Increasing Post‐Digestive Solubility of Curcumin Is the Most Successful Strategy to Improve its Oral Bioavailability: A Randomized Cross‐Over Trial in Healthy Adults and In Vitro Bioaccessibility Experiments
Scope Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. Methods and Results In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg cu...
Saved in:
Published in | Molecular nutrition & food research Vol. 65; no. 24; pp. e2100613 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 1613-4133 |
DOI | 10.1002/mnfr.202100613 |
Cover
Loading…
Abstract | Scope
Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.
Methods and Results
In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly.
Conclusion
The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective.
Pharmacokinetics of 207 mg curcumin from seven different formulations with intended improved bioavailability were compared to identical doses of native curcumin in healthy adults. Curcumin incorporated into micelles or γ‐cylcodextrin complexes showed higher bioavailability in vivo and improved solubility and micellization efficiency after in vitro digestion. Curcumin permeability through Caco‐2 cell monolayers is not affected by its formulation. |
---|---|
AbstractList | Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.
In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly.
The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective. Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.SCOPEDifferent mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly.METHODS AND RESULTSIn a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly.The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.CONCLUSIONThe improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective. Scope Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. Methods and Results In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly. Conclusion The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective. Pharmacokinetics of 207 mg curcumin from seven different formulations with intended improved bioavailability were compared to identical doses of native curcumin in healthy adults. Curcumin incorporated into micelles or γ‐cylcodextrin complexes showed higher bioavailability in vivo and improved solubility and micellization efficiency after in vitro digestion. Curcumin permeability through Caco‐2 cell monolayers is not affected by its formulation. SCOPE: Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. METHODS AND RESULTS: In a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly. CONCLUSION: The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective. ScopeDifferent mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.Methods and ResultsIn a randomized, double‐blind, cross‐over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron‐particles, phytosomes, γ‐cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57‐fold) and the curcumin‐γ‐cyclodextrin complex (30‐fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin‐γ‐cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco‐2 cell monolayers of curcumin from the digested mixed‐micellar fractions did not differ significantly.ConclusionThe improved oral bioavailability of micellar curcumin, and to a lesser extent of γ‐cyclodextrin curcumin complexes, appears to be facilitated by increased post‐digestive stability and solubility, whereas strategies targeting post‐absorptive processes, including inhibition of biotransformation, appear ineffective. |
Author | Frank, Jan Kienhöfer, Eva Flory, Sandra Jehle, Sina Haas, Kathrin Sus, Nadine Adler, Günther Waehler, Reinhard Venturelli, Sascha |
Author_xml | – sequence: 1 givenname: Sandra surname: Flory fullname: Flory, Sandra organization: University of Hohenheim – sequence: 2 givenname: Nadine surname: Sus fullname: Sus, Nadine organization: University of Hohenheim – sequence: 3 givenname: Kathrin surname: Haas fullname: Haas, Kathrin organization: University of Hohenheim – sequence: 4 givenname: Sina surname: Jehle fullname: Jehle, Sina organization: University of Hohenheim – sequence: 5 givenname: Eva surname: Kienhöfer fullname: Kienhöfer, Eva organization: University of Hohenheim – sequence: 6 givenname: Reinhard surname: Waehler fullname: Waehler, Reinhard organization: TISSO Naturprodukte GmbH – sequence: 7 givenname: Günther surname: Adler fullname: Adler, Günther organization: University of Hohenheim – sequence: 8 givenname: Sascha surname: Venturelli fullname: Venturelli, Sascha organization: University of Hohenheim – sequence: 9 givenname: Jan orcidid: 0000-0002-7548-5829 surname: Frank fullname: Frank, Jan email: jan.frank@nutres.de organization: University of Hohenheim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34665507$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1y0zAUhT1MGfoDW5aMZtiwSZAl2VbYhdBSz7SEaQpbjyzLqTqyFCQ5YFY8Au_GG_Ak3DQhi26ykjTznXN1z72nyZF1ViXJyxSPU4zJ2862fkwwgUee0ifJSQrHiKWUHu3vJDtOTkO4x5imhNFnyTFleZ5luDhJ_pRWeiWCtkv02YX499fvD3qpQtRrhRbO9LU2Og7ItWjWe9l32qIyoHin0DXgaNFLqUJoe4MW0YuolgOKDpXdyjtw0DGguRcGvddOrIU2Yuv3Dk3RjbCN6_RP1aCZdyFA6flaeXTrNQigzqUSJt4NaNr0BnwAR6VFX3X07sHvobLeffD8x0p53Skbw_PkaStMUC9251ny5eL8dnY5upp_LGfTq5FkENCINDmvGcGTDDOBpaQTTouCUPAVXLUNx0SRvOCE5gWZECnqjOZcKFaDnOeYniVvtr7Q67ceMqs6HaQyRljl-lCRnELKjLDsMJpxyljOOQf09SP03vXeQiNgmHJCWJGmQL3aUX3dqaZaQe_CD9X_yQIw3gJyk61X7R5JcbVZnWqzOtV-dUDAHgmkjiJqZ2Gu2hyUfddGDQeKVNefLm4YnlD6D2aH23o |
CitedBy_id | crossref_primary_10_1016_j_jddst_2024_105561 crossref_primary_10_1002_cbdv_202301556 crossref_primary_10_3390_ijms25084162 crossref_primary_10_1159_000521669 crossref_primary_10_3389_fphar_2022_863082 crossref_primary_10_1007_s11095_023_03500_5 crossref_primary_10_1002_slct_202304157 crossref_primary_10_1111_1750_3841_17162 crossref_primary_10_1039_D4FO03414G crossref_primary_10_3390_cancers16142580 crossref_primary_10_2174_2211738511666230601105536 crossref_primary_10_26599_JFB_2024_95027389 crossref_primary_10_3390_antiox11061104 crossref_primary_10_3390_molecules30030457 crossref_primary_10_3390_nutraceuticals4040034 crossref_primary_10_3390_pharmaceutics16101302 crossref_primary_10_1080_10408398_2022_2092056 crossref_primary_10_1016_j_foodchem_2025_143630 crossref_primary_10_1021_acsptsci_2c00012 crossref_primary_10_1208_s12249_024_02845_3 crossref_primary_10_3390_ijms26020855 crossref_primary_10_1016_j_cofs_2022_100832 crossref_primary_10_1002_lemi_202359015 crossref_primary_10_3390_nu16213625 crossref_primary_10_1016_j_carbpol_2023_121500 crossref_primary_10_1016_j_ijbiomac_2024_132676 crossref_primary_10_1021_acs_jafc_3c04990 crossref_primary_10_3390_pharmaceutics14091918 crossref_primary_10_1002_open_202200200 crossref_primary_10_1002_biof_1828 crossref_primary_10_1002_mnfr_202200798 crossref_primary_10_1002_mnfr_202200139 crossref_primary_10_1093_bbb_zbac161 crossref_primary_10_1002_app_54822 crossref_primary_10_3390_antiox10111826 crossref_primary_10_3390_foods13142234 crossref_primary_10_3390_antiox11112149 |
Cites_doi | 10.3177/jnsv.61.37 10.1055/s-2006-957450 10.1021/jf9024807 10.1248/bpb.34.660 10.4103/0250-474X.44591 10.3390/molecules21030264 10.1055/s-0043-100019 10.1158/1055-9965.EPI-07-2693 10.1089/jmf.2011.1845 10.1002/jcph.806 10.1007/s00394-016-1376-9 10.1093/jpp/rgaa073 10.1002/ptr.6749 10.1007/s10930-009-9184-1 10.1016/j.ejpb.2017.04.004 10.18632/aging.101149 10.1016/j.colsurfb.2015.05.056 10.1186/1475-2891-13-11 10.1016/j.ejpb.2010.12.006 10.1016/j.jcrc.2005.02.002 10.1038/nprot.2008.75 10.3390/molecules25061397 10.1016/j.bcp.2007.08.016 10.1021/np1007262 10.1016/j.ctim.2017.05.006 10.1002/mnfr.201300724 10.1021/acs.jafc.9b01417 10.1021/jf201451m 10.3390/nu12061678 10.1039/c2lc41215b 10.1039/c3sm27527b 10.1177/0269881114552744 10.15403/jgld-179 10.1016/j.jff.2015.01.045 10.1021/acs.jafc.8b03174 10.1016/j.jconrel.2007.07.018 10.1021/mp700113r 10.1039/C7FO01242J 10.1016/j.tiv.2005.03.006 10.3390/nu11092147 10.1002/mnfr.201100741 10.1186/1472-6882-6-10 10.1002/ptr.5931 10.1208/s12248-016-0003-2 10.1016/j.joim.2018.07.001 10.1021/mp500210c 10.1080/10717540490280769 10.1016/j.bbacli.2016.02.003 10.1093/jn/nxab087 10.1002/mnfr.201501034 10.1080/07315724.2017.1358118 10.1016/j.biopha.2017.01.157 10.1007/s00280-011-1673-1 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH GmbH 2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH GmbH – notice: 2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7T5 7T7 7TK 8FD C1K FR3 H94 K9. NAPCQ P64 7X8 7S9 L.6 |
DOI | 10.1002/mnfr.202100613 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | n/a |
ExternalDocumentID | 34665507 10_1002_mnfr_202100613 MNFR4093 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7QP 7T5 7T7 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. NAPCQ P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4413-2d68b4209504a0cc39837723acca8efd802e26782367292cab5368ae4b4418603 |
IEDL.DBID | 24P |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Jul 11 18:29:54 EDT 2025 Fri Jul 11 16:13:49 EDT 2025 Wed Aug 13 06:56:59 EDT 2025 Wed Feb 19 02:27:04 EST 2025 Tue Jul 01 04:01:50 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 Wed Jan 22 17:22:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | pharmacokinetics dose-normalization apparent permeability coefficient curcumin formulations in vitro digestion |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4413-2d68b4209504a0cc39837723acca8efd802e26782367292cab5368ae4b4418603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-7548-5829 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202100613 |
PMID | 34665507 |
PQID | 2618224711 |
PQPubID | 2045123 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636554245 proquest_miscellaneous_2583446888 proquest_journals_2618224711 pubmed_primary_34665507 crossref_primary_10_1002_mnfr_202100613 crossref_citationtrail_10_1002_mnfr_202100613 wiley_primary_10_1002_mnfr_202100613_MNFR4093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol Nutr Food Res |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2015; 14 2017 2020; 33 34 2010; 58 2002; 11 2008; 17 2017 2016 2020 2015; 9 5 12 29 2011; 74 2011; 77 2005; 20 2006; 6 2007 2019 2017; 4 11 19 2011; 34 2011; 59 2008; 3 2012; 15 2018; 66 2008; 70 1998; 64 2021; 73 2013; 9 2017; 117 2001; 21 2009; 28 2004; 11 2018; 9 2017; 31 2005; 19 2001; 7 2013; 13 2015; 61 2015; 133 2019; 67 2017; 57 2014; 58 2021; 151 2013 2003 2008 2016; 57 23 75 21 2014; 13 2020; 25 2010; 131 2016; 60 2012; 69 2007 2017; 123 88 2018; 16 2017 2019 2010; 67 28 15 2018; 37 2014; 11 2018; 57 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 Sharma R. A. (e_1_2_9_7_1) 2001; 7 e_1_2_9_37_2 e_1_2_9_14_1 Karimi N. (e_1_2_9_29_1) 2015; 2 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_2_4 Aggarwal B. B. (e_1_2_9_2_2) 2003; 23 e_1_2_9_2_3 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 Suresh D. (e_1_2_9_31_1) 2010; 131 e_1_2_9_47_1 e_1_2_9_26_2 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_32_3 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_32_2 Cheng A. L. (e_1_2_9_33_1) 2001; 21 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Belcaro G. (e_1_2_9_26_3) 2010; 15 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_2 e_1_2_9_25_1 e_1_2_9_25_4 e_1_2_9_27_2 e_1_2_9_25_3 e_1_2_9_27_1 e_1_2_9_48_1 Ireson C. R. (e_1_2_9_3_1) 2002; 11 |
References_xml | – volume: 58 start-page: 516 year: 2014 publication-title: Mol. Nutr. Food Res. – volume: 66 year: 2018 publication-title: J. Agric. Food Chem. – volume: 21 start-page: 2895 year: 2001 publication-title: Anticancer Res. – volume: 123 88 start-page: 78 1122 year: 2007 2017 publication-title: J. Controlled Release Biomed. Pharmacother. – volume: 69 start-page: 65 year: 2012 publication-title: Cancer Chemother. Pharmacol. – volume: 11 start-page: 105 year: 2002 publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 16 start-page: 367 year: 2018 publication-title: J. Integr. Med. – volume: 67 start-page: 5792 year: 2019 publication-title: J. Agric. Food Chem. – volume: 28 start-page: 189 year: 2009 publication-title: Protein J. – volume: 13 start-page: 11 year: 2014 publication-title: Nutr. J. – volume: 11 start-page: 3039 year: 2014 publication-title: Mol. Pharmaceutics – volume: 74 start-page: 664 year: 2011 publication-title: J. Nat. Prod. – volume: 11 start-page: 123 year: 2004 publication-title: Drug Deliv. – volume: 60 start-page: 1555 year: 2016 publication-title: Mol. Nutr. Food Res. – volume: 15 start-page: 242 year: 2012 publication-title: J. Med. Food – volume: 31 start-page: 1883 year: 2017 publication-title: Phytother. Res. – volume: 151 start-page: 1802 year: 2021 publication-title: J. Nutr. – volume: 67 28 15 start-page: 244 183 337 year: 2017 2019 2010 publication-title: Drug Res. (Stuttg) J. Gastrointestin. Liver Dis. Altern. Med. Rev. – volume: 9 start-page: 705 year: 2018 publication-title: Food Funct. – volume: 9 5 12 29 start-page: 187 72 1678 642 year: 2017 2016 2020 2015 publication-title: Aging (Albany NY) BBA Clin. Nutrients J. Psychopharmacol. – volume: 14 start-page: 183 year: 2015 publication-title: Journal of Functional Foods – volume: 59 start-page: 9120 year: 2011 publication-title: J. Agric. Food Chem. – volume: 117 start-page: 123 year: 2017 publication-title: Eur. J. Pharm. Biopharm. – volume: 37 start-page: 51 year: 2018 publication-title: J. Am. Coll. Nutr. – volume: 33 34 start-page: 1 3180 year: 2017 2020 publication-title: Complement. Therap. Med. Phytother. Res. – volume: 61 start-page: 37 year: 2015 publication-title: J. Nutr. Sci. Vitaminol. – volume: 77 start-page: 275 year: 2011 publication-title: Eur. J. Pharm. Biopharm. – volume: 57 start-page: 929 year: 2018 publication-title: Eur. J. Nutr. – volume: 6 start-page: 10 year: 2006 publication-title: BMC Complement. Altern. Med. – volume: 2 start-page: 17 year: 2015 publication-title: Appl. Food Biotechnol. – volume: 9 start-page: 3147 year: 2013 publication-title: Soft Matter – volume: 133 start-page: 108 year: 2015 publication-title: Colloids Surf. B Biointerfaces – volume: 70 start-page: 445 year: 2008 publication-title: Indian J. Pharm. Sci. – volume: 25 start-page: 1397 year: 2020 publication-title: Molecules – volume: 20 start-page: 6 year: 2005 publication-title: J. Crit. Care – volume: 73 start-page: 641 year: 2021 publication-title: J. Pharm. Pharmacol. – volume: 34 start-page: 660 year: 2011 publication-title: Biol. Pharma. Bull. – volume: 131 start-page: 682 year: 2010 publication-title: Indian J. Med. Res. – volume: 4 11 19 start-page: 807 2147 54 year: 2007 2019 2017 publication-title: Mol. Pharmaceutics Nutrients AAPS J. – volume: 57 23 75 21 start-page: 1510 363 787 264 year: 2013 2003 2008 2016 publication-title: Mol. Nutr. Food Res. Anticancer Res. Biochem. Pharmacol. Molecules – volume: 57 start-page: 185 year: 2017 publication-title: J. Clin. Pharmacol. – volume: 58 start-page: 2095 year: 2010 publication-title: J. Agric. Food Chem. – volume: 64 start-page: 353 year: 1998 publication-title: Planta Med. – volume: 7 start-page: 1894 year: 2001 publication-title: Clin. Cancer Res. – volume: 19 start-page: 675 year: 2005 publication-title: Toxicol. In Vitro – volume: 13 start-page: 978 year: 2013 publication-title: Lab Chip – volume: 3 start-page: 1125 year: 2008 publication-title: Nat. Protoc. – volume: 17 start-page: 1411 year: 2008 publication-title: Cancer Epidemiol. Biomarkers Prev. – ident: e_1_2_9_23_1 doi: 10.3177/jnsv.61.37 – volume: 7 start-page: 1894 year: 2001 ident: e_1_2_9_7_1 publication-title: Clin. Cancer Res. – ident: e_1_2_9_6_1 doi: 10.1055/s-2006-957450 – ident: e_1_2_9_10_1 doi: 10.1021/jf9024807 – ident: e_1_2_9_13_1 doi: 10.1248/bpb.34.660 – ident: e_1_2_9_30_1 doi: 10.4103/0250-474X.44591 – ident: e_1_2_9_2_4 doi: 10.3390/molecules21030264 – ident: e_1_2_9_26_1 doi: 10.1055/s-0043-100019 – ident: e_1_2_9_4_1 doi: 10.1158/1055-9965.EPI-07-2693 – ident: e_1_2_9_15_1 doi: 10.1089/jmf.2011.1845 – ident: e_1_2_9_22_1 doi: 10.1002/jcph.806 – ident: e_1_2_9_9_1 doi: 10.1007/s00394-016-1376-9 – ident: e_1_2_9_28_1 doi: 10.1093/jpp/rgaa073 – ident: e_1_2_9_27_2 doi: 10.1002/ptr.6749 – ident: e_1_2_9_34_1 doi: 10.1007/s10930-009-9184-1 – ident: e_1_2_9_42_1 doi: 10.1016/j.ejpb.2017.04.004 – ident: e_1_2_9_25_1 doi: 10.18632/aging.101149 – ident: e_1_2_9_41_1 doi: 10.1016/j.colsurfb.2015.05.056 – ident: e_1_2_9_12_1 doi: 10.1186/1475-2891-13-11 – ident: e_1_2_9_40_1 doi: 10.1016/j.ejpb.2010.12.006 – ident: e_1_2_9_48_1 doi: 10.1016/j.jcrc.2005.02.002 – ident: e_1_2_9_46_1 doi: 10.1038/nprot.2008.75 – ident: e_1_2_9_19_1 doi: 10.3390/molecules25061397 – ident: e_1_2_9_2_3 doi: 10.1016/j.bcp.2007.08.016 – volume: 21 start-page: 2895 year: 2001 ident: e_1_2_9_33_1 publication-title: Anticancer Res. – ident: e_1_2_9_11_1 doi: 10.1021/np1007262 – ident: e_1_2_9_27_1 doi: 10.1016/j.ctim.2017.05.006 – ident: e_1_2_9_8_1 doi: 10.1002/mnfr.201300724 – ident: e_1_2_9_45_1 doi: 10.1021/acs.jafc.9b01417 – ident: e_1_2_9_43_1 doi: 10.1021/jf201451m – ident: e_1_2_9_25_3 doi: 10.3390/nu12061678 – ident: e_1_2_9_39_1 doi: 10.1039/c2lc41215b – ident: e_1_2_9_35_1 doi: 10.1039/c3sm27527b – ident: e_1_2_9_25_4 doi: 10.1177/0269881114552744 – ident: e_1_2_9_26_2 doi: 10.15403/jgld-179 – volume: 15 start-page: 337 year: 2010 ident: e_1_2_9_26_3 publication-title: Altern. Med. Rev. – ident: e_1_2_9_21_1 doi: 10.1016/j.jff.2015.01.045 – ident: e_1_2_9_36_1 doi: 10.1021/acs.jafc.8b03174 – ident: e_1_2_9_37_1 doi: 10.1016/j.jconrel.2007.07.018 – ident: e_1_2_9_32_1 doi: 10.1021/mp700113r – ident: e_1_2_9_1_1 doi: 10.1039/C7FO01242J – ident: e_1_2_9_47_1 doi: 10.1016/j.tiv.2005.03.006 – volume: 131 start-page: 682 year: 2010 ident: e_1_2_9_31_1 publication-title: Indian J. Med. Res. – ident: e_1_2_9_32_2 doi: 10.3390/nu11092147 – ident: e_1_2_9_2_1 doi: 10.1002/mnfr.201100741 – volume: 23 start-page: 363 year: 2003 ident: e_1_2_9_2_2 publication-title: Anticancer Res. – volume: 2 start-page: 17 year: 2015 ident: e_1_2_9_29_1 publication-title: Appl. Food Biotechnol. – volume: 11 start-page: 105 year: 2002 ident: e_1_2_9_3_1 publication-title: Cancer Epidemiol. Biomarkers Prev. – ident: e_1_2_9_5_1 doi: 10.1186/1472-6882-6-10 – ident: e_1_2_9_16_1 doi: 10.1002/ptr.5931 – ident: e_1_2_9_32_3 doi: 10.1208/s12248-016-0003-2 – ident: e_1_2_9_17_1 doi: 10.1016/j.joim.2018.07.001 – ident: e_1_2_9_44_1 doi: 10.1021/mp500210c – ident: e_1_2_9_38_1 doi: 10.1080/10717540490280769 – ident: e_1_2_9_25_2 doi: 10.1016/j.bbacli.2016.02.003 – ident: e_1_2_9_20_1 doi: 10.1093/jn/nxab087 – ident: e_1_2_9_24_1 doi: 10.1002/mnfr.201501034 – ident: e_1_2_9_18_1 doi: 10.1080/07315724.2017.1358118 – ident: e_1_2_9_37_2 doi: 10.1016/j.biopha.2017.01.157 – ident: e_1_2_9_14_1 doi: 10.1007/s00280-011-1673-1 |
SSID | ssj0031243 |
Score | 2.496835 |
Snippet | Scope
Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.... Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. In a... ScopeDifferent mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.Methods... Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in... SCOPE: Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100613 |
SubjectTerms | Absorptivity Adjuvants Adult Adults apparent permeability coefficient Bioavailability Biological Availability Biotransformation Caco-2 Cells Cross-Over Studies Curcuma Curcumin curcumin formulations Cyclodextrin Cyclodextrins dose‐normalization food research human cell lines Humans in vitro digestion Micelles nutrition Pharmacokinetics Piperine Solubility Stability turmeric |
Title | Increasing Post‐Digestive Solubility of Curcumin Is the Most Successful Strategy to Improve its Oral Bioavailability: A Randomized Cross‐Over Trial in Healthy Adults and In Vitro Bioaccessibility Experiments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202100613 https://www.ncbi.nlm.nih.gov/pubmed/34665507 https://www.proquest.com/docview/2618224711 https://www.proquest.com/docview/2583446888 https://www.proquest.com/docview/2636554245 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZguXBB_BNY0CAhOEWb2k6acivdrXaRtovKLtpbZCeOFKlNUJOs1D3xCLwbb8CTMGMngQoB4hJV6cTjyB7PN874G8ZeYYisdYZhSTrKjS8zTpS3xvh6jP5HS2KUslm-i-j4Qr6_DC9_OcXv-CGGDTeyDLtek4ErXR_8JA1dlznxeWLIQi7pJrtF52tppnP5oV-LBXovm2KPEr5EtT1tY8APdp_fdUu_Yc1d6Gp9z_wuu9OBRpi6Ub7HbpjyPvMOC9PAa-iYPVew6In1H7BvaPaUbY5-Cagc7_cvX92XJFzbgHbCbErsFqocZu0mbddFCSc1IBiEUxSHj62to5i3K-joa7fQVOB2IAwUTQ1nG1T5rqjUlSpWjux7-xamsFRlVq2La5PBjF4VVZ-hucA5zXRAPe7g0xamxPxRA4rDSQmfimZT2fas5qLr4NFQgKB-yC7mR-ezY78r3-CniLGEz7Mo1pIjhgukCtJUTDAYHnOB7ajY5FkccMPRVxKHHJ_wVOlQRLEyUuPjcRSIR2yvrErzhIEOzZiAGzY5kRIjphx_IFjMUSzOA-4xvx-9JO24zanExipxrMw8odFOhtH22JtB_rNj9fij5H4_GZLOuusEo05Kvh2PRh57OfyNdkkfW1RpqhZlQqpgEsVx_BeZSEQI57gMPfbYTbShO0JGEXHN4avZmfePfiani_kSY3Xx9D_ln7HbdNNl6OyzvWbTmueIsxr9wpoSXg-X_Ad__SR0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELbY5cBe0PIfdoFBQnCKNnUcJ-VWylYtbLto6SJuUX4cKVKboCZBKicegXfjDXgSZuwkqEKw2lulfrGd2OP5xpl8w9gLDJHjOMWwJBlkyhYpJ8lbpezYR_8TC1KU0lm-Czm9FO8-e102IX0LY_Qh-gM3sgy9X5OB04H0yR_V0HWRkaAnxizkk_bYTSG5T9UbuPjQbcYuui-dY48IW2C_nW6jw092r9_1S3-RzV3uqp3P5JDdblkjjMw032E3VHGXWW9zVcNLaKU9V7DolPXvsZ9o95Rujo4JqB7vr-8_zKsk3NyAjsJ0TuwWygzGzSZp1nkBswqQDcIc4fCx0YUU8VlAq1-7hboEcwShIK8rON9gl2_yMvoa5Suj9r19DSO4iIq0XOffVApjulXs-hztBZa01AH7MV8-bWFE0h8VIBxmBXzK602p29M95-0AT_sKBNV9djk5XY6ndlu_wU6QZLk2T2UQC44kzhGRkyTuEKNhn7vYThSoLA0crjg6SxKR40OeRLHnyiBSIsbLA-m4D9h-URbqEYPYUz4xN2xyKASGTBn-QLaYISzIHG4xu5u9MGnFzanGxio0ssw8pNkO-9m22Kse_8XIevwTedwthrA17yrEsJOyb_3BwGLP-7_RMOltS1SoskGMRyVMZBAE_8FIVyKf48Kz2EOz0PrhuEJKEpvDW9Mr74pxhvPF5AKDdffxNfHP2K3pcn4Wns0W74_YAQFMus4x2683jXqCpKuOn2qz-g1Xoyb3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSIgL4p9AgUFCcIqadRxvtrfttqsu0G1VWtRbFCeOFGk3qTYJ0nLiEfpuvAFP0hk7CawQIG6RMvGPPOP5xp58w9gbDJGVSjEsSQaZdkXKifJWa1cN0f8oQYxSJst3Lg_PxfuL4OKXv_gtP0R_4EaWYfZrMvDLNNv5SRq6LDLi88SQhVzSTXaLbvxIx7k46fZiH72XSbFHCVdgtx1to8d3Nr_fdEu_Yc1N6Gp8z_Qeu9uCRhjbVb7PbujiAXP2c13DW2iZPRcw74j1H7LvaPaUbY5-Cagc749vV_YmCfc2oJMwkxK7hjKDSbNKmmVewKwCBINwhOLwqTF1FLNmAS197RrqEuwJhIa8ruB4hV3u5WX8Jc4Xlux7vQtjOI2LtFzmX3UKE5oqdn2M5gJnpOmA_dgfn9YwJuaPClAcZgV8zutVadozPeftAA_6AgTVI3Y-PTibHLpt-QY3QYzluzyVoRIcMZwnYi9J_BEGw0PuYztxqLM09Ljm6CuJQ46PeBKrwJdhrIXCz0Pp-Y_ZVlEW-ikDFeghATdsciQERkwZPiBYzFAszDzuMLdbvShpuc2pxMYisqzMPKLVjvrVdti7Xv7Ssnr8UXK7U4aote4qwqiTkm-Hg4HDXvev0S7psiUudNmgTEAVTGQYhn-Rkb5EOMdF4LAnVtH64fhCSuKaw6kZzfvHOKOj-fQUY3X_2X_Kv2K3T_an0cfZ_MNzdofe22SdbbZVrxr9AiFXrV4aq7oGgE8mKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+Post%E2%80%90Digestive+Solubility+of+Curcumin+Is+the+Most+Successful+Strategy+to+Improve+its+Oral+Bioavailability%3A+A+Randomized+Cross%E2%80%90Over+Trial+in+Healthy+Adults+and+In+Vitro+Bioaccessibility+Experiments&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Flory%2C+Sandra&rft.au=Sus%2C+Nadine&rft.au=Haas%2C+Kathrin&rft.au=Jehle%2C+Sina&rft.date=2021-12-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=65&rft.issue=24&rft_id=info:doi/10.1002%2Fmnfr.202100613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mnfr_202100613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |