Anomaly detection by robust statistics

Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In either case, the ability to detect such anomalies is essential. A useful tool for this purpose is robust statistics, which aims to detect the out...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Data mining and knowledge discovery Vol. 8; no. 2
Main Authors Rousseeuw, Peter J., Hubert, Mia
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.03.2018
Online AccessGet full text

Cover

Loading…
Abstract Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In either case, the ability to detect such anomalies is essential. A useful tool for this purpose is robust statistics, which aims to detect the outliers by first fitting the majority of the data and then flagging data points that deviate from it. We present an overview of several robust methods and the resulting graphical outlier detection tools. We discuss robust procedures for univariate, low‐dimensional, and high‐dimensional data, such as estimating location and scatter, linear regression, principal component analysis, classification, clustering, and functional data analysis. Also the challenging new topic of cellwise outliers is introduced. WIREs Data Mining Knowl Discov 2018, 8:e1236. doi: 10.1002/widm.1236 This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Technologies > Classification Technologies > Structure Discovery and Clustering Technologies > Visualization Fitting a line to data with outliers: classical (red) and robust (blue).
AbstractList Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In either case, the ability to detect such anomalies is essential. A useful tool for this purpose is robust statistics, which aims to detect the outliers by first fitting the majority of the data and then flagging data points that deviate from it. We present an overview of several robust methods and the resulting graphical outlier detection tools. We discuss robust procedures for univariate, low‐dimensional, and high‐dimensional data, such as estimating location and scatter, linear regression, principal component analysis, classification, clustering, and functional data analysis. Also the challenging new topic of cellwise outliers is introduced. WIREs Data Mining Knowl Discov 2018, 8:e1236. doi: 10.1002/widm.1236 This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Technologies > Classification Technologies > Structure Discovery and Clustering Technologies > Visualization Fitting a line to data with outliers: classical (red) and robust (blue).
Author Rousseeuw, Peter J.
Hubert, Mia
Author_xml – sequence: 1
  givenname: Peter J.
  surname: Rousseeuw
  fullname: Rousseeuw, Peter J.
  email: peter@rousseeuw.net
  organization: KU Leuven
– sequence: 2
  givenname: Mia
  surname: Hubert
  fullname: Hubert, Mia
  organization: KU Leuven
BookMark eNo9j0tLw0AURi9SwVq78B9k5S7tPG4mk2WpWgsVN4rLYZ4wkodkRkr-vQbFb_Od1YFzDYt-6D3ALSUbSgjbnqPrNpRxcQFL2iArsW6qxT_L-grWKX2Qn3EmpWRLuNv1Q6fbqXA-e5vj0BdmKsbBfKVcpKxzTDnadAOXQbfJr_9-BW-PD6_7p_L0cjjud6fSIlJRShlqYUTtLA_ILEXUFk2gGk1TOe_QG26EdIGwCmWosCGWWMN1MDp4iXwF21_vObZ-Up9j7PQ4KUrUHKjmQDUHqvfj_fMM_BunkUfD
CitedBy_id crossref_primary_10_1016_j_isci_2020_101819
crossref_primary_10_3390_min14090925
crossref_primary_10_1080_00949655_2018_1452238
crossref_primary_10_1109_JSEN_2022_3149721
crossref_primary_10_1109_TIM_2022_3187742
crossref_primary_10_3390_math10111797
crossref_primary_10_1080_00401706_2018_1562989
crossref_primary_10_26833_ijeg_996340
crossref_primary_10_3390_rs10101523
crossref_primary_10_2478_cejpp_2021_0007
crossref_primary_10_1007_s11633_020_1243_2
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_3390_sym12081251
crossref_primary_10_1109_ACCESS_2024_3513714
crossref_primary_10_3233_MAS_210523
crossref_primary_10_1007_JHEP01_2023_008
crossref_primary_10_2478_amns_2024_2906
crossref_primary_10_1016_j_inffus_2023_102069
crossref_primary_10_1093_aje_kwac024
crossref_primary_10_3390_s23218918
crossref_primary_10_1002_widm_1479
crossref_primary_10_1126_scirobotics_add7385
crossref_primary_10_1038_s41467_020_18282_2
crossref_primary_10_26833_ijeg_404426
crossref_primary_10_1109_ACCESS_2023_3239212
crossref_primary_10_1007_s00371_023_02942_7
crossref_primary_10_1109_ACCESS_2024_3494264
crossref_primary_10_1186_s40537_020_00324_7
crossref_primary_10_3390_e23010033
crossref_primary_10_1109_ACCESS_2021_3131402
crossref_primary_10_1002_qre_3472
crossref_primary_10_1016_j_jfludis_2024_106085
crossref_primary_10_1038_s41598_021_91002_y
crossref_primary_10_1007_s12083_019_00822_3
crossref_primary_10_1590_1808_057x20221624_pt
crossref_primary_10_29333_ejosdr_12561
crossref_primary_10_1002_sam_70001
crossref_primary_10_1145_3604432
crossref_primary_10_1038_s41598_022_04787_x
crossref_primary_10_1038_s41598_023_33318_5
crossref_primary_10_3390_sym16060698
crossref_primary_10_3390_info15010061
crossref_primary_10_1177_1094428121999096
crossref_primary_10_1016_j_apenergy_2025_125357
crossref_primary_10_3389_fenrg_2022_907027
crossref_primary_10_3390_app11199290
crossref_primary_10_37394_232015_2024_20_96
crossref_primary_10_3390_children12030278
crossref_primary_10_3390_math9010105
crossref_primary_10_1007_s00184_019_00731_8
crossref_primary_10_1016_j_chemolab_2021_104486
crossref_primary_10_1007_s41060_022_00366_5
crossref_primary_10_3390_rs15123185
crossref_primary_10_3390_electronics13010202
crossref_primary_10_1002_sim_10209
crossref_primary_10_1016_j_cmpb_2020_105771
crossref_primary_10_3390_app132312618
crossref_primary_10_3390_molecules25184350
crossref_primary_10_31185_wjcm_58
crossref_primary_10_1016_j_jechem_2024_09_043
crossref_primary_10_3390_atmos14101497
crossref_primary_10_3390_agriculture11111083
crossref_primary_10_1016_j_neuroimage_2020_117151
crossref_primary_10_1186_s13007_024_01295_z
crossref_primary_10_1049_ipr2_12532
crossref_primary_10_1186_s12874_019_0737_5
crossref_primary_10_1136_thorax_2024_222142
crossref_primary_10_15672_hujms_1383910
crossref_primary_10_3390_en15238835
crossref_primary_10_1109_JSEN_2024_3407158
crossref_primary_10_1016_j_marmicro_2021_102053
crossref_primary_10_1002_cem_3433
crossref_primary_10_1007_s10342_021_01379_8
crossref_primary_10_1080_03610918_2025_2450714
crossref_primary_10_1590_1808_057x20221624_en
crossref_primary_10_1109_ACCESS_2021_3070659
crossref_primary_10_1088_1752_7163_ad9b46
crossref_primary_10_1145_3722214
crossref_primary_10_1016_j_ecosta_2018_05_001
crossref_primary_10_3390_app12104986
crossref_primary_10_1016_j_ins_2019_12_060
crossref_primary_10_3390_app13127313
crossref_primary_10_1016_j_dss_2024_114228
crossref_primary_10_1371_journal_pone_0284768
crossref_primary_10_1111_anzs_12374
crossref_primary_10_3390_math9080882
crossref_primary_10_1007_s13369_020_05270_3
crossref_primary_10_1007_s42979_020_00418_2
crossref_primary_10_1016_j_jmr_2021_106936
crossref_primary_10_1016_j_promfg_2020_05_012
crossref_primary_10_1080_17461391_2022_2064771
crossref_primary_10_2478_jaiscr_2025_0001
crossref_primary_10_54033_cadpedv21n10_113
crossref_primary_10_3390_app14167016
crossref_primary_10_3389_fnsys_2019_00083
crossref_primary_10_3390_math9111288
crossref_primary_10_1088_1361_6560_ad6b72
crossref_primary_10_3390_s21227521
crossref_primary_10_7475_kjan_2022_34_4_403
crossref_primary_10_1007_s10877_024_01164_z
crossref_primary_10_1515_cclm_2025_0065
crossref_primary_10_1007_s10618_019_00661_z
crossref_primary_10_3390_d16110666
crossref_primary_10_1080_10408347_2022_2036943
crossref_primary_10_1002_navi_445
crossref_primary_10_3390_s18040967
crossref_primary_10_1007_s10617_024_09282_2
crossref_primary_10_1364_AO_444847
crossref_primary_10_1080_00401706_2020_1769734
crossref_primary_10_1109_ACCESS_2020_2973214
crossref_primary_10_1177_1536867X241297918
crossref_primary_10_3390_metabo11040237
crossref_primary_10_1089_cmb_2022_0243
crossref_primary_10_1088_2631_8695_aceb2e
ContentType Journal Article
Copyright 2017 The Authors. published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 The Authors. published by Wiley Periodicals, Inc.
DBID 24P
DOI 10.1002/widm.1236
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1942-4795
EndPage n/a
ExternalDocumentID WIDM1236
Genre reviewArticle
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
8-0
8-1
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WIH
WIK
WMRSR
WOHZO
WSUWO
WXSBR
ZZTAW
ID FETCH-LOGICAL-c4416-88f76b67dc3f42c144ac4bf1a4b95ded4eb3b68df02548f5490c0cb3afbafe843
IEDL.DBID 24P
ISSN 1942-4787
IngestDate Wed Aug 20 07:26:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4416-88f76b67dc3f42c144ac4bf1a4b95ded4eb3b68df02548f5490c0cb3afbafe843
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1236
PageCount 14
ParticipantIDs wiley_primary_10_1002_widm_1236_WIDM1236
PublicationCentury 2000
PublicationDate March/April 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March/April 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Wiley interdisciplinary reviews. Data mining and knowledge discovery
PublicationYear 2018
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
References 1971; 42
2002; 14
2007; 102
2010; 19
2000; 87
2002; 55
2008; 36
1999; 41
2002; 60
2013; 7
2003; 12
1990; 85
1997; 92
1987; 82
2000; 14
1990
2002; 44
1987
2011; 20
1986
2014; 15
2008; 23
2005; 75
1984
1983
1982
1981
1964; 35
2010; 2
2010; 4
2012; 21
2005; 33
2005; 79
1995; 90
2000; 28
2006; 12
1995; 17
1993; 88
1997; 25
2004; 45
2008; 17
2000; 72
2008
2006
2005
2008; 52
2007; 52
2001; 29
2005; 48
1999; 8
1976; 8
1985; B
2016; 58
1976; 4
1987; 15
1991; 6
2005; 47
2015; 24
1967; 1
2017; 11
2004; 13
1984; 79
2015; 110
1965
2017
2016
2007; 87
2009; 1
2006; 101
2009; 37
References_xml – volume: 33
  start-page: 347
  year: 2005
  end-page: 380
  article-title: A robust method for cluster analysis
  publication-title: Ann Stat
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
– volume: 47
  start-page: 64
  year: 2005
  end-page: 79
  article-title: ROBPCA: a new approach to robust principal components analysis
  publication-title: Technometrics
– volume: 72
  start-page: 151
  year: 2000
  end-page: 162
  article-title: High breakdown estimation for multiple populations with applications to discriminant analysis
  publication-title: J Multivar Anal
– volume: 102
  start-page: 1289
  year: 2007
  end-page: 1299
  article-title: Robust linear model selection based on least angle regression
  publication-title: J Am Stat Assoc
– year: 1981
– volume: 11
  start-page: 445
  year: 2017
  end-page: 466
  article-title: Multivariate and functional classification using depth and distance
  publication-title: Adv Data Anal Classif
– volume: 48
  start-page: 703
  year: 2005
  end-page: 715
  article-title: Fast and robust bootstrap for LTS
  publication-title: Comput Stat Data Anal
– volume: 8
  start-page: 1
  year: 1999
  end-page: 73
  article-title: Robust principal component analysis for functional data
  publication-title: TEST
– year: 2005
– volume: 23
  start-page: 92
  year: 2008
  end-page: 119
  article-title: High breakdown robust multivariate methods
  publication-title: Stat Sci
– volume: 44
  start-page: 307
  year: 2002
  end-page: 317
  article-title: Robust estimates of location and dispersion for high‐dimensional data sets
  publication-title: Technometrics
– volume: 25
  start-page: 553
  year: 1997
  end-page: 576
  article-title: Trimmed ‐means: an attempt to robustify quantizers
  publication-title: Ann Stat
– volume: 4
  start-page: 151
  year: 2010
  end-page: 167
  article-title: Robust kernel principal component analysis and classification
  publication-title: Adv Data Anal Classif
– year: 1990
– volume: 19
  start-page: 29
  year: 2010
  end-page: 45
  article-title: Rainbow plots, bagplots, and boxplots for functional data
  publication-title: J Comput Graph Stat
– volume: 24
  start-page: 177
  year: 2015
  end-page: 246
  article-title: Multivariate functional outlier detection (with discussion)
  publication-title: Stat Methods Appl
– volume: 41
  start-page: 212
  year: 1999
  end-page: 223
  article-title: A fast algorithm for the minimum covariance determinant estimator
  publication-title: Technometrics
– volume: 55
  start-page: 111
  year: 2002
  end-page: 123
  article-title: Small sample corrections for LTS and MCD
  publication-title: Metrika
– volume: 42
  start-page: 1887
  year: 1971
  end-page: 1896
  article-title: A general qualitative definition of robustness
  publication-title: Ann Math Stat
– start-page: 256
  year: 1984
  end-page: 272
– year: 1986
– year: 1982
– volume: 21
  start-page: 618
  year: 2012
  end-page: 637
  article-title: A deterministic algorithm for robust location and scatter
  publication-title: J Comput Graph Stat
– volume: 28
  start-page: 1219
  year: 2000
  end-page: 1243
  article-title: On the uniqueness of S‐functionals and M‐functionals under nonelliptical distributions
  publication-title: Ann Stat
– volume: 6
  start-page: 59
  year: 1991
  end-page: 70
  article-title: Robust regression methods in computer vision: a review
  publication-title: Int J Comput Vis
– year: 1965
– year: 2008
– volume: 20
  start-page: 316
  year: 2011
  end-page: 334
  article-title: Functional boxplots
  publication-title: J Comput Graph Stat
– year: 2017
  article-title: A measure of directional outlyingness with applications to image data and video
  publication-title: J Comput Graph Stat
– volume: 12
  start-page: 29
  year: 2006
  end-page: 45
  article-title: Computing LTS regression for large data sets
  publication-title: Data Min Knowl Disc
– volume: 88
  start-page: 1273
  year: 1993
  end-page: 1283
  article-title: Alternatives to the median absolute deviation
  publication-title: J Am Stat Assoc
– volume: 101
  start-page: 1198
  year: 2006
  end-page: 1211
  article-title: PCA based on multivariate MM‐estimators with fast and robust bootstrap
  publication-title: J Am Stat Assoc
– volume: 79
  start-page: 871
  year: 1984
  end-page: 880
  article-title: Least median of squares regression
  publication-title: J Am Stat Assoc
– volume: 17
  start-page: 41
  year: 2008
  end-page: 47
  article-title: Fast and robust bootstrap
  publication-title: Stat. Methods Appl
– volume: 17
  start-page: 925
  year: 1995
  end-page: 938
  article-title: MINPRAN: a new robust estimator for computer vision
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 13
  start-page: 996
  year: 2004
  end-page: 1017
  article-title: A robust measure of skewness
  publication-title: J Comput Graph Stat
– volume: 45
  start-page: 301
  year: 2004
  end-page: 320
  article-title: Fast and robust discriminant analysis
  publication-title: Comput Stat Data Anal
– volume: 12
  start-page: 434
  year: 2003
  end-page: 449
  article-title: Trimming tools in exploratory data analysis
  publication-title: J Comput Graph Stat
– volume: 90
  start-page: 330
  year: 1995
  end-page: 341
  article-title: The behavior of the Stahel‐Donoho robust multivariate estimator
  publication-title: J Am Stat Assoc
– volume: 42
  start-page: 1328
  year: 1971
  end-page: 1338
  article-title: Nonparametric estimate of regression coefficients
  publication-title: Ann Math Stat
– year: 2017
  article-title: Detecting deviating data cells
  publication-title: Technometrics
– year: 1987
– volume: 37
  start-page: 311
  year: 2009
  end-page: 331
  article-title: Propagation of outliers in multivariate data
  publication-title: Ann Stat
– volume: 58
  start-page: 424
  year: 2016
  end-page: 434
  article-title: Sparse PCA for high‐dimensional data with outliers
  publication-title: Technometrics
– volume: 79
  start-page: 10
  year: 2005
  end-page: 21
  article-title: Robust classification in high dimensions based on the SIMCA method
  publication-title: Chemom Intell Lab Syst
– volume: 29
  start-page: 473
  year: 2001
  end-page: 492
  article-title: Robust linear discriminant analysis using S‐estimators
  publication-title: Can J Stat
– volume: 1
  start-page: 296
  year: 2009
  end-page: 302
  article-title: Breakdown value
  publication-title: Wiley Interdiscip Rev Comput Stat
– volume: 8
  start-page: 127
  year: 1976
  end-page: 139
  article-title: Pattern recognition by means of disjoint principal components models
  publication-title: Pattern Recogn
– volume: 52
  start-page: 239
  year: 2007
  end-page: 248
  article-title: Building a robust linear model with forward selection and stepwise procedures
  publication-title: Comput Stat Data Anal
– year: 2016
– volume: 15
  start-page: 603
  year: 2014
  end-page: 619
  article-title: Shape outlier detection and visualization for functional data: the outliergram
  publication-title: Biostatistics
– start-page: 157
  year: 1983
  end-page: 184
– volume: 4
  start-page: 51
  year: 1976
  end-page: 67
  article-title: Robust M‐estimators of multivariate location and scatter
  publication-title: Ann Stat
– volume: 2
  start-page: 509
  year: 2010
  end-page: 515
  article-title: MATLAB library LIBRA
  publication-title: Wiley Interdiscip Rev Comput Stat
– year: 2017
  article-title: Minimum covariance determinant and extensions
  publication-title: Wiley Interdiscip Rev Comput Stat
– volume: 36
  start-page: 1324
  year: 2008
  end-page: 1345
  article-title: A general trimming approach to robust cluster analysis
  publication-title: Ann Stat
– volume: 52
  start-page: 5186
  year: 2008
  end-page: 5201
  article-title: An adjusted boxplot for skewed distributions
  publication-title: Comput Stat Data Anal
– volume: B
  start-page: 283
  year: 1985
  end-page: 297
– volume: 87
  start-page: 603
  year: 2000
  end-page: 618
  article-title: Principal components analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies
  publication-title: Biometrika
– volume: 110
  start-page: 1100
  year: 2015
  end-page: 1111
  article-title: S‐estimators for functional principal component analysis
  publication-title: J Am Stat Assoc
– volume: 92
  start-page: 136
  year: 1997
  end-page: 143
  article-title: High‐breakdown linear discriminant analysis
  publication-title: J Am Stat Assoc
– year: 2006
– volume: 82
  start-page: 851
  year: 1987
  end-page: 857
  article-title: L‐estimation for linear models
  publication-title: J Am Stat Assoc
– volume: 14
  start-page: 1003
  year: 2002
  end-page: 1016
  article-title: CLARANS: a method for clustering objects for spatial data mining
  publication-title: IEEE Trans Knowl Data Eng
– volume: 85
  start-page: 633
  year: 1990
  end-page: 651
  article-title: Unmasking multivariate outliers and leverage points
  publication-title: J Am Stat Assoc
– volume: 35
  start-page: 73
  year: 1964
  end-page: 101
  article-title: Robust estimation of a location parameter
  publication-title: Ann Math Stat
– volume: 14
  start-page: 751
  year: 2000
  end-page: 763
  article-title: Quantitative Z‐analysis of 16th‐17th century archaeological glass vessels using PLS regression of EPXMA and ‐XRF data
  publication-title: J Chemom
– volume: 60
  start-page: 101
  year: 2002
  end-page: 111
  article-title: A fast robust method for principal components with applications to chemometrics
  publication-title: Chemom Intell Lab Syst
– year: 2017
– volume: 87
  start-page: 218
  year: 2007
  end-page: 225
  article-title: Algorithms for projection‐pursuit robust principal component analysis
  publication-title: Chemom Intell Lab Syst
– volume: 15
  start-page: 1269
  year: 1987
  end-page: 1292
  article-title: Asymptotic behavior of S‐estimators of multivariate location parameters and dispersion matrices
  publication-title: Ann Stat
– volume: 15
  start-page: 642
  year: 1987
  end-page: 656
  article-title: High breakdown point and high efficiency robust estimates for regression
  publication-title: Ann Stat
– volume: 24
  start-page: 441
  year: 2015
  end-page: 461
  article-title: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination
  publication-title: TEST
– volume: 7
  start-page: 226
  year: 2013
  end-page: 248
  article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets
  publication-title: Ann Appl Stat
– volume: 75
  start-page: 127
  year: 2005
  end-page: 136
  article-title: LIBRA: a Matlab library for robust analysis
  publication-title: Chemom Intell Lab Syst
SSID ssj0000328882
Score 2.5474613
Snippet Real data often contain anomalous cases, also known as outliers. These may spoil the resulting analysis but they may also contain valuable information. In...
SourceID wiley
SourceType Publisher
Title Anomaly detection by robust statistics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1236
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LSwMxEMeHWi9efItvchDxEt3uJtsUT6KWKlQ8WOxtyeQBgt1Ku0X67c1k24o3bzkkhyRMZv5h5jcAF-Rigp-2XLZMxoWSnqNzObcKU9WSmIjI6e6_5L2BeB7KYQNul7UwNR9i9eFGlhHfazJwjdObX2jo94cdXRM7ZA3WqbSW8vlS8br6YCFQnIrNooJOTzlBaJZkoSS9Wa3-G5RGr9Ldhs1FOMju6vvbgYYrd2Fr2WqBLSxvDy6DTB_pzzmzrorJUyXDOZuMcTatGBUF1bzlfRh0H9_ue3zR4oCbEIfkXCnfzjFvW5N5kZqgbrQR6FtaYEdaZ0XQupgr66loXfkg5hKTGMy0R-2dEtkBNMtx6Q6BERrdSk_4dCFcJrCdKJ0YITupts7gEVzFjRZfNcaiqIHFaUFHUdBRFO9PD30aHP9_6glshBBC1VlZp9CsJjN3Ftx0hefxOn4AhmyN7Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ05T8MwFICfShlg4UbceADEYpo4TuIODBWlaukhhlZ0C_ElIdEUtamq_id-JHaSFrGxdPMQWb5e3qH3vgdwY1WM0dMS-67wMGW-xlypAEvGCXN97tCM093tBc0BfRn6wxJ8L2thcj7EKuBmJSP7X1sBtwHpyi81dP4hRw8WHlKkVLbVYm4ctuljq25u95aQxnP_qYmLngJYGMUfYMZ0GPAglMLTlAjjTsSCcu3GlFd9qSQ1ziUPmNS2Spxp4z05whHcizWPtWLUM_NuwCYNSGj7JRD6uoroWDIdy7pTuVVKsKXeLFFGDqmsVvvXCs7UWGMPdgr7E9XyB7MPJZUcwO6ytwMqRP0Q7mrJeBR_LpBUaZatlSC-QJMxn01TZKuQcsDzEQzWsv9jKCfjRJ0Asix26WvLa6dUeZSHDosdQf0qiaUS_BTus41GXzk3I8oJySSyRxHZo4jeWvWuHZz9_9Nr2Gr2u52o0-q1z2Hb2C8sTwm7gHI6malLYyOk_Cq7GgTv634LP7UkzPE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT8JAEIAniInx4tv4dg9qvKy0221ZDh6ISECEcJDIrXZfiYkUAiWkv8k_6W5bMN68cNvDZtN9TGdmd-YbgBurYoyelth3hYcp8zXmSgVYMk6Y63OHZpzubi9oDejL0B-W4HuZC5PzIVYXblYysv-1FfCJ1JVfaOjiU44eLDukiKjsqHRh_LXZY7thNveWkObz21MLFyUFsDB6P8CM6WrAg6oUnqZEGG8iEpRrN6K85kslqfEtecCktkniTBvnyRGO4F6keaQVo54ZdwM27eOijR8jtL-60LFgOpYVp3JrlGALvVmSjBxSWX3tXyM402LNPdgpzE9Uz8_LPpRUfAC7y9IOqJD0Q7irx-NR9JUiqZIsWCtGPEXTMZ_PEmSTkHK-8xEM1jL_YyjH41idALIodulri2unVHmUVx0WOYL6NRJJJfgp3GcTDSc5NiPMAckktEsR2qUI39uNrm2c_b_rNWz1G83wtd3rnMO2sV5YHhB2AeVkOleXxkJI-FW2Mwg-1n0UfgCVdMwj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+by+robust+statistics&rft.jtitle=Wiley+interdisciplinary+reviews.+Data+mining+and+knowledge+discovery&rft.au=Rousseeuw%2C+Peter+J.&rft.au=Hubert%2C+Mia&rft.date=2018-03-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1942-4787&rft.eissn=1942-4795&rft.volume=8&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwidm.1236&rft.externalDBID=10.1002%252Fwidm.1236&rft.externalDocID=WIDM1236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-4787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-4787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-4787&client=summon