In situ studies of the degradation mechanisms of perovskite solar cells
The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of convent...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 2; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2020
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies.
The lack of long‐term stability in perovskite solar cells is one of the greatest barriers to their commercialization. Here we review perovskite solar cell degradation mechanisms, with an emphasis on how in situ and operando methodologies have helped contribute to our understanding of these processes. |
---|---|
AbstractList | The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies.
The lack of long‐term stability in perovskite solar cells is one of the greatest barriers to their commercialization. Here we review perovskite solar cell degradation mechanisms, with an emphasis on how in situ and operando methodologies have helped contribute to our understanding of these processes. Abstract The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies. The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies. image |
Author | Kundu, Soumya Kelly, Timothy L. |
Author_xml | – sequence: 1 givenname: Soumya orcidid: 0000-0002-5779-6981 surname: Kundu fullname: Kundu, Soumya organization: University of Saskatchewan – sequence: 2 givenname: Timothy L. orcidid: 0000-0002-2907-093X surname: Kelly fullname: Kelly, Timothy L. email: tim.kelly@usask.ca organization: University of Saskatchewan |
BookMark | eNp9kF1LwzAUhoNMcM7d-AtyLXQmbfqRSxlzDia70etw8tEts21G0in793atiIh4dcLJ8z5w3ms0alxjELqlZEYJie-Nq-MZjUmcXqBxnGZ5lNA8Gf14X6FpCHvSwSlhMaNjtFw1ONj2iEN71NYE7Erc7gzWZutBQ2tdg2ujdtDYUPe_B-Pde3izrcHBVeCxMlUVbtBlCVUw0685Qa-Pi5f5U7TeLFfzh3WkGKNppMuEa8I5Y7ksJJcpSfKMGSCmpIrTjCoJHUhyJmOmMpkATaFk3VESqOQ6maDV4NUO9uLgbQ3-JBxY0S-c3wrwrVWVERpyCWneyVTCSmaKQtEiyXnBSUm15J3rbnAp70Lwpvz2USLOjYpzo6JvtIPJL1jZtu-n9WCrvyN0iHzYypz-kYvF5jkeMp-p3Yk- |
CitedBy_id | crossref_primary_10_1109_LED_2024_3434615 crossref_primary_10_5757_ASCT_2022_31_6_161 crossref_primary_10_1039_D4TC00395K crossref_primary_10_1002_smll_202311755 crossref_primary_10_1016_j_eiar_2024_107462 crossref_primary_10_1016_j_mtphys_2022_100686 crossref_primary_10_1016_j_jechem_2024_07_060 crossref_primary_10_1016_j_joule_2025_101852 crossref_primary_10_1021_jacsau_2c00160 crossref_primary_10_1088_1674_4926_43_4_041106 crossref_primary_10_1016_j_mtener_2025_101820 crossref_primary_10_1016_j_heliyon_2023_e16069 crossref_primary_10_1021_acs_jpclett_3c00530 crossref_primary_10_1002_solr_202100545 crossref_primary_10_1088_1361_6528_ac77a0 crossref_primary_10_1021_acs_chemmater_4c02255 crossref_primary_10_1002_eom2_12146 crossref_primary_10_3390_cryst13101517 crossref_primary_10_1002_ente_202100607 crossref_primary_10_1021_acs_nanolett_4c01715 crossref_primary_10_1002_aenm_202304062 crossref_primary_10_1002_apxr_202200088 crossref_primary_10_1021_acsami_3c02748 crossref_primary_10_1016_j_nanoen_2021_106384 crossref_primary_10_1039_D4YA00025K crossref_primary_10_1007_s10825_023_02038_4 crossref_primary_10_1088_2040_8986_ac95a8 crossref_primary_10_1016_j_jallcom_2021_163457 crossref_primary_10_1021_acs_nanolett_4c04559 crossref_primary_10_1063_5_0193601 crossref_primary_10_1016_j_jechem_2021_08_046 crossref_primary_10_1016_j_jallcom_2022_168464 crossref_primary_10_1021_acsami_2c19954 crossref_primary_10_1016_j_solmat_2021_111454 crossref_primary_10_1016_j_nanoen_2023_108219 crossref_primary_10_1002_solr_202300155 crossref_primary_10_1016_j_cej_2024_157118 crossref_primary_10_3390_nano13131983 crossref_primary_10_1016_j_inoche_2021_109094 crossref_primary_10_1021_acsmaterialslett_1c00778 crossref_primary_10_1007_s10854_023_10318_9 crossref_primary_10_1021_acsami_4c11096 crossref_primary_10_3390_chemosensors9080215 crossref_primary_10_1002_adom_202200516 crossref_primary_10_1016_j_mtchem_2024_102405 crossref_primary_10_1016_j_susmat_2022_e00438 crossref_primary_10_1021_acs_jpclett_3c03087 crossref_primary_10_1021_acsomega_0c04599 crossref_primary_10_1063_5_0100183 crossref_primary_10_1021_acsami_1c18939 crossref_primary_10_1016_j_cplett_2022_139967 crossref_primary_10_1016_j_jpowsour_2020_229313 crossref_primary_10_1007_s00339_024_07505_8 crossref_primary_10_1002_eom2_12400 crossref_primary_10_1016_j_xcrp_2023_101634 crossref_primary_10_1002_smll_202207092 crossref_primary_10_1063_5_0064398 crossref_primary_10_1016_j_eng_2022_07_008 crossref_primary_10_1002_solr_202200345 crossref_primary_10_1021_acsaem_1c03213 crossref_primary_10_1021_acs_chemmater_4c00935 crossref_primary_10_1002_advs_202401955 crossref_primary_10_1016_j_solmat_2024_113043 crossref_primary_10_1016_j_nanoen_2023_108740 crossref_primary_10_1002_aisy_202200340 crossref_primary_10_1021_acs_jpcc_3c04708 crossref_primary_10_1126_sciadv_abq4524 crossref_primary_10_1021_acs_jpclett_3c03059 crossref_primary_10_1016_j_mattod_2021_11_017 crossref_primary_10_1002_adma_202304523 crossref_primary_10_1016_j_eurpolymj_2024_113631 crossref_primary_10_1021_acsami_4c21673 crossref_primary_10_3389_fenrg_2022_840817 crossref_primary_10_1002_eom2_12117 crossref_primary_10_1002_adma_202204872 crossref_primary_10_1557_s43578_021_00158_w crossref_primary_10_1002_adfm_202304278 crossref_primary_10_1002_admi_202102585 crossref_primary_10_1007_s12274_022_4524_y crossref_primary_10_1016_j_jssc_2022_123608 crossref_primary_10_1021_acsaem_1c02058 crossref_primary_10_1021_acsaem_3c00698 crossref_primary_10_1016_j_ceramint_2023_05_015 crossref_primary_10_1016_j_cej_2022_140331 crossref_primary_10_1039_D1TC04101K crossref_primary_10_1016_j_nanoen_2023_109178 crossref_primary_10_1002_adfm_202401203 crossref_primary_10_1016_j_jechem_2024_01_063 crossref_primary_10_1038_s43246_022_00235_5 crossref_primary_10_1039_D2RA07580F crossref_primary_10_1039_D3MA00068K crossref_primary_10_1021_acs_chemrev_2c00382 crossref_primary_10_1021_acsenergylett_0c02495 crossref_primary_10_1039_D0TC02501A crossref_primary_10_1088_1402_4896_ad36ec crossref_primary_10_3390_ma17123002 crossref_primary_10_1039_D4TA04853A crossref_primary_10_1021_acs_jpcc_4c00563 crossref_primary_10_1155_2022_1440774 crossref_primary_10_1039_D3NR02003G crossref_primary_10_1016_j_radphyschem_2023_111480 crossref_primary_10_1002_adfm_202307896 crossref_primary_10_1021_acs_chemmater_2c03803 crossref_primary_10_1016_j_nanoen_2022_107019 crossref_primary_10_1039_D3TA04782B crossref_primary_10_1016_j_cej_2022_138028 crossref_primary_10_1002_adma_202311458 crossref_primary_10_1002_adom_202300580 crossref_primary_10_1016_j_isci_2024_110964 crossref_primary_10_1021_acsaem_1c02989 crossref_primary_10_1002_sstr_202300577 crossref_primary_10_1021_acs_jpcc_1c06129 crossref_primary_10_1039_D4SU00100A crossref_primary_10_1016_j_surfin_2023_103066 crossref_primary_10_1016_j_solener_2024_112496 crossref_primary_10_1021_jacs_3c03539 crossref_primary_10_1039_D2CC04867A crossref_primary_10_1021_acsenergylett_2c00140 crossref_primary_10_1021_acsenergylett_4c02822 crossref_primary_10_1002_aenm_202203920 crossref_primary_10_1016_j_matchemphys_2022_125954 crossref_primary_10_29026_oes_2023_230011 crossref_primary_10_1002_solr_202200378 crossref_primary_10_1021_jacs_3c05390 crossref_primary_10_1002_solr_202200898 crossref_primary_10_3390_en17010060 crossref_primary_10_1002_adem_202100930 crossref_primary_10_1002_adma_202008487 crossref_primary_10_1021_acsenergylett_3c00551 crossref_primary_10_1021_acs_jpcc_2c08645 crossref_primary_10_1088_1361_6463_ac3033 crossref_primary_10_1021_acsenergylett_2c02733 crossref_primary_10_1002_adfm_202204283 crossref_primary_10_1016_j_dwt_2024_100574 crossref_primary_10_3390_en14175431 crossref_primary_10_1016_j_cej_2024_158070 crossref_primary_10_1021_acsaem_0c02613 crossref_primary_10_1021_acs_langmuir_3c03816 crossref_primary_10_3390_pr11092742 crossref_primary_10_1002_er_7243 crossref_primary_10_1021_acsami_1c00813 crossref_primary_10_1039_D1TC02270A crossref_primary_10_1039_D4TA06729K crossref_primary_10_1002_adma_202202163 crossref_primary_10_1109_JPHOTOV_2023_3301674 crossref_primary_10_1063_5_0092110 crossref_primary_10_1016_j_optmat_2024_116316 crossref_primary_10_1002_advs_202304811 crossref_primary_10_1016_j_electacta_2022_140905 crossref_primary_10_1038_s44160_024_00687_2 crossref_primary_10_1088_1361_6463_ad82f7 crossref_primary_10_1039_D1TA01730F crossref_primary_10_1109_JPHOTOV_2025_3533909 crossref_primary_10_1016_j_solener_2024_112929 |
Cites_doi | 10.1016/j.solmat.2017.09.053 10.1021/acsami.8b04182 10.1021/acsami.5b06819 10.1126/sciadv.aao5616 10.1021/ic401215x 10.1002/adfm.201503559 10.1039/C8EE01697F 10.1002/adom.201800262 10.1039/C4TA04725G 10.1039/C8TC04723E 10.1038/natrevmats.2017.42 10.1038/ncomms14075 10.1021/acsami.7b11250 10.1021/acsenergylett.7b00282 10.1021/jp502696w 10.1039/C5EE00615E 10.1021/acs.chemrev.8b00539 10.1038/ncomms15218 10.1021/acs.inorgchem.6b01307 10.1021/jacs.5b08535 10.1021/acsenergylett.8b02207 10.1016/j.solmat.2011.01.020 10.1021/acsenergylett.7b00589 10.1002/adfm.201800305 10.1021/acsaem.8b00513 10.1002/adma.201902374 10.1002/advs.201500301 10.1038/s41467-018-07177-y 10.1021/cm502468k 10.1038/ncomms3885 10.1039/C5EE02733K 10.1039/C5RA14587B 10.1021/acsenergylett.7b00046 10.1039/C5EE00645G 10.1039/c3ee43822h 10.1021/acsenergylett.6b00320 10.1039/C8TA02775G 10.1126/science.aad1015 10.1039/C6EE01079B 10.1038/ncomms11683 10.1039/C6CS00896H 10.1021/acs.jpclett.7b01185 10.1021/acs.jpcc.5b09698 10.1021/acs.nanolett.8b00541 10.1002/adfm.201808843 10.1002/aenm.201500721 10.1021/acs.jpclett.9b00277 10.1021/acsenergylett.8b01562 10.1126/science.aaa5760 10.1016/j.orgel.2019.05.003 10.1038/s41467-018-07255-1 10.1039/C8CC01606B 10.1038/nnano.2015.90 10.1038/s41560-018-0220-2 10.1039/C7NR00784A 10.1002/adma.201805337 10.1039/C8TA06950F 10.1021/acsami.7b18389 10.1063/1.4864778 10.1126/science.1254050 10.1088/1361-6463/ab1626 10.1038/nature14133 10.1021/acsnano.6b02613 10.1002/solr.201900044 10.1002/aenm.201700476 10.1039/C6TA09687E 10.1002/anie.201503153 10.1021/acsami.6b07468 10.1038/ncomms11574 10.1002/anie.201409740 10.1021/acsenergylett.6b00698 10.1021/acs.jpcc.6b10865 10.1039/C6TA06497C 10.1039/C6EE01047D 10.1039/C8SE00358K 10.1002/admi.201500195 10.1016/j.joule.2018.12.011 10.1038/nature18306 10.1021/acs.accounts.5b00469 10.1109/PVSC.2016.7749805 10.1002/aenm.201602922 10.1021/acs.jpclett.8b02595 10.1021/jp411112k 10.3390/app9010188 10.1039/C5NR06687E 10.1038/srep21976 10.1038/s41598-017-04690-w 10.1126/science.aaa0472 10.1039/C6EE02941H 10.1021/acs.jpcc.6b00335 10.1021/acsami.5b00895 10.1021/acsnano.5b03687 10.1021/acsenergylett.8b01857 10.1002/adom.201800278 10.1021/acsenergylett.8b01300 10.1126/science.aap8671 10.1038/s41467-017-00284-2 10.1039/C4EE03664F 10.1002/adfm.201601557 10.1021/acsenergylett.7b00357 10.1021/acs.nanolett.6b03857 10.1021/acs.jpclett.9b00344 10.1002/admi.201600673 10.1021/acsami.7b06816 10.1021/acs.jpcc.8b03915 10.1021/acs.chemmater.5b02378 10.1002/aenm.201600846 10.1021/acs.jpclett.8b00120 10.1002/aelm.201700158 10.1039/C5NR04179A 10.1063/1.4967840 10.1021/acs.chemrev.8b00336 10.1039/C9TC02635E 10.1016/j.matlet.2018.06.126 10.1021/acs.jpcc.6b11853 10.1002/adma.201701789 10.1039/C6EE02016J 10.1039/C8CP01259H 10.1039/C5EE03874J 10.1002/adma.201801562 10.1038/s41528-018-0035-z 10.1021/acsenergylett.7b00212 10.1002/pip.3228 10.1021/acs.jpclett.6b00002 10.1021/acs.jpclett.8b00463 10.1039/C7QM00396J 10.1002/aenm.201501066 10.1039/C8RA04851G 10.1021/acsami.7b10643 10.1002/adma.201902413 10.1021/jacs.7b10430 10.1002/adma.201701073 10.1016/j.orgel.2015.12.010 10.1021/acsenergylett.6b00196 10.1063/1.4916821 10.1126/science.1228604 10.1002/aenm.201500279 10.1021/acs.jpclett.8b00687 10.1002/adfm.201804039 10.1021/ja511132a 10.1039/C4SC03141E 10.1038/s41563-018-0038-0 10.1021/nn500526t 10.1021/acsaem.9b00709 10.1021/acsenergylett.6b00158 10.1021/acsenergylett.8b01701 10.1002/aenm.201500477 10.1021/acsenergylett.9b01280 10.1038/nenergy.2017.9 10.1016/j.joule.2017.08.005 10.1021/nn506864k 10.1021/acsenergylett.8b01369 10.1126/science.aat8235 10.1002/aenm.201701543 10.1021/acs.chemmater.5b04122 10.1063/1.5108849 10.1038/nenergy.2015.12 10.1021/acsami.9b00831 10.1039/C8TA04537B 10.1021/acs.chemmater.5b00660 10.1021/acs.nanolett.8b00505 10.1002/cssc.201802899 10.1002/adma.201702905 10.1002/cssc.201600915 10.1039/C6EE00409A 10.1002/aenm.201800554 10.1016/j.jct.2017.09.026 10.1021/acsami.9b00793 10.1039/C7CC01538K 10.1002/adfm.201700920 10.1021/acs.jpclett.5b00902 10.1039/c3ta10518k 10.1126/science.1243982 10.1021/acs.jpclett.6b00215 10.1002/adfm.201304022 10.1016/j.orgel.2019.01.005 10.1002/adma.201801010 10.1039/C7SE00114B 10.1021/acs.jpca.6b12170 10.1039/C7EE01674C 10.1039/C9TA06058H 10.1039/C7EE00757D |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/eom2.12025 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_da7ba57107c34f4e88c18379890f1db9 10_1002_eom2_12025 EOM212025 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: University of Saskatchewan – fundername: Canada Research Chairs – fundername: Natural Sciences and Engineering Research Council of Canada funderid: RGPIN‐2017‐03732 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4415-df39d099447b8b9b503764ea0ef1c9161cba441074b24c6b3a15af4120ba1b9d3 |
IEDL.DBID | 24P |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 00:58:10 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jan 22 17:20:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4415-df39d099447b8b9b503764ea0ef1c9161cba441074b24c6b3a15af4120ba1b9d3 |
Notes | Funding information Canada Research Chairs; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: RGPIN‐2017‐03732; University of Saskatchewan |
ORCID | 0000-0002-5779-6981 0000-0002-2907-093X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12025 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_da7ba57107c34f4e88c18379890f1db9 crossref_primary_10_1002_eom2_12025 crossref_citationtrail_10_1002_eom2_12025 wiley_primary_10_1002_eom2_12025_EOM212025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2013; 4 2013; 1 2019; 11 2019; 10 2019; 12 2014; 26 2016; 30 2014; 24 2018; 6 2018; 174 2018; 9 2018; 8 2018; 3 2018; 2 2015; 137 2018; 1 2013; 52 2019; 29 2018; 30 2016; 49 2019; 7 2019; 9 2018; 28 2019; 4 2019; 3 2019; 31 2018; 229 2019; 2 2015; 54 2016; 10 2013; 342 2016; 16 2018; 20 2015; 350 2016; 4 2016; 6 2017; 53 2018; 18 2016; 7 2018; 17 2016; 1 2016; 3 2018; 116 2011; 95 2017; 56 2020; 28 2015; 517 2015; 119 2016; 28 2018; 11 2018; 10 2016; 26 2016; 8 2016; 9 2017; 5 2018; 361 2017; 7 2017; 8 2017; 1 2017; 2 2018; 360 2017; 3 2017; 4 2015; 347 2019; 52 2016; 109 2017; 46 2015; 106 2017; 9 2019; 123 2014; 2 2019; 67 2019; 119 2017; 121 2014; 8 2014; 7 2012; 338 2015; 2 2014; 118 2015; 6 2019; 71 2015; 5 2018; 140 2017; 27 2015; 10 2017; 29 2015; 9 2015; 8 2015; 7 2016; 120 2015; 25 2015; 27 2016; 536 2017; 10 2016 2018; 54 2014; 345 2014; 104 e_1_2_5_27_1 e_1_2_5_166_1 e_1_2_5_120_1 e_1_2_5_147_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_162_1 e_1_2_5_185_1 e_1_2_5_124_1 e_1_2_5_101_1 e_1_2_5_143_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_128_1 e_1_2_5_105_1 e_1_2_5_69_1 e_1_2_5_109_1 e_1_2_5_80_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_42_1 e_1_2_5_150_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_132_1 e_1_2_5_155_1 e_1_2_5_178_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_113_1 e_1_2_5_136_1 e_1_2_5_151_1 e_1_2_5_174_1 e_1_2_5_7_1 e_1_2_5_76_1 e_1_2_5_99_1 e_1_2_5_117_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_159_1 e_1_2_5_91_1 Mamun AA (e_1_2_5_43_1) 2018; 229 e_1_2_5_72_1 e_1_2_5_95_1 e_1_2_5_53_1 e_1_2_5_181_1 e_1_2_5_49_1 e_1_2_5_146_1 e_1_2_5_169_1 e_1_2_5_26_1 e_1_2_5_45_1 e_1_2_5_184_1 e_1_2_5_100_1 e_1_2_5_123_1 e_1_2_5_142_1 e_1_2_5_22_1 e_1_2_5_165_1 e_1_2_5_87_1 e_1_2_5_104_1 e_1_2_5_127_1 e_1_2_5_68_1 e_1_2_5_108_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_64_1 e_1_2_5_41_1 e_1_2_5_172_1 e_1_2_5_14_1 e_1_2_5_131_1 e_1_2_5_177_1 e_1_2_5_37_1 e_1_2_5_158_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_56_1 e_1_2_5_135_1 e_1_2_5_173_1 e_1_2_5_33_1 e_1_2_5_112_1 e_1_2_5_154_1 e_1_2_5_4_1 e_1_2_5_98_1 e_1_2_5_139_1 e_1_2_5_79_1 e_1_2_5_116_1 e_1_2_5_18_1 e_1_2_5_90_1 e_1_2_5_71_1 e_1_2_5_94_1 e_1_2_5_75_1 e_1_2_5_52_1 e_1_2_5_180_1 e_1_2_5_161_1 e_1_2_5_145_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_168_1 e_1_2_5_103_1 e_1_2_5_141_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_164_1 e_1_2_5_122_1 e_1_2_5_107_1 e_1_2_5_67_1 e_1_2_5_126_1 e_1_2_5_149_1 e_1_2_5_29_1 e_1_2_5_82_1 e_1_2_5_63_1 e_1_2_5_86_1 e_1_2_5_40_1 e_1_2_5_171_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_130_1 e_1_2_5_157_1 e_1_2_5_9_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_111_1 e_1_2_5_134_1 e_1_2_5_153_1 e_1_2_5_176_1 e_1_2_5_5_1 e_1_2_5_78_1 e_1_2_5_115_1 e_1_2_5_138_1 e_1_2_5_119_1 B‐w P (e_1_2_5_30_1) 2019; 31 e_1_2_5_70_1 e_1_2_5_93_1 e_1_2_5_74_1 e_1_2_5_97_1 e_1_2_5_51_1 e_1_2_5_160_1 e_1_2_5_183_1 e_1_2_5_121_1 e_1_2_5_144_1 e_1_2_5_167_1 e_1_2_5_28_1 e_1_2_5_47_1 e_1_2_5_140_1 e_1_2_5_102_1 e_1_2_5_125_1 e_1_2_5_24_1 e_1_2_5_163_1 e_1_2_5_106_1 e_1_2_5_129_1 e_1_2_5_66_1 e_1_2_5_89_1 e_1_2_5_148_1 e_1_2_5_81_1 e_1_2_5_62_1 e_1_2_5_85_1 e_1_2_5_170_1 e_1_2_5_20_1 e_1_2_5_39_1 e_1_2_5_110_1 e_1_2_5_156_1 e_1_2_5_16_1 e_1_2_5_58_1 e_1_2_5_179_1 e_1_2_5_35_1 e_1_2_5_114_1 e_1_2_5_152_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_54_1 e_1_2_5_133_1 e_1_2_5_175_1 e_1_2_5_77_1 e_1_2_5_118_1 e_1_2_5_2_1 e_1_2_5_137_1 e_1_2_5_92_1 e_1_2_5_73_1 e_1_2_5_96_1 e_1_2_5_31_1 e_1_2_5_50_1 e_1_2_5_182_1 |
References_xml | – volume: 9 start-page: 6312 year: 2018 end-page: 6320 article-title: Impact of moisture on photoexcited charge carrier dynamics in methylammonium lead halide perovskites publication-title: J Phys Chem Lett. – volume: 8 start-page: 6300 year: 2016 end-page: 6307 article-title: Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells publication-title: Nanoscale – volume: 18 start-page: 2172 year: 2018 end-page: 2178 article-title: Local observation of phase segregation in mixed‐halide perovskite publication-title: Nano Lett – volume: 9 start-page: 5265 year: 2018 article-title: Addressing the stability issue of perovskite solar cells for commercial applications publication-title: Nat Commun – volume: 8 start-page: 4730 year: 2014 end-page: 4739 article-title: Thermally induced structural evolution and performance of mesoporous block copolymer‐directed alumina perovskite solar cells publication-title: ACS Nano – volume: 2 start-page: 1507 year: 2017 end-page: 1514 article-title: Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites publication-title: ACS Energy Lett. – volume: 347 start-page: 967 year: 2015 end-page: 970 article-title: Electron‐hole diffusion lengths > 175 μm in solution‐grown CH NH PbI single crystals publication-title: Science – volume: 5 year: 2015 article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells publication-title: Adv Energy Mater – volume: 8 start-page: 14075 year: 2017 article-title: Thermal engineering of FAPbI perovskite material via radiative thermal annealing and in situ XRD publication-title: Nat Commun – volume: 9 start-page: 4700 year: 2017 end-page: 4706 article-title: Gold and iodine diffusion in large area perovskite solar cells under illumination publication-title: Nanoscale – volume: 11 start-page: 25474 year: 2019 end-page: 25482 article-title: Role of water in suppressing recombination pathways in CH NH PbI perovskite solar cells publication-title: ACS Appl Mater Int. – volume: 118 start-page: 9412 year: 2014 end-page: 9418 article-title: CH NH Cl‐assisted one‐step solution growth of CH NH PbI : structure, charge‐carrier dynamics, and photovoltaic properties of perovskite solar cells publication-title: J Phys Chem C – volume: 8 start-page: 995 year: 2015 end-page: 1004 article-title: Understanding the rate‐dependent J–V hysteresis, slow time component, and aging in CH NH PbI perovskite solar cells: the role of a compensated electric field publication-title: Energ Environ Sci – volume: 9 start-page: 323 year: 2016 end-page: 356 article-title: Organometal halide perovskite solar cells: degradation and stability publication-title: Energ Environ Sci – volume: 4 start-page: 54 year: 2019 end-page: 62 article-title: Controlling the phase segregation in mixed halide perovskites through nanocrystal size publication-title: ACS Energy Lett. – volume: 31 year: 2019 article-title: Intrinsic instability of inorganic–organic hybrid halide perovskite materials publication-title: Adv Mater – volume: 2 start-page: 22 year: 2018 article-title: Defects engineering for high‐performance perovskite solar cells publication-title: npj Flexible Electron – volume: 9 start-page: 4807 year: 2018 article-title: Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite publication-title: Nat Commun – volume: 11 start-page: 3266 year: 2018 end-page: 3274 article-title: The thermodynamics and kinetics of iodine vacancies in the hybrid perovskite methylammonium lead iodide publication-title: Energ Environ Sci – volume: 536 start-page: 312 year: 2016 end-page: 316 article-title: High‐efficiency two‐dimensional Ruddlesden–popper perovskite solar cells publication-title: Nature – volume: 7 start-page: 9110 year: 2015 end-page: 9117 article-title: Nucleation and crystal growth of organic–inorganic Lead halide perovskites under different relative humidity publication-title: ACS Appl Mater Int. – volume: 5 start-page: 1103 year: 2017 end-page: 1111 article-title: Profiling the organic cation‐dependent degradation of organolead halide perovskite solar cells publication-title: J Mater Chem A – volume: 29 start-page: 1701073 year: 2017 article-title: Thermally stable MAPbI perovskite solar cells with efficiency of 19.19% and area over 1 cm achieved by additive engineering publication-title: Adv Mater – volume: 27 start-page: 5570 year: 2015 end-page: 5576 article-title: Optimizing composition and morphology for large‐grain perovskite solar cells via chemical control publication-title: Chem Mater – volume: 30 year: 2018 article-title: Influence of radiation on the properties and the stability of hybrid perovskites publication-title: Adv Mater – volume: 8 start-page: 29899 year: 2018 end-page: 29908 article-title: Deposition of methylammonium iodide via evaporation – combined kinetic and mass spectrometric study publication-title: RSC Adv – volume: 350 start-page: 944 year: 2015 end-page: 948 article-title: Efficient and stable large‐area perovskite solar cells with inorganic charge extraction layers publication-title: Science – volume: 7 start-page: 11683 year: 2016 article-title: Photo‐induced halide redistribution in organic–inorganic perovskite films publication-title: Nat Commun – volume: 67 start-page: 19 year: 2019 end-page: 25 article-title: Unraveling the light‐induced degradation mechanism of CH NH PbI perovskite films publication-title: Org Electron. – volume: 6 start-page: 10847 year: 2018 end-page: 10855 article-title: Interaction of oxygen with halide perovskites publication-title: J Mater Chem A – volume: 104 year: 2014 article-title: Unusual defect physics in CH NH PbI perovskite solar cell absorber publication-title: Appl Phys Lett – volume: 7 start-page: 16912 year: 2019 end-page: 16919 article-title: Thermal degradation of formamidinium based lead halide perovskites into sym‐triazine and hydrogen cyanide observed by coupled thermogravimetry‐mass spectrometry analysis publication-title: J Mater Chem A – volume: 6 start-page: 1800278 year: 2018 article-title: Recent advances in perovskite micro‐ and Nanolasers publication-title: Adv Opt Mater. – volume: 2 start-page: 2460 year: 2018 end-page: 2467 article-title: Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time‐resolved mass spectrometry publication-title: Sustainable Energy Fuels. – volume: 3 start-page: 2321 year: 2018 end-page: 2328 article-title: Vacancy‐mediated anion Photosegregation kinetics in mixed halide hybrid perovskites: coupled kinetic Monte Carlo and Optical measurements publication-title: ACS Energy Lett. – volume: 342 start-page: 341 year: 2013 end-page: 344 article-title: Electron‐hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber publication-title: Science – volume: 30 start-page: 30 year: 2016 end-page: 35 article-title: Interface degradation of perovskite solar cells and its modification using an annealing‐free TiO NPs layer publication-title: Org Electron. – volume: 3 start-page: 2995 year: 2018 end-page: 3001 article-title: The bandgap as a moving target: reversible bandgap instabilities in multiple‐cation mixed‐halide perovskite solar cells publication-title: ACS Energy Lett. – volume: 29 year: 2019 article-title: A review of perovskites solar cell stability publication-title: Adv Funct Mater – volume: 28 year: 2018 article-title: Real‐time in situ observation of microstructural change in Organometal halide perovskite induced by thermal degradation publication-title: Adv Funct Mater – volume: 10 start-page: 218 year: 2016 end-page: 224 article-title: Interfacial degradation of planar Lead halide perovskite solar cells publication-title: ACS Nano – volume: 120 start-page: 6363 year: 2016 end-page: 6368 article-title: Humidity‐induced grain boundaries in MAPbI3 perovskite films publication-title: J Phys Chem C – volume: 3 start-page: eaao5616 year: 2017 article-title: Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells publication-title: Sci Adv – volume: 9 start-page: 26859 year: 2017 end-page: 26866 article-title: Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells publication-title: ACS Appl Mater Int. – volume: 2 year: 2017 article-title: Understanding the physical properties of hybrid perovskites for photovoltaic applications publication-title: Nat Rev Mater. – volume: 1 start-page: 2859 year: 2018 end-page: 2865 article-title: Effect of light illumination on mixed halide Lead perovskites: reversible or irreversible transformation publication-title: ACS Appl Energy Mater. – volume: 27 start-page: 3397 year: 2015 end-page: 3407 article-title: Reversible hydration of CH NH PbI in films, single crystals, and solar cells publication-title: Chem Mater – volume: 9 start-page: 1989 year: 2016 end-page: 1997 article-title: Cesium‐containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency publication-title: Energ Environ Sci – volume: 2 year: 2015 article-title: Silver iodide formation in methyl ammonium Lead iodide perovskite solar cells with silver top electrodes publication-title: Adv Mater Interfaces – volume: 2 start-page: 769 year: 2017 end-page: 775 article-title: Self‐assembled Lead halide perovskite nanocrystals in a perovskite matrix publication-title: ACS Energy Lett. – volume: 10 start-page: 3035 year: 2019 end-page: 3042 article-title: The rise of perovskite light‐emitting diodes publication-title: J Phys Chem Lett. – volume: 6 start-page: 2399 year: 2015 end-page: 2405 article-title: C as an efficient n‐type compact layer in perovskite solar cells publication-title: J Phys Chem Lett. – volume: 1 start-page: 1351 year: 2017 end-page: 1357 article-title: A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH NH PbI : an attempt to rationalise contradictory experimental results publication-title: Sustainable Energy Fuels – volume: 8 start-page: 3289 year: 2017 end-page: 3298 article-title: Correlation between photoluminescence and carrier transport and a simple in situ passivation method for high‐bandgap hybrid perovskites publication-title: J Phys Chem Lett. – volume: 52 start-page: 265302 year: 2019 article-title: Study on the defect density of states in light soaking effect enhanced performance of perovskite solar cells publication-title: J Phys D Appl Phys – volume: 3 start-page: 1700158 year: 2017 article-title: Unraveling the light‐induced degradation mechanisms of CH NH PbI perovskite films publication-title: Adv Electron Mater – year: 2016 – volume: 10 start-page: 516 year: 2017 end-page: 522 article-title: Scaling behavior of moisture‐induced grain degradation in polycrystalline hybrid perovskite thin films publication-title: Energ Environ Sci – volume: 18 start-page: 3473 year: 2018 end-page: 3480 article-title: Cation‐dependent light‐induced halide demixing in hybrid organic–inorganic perovskites publication-title: Nano Lett – volume: 9 start-page: 3000 year: 2018 end-page: 3007 article-title: Stability and degradation in hybrid perovskites: is the glass half‐empty or half‐full? publication-title: J Phys Chem Lett. – volume: 2 start-page: 1860 year: 2017 end-page: 1861 article-title: A victim of halide ion segregation. How light soaking affects solar cell performance of mixed halide Lead perovskites publication-title: ACS Energy Lett. – volume: 6 start-page: 21794 year: 2018 end-page: 21808 article-title: A full overview of international standards assessing the long‐term stability of perovskite solar cells publication-title: J Mater Chem A – volume: 9 start-page: 2372 year: 2016 end-page: 2382 article-title: In situ investigation of the formation and metastability of formamidinium lead tri‐iodide perovskite solar cells publication-title: Energ Environ Sci – volume: 52 start-page: 9019 year: 2013 end-page: 9038 article-title: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near‐infrared photoluminescent properties publication-title: Inorg Chem – volume: 30 year: 2018 article-title: Perovskite solar cells with inorganic electron‐ and hole‐transport layers exhibiting long‐term (≈500 h) stability at 85 °C under continuous 1 sun illumination in ambient air publication-title: Adv Mater – volume: 6 start-page: 21976 year: 2016 article-title: Investigation of the hydrolysis of perovskite organometallic halide CH NH PbI in humidity environment publication-title: Sci Rep – volume: 3 year: 2016 article-title: Stabilized wide bandgap MAPbBr I perovskite by enhanced grain size and improved crystallinity publication-title: Adv Sci – volume: 7 start-page: 982 year: 2014 end-page: 988 article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells publication-title: Energ Environ Sci – volume: 7 start-page: 9326 year: 2019 end-page: 9334 article-title: Light induced degradation in mixed‐halide perovskites publication-title: J Mater Chem C. – volume: 119 start-page: 3418 year: 2019 end-page: 3451 article-title: Understanding degradation mechanisms and improving stability of perovskite photovoltaics publication-title: Chem Rev – volume: 140 start-page: 1358 year: 2018 end-page: 1364 article-title: Universal approach toward hysteresis‐free perovskite solar cell via defect engineering publication-title: J Am Chem Soc – volume: 338 start-page: 643 year: 2012 end-page: 647 article-title: Efficient hybrid solar cells based on meso‐superstructured organometal halide perovskites publication-title: Science – volume: 9 start-page: 1955 year: 2015 end-page: 1963 article-title: Investigation of CH NH PbI degradation rates and mechanisms in controlled humidity environments using in situ techniques publication-title: ACS Nano – volume: 118 start-page: 16458 year: 2014 end-page: 16462 article-title: Formamidinium‐containing metal‐halide: an alternative material for near‐IR absorption perovskite solar cells publication-title: J Phys Chem C – volume: 28 start-page: 303 year: 2016 end-page: 311 article-title: Evolution of chemical composition, morphology, and photovoltaic efficiency of CH NH PbI perovskite under ambient conditions publication-title: Chem Mater – volume: 1 start-page: 360 year: 2016 end-page: 366 article-title: Defect tolerance in methylammonium lead triiodide perovskite publication-title: ACS Energy Lett. – volume: 3 start-page: 1900044 year: 2019 article-title: Effect of thermal cycling on the structural evolution of Methylammonium Lead iodide monitored around the phase transition temperatures publication-title: Solar RRL – volume: 119 start-page: 26904 year: 2015 end-page: 26911 article-title: Mechanisms of electron‐beam‐induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy publication-title: J Phys Chem C – volume: 5 year: 2015 article-title: Light‐induced self‐poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability publication-title: Adv Energy Mater. – volume: 16 start-page: 7739 year: 2016 end-page: 7747 article-title: Stabilized wide bandgap perovskite solar cells by tin substitution publication-title: Nano Lett – volume: 2 start-page: 17042 year: 2017 article-title: Understanding the physical properties of hybrid perovskites for photovoltaic applications publication-title: Nat Rev Mater – volume: 10 start-page: 2284 year: 2017 end-page: 2311 article-title: Impact of H O on organic–inorganic hybrid perovskite solar cells publication-title: Energ Environ Sci – volume: 2 start-page: 81 year: 2018 end-page: 89 article-title: Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole‐transport layers publication-title: Mater Chem Front – volume: 2 start-page: 1416 year: 2017 end-page: 1424 article-title: Defect‐assisted photoinduced halide segregation in mixed‐halide perovskite thin films publication-title: ACS Energy Lett – volume: 8 start-page: 2725 year: 2015 end-page: 2733 article-title: High efficiency stable inverted perovskite solar cells without current hysteresis publication-title: Energ Environ Sci – volume: 5 year: 2015 article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite publication-title: Adv Energy Mater. – volume: 56 start-page: 92 year: 2017 end-page: 101 article-title: Decomposition and cell failure mechanisms in lead halide perovskite solar cells publication-title: Inorg Chem – volume: 361 year: 2018 article-title: Challenges for commercializing perovskite solar cells publication-title: Science – volume: 360 start-page: 67 year: 2018 end-page: 70 article-title: Light‐induced lattice expansion leads to high‐efficiency perovskite solar cells publication-title: Science – volume: 71 start-page: 123 year: 2019 end-page: 130 article-title: Analysis of light‐induced degradation in inverted perovskite solar cells under short‐circuited conditions publication-title: Org Electron – volume: 7 start-page: 4645 year: 2017 article-title: Investigation of thermally induced degradation in CH NH PbI perovskite solar cells using in‐situ synchrotron radiation analysis publication-title: Sci Rep – volume: 9 start-page: 3406 year: 2016 end-page: 3410 article-title: Thermal degradation of CH NH PbI perovskite into NH and CH I gases observed by coupled thermogravimetry–mass spectrometry analysis publication-title: Energ Environ Sci – volume: 6 start-page: 1800262 year: 2018 article-title: Unraveling Photostability of mixed cation perovskite films in extreme environment publication-title: Adv Opt Mater – volume: 347 start-page: 522 year: 2015 end-page: 525 article-title: High‐efficiency solution‐processed perovskite solar cells with millimeter‐scale grains publication-title: Science – volume: 2 start-page: 5039 year: 2019 end-page: 5049 article-title: Influence of a hole‐transport layer on light‐induced degradation of mixed organic–inorganic halide perovskite solar cells publication-title: ACS Appl Energy Mater – volume: 174 start-page: 566 year: 2018 end-page: 571 article-title: Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells publication-title: Sol Energy Mater sol Cells. – volume: 229 start-page: 167 year: 2018 end-page: 170 article-title: Influence of air degradation on morphology, crystal size and mechanical hardness of perovskite film publication-title: Mater Lett – volume: 6 start-page: 613 year: 2015 end-page: 617 article-title: Reversible photo‐induced trap formation in mixed‐halide hybrid perovskites for photovoltaics publication-title: Chem Sci – volume: 1 start-page: 290 year: 2016 end-page: 296 article-title: Tracking iodide and bromide ion segregation in mixed halide Lead perovskites during photoirradiation publication-title: ACS Energy Lett. – volume: 9 start-page: 2072 year: 2016 end-page: 2082 article-title: Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution publication-title: Energ Environ Sci – volume: 123 start-page: 2011 year: 2019 end-page: 2018 article-title: Effect of environmental humidity on the electrical properties of lead halide perovskites publication-title: J Phys Chem C – volume: 1 start-page: 595 year: 2016 end-page: 602 article-title: Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices publication-title: ACS Energy Lett. – volume: 95 start-page: 1638 year: 2011 end-page: 1646 article-title: Modeling of the nominal operating cell temperature based on outdoor weathering publication-title: Sol Energy Mater Sol Cells – volume: 24 start-page: 3250 year: 2014 end-page: 3258 article-title: Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells publication-title: Adv Funct Mater – volume: 28 start-page: 3 year: 2020 end-page: 15 article-title: Solar cell efficiency tables (version 55) publication-title: Prog Photovolt Res Appl – volume: 4 start-page: 2885 year: 2013 article-title: Overcoming ultraviolet light instability of sensitized TiO with meso‐superstructured organometal tri‐halide perovskite solar cells publication-title: Nat Commun – volume: 54 start-page: 1791 year: 2015 end-page: 1794 article-title: Self‐regulation mechanism for charged point defects in hybrid halide perovskites publication-title: Angew Chem Int Ed – volume: 7 start-page: 1602922 year: 2017 article-title: Direct evidence of ion diffusion for the silver‐electrode‐induced thermal degradation of inverted perovskite solar cells publication-title: Adv Energy Mater. – volume: 8 start-page: 1701543 year: 2018 article-title: Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach publication-title: Adv Energy Mater. – volume: 9 start-page: 2528 year: 2016 end-page: 2540 article-title: Material and device stability in perovskite solar cells publication-title: ChemSusChem – volume: 2 start-page: 17009 year: 2017 article-title: 23.6%‐efficient monolithic perovskite/silicon tandem solar cells with improved stability publication-title: Nat Energy – volume: 121 start-page: 3904 year: 2017 end-page: 3910 article-title: Light‐induced degradation of CH NH PbI hybrid perovskite thin film publication-title: J Phys Chem C – volume: 3 start-page: 855 year: 2018 end-page: 861 article-title: High irradiance performance of metal halide perovskites for concentrator photovoltaics publication-title: Nat Energy – volume: 53 start-page: 5231 year: 2017 end-page: 5234 article-title: In situ investigation of degradation at organometal halide perovskite surfaces by X‐ray photoelectron spectroscopy at realistic water vapour pressure publication-title: Chem Commun – volume: 17 start-page: 445 year: 2018 end-page: 449 article-title: Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition publication-title: Nat Mater – volume: 31 start-page: 1902413 year: 2019 article-title: Synergistic effect of elevated device temperature and excess charge carriers on the rapid light‐induced degradation of perovskite solar cells publication-title: Adv Mater – volume: 7 start-page: 746 year: 2016 end-page: 751 article-title: Cesium lead halide perovskites with improved stability for tandem solar cells publication-title: J Phys Chem Lett. – volume: 119 start-page: 3036 year: 2019 end-page: 3103 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem Rev – volume: 7 start-page: 23110 year: 2015 end-page: 23116 article-title: Chlorine incorporation for enhanced performance of planar perovskite solar cell based on Lead acetate precursor publication-title: ACS Appl Mater Int. – volume: 137 start-page: 1530 year: 2015 end-page: 1538 article-title: Transformation of the excited state and photovoltaic efficiency of CH NH PbI perovskite upon controlled exposure to humidified air publication-title: J Am Chem Soc – volume: 10 start-page: 1297 year: 2017 end-page: 1305 article-title: A technoeconomic analysis of perovskite solar module manufacturing with low‐cost materials and techniques publication-title: Energ Environ Sci – volume: 4 year: 2017 article-title: 3D in situ ToF‐SIMS imaging of perovskite films under controlled humidity environmental conditions publication-title: Adv Mater Interfaces – volume: 9 start-page: 35018 year: 2017 end-page: 35029 article-title: Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction publication-title: ACS Appl Mater Int. – volume: 26 start-page: 5028 year: 2016 end-page: 5034 article-title: Precisely controlled hydration water for performance improvement of organic–inorganic perovskite solar cells publication-title: Adv Funct Mater – volume: 29 start-page: 1701789 year: 2017 article-title: Photostriction of CH NH PbBr perovskite crystals publication-title: Adv Mater – volume: 4 start-page: 15896 year: 2016 end-page: 15903 article-title: Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors publication-title: J Mater Chem A – volume: 3 start-page: 2743 year: 2018 end-page: 2749 article-title: Direct observation of the tunneling phenomenon in Organometal halide perovskite solar cells and its influence on hysteresis publication-title: ACS Energy Lett. – volume: 109 year: 2016 article-title: Mechanisms for light induced degradation in MAPbI perovskite thin films and solar cells publication-title: Appl Phys Lett – volume: 54 start-page: 8208 year: 2015 end-page: 8212 article-title: The role of oxygen in the degradation of Methylammonium Lead Trihalide perovskite photoactive layers publication-title: Angew Chem Int Ed – volume: 6 year: 2016 article-title: Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI ‐CH NH I‐H O system publication-title: Adv Energy Mater. – volume: 26 start-page: 6160 year: 2014 end-page: 6164 article-title: Thermal behavior of methylammonium lead‐trihalide perovskite photovoltaic light harvesters publication-title: Chem Mater – volume: 7 year: 2019 article-title: Thermal stability of CsPbBr perovskite as revealed by in situ transmission electron microscopy publication-title: APL Mater – volume: 1 start-page: 15012 year: 2016 article-title: In situ observation of heat‐induced degradation of perovskite solar cells publication-title: Nat Energy – volume: 121 start-page: 1013 year: 2017 end-page: 1024 article-title: Multinuclear magnetic resonance tracking of hydro, thermal, and hydrothermal decomposition of CH NH PbI publication-title: J Phys Chem C – volume: 3 start-page: 2127 year: 2018 end-page: 2133 article-title: Elucidating the failure mechanisms of perovskite solar cells in humid environments using in situ grazing‐incidence wide‐angle X‐ray scattering publication-title: ACS Energy Lett. – volume: 10 start-page: 391 year: 2015 end-page: 402 article-title: Metal‐halide perovskites for photovoltaic and light‐emitting devices publication-title: Nat Nanotechnol – volume: 12 start-page: 2186 year: 2019 end-page: 2194 article-title: Temperature impact on perovskite solar cells under operation publication-title: ChemSusChem – volume: 9 start-page: 188 year: 2019 article-title: A review: thermal stability of methylammonium lead halide based perovskite solar cells publication-title: Appl Sci – volume: 517 start-page: 476 year: 2015 end-page: 480 article-title: Compositional engineering of perovskite materials for high‐performance solar cells publication-title: Nature – volume: 8 year: 2018 article-title: Light‐induced degradation of perovskite solar cells: the influence of 4‐Tert‐butyl pyridine and gold publication-title: Adv Energy Mater. – volume: 9 start-page: 2015 year: 2018 end-page: 2021 article-title: In situ monitoring the uptake of moisture into hybrid perovskite thin films publication-title: J Phys Chem Lett. – volume: 2 start-page: 19338 year: 2014 end-page: 19346 article-title: Perovskite processing for photovoltaics: a spectro‐thermal evaluation publication-title: J Mater Chem A – volume: 10 start-page: 16225 year: 2018 end-page: 16230 article-title: Oxygen‐ and water‐induced energetics degradation in organometal halide perovskites publication-title: ACS Appl Mater Int – volume: 8 start-page: 1953 year: 2015 end-page: 1968 article-title: Perovskite photovoltaics: life‐cycle assessment of energy and environmental impacts publication-title: Energ Environ Sci – volume: 31 start-page: 1902374 year: 2019 article-title: A highly emissive surface layer in mixed‐halide multication perovskites publication-title: Adv Mater – volume: 8 start-page: 26712 year: 2016 end-page: 26721 article-title: Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering publication-title: ACS Appl Mater Int. – volume: 28 start-page: 1800305 year: 2018 article-title: Unravelling light‐induced degradation of layered perovskite crystals and Design of Efficient Encapsulation for improved Photostability publication-title: Adv Funct Mater – volume: 54 start-page: 5434 year: 2018 end-page: 5437 article-title: In situ and real‐time ToF‐SIMS analysis of light‐induced chemical changes in perovskite CH NH PbI publication-title: Chem Commun – volume: 3 start-page: 2694 year: 2018 end-page: 2700 article-title: Impact of surfaces on photoinduced halide segregation in mixed‐halide perovskites publication-title: ACS Energy Lett. – volume: 46 start-page: 5204 year: 2017 end-page: 5236 article-title: Perovskite‐based photodetectors: materials and devices publication-title: Chem Soc Rev – volume: 116 start-page: 253 year: 2018 end-page: 258 article-title: Thermodynamics of formation of hybrid perovskite‐type methylammonium lead halides publication-title: J Chem Thermodyn – volume: 7 year: 2017 article-title: Effect of Electron‐transport material on light‐induced degradation of inverted planar junction perovskite solar cells publication-title: Adv Energy Mater. – volume: 8 start-page: 15218 year: 2017 article-title: Fast oxygen diffusion and iodide defects mediate oxygen‐induced degradation of perovskite solar cells publication-title: Nat Commun – volume: 20 start-page: 17180 year: 2018 end-page: 17187 article-title: In situ XPS study of the surface chemistry of MAPI solar cells under operating conditions in vacuum publication-title: Phys Chem Chem Phys – volume: 121 start-page: 1169 year: 2017 end-page: 1174 article-title: Probe decomposition of methylammonium lead iodide perovskite in N and O by in situ infrared spectroscopy publication-title: J Phys Chem A – volume: 10 start-page: 6306 year: 2016 end-page: 6314 article-title: Not all that glitters is gold: metal‐migration‐induced degradation in perovskite solar cells publication-title: ACS Nano – volume: 4 start-page: 1961 year: 2019 end-page: 1969 article-title: Bidirectional halide ion exchange in paired Lead halide perovskite films with thermal activation publication-title: ACS Energy Lett. – volume: 2 start-page: 342 year: 2017 end-page: 348 article-title: In situ identification of photo‐ and moisture‐dependent phase evolution of perovskite solar cells publication-title: ACS Energy Lett. – volume: 5 start-page: 93957 year: 2015 end-page: 93963 article-title: Improved photovoltaic performance in perovskite solar cells based on CH NH PbI films fabricated under controlled relative humidity publication-title: RSC Adv – volume: 9 start-page: 1655 year: 2016 end-page: 1660 article-title: Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells publication-title: Energ Environ Sci – volume: 6 start-page: 11496 year: 2018 end-page: 11506 article-title: Thermal stability and miscibility of co‐evaporated methyl ammonium lead halide (MAPbX , X = I, Br, Cl) thin films analysed by in situ X‐ray diffraction publication-title: J Mater Chem A – volume: 25 start-page: 6671 year: 2015 end-page: 6678 article-title: Controllable perovskite crystallization by water additive for high‐performance solar cells publication-title: Adv Funct Mater – volume: 11 start-page: 22228 year: 2019 end-page: 22239 article-title: Unraveling the effect of crystal structure on degradation of methylammonium lead halide perovskite publication-title: ACS Appl Mater Int. – volume: 9 start-page: 3756 year: 2018 end-page: 3765 article-title: Thermodynamics and the intrinsic stability of lead halide perovskites CH NH PbX publication-title: J Phys Chem Lett. – volume: 1 start-page: 548 year: 2017 end-page: 562 article-title: Layer‐by‐layer degradation of methylammonium lead tri‐iodide perovskite microplates publication-title: Joule. – volume: 10 start-page: 6737 year: 2018 end-page: 6746 article-title: In situ observation of light illumination‐induced degradation in Organometal mixed‐halide perovskite films publication-title: ACS Appl Mater Int. – volume: 27 start-page: 1700920 year: 2017 article-title: An Interdiffusion method for highly performing cesium/formamidinium double cation perovskites publication-title: Adv Funct Mater – volume: 7 start-page: 905 year: 2016 end-page: 917 article-title: Origin of J–V hysteresis in perovskite solar cells publication-title: J Phys Chem Lett – volume: 3 start-page: 641 year: 2019 end-page: 661 article-title: Transmission electron microscopy of halide perovskite materials and devices publication-title: Joule – volume: 30 start-page: 1801562 year: 2018 article-title: Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations publication-title: Adv Mater – volume: 7 start-page: 11574 year: 2016 article-title: Light‐activated photocurrent degradation and self‐healing in perovskite solar cells publication-title: Nat Commun – volume: 8 start-page: 200 year: 2017 article-title: Rationalizing the light‐induced phase separation of mixed halide organic–inorganic perovskites publication-title: Nat Commun – volume: 345 start-page: 542 year: 2014 end-page: 546 article-title: Interface engineering of highly efficient perovskite solar cells publication-title: Science – volume: 8 start-page: 2693 year: 2016 end-page: 2703 article-title: Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution publication-title: Nanoscale – volume: 106 year: 2015 article-title: Atomistic origins of CH NH PbI degradation to PbI in vacuum publication-title: Appl Phys Lett – volume: 137 start-page: 13130 year: 2015 end-page: 13137 article-title: Kinetics of ion transport in perovskite active layers and its implications for active layer stability publication-title: J Am Chem Soc – volume: 2 start-page: 950 year: 2017 end-page: 956 article-title: Photovoltage behavior in perovskite solar cells under light‐soaking showing photoinduced interfacial changes publication-title: ACS Energy Lett. – volume: 5 start-page: 1500279 year: 2015 article-title: Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells publication-title: Adv Energy Mater. – volume: 10 start-page: 1217 year: 2019 end-page: 1225 article-title: In situ Raman spectroscopic studies of thermal stability of all‐inorganic cesium lead halide (CsPbX , X = Cl, Br, I) perovskite nanocrystals publication-title: J Phys Chem Lett. – volume: 7 start-page: 1173 year: 2019 end-page: 1181 article-title: Aging‐induced light‐soaking effects and open‐circuit voltage hysteretic behavior of inverted perovskite solar cells incorporating a hole transport metal halide layer via morphology‐dependent inflow of iodide ions publication-title: J Mater Chem C – volume: 1 start-page: 5628 year: 2013 end-page: 5641 article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH NH )PbI for solid‐state sensitised solar cell applications publication-title: J Mater Chem A – volume: 9 start-page: 34970 year: 2017 end-page: 34978 article-title: Partially reversible photoinduced chemical changes in a mixed‐ion perovskite material for solar cells publication-title: ACS Appl Mater Int. – volume: 49 start-page: 347 year: 2016 end-page: 354 article-title: Effects of light and electron beam irradiation on halide perovskites and their solar cells publication-title: Acc Chem Res – ident: e_1_2_5_142_1 doi: 10.1016/j.solmat.2017.09.053 – ident: e_1_2_5_53_1 doi: 10.1021/acsami.8b04182 – ident: e_1_2_5_99_1 doi: 10.1021/acsami.5b06819 – ident: e_1_2_5_153_1 doi: 10.1126/sciadv.aao5616 – ident: e_1_2_5_12_1 doi: 10.1021/ic401215x – ident: e_1_2_5_34_1 doi: 10.1002/adfm.201503559 – ident: e_1_2_5_113_1 doi: 10.1039/C8EE01697F – ident: e_1_2_5_126_1 doi: 10.1002/adom.201800262 – ident: e_1_2_5_83_1 doi: 10.1039/C4TA04725G – ident: e_1_2_5_132_1 doi: 10.1039/C8TC04723E – ident: e_1_2_5_13_1 doi: 10.1038/natrevmats.2017.42 – ident: e_1_2_5_94_1 doi: 10.1038/ncomms14075 – ident: e_1_2_5_100_1 doi: 10.1021/acsami.7b11250 – ident: e_1_2_5_180_1 doi: 10.1021/acsenergylett.7b00282 – ident: e_1_2_5_96_1 doi: 10.1021/jp502696w – ident: e_1_2_5_18_1 doi: 10.1039/C5EE00615E – ident: e_1_2_5_7_1 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_5_160_1 doi: 10.1038/ncomms15218 – ident: e_1_2_5_23_1 doi: 10.1021/acs.inorgchem.6b01307 – ident: e_1_2_5_112_1 doi: 10.1021/jacs.5b08535 – ident: e_1_2_5_175_1 doi: 10.1021/acsenergylett.8b02207 – ident: e_1_2_5_68_1 doi: 10.1016/j.solmat.2011.01.020 – ident: e_1_2_5_185_1 doi: 10.1021/acsenergylett.7b00589 – ident: e_1_2_5_147_1 doi: 10.1002/adfm.201800305 – ident: e_1_2_5_139_1 doi: 10.1021/acsaem.8b00513 – ident: e_1_2_5_169_1 doi: 10.1002/adma.201902374 – ident: e_1_2_5_181_1 doi: 10.1002/advs.201500301 – ident: e_1_2_5_89_1 doi: 10.1038/s41467-018-07177-y – ident: e_1_2_5_79_1 doi: 10.1021/cm502468k – ident: e_1_2_5_163_1 doi: 10.1038/ncomms3885 – ident: e_1_2_5_24_1 doi: 10.1039/C5EE02733K – ident: e_1_2_5_33_1 doi: 10.1039/C5RA14587B – ident: e_1_2_5_171_1 doi: 10.1021/acsenergylett.7b00046 – ident: e_1_2_5_38_1 doi: 10.1039/C5EE00645G – ident: e_1_2_5_8_1 – ident: e_1_2_5_75_1 doi: 10.1039/c3ee43822h – ident: e_1_2_5_67_1 doi: 10.1021/acsenergylett.6b00320 – ident: e_1_2_5_101_1 doi: 10.1039/C8TA02775G – ident: e_1_2_5_120_1 doi: 10.1126/science.aad1015 – ident: e_1_2_5_102_1 doi: 10.1039/C6EE01079B – ident: e_1_2_5_141_1 doi: 10.1038/ncomms11683 – ident: e_1_2_5_3_1 doi: 10.1039/C6CS00896H – ident: e_1_2_5_184_1 doi: 10.1021/acs.jpclett.7b01185 – ident: e_1_2_5_91_1 doi: 10.1021/acs.jpcc.5b09698 – ident: e_1_2_5_174_1 doi: 10.1021/acs.nanolett.8b00541 – ident: e_1_2_5_21_1 doi: 10.1002/adfm.201808843 – ident: e_1_2_5_130_1 doi: 10.1002/aenm.201500721 – ident: e_1_2_5_2_1 doi: 10.1021/acs.jpclett.9b00277 – ident: e_1_2_5_173_1 doi: 10.1021/acsenergylett.8b01562 – ident: e_1_2_5_10_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_5_150_1 doi: 10.1016/j.orgel.2019.05.003 – ident: e_1_2_5_20_1 doi: 10.1038/s41467-018-07255-1 – ident: e_1_2_5_164_1 doi: 10.1039/C8CC01606B – ident: e_1_2_5_6_1 doi: 10.1038/nnano.2015.90 – ident: e_1_2_5_124_1 doi: 10.1038/s41560-018-0220-2 – ident: e_1_2_5_151_1 doi: 10.1039/C7NR00784A – volume: 31 start-page: 1805337 year: 2019 ident: e_1_2_5_30_1 article-title: Intrinsic instability of inorganic–organic hybrid halide perovskite materials publication-title: Adv Mater doi: 10.1002/adma.201805337 – ident: e_1_2_5_69_1 doi: 10.1039/C8TA06950F – ident: e_1_2_5_138_1 doi: 10.1021/acsami.7b18389 – ident: e_1_2_5_16_1 doi: 10.1063/1.4864778 – ident: e_1_2_5_37_1 doi: 10.1126/science.1254050 – ident: e_1_2_5_149_1 doi: 10.1088/1361-6463/ab1626 – ident: e_1_2_5_106_1 doi: 10.1038/nature14133 – ident: e_1_2_5_111_1 doi: 10.1021/acsnano.6b02613 – ident: e_1_2_5_71_1 doi: 10.1002/solr.201900044 – ident: e_1_2_5_129_1 doi: 10.1002/aenm.201700476 – ident: e_1_2_5_62_1 doi: 10.1039/C6TA09687E – ident: e_1_2_5_161_1 doi: 10.1002/anie.201503153 – ident: e_1_2_5_74_1 doi: 10.1021/acsami.6b07468 – ident: e_1_2_5_134_1 doi: 10.1038/ncomms11574 – ident: e_1_2_5_14_1 doi: 10.1002/anie.201409740 – ident: e_1_2_5_61_1 doi: 10.1021/acsenergylett.6b00698 – ident: e_1_2_5_49_1 doi: 10.1021/acs.jpcc.6b10865 – ident: e_1_2_5_143_1 doi: 10.1039/C6TA06497C – ident: e_1_2_5_80_1 doi: 10.1039/C6EE01047D – ident: e_1_2_5_145_1 doi: 10.1039/C8SE00358K – ident: e_1_2_5_59_1 doi: 10.1002/admi.201500195 – ident: e_1_2_5_90_1 doi: 10.1016/j.joule.2018.12.011 – ident: e_1_2_5_121_1 doi: 10.1038/nature18306 – ident: e_1_2_5_92_1 doi: 10.1021/acs.accounts.5b00469 – ident: e_1_2_5_55_1 doi: 10.1109/PVSC.2016.7749805 – ident: e_1_2_5_116_1 doi: 10.1002/aenm.201602922 – ident: e_1_2_5_52_1 doi: 10.1021/acs.jpclett.8b02595 – ident: e_1_2_5_107_1 doi: 10.1021/jp411112k – ident: e_1_2_5_26_1 doi: 10.3390/app9010188 – ident: e_1_2_5_35_1 doi: 10.1039/C5NR06687E – ident: e_1_2_5_48_1 doi: 10.1038/srep21976 – ident: e_1_2_5_77_1 doi: 10.1038/s41598-017-04690-w – ident: e_1_2_5_97_1 doi: 10.1126/science.aaa0472 – ident: e_1_2_5_44_1 doi: 10.1039/C6EE02941H – ident: e_1_2_5_47_1 doi: 10.1021/acs.jpcc.6b00335 – ident: e_1_2_5_36_1 doi: 10.1021/acsami.5b00895 – ident: e_1_2_5_165_1 doi: 10.1021/acsnano.5b03687 – ident: e_1_2_5_178_1 doi: 10.1021/acsenergylett.8b01857 – ident: e_1_2_5_4_1 doi: 10.1002/adom.201800278 – ident: e_1_2_5_57_1 doi: 10.1021/acsenergylett.8b01300 – ident: e_1_2_5_133_1 doi: 10.1126/science.aap8671 – ident: e_1_2_5_168_1 doi: 10.1038/s41467-017-00284-2 – ident: e_1_2_5_63_1 doi: 10.1039/C4EE03664F – ident: e_1_2_5_32_1 doi: 10.1002/adfm.201601557 – ident: e_1_2_5_167_1 doi: 10.1021/acsenergylett.7b00357 – ident: e_1_2_5_179_1 doi: 10.1021/acs.nanolett.6b03857 – ident: e_1_2_5_105_1 doi: 10.1021/acs.jpclett.9b00344 – ident: e_1_2_5_51_1 doi: 10.1002/admi.201600673 – ident: e_1_2_5_182_1 doi: 10.1021/acsami.7b06816 – ident: e_1_2_5_66_1 doi: 10.1021/acs.jpcc.8b03915 – ident: e_1_2_5_98_1 doi: 10.1021/acs.chemmater.5b02378 – ident: e_1_2_5_54_1 doi: 10.1002/aenm.201600846 – ident: e_1_2_5_29_1 doi: 10.1021/acs.jpclett.8b00120 – ident: e_1_2_5_146_1 doi: 10.1002/aelm.201700158 – ident: e_1_2_5_31_1 doi: 10.1039/C5NR04179A – ident: e_1_2_5_159_1 doi: 10.1063/1.4967840 – ident: e_1_2_5_22_1 doi: 10.1021/acs.chemrev.8b00336 – ident: e_1_2_5_177_1 doi: 10.1039/C9TC02635E – volume: 229 start-page: 167 year: 2018 ident: e_1_2_5_43_1 article-title: Influence of air degradation on morphology, crystal size and mechanical hardness of perovskite film publication-title: Mater Lett doi: 10.1016/j.matlet.2018.06.126 – ident: e_1_2_5_144_1 doi: 10.1021/acs.jpcc.6b11853 – ident: e_1_2_5_154_1 doi: 10.1002/adma.201701789 – ident: e_1_2_5_82_1 doi: 10.1039/C6EE02016J – ident: e_1_2_5_136_1 doi: 10.1039/C8CP01259H – ident: e_1_2_5_109_1 doi: 10.1039/C5EE03874J – ident: e_1_2_5_110_1 doi: 10.1002/adma.201801562 – ident: e_1_2_5_65_1 doi: 10.1038/s41528-018-0035-z – ident: e_1_2_5_162_1 doi: 10.1021/acsenergylett.7b00212 – ident: e_1_2_5_9_1 doi: 10.1002/pip.3228 – ident: e_1_2_5_76_1 doi: 10.1021/acs.jpclett.6b00002 – ident: e_1_2_5_85_1 doi: 10.1021/acs.jpclett.8b00463 – ident: e_1_2_5_58_1 doi: 10.1039/C7QM00396J – ident: e_1_2_5_25_1 doi: 10.1002/aenm.201501066 – ident: e_1_2_5_81_1 doi: 10.1039/C8RA04851G – ident: e_1_2_5_176_1 doi: 10.1021/acsami.7b10643 – ident: e_1_2_5_127_1 doi: 10.1002/adma.201902413 – ident: e_1_2_5_155_1 doi: 10.1021/jacs.7b10430 – ident: e_1_2_5_119_1 doi: 10.1002/adma.201701073 – ident: e_1_2_5_60_1 doi: 10.1016/j.orgel.2015.12.010 – ident: e_1_2_5_15_1 doi: 10.1021/acsenergylett.6b00196 – ident: e_1_2_5_86_1 doi: 10.1063/1.4916821 – ident: e_1_2_5_118_1 doi: 10.1126/science.1228604 – ident: e_1_2_5_131_1 doi: 10.1002/aenm.201500279 – ident: e_1_2_5_50_1 doi: 10.1021/acs.jpclett.8b00687 – ident: e_1_2_5_95_1 doi: 10.1002/adfm.201804039 – ident: e_1_2_5_41_1 doi: 10.1021/ja511132a – ident: e_1_2_5_140_1 doi: 10.1039/C4SC03141E – ident: e_1_2_5_156_1 doi: 10.1038/s41563-018-0038-0 – ident: e_1_2_5_72_1 doi: 10.1021/nn500526t – ident: e_1_2_5_128_1 doi: 10.1021/acsaem.9b00709 – ident: e_1_2_5_135_1 doi: 10.1021/acsenergylett.6b00158 – ident: e_1_2_5_152_1 doi: 10.1021/acsenergylett.8b01701 – ident: e_1_2_5_78_1 doi: 10.1002/aenm.201500477 – ident: e_1_2_5_114_1 doi: 10.1021/acsenergylett.9b01280 – ident: e_1_2_5_125_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_5_93_1 doi: 10.1016/j.joule.2017.08.005 – ident: e_1_2_5_40_1 doi: 10.1021/nn506864k – ident: e_1_2_5_170_1 doi: 10.1021/acsenergylett.8b01369 – ident: e_1_2_5_19_1 doi: 10.1126/science.aat8235 – ident: e_1_2_5_172_1 doi: 10.1002/aenm.201701543 – ident: e_1_2_5_45_1 doi: 10.1021/acs.chemmater.5b04122 – ident: e_1_2_5_104_1 doi: 10.1063/1.5108849 – ident: e_1_2_5_115_1 doi: 10.1038/nenergy.2015.12 – ident: e_1_2_5_46_1 doi: 10.1021/acsami.9b00831 – ident: e_1_2_5_158_1 doi: 10.1039/C8TA04537B – ident: e_1_2_5_42_1 doi: 10.1021/acs.chemmater.5b00660 – ident: e_1_2_5_183_1 doi: 10.1021/acs.nanolett.8b00505 – ident: e_1_2_5_117_1 doi: 10.1002/cssc.201802899 – ident: e_1_2_5_27_1 doi: 10.1002/adma.201702905 – ident: e_1_2_5_28_1 doi: 10.1002/cssc.201600915 – ident: e_1_2_5_157_1 doi: 10.1039/C6EE00409A – ident: e_1_2_5_166_1 doi: 10.1002/aenm.201800554 – ident: e_1_2_5_87_1 doi: 10.1016/j.jct.2017.09.026 – ident: e_1_2_5_39_1 doi: 10.1021/acsami.9b00793 – ident: e_1_2_5_56_1 doi: 10.1039/C7CC01538K – ident: e_1_2_5_108_1 doi: 10.1002/adfm.201700920 – ident: e_1_2_5_122_1 doi: 10.1021/acs.jpclett.5b00902 – ident: e_1_2_5_70_1 doi: 10.1039/c3ta10518k – ident: e_1_2_5_11_1 doi: 10.1126/science.1243982 – ident: e_1_2_5_148_1 doi: 10.1021/acs.jpclett.6b00215 – ident: e_1_2_5_5_1 doi: 10.1038/natrevmats.2017.42 – ident: e_1_2_5_73_1 doi: 10.1002/adfm.201304022 – ident: e_1_2_5_137_1 doi: 10.1016/j.orgel.2019.01.005 – ident: e_1_2_5_123_1 doi: 10.1002/adma.201801010 – ident: e_1_2_5_88_1 doi: 10.1039/C7SE00114B – ident: e_1_2_5_84_1 doi: 10.1021/acs.jpca.6b12170 – ident: e_1_2_5_64_1 doi: 10.1039/C7EE01674C – ident: e_1_2_5_103_1 doi: 10.1039/C9TA06058H – ident: e_1_2_5_17_1 doi: 10.1039/C7EE00757D |
SSID | ssj0002504241 |
Score | 2.5155115 |
SecondaryResourceType | review_article |
Snippet | The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%,... Abstract The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | decomposition device lifetimes environmental stress lead halide perovskites organic‐inorganic halide perovskites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ30Qf-L8RUBfFOraNFnbR5XNKUxfHOyt5JoEBq4Tu_n3e5fWsYHoi28lPUh7F3LfdyTfMXaZGBG7yLkAnDNUugkDrQCCLoY4g0QYE9Ld4eFzdzCST2M1Xmn1RWfCanng2nEdoxPQCvNgUsTSSZumBa7CJEuz0EUG_NU9zHkrZIr2YBLmwty01CMVHTubipsIqb5ay0BeqH8dmPrM0t9h2w0k5Lf1p-yyDVvusa0VocB99vBY8moyX_CqPvbHZ44jcuOGpB7qrkh8aukS76Sa-rek__1ZUWmWV8ReOVXoqwM26vde7wdB0wIhKIjoBMbFmUEQJ2UCKWSgQtwQpNWhdVGByC4qQKMh4gAQsuhCrCOlncT_BB1BZuJD1ipnpT1i3CijkewYRQZGZWlqkM0IKwARFDqyza6-3ZIXjT44tal4y2tlY5GTC3Pvwja7WNq-16oYP1rdkXeXFqRk7QcwvnkT3_yv-LbZtY_NL_PkvZeh8E_H_zHjCdsURKp9qeWUteYfC3uGyGMO536RfQHNbdTu priority: 102 providerName: Directory of Open Access Journals |
Title | In situ studies of the degradation mechanisms of perovskite solar cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12025 https://doaj.org/article/da7ba57107c34f4e88c18379890f1db9 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2qXvQgfmL9KAt6UYgmm90mAS8q1SpUPVjwFnayu1KwrTTVo7_dmU2NCiJ4CSGZkGQmu_vmkXnD2EFiROwi5wJwzhB1EwZaAQRtDHEGiTAmpNrh3m2725c3j-qxwU4_a2EqfYiacKOR4edrGuAaypMv0VA7HorjCHN3NccWqLaWlPOFvK8ZFhLnEr51JS7rRMYlca1PKk6-Lv-xInnh_p9A1a80lytseQYR-VkV01XWsKM1tvRNOHCdXV2PeDmYvvKy-g2Qjx1HJMcNST9UXZL40FJR76Ac-rOkB_5WElXLS8pmOTH25QbrX3YeLrrBrCVCUFDiExgXZwZBnZQJpJCBCnGCkFaH1kUFIr2oAI2GiAtAyKINsY6UdhLfE3QEmYk32fxoPLJbjBtlNCY_RpGBUVmaGsxuhBWAiMpA1mSHn27Ji5leOLWteM4rpWORkwtz78Im269tXyqVjF-tzsm7tQUpW_sD48lTPhsoudEJaIW4Jyli6aRN0wJnnSRLs9BF_rGOfGz-uE_euesJv7f9H-MdtigomfYUyy6bn05e7R4ijim0_IfV8vk6bnvvnQ9CstEr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46H9QH8YrzGtAXhbo2TXp5VJluuk0fNthbSZpEBm6VdfP3m5PWzoEIvpX2lLbn9CTf-Ui-g9BlKImvPa0dobUE6sZ1OBPCCUyIYxESKV3YO9ztBa0BfRqyYbk2B_bCFPoQFeEGmWHHa0hwIKQbC9VQlY3JjWeKd7aK1mhAQshLQl8rigXUuYjtXWnmdWDjQr8SKCWNxe1LU5JV7l9GqnaqedhGWyVGxLdFUHfQiprsos0fyoF76LE9wfloNsd5sQ4QZxobKIclaD8UbZLwWMGu3lE-tldBEPwzB64W51DOYqDs8300eGj271tO2RPBSaHycaT2Y2lQHaWhiEQsmGtGCKq4q7SXGqjnpYIbQwMMBKFpIHzuMa6p-U7BPRFL_wDVJtlEHSIsmeSm-pEMDCSLo0ia8oYoIgykkiKuo6tvtyRpKRgOfSvek0LqmCTgwsS6sI4uKtuPQibjV6s78G5lAdLW9kQ2fUvKTEkkDwVnBviEqU81VVGUmmEnjKPY1Z59rWsbmz-ekzRfusQeHf3H-Bytt_rdTtJp956P0QaBytryLSeoNpvO1amBHzNxZn-yL8BX0nE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60BdGD-MT6XNCLQmyyyTYJePHRan1UD1aKl7Cb3RXBttJUf78zmzRaEMFbSIY8Zndmv_nIfkPIQaiYbzxjHGmMQurGdQSX0mnAEMcyZEq5uHf4rtO46gbXPd6bISeTvTC5PkRJuGFk2HyNAf6uTP1bNFQP--zYg9qdz5IqyuTBnK6ePnWfuyXHgvJczDavhIUd6bjQLxVKWf37BlNrkpXun4aqdq1pLZHFAiTS03xUl8mMHqyQhR_Sgavksj2g2ev4g2b5j4B0aChgOapQ_CHvk0T7Grf1vmZ9exUVwT8zJGtphvUsRc4-WyPdVvPx_MopmiI4KZY-jjJ-rADWBUEoIxlL7kKKCLRwtfFSwHpeKgUYAjKQLEgb0hceFyaA75TCk7Hy10llMBzoDUIVVwLKH8XRQPE4ihTUN0wzCZhKybhGDiduSdJCMRwbV7wludYxS9CFiXVhjeyXtu-5TsavVmfo3dICta3tieHoJSlCJVEilIID8glTPzCBjqIU8k4YR7FrPPtaR3Zs_nhO0ry_Y_Zo8z_Ge2Tu4aKV3LY7N1tknmFlbfmWbVIZjz70DsCPsdwtZtkXrcrTaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+studies+of+the+degradation+mechanisms+of+perovskite+solar+cells&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Kundu%2C+Soumya&rft.au=Kelly%2C+Timothy+L.&rft.date=2020-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12025&rft.externalDBID=10.1002%252Feom2.12025&rft.externalDocID=EOM212025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |