Increasing Post‐Digestive Solubility of Curcumin Is the Most Successful Strategy to Improve its Oral Bioavailability: A Randomized Cross‐Over Trial in Healthy Adults and In Vitro Bioaccessibility Experiments

Scope Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. Methods and Results In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg cu...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 65; no. 24; pp. e2100613 - n/a
Main Authors Flory, Sandra, Sus, Nadine, Haas, Kathrin, Jehle, Sina, Kienhöfer, Eva, Waehler, Reinhard, Adler, Günther, Venturelli, Sascha, Frank, Jan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN1613-4125
1613-4133
1613-4133
DOI10.1002/mnfr.202100613

Cover

Loading…
Abstract Scope Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. Methods and Results In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly. Conclusion The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective. Pharmacokinetics of 207 mg curcumin from seven different formulations with intended improved bioavailability were compared to identical doses of native curcumin in healthy adults. Curcumin incorporated into micelles or γ‐cylcodextrin complexes showed higher bioavailability in vivo and improved solubility and micellization efficiency after in vitro digestion. Curcumin permeability through Caco‐2 cell monolayers is not affected by its formulation.
AbstractList Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly. The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.
Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.SCOPEDifferent mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly.METHODS AND RESULTSIn a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly.The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.CONCLUSIONThe improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.
Scope Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. Methods and Results In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly. Conclusion The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective. Pharmacokinetics of 207 mg curcumin from seven different formulations with intended improved bioavailability were compared to identical doses of native curcumin in healthy adults. Curcumin incorporated into micelles or γ‐cylcodextrin complexes showed higher bioavailability in vivo and improved solubility and micellization efficiency after in vitro digestion. Curcumin permeability through Caco‐2 cell monolayers is not affected by its formulation.
SCOPE: Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. METHODS AND RESULTS: In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly. CONCLUSION: The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective.
ScopeDifferent mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.Methods and ResultsIn a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly.ConclusionThe improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective.
Author Frank, Jan
Kienhöfer, Eva
Flory, Sandra
Jehle, Sina
Haas, Kathrin
Sus, Nadine
Adler, Günther
Waehler, Reinhard
Venturelli, Sascha
Author_xml – sequence: 1
  givenname: Sandra
  surname: Flory
  fullname: Flory, Sandra
  organization: University of Hohenheim
– sequence: 2
  givenname: Nadine
  surname: Sus
  fullname: Sus, Nadine
  organization: University of Hohenheim
– sequence: 3
  givenname: Kathrin
  surname: Haas
  fullname: Haas, Kathrin
  organization: University of Hohenheim
– sequence: 4
  givenname: Sina
  surname: Jehle
  fullname: Jehle, Sina
  organization: University of Hohenheim
– sequence: 5
  givenname: Eva
  surname: Kienhöfer
  fullname: Kienhöfer, Eva
  organization: University of Hohenheim
– sequence: 6
  givenname: Reinhard
  surname: Waehler
  fullname: Waehler, Reinhard
  organization: TISSO Naturprodukte GmbH
– sequence: 7
  givenname: Günther
  surname: Adler
  fullname: Adler, Günther
  organization: University of Hohenheim
– sequence: 8
  givenname: Sascha
  surname: Venturelli
  fullname: Venturelli, Sascha
  organization: University of Hohenheim
– sequence: 9
  givenname: Jan
  orcidid: 0000-0002-7548-5829
  surname: Frank
  fullname: Frank, Jan
  email: jan.frank@nutres.de
  organization: University of Hohenheim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34665507$$D View this record in MEDLINE/PubMed
BookMark eNqFks1y0zAUhT1MGfoDW5aMZtiwSZAl2VbYhdBSz7SEaQpbjyzLqTqyFCQ5YFY8Au_GG_Ak3DQhi26ykjTznXN1z72nyZF1ViXJyxSPU4zJ2862fkwwgUee0ifJSQrHiKWUHu3vJDtOTkO4x5imhNFnyTFleZ5luDhJ_pRWeiWCtkv02YX499fvD3qpQtRrhRbO9LU2Og7ItWjWe9l32qIyoHin0DXgaNFLqUJoe4MW0YuolgOKDpXdyjtw0DGguRcGvddOrIU2Yuv3Dk3RjbCN6_RP1aCZdyFA6flaeXTrNQigzqUSJt4NaNr0BnwAR6VFX3X07sHvobLeffD8x0p53Skbw_PkaStMUC9251ny5eL8dnY5upp_LGfTq5FkENCINDmvGcGTDDOBpaQTTouCUPAVXLUNx0SRvOCE5gWZECnqjOZcKFaDnOeYniVvtr7Q67ceMqs6HaQyRljl-lCRnELKjLDsMJpxyljOOQf09SP03vXeQiNgmHJCWJGmQL3aUX3dqaZaQe_CD9X_yQIw3gJyk61X7R5JcbVZnWqzOtV-dUDAHgmkjiJqZ2Gu2hyUfddGDQeKVNefLm4YnlD6D2aH23o
CitedBy_id crossref_primary_10_1016_j_jddst_2024_105561
crossref_primary_10_1002_cbdv_202301556
crossref_primary_10_3390_ijms25084162
crossref_primary_10_1159_000521669
crossref_primary_10_3389_fphar_2022_863082
crossref_primary_10_1007_s11095_023_03500_5
crossref_primary_10_1002_slct_202304157
crossref_primary_10_1111_1750_3841_17162
crossref_primary_10_1039_D4FO03414G
crossref_primary_10_3390_cancers16142580
crossref_primary_10_2174_2211738511666230601105536
crossref_primary_10_26599_JFB_2024_95027389
crossref_primary_10_3390_antiox11061104
crossref_primary_10_3390_molecules30030457
crossref_primary_10_3390_nutraceuticals4040034
crossref_primary_10_3390_pharmaceutics16101302
crossref_primary_10_1080_10408398_2022_2092056
crossref_primary_10_1016_j_foodchem_2025_143630
crossref_primary_10_1021_acsptsci_2c00012
crossref_primary_10_1208_s12249_024_02845_3
crossref_primary_10_3390_ijms26020855
crossref_primary_10_1016_j_cofs_2022_100832
crossref_primary_10_1002_lemi_202359015
crossref_primary_10_3390_nu16213625
crossref_primary_10_1016_j_carbpol_2023_121500
crossref_primary_10_1016_j_ijbiomac_2024_132676
crossref_primary_10_1021_acs_jafc_3c04990
crossref_primary_10_3390_pharmaceutics14091918
crossref_primary_10_1002_open_202200200
crossref_primary_10_1002_biof_1828
crossref_primary_10_1002_mnfr_202200798
crossref_primary_10_1002_mnfr_202200139
crossref_primary_10_1093_bbb_zbac161
crossref_primary_10_1002_app_54822
crossref_primary_10_3390_antiox10111826
crossref_primary_10_3390_foods13142234
crossref_primary_10_3390_antiox11112149
Cites_doi 10.3177/jnsv.61.37
10.1055/s-2006-957450
10.1021/jf9024807
10.1248/bpb.34.660
10.4103/0250-474X.44591
10.3390/molecules21030264
10.1055/s-0043-100019
10.1158/1055-9965.EPI-07-2693
10.1089/jmf.2011.1845
10.1002/jcph.806
10.1007/s00394-016-1376-9
10.1093/jpp/rgaa073
10.1002/ptr.6749
10.1007/s10930-009-9184-1
10.1016/j.ejpb.2017.04.004
10.18632/aging.101149
10.1016/j.colsurfb.2015.05.056
10.1186/1475-2891-13-11
10.1016/j.ejpb.2010.12.006
10.1016/j.jcrc.2005.02.002
10.1038/nprot.2008.75
10.3390/molecules25061397
10.1016/j.bcp.2007.08.016
10.1021/np1007262
10.1016/j.ctim.2017.05.006
10.1002/mnfr.201300724
10.1021/acs.jafc.9b01417
10.1021/jf201451m
10.3390/nu12061678
10.1039/c2lc41215b
10.1039/c3sm27527b
10.1177/0269881114552744
10.15403/jgld-179
10.1016/j.jff.2015.01.045
10.1021/acs.jafc.8b03174
10.1016/j.jconrel.2007.07.018
10.1021/mp700113r
10.1039/C7FO01242J
10.1016/j.tiv.2005.03.006
10.3390/nu11092147
10.1002/mnfr.201100741
10.1186/1472-6882-6-10
10.1002/ptr.5931
10.1208/s12248-016-0003-2
10.1016/j.joim.2018.07.001
10.1021/mp500210c
10.1080/10717540490280769
10.1016/j.bbacli.2016.02.003
10.1093/jn/nxab087
10.1002/mnfr.201501034
10.1080/07315724.2017.1358118
10.1016/j.biopha.2017.01.157
10.1007/s00280-011-1673-1
ContentType Journal Article
Copyright 2021 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH GmbH
2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7T5
7T7
7TK
8FD
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
DOI 10.1002/mnfr.202100613
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage n/a
ExternalDocumentID 34665507
10_1002_mnfr_202100613
MNFR4093
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7QP
7T5
7T7
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c4413-2d68b4209504a0cc39837723acca8efd802e26782367292cab5368ae4b4418603
IEDL.DBID 24P
ISSN 1613-4125
1613-4133
IngestDate Fri Jul 11 18:29:54 EDT 2025
Fri Jul 11 16:13:49 EDT 2025
Wed Aug 13 06:56:59 EDT 2025
Wed Feb 19 02:27:04 EST 2025
Tue Jul 01 04:01:50 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Wed Jan 22 17:22:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords pharmacokinetics
dose-normalization
apparent permeability coefficient
curcumin formulations
in vitro digestion
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4413-2d68b4209504a0cc39837723acca8efd802e26782367292cab5368ae4b4418603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-7548-5829
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202100613
PMID 34665507
PQID 2618224711
PQPubID 2045123
PageCount 10
ParticipantIDs proquest_miscellaneous_2636554245
proquest_miscellaneous_2583446888
proquest_journals_2618224711
pubmed_primary_34665507
crossref_primary_10_1002_mnfr_202100613
crossref_citationtrail_10_1002_mnfr_202100613
wiley_primary_10_1002_mnfr_202100613_MNFR4093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol Nutr Food Res
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2015; 14
2017 2020; 33 34
2010; 58
2002; 11
2008; 17
2017 2016 2020 2015; 9 5 12 29
2011; 74
2011; 77
2005; 20
2006; 6
2007 2019 2017; 4 11 19
2011; 34
2011; 59
2008; 3
2012; 15
2018; 66
2008; 70
1998; 64
2021; 73
2013; 9
2017; 117
2001; 21
2009; 28
2004; 11
2018; 9
2017; 31
2005; 19
2001; 7
2013; 13
2015; 61
2015; 133
2019; 67
2017; 57
2014; 58
2021; 151
2013 2003 2008 2016; 57 23 75 21
2014; 13
2020; 25
2010; 131
2016; 60
2012; 69
2007 2017; 123 88
2018; 16
2017 2019 2010; 67 28 15
2018; 37
2014; 11
2018; 57
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
Sharma R. A. (e_1_2_9_7_1) 2001; 7
e_1_2_9_37_2
e_1_2_9_14_1
Karimi N. (e_1_2_9_29_1) 2015; 2
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_2_4
Aggarwal B. B. (e_1_2_9_2_2) 2003; 23
e_1_2_9_2_3
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
Suresh D. (e_1_2_9_31_1) 2010; 131
e_1_2_9_47_1
e_1_2_9_26_2
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_32_3
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_32_2
Cheng A. L. (e_1_2_9_33_1) 2001; 21
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Belcaro G. (e_1_2_9_26_3) 2010; 15
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_2
e_1_2_9_25_1
e_1_2_9_25_4
e_1_2_9_27_2
e_1_2_9_25_3
e_1_2_9_27_1
e_1_2_9_48_1
Ireson C. R. (e_1_2_9_3_1) 2002; 11
References_xml – volume: 58
  start-page: 516
  year: 2014
  publication-title: Mol. Nutr. Food Res.
– volume: 66
  year: 2018
  publication-title: J. Agric. Food Chem.
– volume: 21
  start-page: 2895
  year: 2001
  publication-title: Anticancer Res.
– volume: 123 88
  start-page: 78 1122
  year: 2007 2017
  publication-title: J. Controlled Release Biomed. Pharmacother.
– volume: 69
  start-page: 65
  year: 2012
  publication-title: Cancer Chemother. Pharmacol.
– volume: 11
  start-page: 105
  year: 2002
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 16
  start-page: 367
  year: 2018
  publication-title: J. Integr. Med.
– volume: 67
  start-page: 5792
  year: 2019
  publication-title: J. Agric. Food Chem.
– volume: 28
  start-page: 189
  year: 2009
  publication-title: Protein J.
– volume: 13
  start-page: 11
  year: 2014
  publication-title: Nutr. J.
– volume: 11
  start-page: 3039
  year: 2014
  publication-title: Mol. Pharmaceutics
– volume: 74
  start-page: 664
  year: 2011
  publication-title: J. Nat. Prod.
– volume: 11
  start-page: 123
  year: 2004
  publication-title: Drug Deliv.
– volume: 60
  start-page: 1555
  year: 2016
  publication-title: Mol. Nutr. Food Res.
– volume: 15
  start-page: 242
  year: 2012
  publication-title: J. Med. Food
– volume: 31
  start-page: 1883
  year: 2017
  publication-title: Phytother. Res.
– volume: 151
  start-page: 1802
  year: 2021
  publication-title: J. Nutr.
– volume: 67 28 15
  start-page: 244 183 337
  year: 2017 2019 2010
  publication-title: Drug Res. (Stuttg) J. Gastrointestin. Liver Dis. Altern. Med. Rev.
– volume: 9
  start-page: 705
  year: 2018
  publication-title: Food Funct.
– volume: 9 5 12 29
  start-page: 187 72 1678 642
  year: 2017 2016 2020 2015
  publication-title: Aging (Albany NY) BBA Clin. Nutrients J. Psychopharmacol.
– volume: 14
  start-page: 183
  year: 2015
  publication-title: Journal of Functional Foods
– volume: 59
  start-page: 9120
  year: 2011
  publication-title: J. Agric. Food Chem.
– volume: 117
  start-page: 123
  year: 2017
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 37
  start-page: 51
  year: 2018
  publication-title: J. Am. Coll. Nutr.
– volume: 33 34
  start-page: 1 3180
  year: 2017 2020
  publication-title: Complement. Therap. Med. Phytother. Res.
– volume: 61
  start-page: 37
  year: 2015
  publication-title: J. Nutr. Sci. Vitaminol.
– volume: 77
  start-page: 275
  year: 2011
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 57
  start-page: 929
  year: 2018
  publication-title: Eur. J. Nutr.
– volume: 6
  start-page: 10
  year: 2006
  publication-title: BMC Complement. Altern. Med.
– volume: 2
  start-page: 17
  year: 2015
  publication-title: Appl. Food Biotechnol.
– volume: 9
  start-page: 3147
  year: 2013
  publication-title: Soft Matter
– volume: 133
  start-page: 108
  year: 2015
  publication-title: Colloids Surf. B Biointerfaces
– volume: 70
  start-page: 445
  year: 2008
  publication-title: Indian J. Pharm. Sci.
– volume: 25
  start-page: 1397
  year: 2020
  publication-title: Molecules
– volume: 20
  start-page: 6
  year: 2005
  publication-title: J. Crit. Care
– volume: 73
  start-page: 641
  year: 2021
  publication-title: J. Pharm. Pharmacol.
– volume: 34
  start-page: 660
  year: 2011
  publication-title: Biol. Pharma. Bull.
– volume: 131
  start-page: 682
  year: 2010
  publication-title: Indian J. Med. Res.
– volume: 4 11 19
  start-page: 807 2147 54
  year: 2007 2019 2017
  publication-title: Mol. Pharmaceutics Nutrients AAPS J.
– volume: 57 23 75 21
  start-page: 1510 363 787 264
  year: 2013 2003 2008 2016
  publication-title: Mol. Nutr. Food Res. Anticancer Res. Biochem. Pharmacol. Molecules
– volume: 57
  start-page: 185
  year: 2017
  publication-title: J. Clin. Pharmacol.
– volume: 58
  start-page: 2095
  year: 2010
  publication-title: J. Agric. Food Chem.
– volume: 64
  start-page: 353
  year: 1998
  publication-title: Planta Med.
– volume: 7
  start-page: 1894
  year: 2001
  publication-title: Clin. Cancer Res.
– volume: 19
  start-page: 675
  year: 2005
  publication-title: Toxicol. In Vitro
– volume: 13
  start-page: 978
  year: 2013
  publication-title: Lab Chip
– volume: 3
  start-page: 1125
  year: 2008
  publication-title: Nat. Protoc.
– volume: 17
  start-page: 1411
  year: 2008
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– ident: e_1_2_9_23_1
  doi: 10.3177/jnsv.61.37
– volume: 7
  start-page: 1894
  year: 2001
  ident: e_1_2_9_7_1
  publication-title: Clin. Cancer Res.
– ident: e_1_2_9_6_1
  doi: 10.1055/s-2006-957450
– ident: e_1_2_9_10_1
  doi: 10.1021/jf9024807
– ident: e_1_2_9_13_1
  doi: 10.1248/bpb.34.660
– ident: e_1_2_9_30_1
  doi: 10.4103/0250-474X.44591
– ident: e_1_2_9_2_4
  doi: 10.3390/molecules21030264
– ident: e_1_2_9_26_1
  doi: 10.1055/s-0043-100019
– ident: e_1_2_9_4_1
  doi: 10.1158/1055-9965.EPI-07-2693
– ident: e_1_2_9_15_1
  doi: 10.1089/jmf.2011.1845
– ident: e_1_2_9_22_1
  doi: 10.1002/jcph.806
– ident: e_1_2_9_9_1
  doi: 10.1007/s00394-016-1376-9
– ident: e_1_2_9_28_1
  doi: 10.1093/jpp/rgaa073
– ident: e_1_2_9_27_2
  doi: 10.1002/ptr.6749
– ident: e_1_2_9_34_1
  doi: 10.1007/s10930-009-9184-1
– ident: e_1_2_9_42_1
  doi: 10.1016/j.ejpb.2017.04.004
– ident: e_1_2_9_25_1
  doi: 10.18632/aging.101149
– ident: e_1_2_9_41_1
  doi: 10.1016/j.colsurfb.2015.05.056
– ident: e_1_2_9_12_1
  doi: 10.1186/1475-2891-13-11
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ejpb.2010.12.006
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jcrc.2005.02.002
– ident: e_1_2_9_46_1
  doi: 10.1038/nprot.2008.75
– ident: e_1_2_9_19_1
  doi: 10.3390/molecules25061397
– ident: e_1_2_9_2_3
  doi: 10.1016/j.bcp.2007.08.016
– volume: 21
  start-page: 2895
  year: 2001
  ident: e_1_2_9_33_1
  publication-title: Anticancer Res.
– ident: e_1_2_9_11_1
  doi: 10.1021/np1007262
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ctim.2017.05.006
– ident: e_1_2_9_8_1
  doi: 10.1002/mnfr.201300724
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.jafc.9b01417
– ident: e_1_2_9_43_1
  doi: 10.1021/jf201451m
– ident: e_1_2_9_25_3
  doi: 10.3390/nu12061678
– ident: e_1_2_9_39_1
  doi: 10.1039/c2lc41215b
– ident: e_1_2_9_35_1
  doi: 10.1039/c3sm27527b
– ident: e_1_2_9_25_4
  doi: 10.1177/0269881114552744
– ident: e_1_2_9_26_2
  doi: 10.15403/jgld-179
– volume: 15
  start-page: 337
  year: 2010
  ident: e_1_2_9_26_3
  publication-title: Altern. Med. Rev.
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jff.2015.01.045
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.jafc.8b03174
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jconrel.2007.07.018
– ident: e_1_2_9_32_1
  doi: 10.1021/mp700113r
– ident: e_1_2_9_1_1
  doi: 10.1039/C7FO01242J
– ident: e_1_2_9_47_1
  doi: 10.1016/j.tiv.2005.03.006
– volume: 131
  start-page: 682
  year: 2010
  ident: e_1_2_9_31_1
  publication-title: Indian J. Med. Res.
– ident: e_1_2_9_32_2
  doi: 10.3390/nu11092147
– ident: e_1_2_9_2_1
  doi: 10.1002/mnfr.201100741
– volume: 23
  start-page: 363
  year: 2003
  ident: e_1_2_9_2_2
  publication-title: Anticancer Res.
– volume: 2
  start-page: 17
  year: 2015
  ident: e_1_2_9_29_1
  publication-title: Appl. Food Biotechnol.
– volume: 11
  start-page: 105
  year: 2002
  ident: e_1_2_9_3_1
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– ident: e_1_2_9_5_1
  doi: 10.1186/1472-6882-6-10
– ident: e_1_2_9_16_1
  doi: 10.1002/ptr.5931
– ident: e_1_2_9_32_3
  doi: 10.1208/s12248-016-0003-2
– ident: e_1_2_9_17_1
  doi: 10.1016/j.joim.2018.07.001
– ident: e_1_2_9_44_1
  doi: 10.1021/mp500210c
– ident: e_1_2_9_38_1
  doi: 10.1080/10717540490280769
– ident: e_1_2_9_25_2
  doi: 10.1016/j.bbacli.2016.02.003
– ident: e_1_2_9_20_1
  doi: 10.1093/jn/nxab087
– ident: e_1_2_9_24_1
  doi: 10.1002/mnfr.201501034
– ident: e_1_2_9_18_1
  doi: 10.1080/07315724.2017.1358118
– ident: e_1_2_9_37_2
  doi: 10.1016/j.biopha.2017.01.157
– ident: e_1_2_9_14_1
  doi: 10.1007/s00280-011-1673-1
SSID ssj0031243
Score 2.496835
Snippet Scope Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans....
Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. In a...
ScopeDifferent mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.Methods...
Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in...
SCOPE: Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100613
SubjectTerms Absorptivity
Adjuvants
Adult
Adults
apparent permeability coefficient
Bioavailability
Biological Availability
Biotransformation
Caco-2 Cells
Cross-Over Studies
Curcuma
Curcumin
curcumin formulations
Cyclodextrin
Cyclodextrins
dose‐normalization
food research
human cell lines
Humans
in vitro digestion
Micelles
nutrition
Pharmacokinetics
Piperine
Solubility
Stability
turmeric
Title Increasing Post‐Digestive Solubility of Curcumin Is the Most Successful Strategy to Improve its Oral Bioavailability: A Randomized Cross‐Over Trial in Healthy Adults and In Vitro Bioaccessibility Experiments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202100613
https://www.ncbi.nlm.nih.gov/pubmed/34665507
https://www.proquest.com/docview/2618224711
https://www.proquest.com/docview/2583446888
https://www.proquest.com/docview/2636554245
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZguXBB_BNY0CAhOEWb2k6acivdrXaRtovKLtpbZCeOFKlNUJOs1D3xCLwbb8CTMGMngQoB4hJV6cTjyB7PN874G8ZeYYisdYZhSTrKjS8zTpS3xvh6jP5HS2KUslm-i-j4Qr6_DC9_OcXv-CGGDTeyDLtek4ErXR_8JA1dlznxeWLIQi7pJrtF52tppnP5oV-LBXovm2KPEr5EtT1tY8APdp_fdUu_Yc1d6Gp9z_wuu9OBRpi6Ub7HbpjyPvMOC9PAa-iYPVew6In1H7BvaPaUbY5-Cagc7_cvX92XJFzbgHbCbErsFqocZu0mbddFCSc1IBiEUxSHj62to5i3K-joa7fQVOB2IAwUTQ1nG1T5rqjUlSpWjux7-xamsFRlVq2La5PBjF4VVZ-hucA5zXRAPe7g0xamxPxRA4rDSQmfimZT2fas5qLr4NFQgKB-yC7mR-ezY78r3-CniLGEz7Mo1pIjhgukCtJUTDAYHnOB7ajY5FkccMPRVxKHHJ_wVOlQRLEyUuPjcRSIR2yvrErzhIEOzZiAGzY5kRIjphx_IFjMUSzOA-4xvx-9JO24zanExipxrMw8odFOhtH22JtB_rNj9fij5H4_GZLOuusEo05Kvh2PRh57OfyNdkkfW1RpqhZlQqpgEsVx_BeZSEQI57gMPfbYTbShO0JGEXHN4avZmfePfiani_kSY3Xx9D_ln7HbdNNl6OyzvWbTmueIsxr9wpoSXg-X_Ad__SR0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELbY5cBe0PIfdoFBQnCKNnUcJ-VWylYtbLto6SJuUX4cKVKboCZBKicegXfjDXgSZuwkqEKw2lulfrGd2OP5xpl8w9gLDJHjOMWwJBlkyhYpJ8lbpezYR_8TC1KU0lm-Czm9FO8-e102IX0LY_Qh-gM3sgy9X5OB04H0yR_V0HWRkaAnxizkk_bYTSG5T9UbuPjQbcYuui-dY48IW2C_nW6jw092r9_1S3-RzV3uqp3P5JDdblkjjMw032E3VHGXWW9zVcNLaKU9V7DolPXvsZ9o95Rujo4JqB7vr-8_zKsk3NyAjsJ0TuwWygzGzSZp1nkBswqQDcIc4fCx0YUU8VlAq1-7hboEcwShIK8rON9gl2_yMvoa5Suj9r19DSO4iIq0XOffVApjulXs-hztBZa01AH7MV8-bWFE0h8VIBxmBXzK602p29M95-0AT_sKBNV9djk5XY6ndlu_wU6QZLk2T2UQC44kzhGRkyTuEKNhn7vYThSoLA0crjg6SxKR40OeRLHnyiBSIsbLA-m4D9h-URbqEYPYUz4xN2xyKASGTBn-QLaYISzIHG4xu5u9MGnFzanGxio0ssw8pNkO-9m22Kse_8XIevwTedwthrA17yrEsJOyb_3BwGLP-7_RMOltS1SoskGMRyVMZBAE_8FIVyKf48Kz2EOz0PrhuEJKEpvDW9Mr74pxhvPF5AKDdffxNfHP2K3pcn4Wns0W74_YAQFMus4x2683jXqCpKuOn2qz-g1Xoyb3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSIgL4p9AgUFCcIqadRxvtrfttqsu0G1VWtRbFCeOFGk3qTYJ0nLiEfpuvAFP0hk7CawQIG6RMvGPPOP5xp58w9gbDJGVSjEsSQaZdkXKifJWa1cN0f8oQYxSJst3Lg_PxfuL4OKXv_gtP0R_4EaWYfZrMvDLNNv5SRq6LDLi88SQhVzSTXaLbvxIx7k46fZiH72XSbFHCVdgtx1to8d3Nr_fdEu_Yc1N6Gp8z_Qeu9uCRhjbVb7PbujiAXP2c13DW2iZPRcw74j1H7LvaPaUbY5-Cagc749vV_YmCfc2oJMwkxK7hjKDSbNKmmVewKwCBINwhOLwqTF1FLNmAS197RrqEuwJhIa8ruB4hV3u5WX8Jc4Xlux7vQtjOI2LtFzmX3UKE5oqdn2M5gJnpOmA_dgfn9YwJuaPClAcZgV8zutVadozPeftAA_6AgTVI3Y-PTibHLpt-QY3QYzluzyVoRIcMZwnYi9J_BEGw0PuYztxqLM09Ljm6CuJQ46PeBKrwJdhrIXCz0Pp-Y_ZVlEW-ikDFeghATdsciQERkwZPiBYzFAszDzuMLdbvShpuc2pxMYisqzMPKLVjvrVdti7Xv7Ssnr8UXK7U4aote4qwqiTkm-Hg4HDXvev0S7psiUudNmgTEAVTGQYhn-Rkb5EOMdF4LAnVtH64fhCSuKaw6kZzfvHOKOj-fQUY3X_2X_Kv2K3T_an0cfZ_MNzdofe22SdbbZVrxr9AiFXrV4aq7oGgE8mKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+Post%E2%80%90Digestive+Solubility+of+Curcumin+Is+the+Most+Successful+Strategy+to+Improve+its+Oral+Bioavailability%3A+A+Randomized+Cross%E2%80%90Over+Trial+in+Healthy+Adults+and+In+Vitro+Bioaccessibility+Experiments&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Flory%2C+Sandra&rft.au=Sus%2C+Nadine&rft.au=Haas%2C+Kathrin&rft.au=Jehle%2C+Sina&rft.date=2021-12-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=65&rft.issue=24&rft_id=info:doi/10.1002%2Fmnfr.202100613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mnfr_202100613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon