787&client=summon |