Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modelling

Much of the research in epidemiology and clinical science is based upon longitudinal designs which involve repeated measurements of a variable of interest in each of a series of individuals. Such designs can be very powerful, both statistically and scientifically, because they enable one to study ch...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 17; no. 11; pp. 1261 - 1291
Main Authors Burton, Paul, Gurrin, Lyle, Sly, Peter
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc., A Wiley Company 15.06.1998
Wiley
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/(SICI)1097-0258(19980615)17:11<1261::AID-SIM846>3.0.CO;2-Z

Cover

Loading…
More Information
Summary:Much of the research in epidemiology and clinical science is based upon longitudinal designs which involve repeated measurements of a variable of interest in each of a series of individuals. Such designs can be very powerful, both statistically and scientifically, because they enable one to study changes within individual subjects over time or under varied conditions. However, this power arises because the repeated measurements tend to be correlated with one another, and this must be taken into proper account at the time of analysis or misleading conclusions may result. Recent advances in statistical theory and in software development mean that studies based upon such designs can now be analysed more easily, in a valid yet flexible manner, using a variety of approaches which include the use of generalized estimating equations, and mixed models which incorporate random effects. This paper provides a particularly simple illustration of the use of these two approaches, taking as a practical example the analysis of a study which examined the response of portable peak expiratory flow meters to changes in true peak expiratory flow in 12 children with asthma. The paper takes the reader through the relevant practicalities of model fitting, interpretation and criticism and demonstrates that, in a simple case such as this, analyses based upon these model‐based approaches produce reassuringly similar inferences to standard analyses based upon more conventional methods. © 1998 John Wiley & Sons, Ltd.
Bibliography:National Health and Medical Research Council of Australia
ark:/67375/WNG-HHF8PL2N-5
istex:BAB5A85108E5919D70ABBD11E182CDF1E641EF91
ArticleID:SIM846
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0277-6715
1097-0258
DOI:10.1002/(SICI)1097-0258(19980615)17:11<1261::AID-SIM846>3.0.CO;2-Z