In situ studies of the degradation mechanisms of perovskite solar cells

The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of convent...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 2; no. 2
Main Authors Kundu, Soumya, Kelly, Timothy L.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2020
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies. The lack of long‐term stability in perovskite solar cells is one of the greatest barriers to their commercialization. Here we review perovskite solar cell degradation mechanisms, with an emphasis on how in situ and operando methodologies have helped contribute to our understanding of these processes.
AbstractList The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies. The lack of long‐term stability in perovskite solar cells is one of the greatest barriers to their commercialization. Here we review perovskite solar cell degradation mechanisms, with an emphasis on how in situ and operando methodologies have helped contribute to our understanding of these processes.
Abstract The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies.
The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%, putting them on par with the best silicon solar cells. Yet despite their impressive performance, their longevity lags behind that of conventional silicon technology. Environmental factors like moisture, heat, and light can all adversely affect PSC performance and limit device lifetime. Systematically elucidating and eliminating PSC degradation pathways will be critical to the success of this technology. In situ techniques provide powerful tools to this end, as they allow structural, compositional, morphological, and optoelectronic changes to be tracked in real‐time. Because they follow a single film or device over the course of the degradation process, they can help eliminate the statistical variation that negatively affects many studies. Here we provide an overview of perovskite degradation processes, with an emphasis on in situ studies. image
Author Kundu, Soumya
Kelly, Timothy L.
Author_xml – sequence: 1
  givenname: Soumya
  orcidid: 0000-0002-5779-6981
  surname: Kundu
  fullname: Kundu, Soumya
  organization: University of Saskatchewan
– sequence: 2
  givenname: Timothy L.
  orcidid: 0000-0002-2907-093X
  surname: Kelly
  fullname: Kelly, Timothy L.
  email: tim.kelly@usask.ca
  organization: University of Saskatchewan
BookMark eNp9kF1LwzAUhoNMcM7d-AtyLXQmbfqRSxlzDia70etw8tEts21G0in793atiIh4dcLJ8z5w3ms0alxjELqlZEYJie-Nq-MZjUmcXqBxnGZ5lNA8Gf14X6FpCHvSwSlhMaNjtFw1ONj2iEN71NYE7Erc7gzWZutBQ2tdg2ujdtDYUPe_B-Pde3izrcHBVeCxMlUVbtBlCVUw0685Qa-Pi5f5U7TeLFfzh3WkGKNppMuEa8I5Y7ksJJcpSfKMGSCmpIrTjCoJHUhyJmOmMpkATaFk3VESqOQ6maDV4NUO9uLgbQ3-JBxY0S-c3wrwrVWVERpyCWneyVTCSmaKQtEiyXnBSUm15J3rbnAp70Lwpvz2USLOjYpzo6JvtIPJL1jZtu-n9WCrvyN0iHzYypz-kYvF5jkeMp-p3Yk-
CitedBy_id crossref_primary_10_1109_LED_2024_3434615
crossref_primary_10_5757_ASCT_2022_31_6_161
crossref_primary_10_1039_D4TC00395K
crossref_primary_10_1002_smll_202311755
crossref_primary_10_1016_j_eiar_2024_107462
crossref_primary_10_1016_j_mtphys_2022_100686
crossref_primary_10_1016_j_jechem_2024_07_060
crossref_primary_10_1016_j_joule_2025_101852
crossref_primary_10_1021_jacsau_2c00160
crossref_primary_10_1088_1674_4926_43_4_041106
crossref_primary_10_1016_j_mtener_2025_101820
crossref_primary_10_1016_j_heliyon_2023_e16069
crossref_primary_10_1021_acs_jpclett_3c00530
crossref_primary_10_1002_solr_202100545
crossref_primary_10_1088_1361_6528_ac77a0
crossref_primary_10_1021_acs_chemmater_4c02255
crossref_primary_10_1002_eom2_12146
crossref_primary_10_3390_cryst13101517
crossref_primary_10_1002_ente_202100607
crossref_primary_10_1021_acs_nanolett_4c01715
crossref_primary_10_1002_aenm_202304062
crossref_primary_10_1002_apxr_202200088
crossref_primary_10_1021_acsami_3c02748
crossref_primary_10_1016_j_nanoen_2021_106384
crossref_primary_10_1039_D4YA00025K
crossref_primary_10_1007_s10825_023_02038_4
crossref_primary_10_1088_2040_8986_ac95a8
crossref_primary_10_1016_j_jallcom_2021_163457
crossref_primary_10_1021_acs_nanolett_4c04559
crossref_primary_10_1063_5_0193601
crossref_primary_10_1016_j_jechem_2021_08_046
crossref_primary_10_1016_j_jallcom_2022_168464
crossref_primary_10_1021_acsami_2c19954
crossref_primary_10_1016_j_solmat_2021_111454
crossref_primary_10_1016_j_nanoen_2023_108219
crossref_primary_10_1002_solr_202300155
crossref_primary_10_1016_j_cej_2024_157118
crossref_primary_10_3390_nano13131983
crossref_primary_10_1016_j_inoche_2021_109094
crossref_primary_10_1021_acsmaterialslett_1c00778
crossref_primary_10_1007_s10854_023_10318_9
crossref_primary_10_1021_acsami_4c11096
crossref_primary_10_3390_chemosensors9080215
crossref_primary_10_1002_adom_202200516
crossref_primary_10_1016_j_mtchem_2024_102405
crossref_primary_10_1016_j_susmat_2022_e00438
crossref_primary_10_1021_acs_jpclett_3c03087
crossref_primary_10_1021_acsomega_0c04599
crossref_primary_10_1063_5_0100183
crossref_primary_10_1021_acsami_1c18939
crossref_primary_10_1016_j_cplett_2022_139967
crossref_primary_10_1016_j_jpowsour_2020_229313
crossref_primary_10_1007_s00339_024_07505_8
crossref_primary_10_1002_eom2_12400
crossref_primary_10_1016_j_xcrp_2023_101634
crossref_primary_10_1002_smll_202207092
crossref_primary_10_1063_5_0064398
crossref_primary_10_1016_j_eng_2022_07_008
crossref_primary_10_1002_solr_202200345
crossref_primary_10_1021_acsaem_1c03213
crossref_primary_10_1021_acs_chemmater_4c00935
crossref_primary_10_1002_advs_202401955
crossref_primary_10_1016_j_solmat_2024_113043
crossref_primary_10_1016_j_nanoen_2023_108740
crossref_primary_10_1002_aisy_202200340
crossref_primary_10_1021_acs_jpcc_3c04708
crossref_primary_10_1126_sciadv_abq4524
crossref_primary_10_1021_acs_jpclett_3c03059
crossref_primary_10_1016_j_mattod_2021_11_017
crossref_primary_10_1002_adma_202304523
crossref_primary_10_1016_j_eurpolymj_2024_113631
crossref_primary_10_1021_acsami_4c21673
crossref_primary_10_3389_fenrg_2022_840817
crossref_primary_10_1002_eom2_12117
crossref_primary_10_1002_adma_202204872
crossref_primary_10_1557_s43578_021_00158_w
crossref_primary_10_1002_adfm_202304278
crossref_primary_10_1002_admi_202102585
crossref_primary_10_1007_s12274_022_4524_y
crossref_primary_10_1016_j_jssc_2022_123608
crossref_primary_10_1021_acsaem_1c02058
crossref_primary_10_1021_acsaem_3c00698
crossref_primary_10_1016_j_ceramint_2023_05_015
crossref_primary_10_1016_j_cej_2022_140331
crossref_primary_10_1039_D1TC04101K
crossref_primary_10_1016_j_nanoen_2023_109178
crossref_primary_10_1002_adfm_202401203
crossref_primary_10_1016_j_jechem_2024_01_063
crossref_primary_10_1038_s43246_022_00235_5
crossref_primary_10_1039_D2RA07580F
crossref_primary_10_1039_D3MA00068K
crossref_primary_10_1021_acs_chemrev_2c00382
crossref_primary_10_1021_acsenergylett_0c02495
crossref_primary_10_1039_D0TC02501A
crossref_primary_10_1088_1402_4896_ad36ec
crossref_primary_10_3390_ma17123002
crossref_primary_10_1039_D4TA04853A
crossref_primary_10_1021_acs_jpcc_4c00563
crossref_primary_10_1155_2022_1440774
crossref_primary_10_1039_D3NR02003G
crossref_primary_10_1016_j_radphyschem_2023_111480
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_1021_acs_chemmater_2c03803
crossref_primary_10_1016_j_nanoen_2022_107019
crossref_primary_10_1039_D3TA04782B
crossref_primary_10_1016_j_cej_2022_138028
crossref_primary_10_1002_adma_202311458
crossref_primary_10_1002_adom_202300580
crossref_primary_10_1016_j_isci_2024_110964
crossref_primary_10_1021_acsaem_1c02989
crossref_primary_10_1002_sstr_202300577
crossref_primary_10_1021_acs_jpcc_1c06129
crossref_primary_10_1039_D4SU00100A
crossref_primary_10_1016_j_surfin_2023_103066
crossref_primary_10_1016_j_solener_2024_112496
crossref_primary_10_1021_jacs_3c03539
crossref_primary_10_1039_D2CC04867A
crossref_primary_10_1021_acsenergylett_2c00140
crossref_primary_10_1021_acsenergylett_4c02822
crossref_primary_10_1002_aenm_202203920
crossref_primary_10_1016_j_matchemphys_2022_125954
crossref_primary_10_29026_oes_2023_230011
crossref_primary_10_1002_solr_202200378
crossref_primary_10_1021_jacs_3c05390
crossref_primary_10_1002_solr_202200898
crossref_primary_10_3390_en17010060
crossref_primary_10_1002_adem_202100930
crossref_primary_10_1002_adma_202008487
crossref_primary_10_1021_acsenergylett_3c00551
crossref_primary_10_1021_acs_jpcc_2c08645
crossref_primary_10_1088_1361_6463_ac3033
crossref_primary_10_1021_acsenergylett_2c02733
crossref_primary_10_1002_adfm_202204283
crossref_primary_10_1016_j_dwt_2024_100574
crossref_primary_10_3390_en14175431
crossref_primary_10_1016_j_cej_2024_158070
crossref_primary_10_1021_acsaem_0c02613
crossref_primary_10_1021_acs_langmuir_3c03816
crossref_primary_10_3390_pr11092742
crossref_primary_10_1002_er_7243
crossref_primary_10_1021_acsami_1c00813
crossref_primary_10_1039_D1TC02270A
crossref_primary_10_1039_D4TA06729K
crossref_primary_10_1002_adma_202202163
crossref_primary_10_1109_JPHOTOV_2023_3301674
crossref_primary_10_1063_5_0092110
crossref_primary_10_1016_j_optmat_2024_116316
crossref_primary_10_1002_advs_202304811
crossref_primary_10_1016_j_electacta_2022_140905
crossref_primary_10_1038_s44160_024_00687_2
crossref_primary_10_1088_1361_6463_ad82f7
crossref_primary_10_1039_D1TA01730F
crossref_primary_10_1109_JPHOTOV_2025_3533909
crossref_primary_10_1016_j_solener_2024_112929
Cites_doi 10.1016/j.solmat.2017.09.053
10.1021/acsami.8b04182
10.1021/acsami.5b06819
10.1126/sciadv.aao5616
10.1021/ic401215x
10.1002/adfm.201503559
10.1039/C8EE01697F
10.1002/adom.201800262
10.1039/C4TA04725G
10.1039/C8TC04723E
10.1038/natrevmats.2017.42
10.1038/ncomms14075
10.1021/acsami.7b11250
10.1021/acsenergylett.7b00282
10.1021/jp502696w
10.1039/C5EE00615E
10.1021/acs.chemrev.8b00539
10.1038/ncomms15218
10.1021/acs.inorgchem.6b01307
10.1021/jacs.5b08535
10.1021/acsenergylett.8b02207
10.1016/j.solmat.2011.01.020
10.1021/acsenergylett.7b00589
10.1002/adfm.201800305
10.1021/acsaem.8b00513
10.1002/adma.201902374
10.1002/advs.201500301
10.1038/s41467-018-07177-y
10.1021/cm502468k
10.1038/ncomms3885
10.1039/C5EE02733K
10.1039/C5RA14587B
10.1021/acsenergylett.7b00046
10.1039/C5EE00645G
10.1039/c3ee43822h
10.1021/acsenergylett.6b00320
10.1039/C8TA02775G
10.1126/science.aad1015
10.1039/C6EE01079B
10.1038/ncomms11683
10.1039/C6CS00896H
10.1021/acs.jpclett.7b01185
10.1021/acs.jpcc.5b09698
10.1021/acs.nanolett.8b00541
10.1002/adfm.201808843
10.1002/aenm.201500721
10.1021/acs.jpclett.9b00277
10.1021/acsenergylett.8b01562
10.1126/science.aaa5760
10.1016/j.orgel.2019.05.003
10.1038/s41467-018-07255-1
10.1039/C8CC01606B
10.1038/nnano.2015.90
10.1038/s41560-018-0220-2
10.1039/C7NR00784A
10.1002/adma.201805337
10.1039/C8TA06950F
10.1021/acsami.7b18389
10.1063/1.4864778
10.1126/science.1254050
10.1088/1361-6463/ab1626
10.1038/nature14133
10.1021/acsnano.6b02613
10.1002/solr.201900044
10.1002/aenm.201700476
10.1039/C6TA09687E
10.1002/anie.201503153
10.1021/acsami.6b07468
10.1038/ncomms11574
10.1002/anie.201409740
10.1021/acsenergylett.6b00698
10.1021/acs.jpcc.6b10865
10.1039/C6TA06497C
10.1039/C6EE01047D
10.1039/C8SE00358K
10.1002/admi.201500195
10.1016/j.joule.2018.12.011
10.1038/nature18306
10.1021/acs.accounts.5b00469
10.1109/PVSC.2016.7749805
10.1002/aenm.201602922
10.1021/acs.jpclett.8b02595
10.1021/jp411112k
10.3390/app9010188
10.1039/C5NR06687E
10.1038/srep21976
10.1038/s41598-017-04690-w
10.1126/science.aaa0472
10.1039/C6EE02941H
10.1021/acs.jpcc.6b00335
10.1021/acsami.5b00895
10.1021/acsnano.5b03687
10.1021/acsenergylett.8b01857
10.1002/adom.201800278
10.1021/acsenergylett.8b01300
10.1126/science.aap8671
10.1038/s41467-017-00284-2
10.1039/C4EE03664F
10.1002/adfm.201601557
10.1021/acsenergylett.7b00357
10.1021/acs.nanolett.6b03857
10.1021/acs.jpclett.9b00344
10.1002/admi.201600673
10.1021/acsami.7b06816
10.1021/acs.jpcc.8b03915
10.1021/acs.chemmater.5b02378
10.1002/aenm.201600846
10.1021/acs.jpclett.8b00120
10.1002/aelm.201700158
10.1039/C5NR04179A
10.1063/1.4967840
10.1021/acs.chemrev.8b00336
10.1039/C9TC02635E
10.1016/j.matlet.2018.06.126
10.1021/acs.jpcc.6b11853
10.1002/adma.201701789
10.1039/C6EE02016J
10.1039/C8CP01259H
10.1039/C5EE03874J
10.1002/adma.201801562
10.1038/s41528-018-0035-z
10.1021/acsenergylett.7b00212
10.1002/pip.3228
10.1021/acs.jpclett.6b00002
10.1021/acs.jpclett.8b00463
10.1039/C7QM00396J
10.1002/aenm.201501066
10.1039/C8RA04851G
10.1021/acsami.7b10643
10.1002/adma.201902413
10.1021/jacs.7b10430
10.1002/adma.201701073
10.1016/j.orgel.2015.12.010
10.1021/acsenergylett.6b00196
10.1063/1.4916821
10.1126/science.1228604
10.1002/aenm.201500279
10.1021/acs.jpclett.8b00687
10.1002/adfm.201804039
10.1021/ja511132a
10.1039/C4SC03141E
10.1038/s41563-018-0038-0
10.1021/nn500526t
10.1021/acsaem.9b00709
10.1021/acsenergylett.6b00158
10.1021/acsenergylett.8b01701
10.1002/aenm.201500477
10.1021/acsenergylett.9b01280
10.1038/nenergy.2017.9
10.1016/j.joule.2017.08.005
10.1021/nn506864k
10.1021/acsenergylett.8b01369
10.1126/science.aat8235
10.1002/aenm.201701543
10.1021/acs.chemmater.5b04122
10.1063/1.5108849
10.1038/nenergy.2015.12
10.1021/acsami.9b00831
10.1039/C8TA04537B
10.1021/acs.chemmater.5b00660
10.1021/acs.nanolett.8b00505
10.1002/cssc.201802899
10.1002/adma.201702905
10.1002/cssc.201600915
10.1039/C6EE00409A
10.1002/aenm.201800554
10.1016/j.jct.2017.09.026
10.1021/acsami.9b00793
10.1039/C7CC01538K
10.1002/adfm.201700920
10.1021/acs.jpclett.5b00902
10.1039/c3ta10518k
10.1126/science.1243982
10.1021/acs.jpclett.6b00215
10.1002/adfm.201304022
10.1016/j.orgel.2019.01.005
10.1002/adma.201801010
10.1039/C7SE00114B
10.1021/acs.jpca.6b12170
10.1039/C7EE01674C
10.1039/C9TA06058H
10.1039/C7EE00757D
ContentType Journal Article
Copyright 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/eom2.12025
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_da7ba57107c34f4e88c18379890f1db9
10_1002_eom2_12025
EOM212025
Genre reviewArticle
GrantInformation_xml – fundername: University of Saskatchewan
– fundername: Canada Research Chairs
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RGPIN‐2017‐03732
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4415-df39d099447b8b9b503764ea0ef1c9161cba441074b24c6b3a15af4120ba1b9d3
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Wed Aug 27 00:58:10 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Wed Jan 22 17:20:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4415-df39d099447b8b9b503764ea0ef1c9161cba441074b24c6b3a15af4120ba1b9d3
Notes Funding information
Canada Research Chairs; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: RGPIN‐2017‐03732; University of Saskatchewan
ORCID 0000-0002-5779-6981
0000-0002-2907-093X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12025
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_da7ba57107c34f4e88c18379890f1db9
crossref_primary_10_1002_eom2_12025
crossref_citationtrail_10_1002_eom2_12025
wiley_primary_10_1002_eom2_12025_EOM212025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2013; 4
2013; 1
2019; 11
2019; 10
2019; 12
2014; 26
2016; 30
2014; 24
2018; 6
2018; 174
2018; 9
2018; 8
2018; 3
2018; 2
2015; 137
2018; 1
2013; 52
2019; 29
2018; 30
2016; 49
2019; 7
2019; 9
2018; 28
2019; 4
2019; 3
2019; 31
2018; 229
2019; 2
2015; 54
2016; 10
2013; 342
2016; 16
2018; 20
2015; 350
2016; 4
2016; 6
2017; 53
2018; 18
2016; 7
2018; 17
2016; 1
2016; 3
2018; 116
2011; 95
2017; 56
2020; 28
2015; 517
2015; 119
2016; 28
2018; 11
2018; 10
2016; 26
2016; 8
2016; 9
2017; 5
2018; 361
2017; 7
2017; 8
2017; 1
2017; 2
2018; 360
2017; 3
2017; 4
2015; 347
2019; 52
2016; 109
2017; 46
2015; 106
2017; 9
2019; 123
2014; 2
2019; 67
2019; 119
2017; 121
2014; 8
2014; 7
2012; 338
2015; 2
2014; 118
2015; 6
2019; 71
2015; 5
2018; 140
2017; 27
2015; 10
2017; 29
2015; 9
2015; 8
2015; 7
2016; 120
2015; 25
2015; 27
2016; 536
2017; 10
2016
2018; 54
2014; 345
2014; 104
e_1_2_5_27_1
e_1_2_5_166_1
e_1_2_5_120_1
e_1_2_5_147_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_162_1
e_1_2_5_185_1
e_1_2_5_124_1
e_1_2_5_101_1
e_1_2_5_143_1
e_1_2_5_65_1
e_1_2_5_88_1
e_1_2_5_128_1
e_1_2_5_105_1
e_1_2_5_69_1
e_1_2_5_109_1
e_1_2_5_80_1
e_1_2_5_61_1
e_1_2_5_84_1
e_1_2_5_42_1
e_1_2_5_150_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_132_1
e_1_2_5_155_1
e_1_2_5_178_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_113_1
e_1_2_5_136_1
e_1_2_5_151_1
e_1_2_5_174_1
e_1_2_5_7_1
e_1_2_5_76_1
e_1_2_5_99_1
e_1_2_5_117_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_159_1
e_1_2_5_91_1
Mamun AA (e_1_2_5_43_1) 2018; 229
e_1_2_5_72_1
e_1_2_5_95_1
e_1_2_5_53_1
e_1_2_5_181_1
e_1_2_5_49_1
e_1_2_5_146_1
e_1_2_5_169_1
e_1_2_5_26_1
e_1_2_5_45_1
e_1_2_5_184_1
e_1_2_5_100_1
e_1_2_5_123_1
e_1_2_5_142_1
e_1_2_5_22_1
e_1_2_5_165_1
e_1_2_5_87_1
e_1_2_5_104_1
e_1_2_5_127_1
e_1_2_5_68_1
e_1_2_5_108_1
e_1_2_5_60_1
e_1_2_5_83_1
e_1_2_5_64_1
e_1_2_5_41_1
e_1_2_5_172_1
e_1_2_5_14_1
e_1_2_5_131_1
e_1_2_5_177_1
e_1_2_5_37_1
e_1_2_5_158_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_56_1
e_1_2_5_135_1
e_1_2_5_173_1
e_1_2_5_33_1
e_1_2_5_112_1
e_1_2_5_154_1
e_1_2_5_4_1
e_1_2_5_98_1
e_1_2_5_139_1
e_1_2_5_79_1
e_1_2_5_116_1
e_1_2_5_18_1
e_1_2_5_90_1
e_1_2_5_71_1
e_1_2_5_94_1
e_1_2_5_75_1
e_1_2_5_52_1
e_1_2_5_180_1
e_1_2_5_161_1
e_1_2_5_145_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_168_1
e_1_2_5_103_1
e_1_2_5_141_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_164_1
e_1_2_5_122_1
e_1_2_5_107_1
e_1_2_5_67_1
e_1_2_5_126_1
e_1_2_5_149_1
e_1_2_5_29_1
e_1_2_5_82_1
e_1_2_5_63_1
e_1_2_5_86_1
e_1_2_5_40_1
e_1_2_5_171_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_130_1
e_1_2_5_157_1
e_1_2_5_9_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_111_1
e_1_2_5_134_1
e_1_2_5_153_1
e_1_2_5_176_1
e_1_2_5_5_1
e_1_2_5_78_1
e_1_2_5_115_1
e_1_2_5_138_1
e_1_2_5_119_1
B‐w P (e_1_2_5_30_1) 2019; 31
e_1_2_5_70_1
e_1_2_5_93_1
e_1_2_5_74_1
e_1_2_5_97_1
e_1_2_5_51_1
e_1_2_5_160_1
e_1_2_5_183_1
e_1_2_5_121_1
e_1_2_5_144_1
e_1_2_5_167_1
e_1_2_5_28_1
e_1_2_5_47_1
e_1_2_5_140_1
e_1_2_5_102_1
e_1_2_5_125_1
e_1_2_5_24_1
e_1_2_5_163_1
e_1_2_5_106_1
e_1_2_5_129_1
e_1_2_5_66_1
e_1_2_5_89_1
e_1_2_5_148_1
e_1_2_5_81_1
e_1_2_5_62_1
e_1_2_5_85_1
e_1_2_5_170_1
e_1_2_5_20_1
e_1_2_5_39_1
e_1_2_5_110_1
e_1_2_5_156_1
e_1_2_5_16_1
e_1_2_5_58_1
e_1_2_5_179_1
e_1_2_5_35_1
e_1_2_5_114_1
e_1_2_5_152_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_54_1
e_1_2_5_133_1
e_1_2_5_175_1
e_1_2_5_77_1
e_1_2_5_118_1
e_1_2_5_2_1
e_1_2_5_137_1
e_1_2_5_92_1
e_1_2_5_73_1
e_1_2_5_96_1
e_1_2_5_31_1
e_1_2_5_50_1
e_1_2_5_182_1
References_xml – volume: 9
  start-page: 6312
  year: 2018
  end-page: 6320
  article-title: Impact of moisture on photoexcited charge carrier dynamics in methylammonium lead halide perovskites
  publication-title: J Phys Chem Lett.
– volume: 8
  start-page: 6300
  year: 2016
  end-page: 6307
  article-title: Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells
  publication-title: Nanoscale
– volume: 18
  start-page: 2172
  year: 2018
  end-page: 2178
  article-title: Local observation of phase segregation in mixed‐halide perovskite
  publication-title: Nano Lett
– volume: 9
  start-page: 5265
  year: 2018
  article-title: Addressing the stability issue of perovskite solar cells for commercial applications
  publication-title: Nat Commun
– volume: 8
  start-page: 4730
  year: 2014
  end-page: 4739
  article-title: Thermally induced structural evolution and performance of mesoporous block copolymer‐directed alumina perovskite solar cells
  publication-title: ACS Nano
– volume: 2
  start-page: 1507
  year: 2017
  end-page: 1514
  article-title: Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites
  publication-title: ACS Energy Lett.
– volume: 347
  start-page: 967
  year: 2015
  end-page: 970
  article-title: Electron‐hole diffusion lengths > 175 μm in solution‐grown CH NH PbI single crystals
  publication-title: Science
– volume: 5
  year: 2015
  article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells
  publication-title: Adv Energy Mater
– volume: 8
  start-page: 14075
  year: 2017
  article-title: Thermal engineering of FAPbI perovskite material via radiative thermal annealing and in situ XRD
  publication-title: Nat Commun
– volume: 9
  start-page: 4700
  year: 2017
  end-page: 4706
  article-title: Gold and iodine diffusion in large area perovskite solar cells under illumination
  publication-title: Nanoscale
– volume: 11
  start-page: 25474
  year: 2019
  end-page: 25482
  article-title: Role of water in suppressing recombination pathways in CH NH PbI perovskite solar cells
  publication-title: ACS Appl Mater Int.
– volume: 118
  start-page: 9412
  year: 2014
  end-page: 9418
  article-title: CH NH Cl‐assisted one‐step solution growth of CH NH PbI : structure, charge‐carrier dynamics, and photovoltaic properties of perovskite solar cells
  publication-title: J Phys Chem C
– volume: 8
  start-page: 995
  year: 2015
  end-page: 1004
  article-title: Understanding the rate‐dependent J–V hysteresis, slow time component, and aging in CH NH PbI perovskite solar cells: the role of a compensated electric field
  publication-title: Energ Environ Sci
– volume: 9
  start-page: 323
  year: 2016
  end-page: 356
  article-title: Organometal halide perovskite solar cells: degradation and stability
  publication-title: Energ Environ Sci
– volume: 4
  start-page: 54
  year: 2019
  end-page: 62
  article-title: Controlling the phase segregation in mixed halide perovskites through nanocrystal size
  publication-title: ACS Energy Lett.
– volume: 31
  year: 2019
  article-title: Intrinsic instability of inorganic–organic hybrid halide perovskite materials
  publication-title: Adv Mater
– volume: 2
  start-page: 22
  year: 2018
  article-title: Defects engineering for high‐performance perovskite solar cells
  publication-title: npj Flexible Electron
– volume: 9
  start-page: 4807
  year: 2018
  article-title: Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite
  publication-title: Nat Commun
– volume: 11
  start-page: 3266
  year: 2018
  end-page: 3274
  article-title: The thermodynamics and kinetics of iodine vacancies in the hybrid perovskite methylammonium lead iodide
  publication-title: Energ Environ Sci
– volume: 536
  start-page: 312
  year: 2016
  end-page: 316
  article-title: High‐efficiency two‐dimensional Ruddlesden–popper perovskite solar cells
  publication-title: Nature
– volume: 7
  start-page: 9110
  year: 2015
  end-page: 9117
  article-title: Nucleation and crystal growth of organic–inorganic Lead halide perovskites under different relative humidity
  publication-title: ACS Appl Mater Int.
– volume: 5
  start-page: 1103
  year: 2017
  end-page: 1111
  article-title: Profiling the organic cation‐dependent degradation of organolead halide perovskite solar cells
  publication-title: J Mater Chem A
– volume: 29
  start-page: 1701073
  year: 2017
  article-title: Thermally stable MAPbI perovskite solar cells with efficiency of 19.19% and area over 1 cm achieved by additive engineering
  publication-title: Adv Mater
– volume: 27
  start-page: 5570
  year: 2015
  end-page: 5576
  article-title: Optimizing composition and morphology for large‐grain perovskite solar cells via chemical control
  publication-title: Chem Mater
– volume: 30
  year: 2018
  article-title: Influence of radiation on the properties and the stability of hybrid perovskites
  publication-title: Adv Mater
– volume: 8
  start-page: 29899
  year: 2018
  end-page: 29908
  article-title: Deposition of methylammonium iodide via evaporation – combined kinetic and mass spectrometric study
  publication-title: RSC Adv
– volume: 350
  start-page: 944
  year: 2015
  end-page: 948
  article-title: Efficient and stable large‐area perovskite solar cells with inorganic charge extraction layers
  publication-title: Science
– volume: 7
  start-page: 11683
  year: 2016
  article-title: Photo‐induced halide redistribution in organic–inorganic perovskite films
  publication-title: Nat Commun
– volume: 67
  start-page: 19
  year: 2019
  end-page: 25
  article-title: Unraveling the light‐induced degradation mechanism of CH NH PbI perovskite films
  publication-title: Org Electron.
– volume: 6
  start-page: 10847
  year: 2018
  end-page: 10855
  article-title: Interaction of oxygen with halide perovskites
  publication-title: J Mater Chem A
– volume: 104
  year: 2014
  article-title: Unusual defect physics in CH NH PbI perovskite solar cell absorber
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 16912
  year: 2019
  end-page: 16919
  article-title: Thermal degradation of formamidinium based lead halide perovskites into sym‐triazine and hydrogen cyanide observed by coupled thermogravimetry‐mass spectrometry analysis
  publication-title: J Mater Chem A
– volume: 6
  start-page: 1800278
  year: 2018
  article-title: Recent advances in perovskite micro‐ and Nanolasers
  publication-title: Adv Opt Mater.
– volume: 2
  start-page: 2460
  year: 2018
  end-page: 2467
  article-title: Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time‐resolved mass spectrometry
  publication-title: Sustainable Energy Fuels.
– volume: 3
  start-page: 2321
  year: 2018
  end-page: 2328
  article-title: Vacancy‐mediated anion Photosegregation kinetics in mixed halide hybrid perovskites: coupled kinetic Monte Carlo and Optical measurements
  publication-title: ACS Energy Lett.
– volume: 342
  start-page: 341
  year: 2013
  end-page: 344
  article-title: Electron‐hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
  publication-title: Science
– volume: 30
  start-page: 30
  year: 2016
  end-page: 35
  article-title: Interface degradation of perovskite solar cells and its modification using an annealing‐free TiO NPs layer
  publication-title: Org Electron.
– volume: 3
  start-page: 2995
  year: 2018
  end-page: 3001
  article-title: The bandgap as a moving target: reversible bandgap instabilities in multiple‐cation mixed‐halide perovskite solar cells
  publication-title: ACS Energy Lett.
– volume: 29
  year: 2019
  article-title: A review of perovskites solar cell stability
  publication-title: Adv Funct Mater
– volume: 28
  year: 2018
  article-title: Real‐time in situ observation of microstructural change in Organometal halide perovskite induced by thermal degradation
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 218
  year: 2016
  end-page: 224
  article-title: Interfacial degradation of planar Lead halide perovskite solar cells
  publication-title: ACS Nano
– volume: 120
  start-page: 6363
  year: 2016
  end-page: 6368
  article-title: Humidity‐induced grain boundaries in MAPbI3 perovskite films
  publication-title: J Phys Chem C
– volume: 3
  start-page: eaao5616
  year: 2017
  article-title: Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells
  publication-title: Sci Adv
– volume: 9
  start-page: 26859
  year: 2017
  end-page: 26866
  article-title: Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells
  publication-title: ACS Appl Mater Int.
– volume: 2
  year: 2017
  article-title: Understanding the physical properties of hybrid perovskites for photovoltaic applications
  publication-title: Nat Rev Mater.
– volume: 1
  start-page: 2859
  year: 2018
  end-page: 2865
  article-title: Effect of light illumination on mixed halide Lead perovskites: reversible or irreversible transformation
  publication-title: ACS Appl Energy Mater.
– volume: 27
  start-page: 3397
  year: 2015
  end-page: 3407
  article-title: Reversible hydration of CH NH PbI in films, single crystals, and solar cells
  publication-title: Chem Mater
– volume: 9
  start-page: 1989
  year: 2016
  end-page: 1997
  article-title: Cesium‐containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
  publication-title: Energ Environ Sci
– volume: 2
  year: 2015
  article-title: Silver iodide formation in methyl ammonium Lead iodide perovskite solar cells with silver top electrodes
  publication-title: Adv Mater Interfaces
– volume: 2
  start-page: 769
  year: 2017
  end-page: 775
  article-title: Self‐assembled Lead halide perovskite nanocrystals in a perovskite matrix
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 3035
  year: 2019
  end-page: 3042
  article-title: The rise of perovskite light‐emitting diodes
  publication-title: J Phys Chem Lett.
– volume: 6
  start-page: 2399
  year: 2015
  end-page: 2405
  article-title: C as an efficient n‐type compact layer in perovskite solar cells
  publication-title: J Phys Chem Lett.
– volume: 1
  start-page: 1351
  year: 2017
  end-page: 1357
  article-title: A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH NH PbI : an attempt to rationalise contradictory experimental results
  publication-title: Sustainable Energy Fuels
– volume: 8
  start-page: 3289
  year: 2017
  end-page: 3298
  article-title: Correlation between photoluminescence and carrier transport and a simple in situ passivation method for high‐bandgap hybrid perovskites
  publication-title: J Phys Chem Lett.
– volume: 52
  start-page: 265302
  year: 2019
  article-title: Study on the defect density of states in light soaking effect enhanced performance of perovskite solar cells
  publication-title: J Phys D Appl Phys
– volume: 3
  start-page: 1700158
  year: 2017
  article-title: Unraveling the light‐induced degradation mechanisms of CH NH PbI perovskite films
  publication-title: Adv Electron Mater
– year: 2016
– volume: 10
  start-page: 516
  year: 2017
  end-page: 522
  article-title: Scaling behavior of moisture‐induced grain degradation in polycrystalline hybrid perovskite thin films
  publication-title: Energ Environ Sci
– volume: 18
  start-page: 3473
  year: 2018
  end-page: 3480
  article-title: Cation‐dependent light‐induced halide demixing in hybrid organic–inorganic perovskites
  publication-title: Nano Lett
– volume: 9
  start-page: 3000
  year: 2018
  end-page: 3007
  article-title: Stability and degradation in hybrid perovskites: is the glass half‐empty or half‐full?
  publication-title: J Phys Chem Lett.
– volume: 2
  start-page: 1860
  year: 2017
  end-page: 1861
  article-title: A victim of halide ion segregation. How light soaking affects solar cell performance of mixed halide Lead perovskites
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 21794
  year: 2018
  end-page: 21808
  article-title: A full overview of international standards assessing the long‐term stability of perovskite solar cells
  publication-title: J Mater Chem A
– volume: 9
  start-page: 2372
  year: 2016
  end-page: 2382
  article-title: In situ investigation of the formation and metastability of formamidinium lead tri‐iodide perovskite solar cells
  publication-title: Energ Environ Sci
– volume: 52
  start-page: 9019
  year: 2013
  end-page: 9038
  article-title: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near‐infrared photoluminescent properties
  publication-title: Inorg Chem
– volume: 30
  year: 2018
  article-title: Perovskite solar cells with inorganic electron‐ and hole‐transport layers exhibiting long‐term (≈500 h) stability at 85 °C under continuous 1 sun illumination in ambient air
  publication-title: Adv Mater
– volume: 6
  start-page: 21976
  year: 2016
  article-title: Investigation of the hydrolysis of perovskite organometallic halide CH NH PbI in humidity environment
  publication-title: Sci Rep
– volume: 3
  year: 2016
  article-title: Stabilized wide bandgap MAPbBr I perovskite by enhanced grain size and improved crystallinity
  publication-title: Adv Sci
– volume: 7
  start-page: 982
  year: 2014
  end-page: 988
  article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
  publication-title: Energ Environ Sci
– volume: 7
  start-page: 9326
  year: 2019
  end-page: 9334
  article-title: Light induced degradation in mixed‐halide perovskites
  publication-title: J Mater Chem C.
– volume: 119
  start-page: 3418
  year: 2019
  end-page: 3451
  article-title: Understanding degradation mechanisms and improving stability of perovskite photovoltaics
  publication-title: Chem Rev
– volume: 140
  start-page: 1358
  year: 2018
  end-page: 1364
  article-title: Universal approach toward hysteresis‐free perovskite solar cell via defect engineering
  publication-title: J Am Chem Soc
– volume: 338
  start-page: 643
  year: 2012
  end-page: 647
  article-title: Efficient hybrid solar cells based on meso‐superstructured organometal halide perovskites
  publication-title: Science
– volume: 9
  start-page: 1955
  year: 2015
  end-page: 1963
  article-title: Investigation of CH NH PbI degradation rates and mechanisms in controlled humidity environments using in situ techniques
  publication-title: ACS Nano
– volume: 118
  start-page: 16458
  year: 2014
  end-page: 16462
  article-title: Formamidinium‐containing metal‐halide: an alternative material for near‐IR absorption perovskite solar cells
  publication-title: J Phys Chem C
– volume: 28
  start-page: 303
  year: 2016
  end-page: 311
  article-title: Evolution of chemical composition, morphology, and photovoltaic efficiency of CH NH PbI perovskite under ambient conditions
  publication-title: Chem Mater
– volume: 1
  start-page: 360
  year: 2016
  end-page: 366
  article-title: Defect tolerance in methylammonium lead triiodide perovskite
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 1900044
  year: 2019
  article-title: Effect of thermal cycling on the structural evolution of Methylammonium Lead iodide monitored around the phase transition temperatures
  publication-title: Solar RRL
– volume: 119
  start-page: 26904
  year: 2015
  end-page: 26911
  article-title: Mechanisms of electron‐beam‐induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy
  publication-title: J Phys Chem C
– volume: 5
  year: 2015
  article-title: Light‐induced self‐poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability
  publication-title: Adv Energy Mater.
– volume: 16
  start-page: 7739
  year: 2016
  end-page: 7747
  article-title: Stabilized wide bandgap perovskite solar cells by tin substitution
  publication-title: Nano Lett
– volume: 2
  start-page: 17042
  year: 2017
  article-title: Understanding the physical properties of hybrid perovskites for photovoltaic applications
  publication-title: Nat Rev Mater
– volume: 10
  start-page: 2284
  year: 2017
  end-page: 2311
  article-title: Impact of H O on organic–inorganic hybrid perovskite solar cells
  publication-title: Energ Environ Sci
– volume: 2
  start-page: 81
  year: 2018
  end-page: 89
  article-title: Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole‐transport layers
  publication-title: Mater Chem Front
– volume: 2
  start-page: 1416
  year: 2017
  end-page: 1424
  article-title: Defect‐assisted photoinduced halide segregation in mixed‐halide perovskite thin films
  publication-title: ACS Energy Lett
– volume: 8
  start-page: 2725
  year: 2015
  end-page: 2733
  article-title: High efficiency stable inverted perovskite solar cells without current hysteresis
  publication-title: Energ Environ Sci
– volume: 5
  year: 2015
  article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite
  publication-title: Adv Energy Mater.
– volume: 56
  start-page: 92
  year: 2017
  end-page: 101
  article-title: Decomposition and cell failure mechanisms in lead halide perovskite solar cells
  publication-title: Inorg Chem
– volume: 361
  year: 2018
  article-title: Challenges for commercializing perovskite solar cells
  publication-title: Science
– volume: 360
  start-page: 67
  year: 2018
  end-page: 70
  article-title: Light‐induced lattice expansion leads to high‐efficiency perovskite solar cells
  publication-title: Science
– volume: 71
  start-page: 123
  year: 2019
  end-page: 130
  article-title: Analysis of light‐induced degradation in inverted perovskite solar cells under short‐circuited conditions
  publication-title: Org Electron
– volume: 7
  start-page: 4645
  year: 2017
  article-title: Investigation of thermally induced degradation in CH NH PbI perovskite solar cells using in‐situ synchrotron radiation analysis
  publication-title: Sci Rep
– volume: 9
  start-page: 3406
  year: 2016
  end-page: 3410
  article-title: Thermal degradation of CH NH PbI perovskite into NH and CH I gases observed by coupled thermogravimetry–mass spectrometry analysis
  publication-title: Energ Environ Sci
– volume: 6
  start-page: 1800262
  year: 2018
  article-title: Unraveling Photostability of mixed cation perovskite films in extreme environment
  publication-title: Adv Opt Mater
– volume: 347
  start-page: 522
  year: 2015
  end-page: 525
  article-title: High‐efficiency solution‐processed perovskite solar cells with millimeter‐scale grains
  publication-title: Science
– volume: 2
  start-page: 5039
  year: 2019
  end-page: 5049
  article-title: Influence of a hole‐transport layer on light‐induced degradation of mixed organic–inorganic halide perovskite solar cells
  publication-title: ACS Appl Energy Mater
– volume: 174
  start-page: 566
  year: 2018
  end-page: 571
  article-title: Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells
  publication-title: Sol Energy Mater sol Cells.
– volume: 229
  start-page: 167
  year: 2018
  end-page: 170
  article-title: Influence of air degradation on morphology, crystal size and mechanical hardness of perovskite film
  publication-title: Mater Lett
– volume: 6
  start-page: 613
  year: 2015
  end-page: 617
  article-title: Reversible photo‐induced trap formation in mixed‐halide hybrid perovskites for photovoltaics
  publication-title: Chem Sci
– volume: 1
  start-page: 290
  year: 2016
  end-page: 296
  article-title: Tracking iodide and bromide ion segregation in mixed halide Lead perovskites during photoirradiation
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 2072
  year: 2016
  end-page: 2082
  article-title: Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution
  publication-title: Energ Environ Sci
– volume: 123
  start-page: 2011
  year: 2019
  end-page: 2018
  article-title: Effect of environmental humidity on the electrical properties of lead halide perovskites
  publication-title: J Phys Chem C
– volume: 1
  start-page: 595
  year: 2016
  end-page: 602
  article-title: Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices
  publication-title: ACS Energy Lett.
– volume: 95
  start-page: 1638
  year: 2011
  end-page: 1646
  article-title: Modeling of the nominal operating cell temperature based on outdoor weathering
  publication-title: Sol Energy Mater Sol Cells
– volume: 24
  start-page: 3250
  year: 2014
  end-page: 3258
  article-title: Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells
  publication-title: Adv Funct Mater
– volume: 28
  start-page: 3
  year: 2020
  end-page: 15
  article-title: Solar cell efficiency tables (version 55)
  publication-title: Prog Photovolt Res Appl
– volume: 4
  start-page: 2885
  year: 2013
  article-title: Overcoming ultraviolet light instability of sensitized TiO with meso‐superstructured organometal tri‐halide perovskite solar cells
  publication-title: Nat Commun
– volume: 54
  start-page: 1791
  year: 2015
  end-page: 1794
  article-title: Self‐regulation mechanism for charged point defects in hybrid halide perovskites
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 1602922
  year: 2017
  article-title: Direct evidence of ion diffusion for the silver‐electrode‐induced thermal degradation of inverted perovskite solar cells
  publication-title: Adv Energy Mater.
– volume: 8
  start-page: 1701543
  year: 2018
  article-title: Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach
  publication-title: Adv Energy Mater.
– volume: 9
  start-page: 2528
  year: 2016
  end-page: 2540
  article-title: Material and device stability in perovskite solar cells
  publication-title: ChemSusChem
– volume: 2
  start-page: 17009
  year: 2017
  article-title: 23.6%‐efficient monolithic perovskite/silicon tandem solar cells with improved stability
  publication-title: Nat Energy
– volume: 121
  start-page: 3904
  year: 2017
  end-page: 3910
  article-title: Light‐induced degradation of CH NH PbI hybrid perovskite thin film
  publication-title: J Phys Chem C
– volume: 3
  start-page: 855
  year: 2018
  end-page: 861
  article-title: High irradiance performance of metal halide perovskites for concentrator photovoltaics
  publication-title: Nat Energy
– volume: 53
  start-page: 5231
  year: 2017
  end-page: 5234
  article-title: In situ investigation of degradation at organometal halide perovskite surfaces by X‐ray photoelectron spectroscopy at realistic water vapour pressure
  publication-title: Chem Commun
– volume: 17
  start-page: 445
  year: 2018
  end-page: 449
  article-title: Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition
  publication-title: Nat Mater
– volume: 31
  start-page: 1902413
  year: 2019
  article-title: Synergistic effect of elevated device temperature and excess charge carriers on the rapid light‐induced degradation of perovskite solar cells
  publication-title: Adv Mater
– volume: 7
  start-page: 746
  year: 2016
  end-page: 751
  article-title: Cesium lead halide perovskites with improved stability for tandem solar cells
  publication-title: J Phys Chem Lett.
– volume: 119
  start-page: 3036
  year: 2019
  end-page: 3103
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem Rev
– volume: 7
  start-page: 23110
  year: 2015
  end-page: 23116
  article-title: Chlorine incorporation for enhanced performance of planar perovskite solar cell based on Lead acetate precursor
  publication-title: ACS Appl Mater Int.
– volume: 137
  start-page: 1530
  year: 2015
  end-page: 1538
  article-title: Transformation of the excited state and photovoltaic efficiency of CH NH PbI perovskite upon controlled exposure to humidified air
  publication-title: J Am Chem Soc
– volume: 10
  start-page: 1297
  year: 2017
  end-page: 1305
  article-title: A technoeconomic analysis of perovskite solar module manufacturing with low‐cost materials and techniques
  publication-title: Energ Environ Sci
– volume: 4
  year: 2017
  article-title: 3D in situ ToF‐SIMS imaging of perovskite films under controlled humidity environmental conditions
  publication-title: Adv Mater Interfaces
– volume: 9
  start-page: 35018
  year: 2017
  end-page: 35029
  article-title: Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction
  publication-title: ACS Appl Mater Int.
– volume: 26
  start-page: 5028
  year: 2016
  end-page: 5034
  article-title: Precisely controlled hydration water for performance improvement of organic–inorganic perovskite solar cells
  publication-title: Adv Funct Mater
– volume: 29
  start-page: 1701789
  year: 2017
  article-title: Photostriction of CH NH PbBr perovskite crystals
  publication-title: Adv Mater
– volume: 4
  start-page: 15896
  year: 2016
  end-page: 15903
  article-title: Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors
  publication-title: J Mater Chem A
– volume: 3
  start-page: 2743
  year: 2018
  end-page: 2749
  article-title: Direct observation of the tunneling phenomenon in Organometal halide perovskite solar cells and its influence on hysteresis
  publication-title: ACS Energy Lett.
– volume: 109
  year: 2016
  article-title: Mechanisms for light induced degradation in MAPbI perovskite thin films and solar cells
  publication-title: Appl Phys Lett
– volume: 54
  start-page: 8208
  year: 2015
  end-page: 8212
  article-title: The role of oxygen in the degradation of Methylammonium Lead Trihalide perovskite photoactive layers
  publication-title: Angew Chem Int Ed
– volume: 6
  year: 2016
  article-title: Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI ‐CH NH I‐H O system
  publication-title: Adv Energy Mater.
– volume: 26
  start-page: 6160
  year: 2014
  end-page: 6164
  article-title: Thermal behavior of methylammonium lead‐trihalide perovskite photovoltaic light harvesters
  publication-title: Chem Mater
– volume: 7
  year: 2019
  article-title: Thermal stability of CsPbBr perovskite as revealed by in situ transmission electron microscopy
  publication-title: APL Mater
– volume: 1
  start-page: 15012
  year: 2016
  article-title: In situ observation of heat‐induced degradation of perovskite solar cells
  publication-title: Nat Energy
– volume: 121
  start-page: 1013
  year: 2017
  end-page: 1024
  article-title: Multinuclear magnetic resonance tracking of hydro, thermal, and hydrothermal decomposition of CH NH PbI
  publication-title: J Phys Chem C
– volume: 3
  start-page: 2127
  year: 2018
  end-page: 2133
  article-title: Elucidating the failure mechanisms of perovskite solar cells in humid environments using in situ grazing‐incidence wide‐angle X‐ray scattering
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 391
  year: 2015
  end-page: 402
  article-title: Metal‐halide perovskites for photovoltaic and light‐emitting devices
  publication-title: Nat Nanotechnol
– volume: 12
  start-page: 2186
  year: 2019
  end-page: 2194
  article-title: Temperature impact on perovskite solar cells under operation
  publication-title: ChemSusChem
– volume: 9
  start-page: 188
  year: 2019
  article-title: A review: thermal stability of methylammonium lead halide based perovskite solar cells
  publication-title: Appl Sci
– volume: 517
  start-page: 476
  year: 2015
  end-page: 480
  article-title: Compositional engineering of perovskite materials for high‐performance solar cells
  publication-title: Nature
– volume: 8
  year: 2018
  article-title: Light‐induced degradation of perovskite solar cells: the influence of 4‐Tert‐butyl pyridine and gold
  publication-title: Adv Energy Mater.
– volume: 9
  start-page: 2015
  year: 2018
  end-page: 2021
  article-title: In situ monitoring the uptake of moisture into hybrid perovskite thin films
  publication-title: J Phys Chem Lett.
– volume: 2
  start-page: 19338
  year: 2014
  end-page: 19346
  article-title: Perovskite processing for photovoltaics: a spectro‐thermal evaluation
  publication-title: J Mater Chem A
– volume: 10
  start-page: 16225
  year: 2018
  end-page: 16230
  article-title: Oxygen‐ and water‐induced energetics degradation in organometal halide perovskites
  publication-title: ACS Appl Mater Int
– volume: 8
  start-page: 1953
  year: 2015
  end-page: 1968
  article-title: Perovskite photovoltaics: life‐cycle assessment of energy and environmental impacts
  publication-title: Energ Environ Sci
– volume: 31
  start-page: 1902374
  year: 2019
  article-title: A highly emissive surface layer in mixed‐halide multication perovskites
  publication-title: Adv Mater
– volume: 8
  start-page: 26712
  year: 2016
  end-page: 26721
  article-title: Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering
  publication-title: ACS Appl Mater Int.
– volume: 28
  start-page: 1800305
  year: 2018
  article-title: Unravelling light‐induced degradation of layered perovskite crystals and Design of Efficient Encapsulation for improved Photostability
  publication-title: Adv Funct Mater
– volume: 54
  start-page: 5434
  year: 2018
  end-page: 5437
  article-title: In situ and real‐time ToF‐SIMS analysis of light‐induced chemical changes in perovskite CH NH PbI
  publication-title: Chem Commun
– volume: 3
  start-page: 2694
  year: 2018
  end-page: 2700
  article-title: Impact of surfaces on photoinduced halide segregation in mixed‐halide perovskites
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 5204
  year: 2017
  end-page: 5236
  article-title: Perovskite‐based photodetectors: materials and devices
  publication-title: Chem Soc Rev
– volume: 116
  start-page: 253
  year: 2018
  end-page: 258
  article-title: Thermodynamics of formation of hybrid perovskite‐type methylammonium lead halides
  publication-title: J Chem Thermodyn
– volume: 7
  year: 2017
  article-title: Effect of Electron‐transport material on light‐induced degradation of inverted planar junction perovskite solar cells
  publication-title: Adv Energy Mater.
– volume: 8
  start-page: 15218
  year: 2017
  article-title: Fast oxygen diffusion and iodide defects mediate oxygen‐induced degradation of perovskite solar cells
  publication-title: Nat Commun
– volume: 20
  start-page: 17180
  year: 2018
  end-page: 17187
  article-title: In situ XPS study of the surface chemistry of MAPI solar cells under operating conditions in vacuum
  publication-title: Phys Chem Chem Phys
– volume: 121
  start-page: 1169
  year: 2017
  end-page: 1174
  article-title: Probe decomposition of methylammonium lead iodide perovskite in N and O by in situ infrared spectroscopy
  publication-title: J Phys Chem A
– volume: 10
  start-page: 6306
  year: 2016
  end-page: 6314
  article-title: Not all that glitters is gold: metal‐migration‐induced degradation in perovskite solar cells
  publication-title: ACS Nano
– volume: 4
  start-page: 1961
  year: 2019
  end-page: 1969
  article-title: Bidirectional halide ion exchange in paired Lead halide perovskite films with thermal activation
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 342
  year: 2017
  end-page: 348
  article-title: In situ identification of photo‐ and moisture‐dependent phase evolution of perovskite solar cells
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 93957
  year: 2015
  end-page: 93963
  article-title: Improved photovoltaic performance in perovskite solar cells based on CH NH PbI films fabricated under controlled relative humidity
  publication-title: RSC Adv
– volume: 9
  start-page: 1655
  year: 2016
  end-page: 1660
  article-title: Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells
  publication-title: Energ Environ Sci
– volume: 6
  start-page: 11496
  year: 2018
  end-page: 11506
  article-title: Thermal stability and miscibility of co‐evaporated methyl ammonium lead halide (MAPbX , X = I, Br, Cl) thin films analysed by in situ X‐ray diffraction
  publication-title: J Mater Chem A
– volume: 25
  start-page: 6671
  year: 2015
  end-page: 6678
  article-title: Controllable perovskite crystallization by water additive for high‐performance solar cells
  publication-title: Adv Funct Mater
– volume: 11
  start-page: 22228
  year: 2019
  end-page: 22239
  article-title: Unraveling the effect of crystal structure on degradation of methylammonium lead halide perovskite
  publication-title: ACS Appl Mater Int.
– volume: 9
  start-page: 3756
  year: 2018
  end-page: 3765
  article-title: Thermodynamics and the intrinsic stability of lead halide perovskites CH NH PbX
  publication-title: J Phys Chem Lett.
– volume: 1
  start-page: 548
  year: 2017
  end-page: 562
  article-title: Layer‐by‐layer degradation of methylammonium lead tri‐iodide perovskite microplates
  publication-title: Joule.
– volume: 10
  start-page: 6737
  year: 2018
  end-page: 6746
  article-title: In situ observation of light illumination‐induced degradation in Organometal mixed‐halide perovskite films
  publication-title: ACS Appl Mater Int.
– volume: 27
  start-page: 1700920
  year: 2017
  article-title: An Interdiffusion method for highly performing cesium/formamidinium double cation perovskites
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 905
  year: 2016
  end-page: 917
  article-title: Origin of J–V hysteresis in perovskite solar cells
  publication-title: J Phys Chem Lett
– volume: 3
  start-page: 641
  year: 2019
  end-page: 661
  article-title: Transmission electron microscopy of halide perovskite materials and devices
  publication-title: Joule
– volume: 30
  start-page: 1801562
  year: 2018
  article-title: Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations
  publication-title: Adv Mater
– volume: 7
  start-page: 11574
  year: 2016
  article-title: Light‐activated photocurrent degradation and self‐healing in perovskite solar cells
  publication-title: Nat Commun
– volume: 8
  start-page: 200
  year: 2017
  article-title: Rationalizing the light‐induced phase separation of mixed halide organic–inorganic perovskites
  publication-title: Nat Commun
– volume: 345
  start-page: 542
  year: 2014
  end-page: 546
  article-title: Interface engineering of highly efficient perovskite solar cells
  publication-title: Science
– volume: 8
  start-page: 2693
  year: 2016
  end-page: 2703
  article-title: Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution
  publication-title: Nanoscale
– volume: 106
  year: 2015
  article-title: Atomistic origins of CH NH PbI degradation to PbI in vacuum
  publication-title: Appl Phys Lett
– volume: 137
  start-page: 13130
  year: 2015
  end-page: 13137
  article-title: Kinetics of ion transport in perovskite active layers and its implications for active layer stability
  publication-title: J Am Chem Soc
– volume: 2
  start-page: 950
  year: 2017
  end-page: 956
  article-title: Photovoltage behavior in perovskite solar cells under light‐soaking showing photoinduced interfacial changes
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 1500279
  year: 2015
  article-title: Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells
  publication-title: Adv Energy Mater.
– volume: 10
  start-page: 1217
  year: 2019
  end-page: 1225
  article-title: In situ Raman spectroscopic studies of thermal stability of all‐inorganic cesium lead halide (CsPbX , X = Cl, Br, I) perovskite nanocrystals
  publication-title: J Phys Chem Lett.
– volume: 7
  start-page: 1173
  year: 2019
  end-page: 1181
  article-title: Aging‐induced light‐soaking effects and open‐circuit voltage hysteretic behavior of inverted perovskite solar cells incorporating a hole transport metal halide layer via morphology‐dependent inflow of iodide ions
  publication-title: J Mater Chem C
– volume: 1
  start-page: 5628
  year: 2013
  end-page: 5641
  article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH NH )PbI for solid‐state sensitised solar cell applications
  publication-title: J Mater Chem A
– volume: 9
  start-page: 34970
  year: 2017
  end-page: 34978
  article-title: Partially reversible photoinduced chemical changes in a mixed‐ion perovskite material for solar cells
  publication-title: ACS Appl Mater Int.
– volume: 49
  start-page: 347
  year: 2016
  end-page: 354
  article-title: Effects of light and electron beam irradiation on halide perovskites and their solar cells
  publication-title: Acc Chem Res
– ident: e_1_2_5_142_1
  doi: 10.1016/j.solmat.2017.09.053
– ident: e_1_2_5_53_1
  doi: 10.1021/acsami.8b04182
– ident: e_1_2_5_99_1
  doi: 10.1021/acsami.5b06819
– ident: e_1_2_5_153_1
  doi: 10.1126/sciadv.aao5616
– ident: e_1_2_5_12_1
  doi: 10.1021/ic401215x
– ident: e_1_2_5_34_1
  doi: 10.1002/adfm.201503559
– ident: e_1_2_5_113_1
  doi: 10.1039/C8EE01697F
– ident: e_1_2_5_126_1
  doi: 10.1002/adom.201800262
– ident: e_1_2_5_83_1
  doi: 10.1039/C4TA04725G
– ident: e_1_2_5_132_1
  doi: 10.1039/C8TC04723E
– ident: e_1_2_5_13_1
  doi: 10.1038/natrevmats.2017.42
– ident: e_1_2_5_94_1
  doi: 10.1038/ncomms14075
– ident: e_1_2_5_100_1
  doi: 10.1021/acsami.7b11250
– ident: e_1_2_5_180_1
  doi: 10.1021/acsenergylett.7b00282
– ident: e_1_2_5_96_1
  doi: 10.1021/jp502696w
– ident: e_1_2_5_18_1
  doi: 10.1039/C5EE00615E
– ident: e_1_2_5_7_1
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_5_160_1
  doi: 10.1038/ncomms15218
– ident: e_1_2_5_23_1
  doi: 10.1021/acs.inorgchem.6b01307
– ident: e_1_2_5_112_1
  doi: 10.1021/jacs.5b08535
– ident: e_1_2_5_175_1
  doi: 10.1021/acsenergylett.8b02207
– ident: e_1_2_5_68_1
  doi: 10.1016/j.solmat.2011.01.020
– ident: e_1_2_5_185_1
  doi: 10.1021/acsenergylett.7b00589
– ident: e_1_2_5_147_1
  doi: 10.1002/adfm.201800305
– ident: e_1_2_5_139_1
  doi: 10.1021/acsaem.8b00513
– ident: e_1_2_5_169_1
  doi: 10.1002/adma.201902374
– ident: e_1_2_5_181_1
  doi: 10.1002/advs.201500301
– ident: e_1_2_5_89_1
  doi: 10.1038/s41467-018-07177-y
– ident: e_1_2_5_79_1
  doi: 10.1021/cm502468k
– ident: e_1_2_5_163_1
  doi: 10.1038/ncomms3885
– ident: e_1_2_5_24_1
  doi: 10.1039/C5EE02733K
– ident: e_1_2_5_33_1
  doi: 10.1039/C5RA14587B
– ident: e_1_2_5_171_1
  doi: 10.1021/acsenergylett.7b00046
– ident: e_1_2_5_38_1
  doi: 10.1039/C5EE00645G
– ident: e_1_2_5_8_1
– ident: e_1_2_5_75_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_5_67_1
  doi: 10.1021/acsenergylett.6b00320
– ident: e_1_2_5_101_1
  doi: 10.1039/C8TA02775G
– ident: e_1_2_5_120_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_5_102_1
  doi: 10.1039/C6EE01079B
– ident: e_1_2_5_141_1
  doi: 10.1038/ncomms11683
– ident: e_1_2_5_3_1
  doi: 10.1039/C6CS00896H
– ident: e_1_2_5_184_1
  doi: 10.1021/acs.jpclett.7b01185
– ident: e_1_2_5_91_1
  doi: 10.1021/acs.jpcc.5b09698
– ident: e_1_2_5_174_1
  doi: 10.1021/acs.nanolett.8b00541
– ident: e_1_2_5_21_1
  doi: 10.1002/adfm.201808843
– ident: e_1_2_5_130_1
  doi: 10.1002/aenm.201500721
– ident: e_1_2_5_2_1
  doi: 10.1021/acs.jpclett.9b00277
– ident: e_1_2_5_173_1
  doi: 10.1021/acsenergylett.8b01562
– ident: e_1_2_5_10_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_5_150_1
  doi: 10.1016/j.orgel.2019.05.003
– ident: e_1_2_5_20_1
  doi: 10.1038/s41467-018-07255-1
– ident: e_1_2_5_164_1
  doi: 10.1039/C8CC01606B
– ident: e_1_2_5_6_1
  doi: 10.1038/nnano.2015.90
– ident: e_1_2_5_124_1
  doi: 10.1038/s41560-018-0220-2
– ident: e_1_2_5_151_1
  doi: 10.1039/C7NR00784A
– volume: 31
  start-page: 1805337
  year: 2019
  ident: e_1_2_5_30_1
  article-title: Intrinsic instability of inorganic–organic hybrid halide perovskite materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201805337
– ident: e_1_2_5_69_1
  doi: 10.1039/C8TA06950F
– ident: e_1_2_5_138_1
  doi: 10.1021/acsami.7b18389
– ident: e_1_2_5_16_1
  doi: 10.1063/1.4864778
– ident: e_1_2_5_37_1
  doi: 10.1126/science.1254050
– ident: e_1_2_5_149_1
  doi: 10.1088/1361-6463/ab1626
– ident: e_1_2_5_106_1
  doi: 10.1038/nature14133
– ident: e_1_2_5_111_1
  doi: 10.1021/acsnano.6b02613
– ident: e_1_2_5_71_1
  doi: 10.1002/solr.201900044
– ident: e_1_2_5_129_1
  doi: 10.1002/aenm.201700476
– ident: e_1_2_5_62_1
  doi: 10.1039/C6TA09687E
– ident: e_1_2_5_161_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_5_74_1
  doi: 10.1021/acsami.6b07468
– ident: e_1_2_5_134_1
  doi: 10.1038/ncomms11574
– ident: e_1_2_5_14_1
  doi: 10.1002/anie.201409740
– ident: e_1_2_5_61_1
  doi: 10.1021/acsenergylett.6b00698
– ident: e_1_2_5_49_1
  doi: 10.1021/acs.jpcc.6b10865
– ident: e_1_2_5_143_1
  doi: 10.1039/C6TA06497C
– ident: e_1_2_5_80_1
  doi: 10.1039/C6EE01047D
– ident: e_1_2_5_145_1
  doi: 10.1039/C8SE00358K
– ident: e_1_2_5_59_1
  doi: 10.1002/admi.201500195
– ident: e_1_2_5_90_1
  doi: 10.1016/j.joule.2018.12.011
– ident: e_1_2_5_121_1
  doi: 10.1038/nature18306
– ident: e_1_2_5_92_1
  doi: 10.1021/acs.accounts.5b00469
– ident: e_1_2_5_55_1
  doi: 10.1109/PVSC.2016.7749805
– ident: e_1_2_5_116_1
  doi: 10.1002/aenm.201602922
– ident: e_1_2_5_52_1
  doi: 10.1021/acs.jpclett.8b02595
– ident: e_1_2_5_107_1
  doi: 10.1021/jp411112k
– ident: e_1_2_5_26_1
  doi: 10.3390/app9010188
– ident: e_1_2_5_35_1
  doi: 10.1039/C5NR06687E
– ident: e_1_2_5_48_1
  doi: 10.1038/srep21976
– ident: e_1_2_5_77_1
  doi: 10.1038/s41598-017-04690-w
– ident: e_1_2_5_97_1
  doi: 10.1126/science.aaa0472
– ident: e_1_2_5_44_1
  doi: 10.1039/C6EE02941H
– ident: e_1_2_5_47_1
  doi: 10.1021/acs.jpcc.6b00335
– ident: e_1_2_5_36_1
  doi: 10.1021/acsami.5b00895
– ident: e_1_2_5_165_1
  doi: 10.1021/acsnano.5b03687
– ident: e_1_2_5_178_1
  doi: 10.1021/acsenergylett.8b01857
– ident: e_1_2_5_4_1
  doi: 10.1002/adom.201800278
– ident: e_1_2_5_57_1
  doi: 10.1021/acsenergylett.8b01300
– ident: e_1_2_5_133_1
  doi: 10.1126/science.aap8671
– ident: e_1_2_5_168_1
  doi: 10.1038/s41467-017-00284-2
– ident: e_1_2_5_63_1
  doi: 10.1039/C4EE03664F
– ident: e_1_2_5_32_1
  doi: 10.1002/adfm.201601557
– ident: e_1_2_5_167_1
  doi: 10.1021/acsenergylett.7b00357
– ident: e_1_2_5_179_1
  doi: 10.1021/acs.nanolett.6b03857
– ident: e_1_2_5_105_1
  doi: 10.1021/acs.jpclett.9b00344
– ident: e_1_2_5_51_1
  doi: 10.1002/admi.201600673
– ident: e_1_2_5_182_1
  doi: 10.1021/acsami.7b06816
– ident: e_1_2_5_66_1
  doi: 10.1021/acs.jpcc.8b03915
– ident: e_1_2_5_98_1
  doi: 10.1021/acs.chemmater.5b02378
– ident: e_1_2_5_54_1
  doi: 10.1002/aenm.201600846
– ident: e_1_2_5_29_1
  doi: 10.1021/acs.jpclett.8b00120
– ident: e_1_2_5_146_1
  doi: 10.1002/aelm.201700158
– ident: e_1_2_5_31_1
  doi: 10.1039/C5NR04179A
– ident: e_1_2_5_159_1
  doi: 10.1063/1.4967840
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.chemrev.8b00336
– ident: e_1_2_5_177_1
  doi: 10.1039/C9TC02635E
– volume: 229
  start-page: 167
  year: 2018
  ident: e_1_2_5_43_1
  article-title: Influence of air degradation on morphology, crystal size and mechanical hardness of perovskite film
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.06.126
– ident: e_1_2_5_144_1
  doi: 10.1021/acs.jpcc.6b11853
– ident: e_1_2_5_154_1
  doi: 10.1002/adma.201701789
– ident: e_1_2_5_82_1
  doi: 10.1039/C6EE02016J
– ident: e_1_2_5_136_1
  doi: 10.1039/C8CP01259H
– ident: e_1_2_5_109_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_5_110_1
  doi: 10.1002/adma.201801562
– ident: e_1_2_5_65_1
  doi: 10.1038/s41528-018-0035-z
– ident: e_1_2_5_162_1
  doi: 10.1021/acsenergylett.7b00212
– ident: e_1_2_5_9_1
  doi: 10.1002/pip.3228
– ident: e_1_2_5_76_1
  doi: 10.1021/acs.jpclett.6b00002
– ident: e_1_2_5_85_1
  doi: 10.1021/acs.jpclett.8b00463
– ident: e_1_2_5_58_1
  doi: 10.1039/C7QM00396J
– ident: e_1_2_5_25_1
  doi: 10.1002/aenm.201501066
– ident: e_1_2_5_81_1
  doi: 10.1039/C8RA04851G
– ident: e_1_2_5_176_1
  doi: 10.1021/acsami.7b10643
– ident: e_1_2_5_127_1
  doi: 10.1002/adma.201902413
– ident: e_1_2_5_155_1
  doi: 10.1021/jacs.7b10430
– ident: e_1_2_5_119_1
  doi: 10.1002/adma.201701073
– ident: e_1_2_5_60_1
  doi: 10.1016/j.orgel.2015.12.010
– ident: e_1_2_5_15_1
  doi: 10.1021/acsenergylett.6b00196
– ident: e_1_2_5_86_1
  doi: 10.1063/1.4916821
– ident: e_1_2_5_118_1
  doi: 10.1126/science.1228604
– ident: e_1_2_5_131_1
  doi: 10.1002/aenm.201500279
– ident: e_1_2_5_50_1
  doi: 10.1021/acs.jpclett.8b00687
– ident: e_1_2_5_95_1
  doi: 10.1002/adfm.201804039
– ident: e_1_2_5_41_1
  doi: 10.1021/ja511132a
– ident: e_1_2_5_140_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_5_156_1
  doi: 10.1038/s41563-018-0038-0
– ident: e_1_2_5_72_1
  doi: 10.1021/nn500526t
– ident: e_1_2_5_128_1
  doi: 10.1021/acsaem.9b00709
– ident: e_1_2_5_135_1
  doi: 10.1021/acsenergylett.6b00158
– ident: e_1_2_5_152_1
  doi: 10.1021/acsenergylett.8b01701
– ident: e_1_2_5_78_1
  doi: 10.1002/aenm.201500477
– ident: e_1_2_5_114_1
  doi: 10.1021/acsenergylett.9b01280
– ident: e_1_2_5_125_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_5_93_1
  doi: 10.1016/j.joule.2017.08.005
– ident: e_1_2_5_40_1
  doi: 10.1021/nn506864k
– ident: e_1_2_5_170_1
  doi: 10.1021/acsenergylett.8b01369
– ident: e_1_2_5_19_1
  doi: 10.1126/science.aat8235
– ident: e_1_2_5_172_1
  doi: 10.1002/aenm.201701543
– ident: e_1_2_5_45_1
  doi: 10.1021/acs.chemmater.5b04122
– ident: e_1_2_5_104_1
  doi: 10.1063/1.5108849
– ident: e_1_2_5_115_1
  doi: 10.1038/nenergy.2015.12
– ident: e_1_2_5_46_1
  doi: 10.1021/acsami.9b00831
– ident: e_1_2_5_158_1
  doi: 10.1039/C8TA04537B
– ident: e_1_2_5_42_1
  doi: 10.1021/acs.chemmater.5b00660
– ident: e_1_2_5_183_1
  doi: 10.1021/acs.nanolett.8b00505
– ident: e_1_2_5_117_1
  doi: 10.1002/cssc.201802899
– ident: e_1_2_5_27_1
  doi: 10.1002/adma.201702905
– ident: e_1_2_5_28_1
  doi: 10.1002/cssc.201600915
– ident: e_1_2_5_157_1
  doi: 10.1039/C6EE00409A
– ident: e_1_2_5_166_1
  doi: 10.1002/aenm.201800554
– ident: e_1_2_5_87_1
  doi: 10.1016/j.jct.2017.09.026
– ident: e_1_2_5_39_1
  doi: 10.1021/acsami.9b00793
– ident: e_1_2_5_56_1
  doi: 10.1039/C7CC01538K
– ident: e_1_2_5_108_1
  doi: 10.1002/adfm.201700920
– ident: e_1_2_5_122_1
  doi: 10.1021/acs.jpclett.5b00902
– ident: e_1_2_5_70_1
  doi: 10.1039/c3ta10518k
– ident: e_1_2_5_11_1
  doi: 10.1126/science.1243982
– ident: e_1_2_5_148_1
  doi: 10.1021/acs.jpclett.6b00215
– ident: e_1_2_5_5_1
  doi: 10.1038/natrevmats.2017.42
– ident: e_1_2_5_73_1
  doi: 10.1002/adfm.201304022
– ident: e_1_2_5_137_1
  doi: 10.1016/j.orgel.2019.01.005
– ident: e_1_2_5_123_1
  doi: 10.1002/adma.201801010
– ident: e_1_2_5_88_1
  doi: 10.1039/C7SE00114B
– ident: e_1_2_5_84_1
  doi: 10.1021/acs.jpca.6b12170
– ident: e_1_2_5_64_1
  doi: 10.1039/C7EE01674C
– ident: e_1_2_5_103_1
  doi: 10.1039/C9TA06058H
– ident: e_1_2_5_17_1
  doi: 10.1039/C7EE00757D
SSID ssj0002504241
Score 2.5155115
SecondaryResourceType review_article
Snippet The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of over 25%,...
Abstract The last decade has seen an extraordinary rise in the performance of perovskite solar cells (PSCs). State‐of‐the‐art devices now have efficiencies of...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms decomposition
device lifetimes
environmental stress
lead halide perovskites
organic‐inorganic halide perovskites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ30Qf-L8RUBfFOraNFnbR5XNKUxfHOyt5JoEBq4Tu_n3e5fWsYHoi28lPUh7F3LfdyTfMXaZGBG7yLkAnDNUugkDrQCCLoY4g0QYE9Ld4eFzdzCST2M1Xmn1RWfCanng2nEdoxPQCvNgUsTSSZumBa7CJEuz0EUG_NU9zHkrZIr2YBLmwty01CMVHTubipsIqb5ay0BeqH8dmPrM0t9h2w0k5Lf1p-yyDVvusa0VocB99vBY8moyX_CqPvbHZ44jcuOGpB7qrkh8aukS76Sa-rek__1ZUWmWV8ReOVXoqwM26vde7wdB0wIhKIjoBMbFmUEQJ2UCKWSgQtwQpNWhdVGByC4qQKMh4gAQsuhCrCOlncT_BB1BZuJD1ipnpT1i3CijkewYRQZGZWlqkM0IKwARFDqyza6-3ZIXjT44tal4y2tlY5GTC3Pvwja7WNq-16oYP1rdkXeXFqRk7QcwvnkT3_yv-LbZtY_NL_PkvZeh8E_H_zHjCdsURKp9qeWUteYfC3uGyGMO536RfQHNbdTu
  priority: 102
  providerName: Directory of Open Access Journals
Title In situ studies of the degradation mechanisms of perovskite solar cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12025
https://doaj.org/article/da7ba57107c34f4e88c18379890f1db9
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2qXvQgfmL9KAt6UYgmm90mAS8q1SpUPVjwFnayu1KwrTTVo7_dmU2NCiJ4CSGZkGQmu_vmkXnD2EFiROwi5wJwzhB1EwZaAQRtDHEGiTAmpNrh3m2725c3j-qxwU4_a2EqfYiacKOR4edrGuAaypMv0VA7HorjCHN3NccWqLaWlPOFvK8ZFhLnEr51JS7rRMYlca1PKk6-Lv-xInnh_p9A1a80lytseQYR-VkV01XWsKM1tvRNOHCdXV2PeDmYvvKy-g2Qjx1HJMcNST9UXZL40FJR76Ac-rOkB_5WElXLS8pmOTH25QbrX3YeLrrBrCVCUFDiExgXZwZBnZQJpJCBCnGCkFaH1kUFIr2oAI2GiAtAyKINsY6UdhLfE3QEmYk32fxoPLJbjBtlNCY_RpGBUVmaGsxuhBWAiMpA1mSHn27Ji5leOLWteM4rpWORkwtz78Im269tXyqVjF-tzsm7tQUpW_sD48lTPhsoudEJaIW4Jyli6aRN0wJnnSRLs9BF_rGOfGz-uE_euesJv7f9H-MdtigomfYUyy6bn05e7R4ijim0_IfV8vk6bnvvnQ9CstEr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46H9QH8YrzGtAXhbo2TXp5VJluuk0fNthbSZpEBm6VdfP3m5PWzoEIvpX2lLbn9CTf-Ui-g9BlKImvPa0dobUE6sZ1OBPCCUyIYxESKV3YO9ztBa0BfRqyYbk2B_bCFPoQFeEGmWHHa0hwIKQbC9VQlY3JjWeKd7aK1mhAQshLQl8rigXUuYjtXWnmdWDjQr8SKCWNxe1LU5JV7l9GqnaqedhGWyVGxLdFUHfQiprsos0fyoF76LE9wfloNsd5sQ4QZxobKIclaD8UbZLwWMGu3lE-tldBEPwzB64W51DOYqDs8300eGj271tO2RPBSaHycaT2Y2lQHaWhiEQsmGtGCKq4q7SXGqjnpYIbQwMMBKFpIHzuMa6p-U7BPRFL_wDVJtlEHSIsmeSm-pEMDCSLo0ia8oYoIgykkiKuo6tvtyRpKRgOfSvek0LqmCTgwsS6sI4uKtuPQibjV6s78G5lAdLW9kQ2fUvKTEkkDwVnBviEqU81VVGUmmEnjKPY1Z59rWsbmz-ekzRfusQeHf3H-Bytt_rdTtJp956P0QaBytryLSeoNpvO1amBHzNxZn-yL8BX0nE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60BdGD-MT6XNCLQmyyyTYJePHRan1UD1aKl7Cb3RXBttJUf78zmzRaEMFbSIY8Zndmv_nIfkPIQaiYbzxjHGmMQurGdQSX0mnAEMcyZEq5uHf4rtO46gbXPd6bISeTvTC5PkRJuGFk2HyNAf6uTP1bNFQP--zYg9qdz5IqyuTBnK6ePnWfuyXHgvJczDavhIUd6bjQLxVKWf37BlNrkpXun4aqdq1pLZHFAiTS03xUl8mMHqyQhR_Sgavksj2g2ev4g2b5j4B0aChgOapQ_CHvk0T7Grf1vmZ9exUVwT8zJGtphvUsRc4-WyPdVvPx_MopmiI4KZY-jjJ-rADWBUEoIxlL7kKKCLRwtfFSwHpeKgUYAjKQLEgb0hceFyaA75TCk7Hy10llMBzoDUIVVwLKH8XRQPE4ihTUN0wzCZhKybhGDiduSdJCMRwbV7wludYxS9CFiXVhjeyXtu-5TsavVmfo3dICta3tieHoJSlCJVEilIID8glTPzCBjqIU8k4YR7FrPPtaR3Zs_nhO0ry_Y_Zo8z_Ge2Tu4aKV3LY7N1tknmFlbfmWbVIZjz70DsCPsdwtZtkXrcrTaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+studies+of+the+degradation+mechanisms+of+perovskite+solar+cells&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Kundu%2C+Soumya&rft.au=Kelly%2C+Timothy+L.&rft.date=2020-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12025&rft.externalDBID=10.1002%252Feom2.12025&rft.externalDocID=EOM212025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon