Enzyme‐Directed and Organelle‐Specific Sphere‐to‐Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells

Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions...

Full description

Saved in:
Bibliographic Details
Published inSmall methods Vol. 8; no. 11; pp. e2301551 - n/a
Main Authors Gan, Shenglong, Yang, Liu, Heng, Yiyuan, Chen, Qingxin, Wang, Dongqing, Zhang, Jie, Wei, Wenyu, Liu, Zhiyang, Njoku, Demian Ifeanyi, Chen, Jian Lin, Hu, Yi, Sun, Hongyan
Format Journal Article
LanguageEnglish
Published Germany 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme‐responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co‐assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase‐induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme‐responsive nanoplatform is expanded to selectively target mitochondria by mitochondria‐specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co‐assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme‐instructed in situ fibrillar transformation of peptide/photosensitizers co‐assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme‐responsive biomaterials for cancer therapy. A general approach utilizing enzyme‐responsive nanoplatforms to enhance photodynamic therapy is developed. When exposed to the cytoplasmic enzyme alkaline phosphatase or the mitochondrial enzyme sirtuin 5, the co‐assembled nanoparticles can be transformed into nanofibers in the cytoplasm or specifically within the mitochondria. The resulting nanofibers exhibit enhanced ROS formation and significant anticancer efficacy via photodynamic therapy.
AbstractList Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme-responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co-assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase-induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme-responsive nanoplatform is expanded to selectively target mitochondria by mitochondria-specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co-assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme-instructed in situ fibrillar transformation of peptide/photosensitizers co-assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme-responsive biomaterials for cancer therapy.
Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme‐responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co‐assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase‐induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme‐responsive nanoplatform is expanded to selectively target mitochondria by mitochondria‐specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co‐assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme‐instructed in situ fibrillar transformation of peptide/photosensitizers co‐assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme‐responsive biomaterials for cancer therapy. A general approach utilizing enzyme‐responsive nanoplatforms to enhance photodynamic therapy is developed. When exposed to the cytoplasmic enzyme alkaline phosphatase or the mitochondrial enzyme sirtuin 5, the co‐assembled nanoparticles can be transformed into nanofibers in the cytoplasm or specifically within the mitochondria. The resulting nanofibers exhibit enhanced ROS formation and significant anticancer efficacy via photodynamic therapy.
Author Gan, Shenglong
Heng, Yiyuan
Hu, Yi
Chen, Qingxin
Wang, Dongqing
Njoku, Demian Ifeanyi
Chen, Jian Lin
Sun, Hongyan
Wei, Wenyu
Yang, Liu
Zhang, Jie
Liu, Zhiyang
Author_xml – sequence: 1
  givenname: Shenglong
  surname: Gan
  fullname: Gan, Shenglong
  organization: Shenzhen Research Institute of City University of Hong Kong
– sequence: 2
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
  organization: Central South University
– sequence: 3
  givenname: Yiyuan
  surname: Heng
  fullname: Heng, Yiyuan
  organization: Shenzhen Research Institute of City University of Hong Kong
– sequence: 4
  givenname: Qingxin
  surname: Chen
  fullname: Chen, Qingxin
  organization: Shenzhen Research Institute of City University of Hong Kong
– sequence: 5
  givenname: Dongqing
  surname: Wang
  fullname: Wang, Dongqing
  organization: University of Electronic Science and Technology of China
– sequence: 6
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Shenzhen Research Institute of City University of Hong Kong
– sequence: 7
  givenname: Wenyu
  surname: Wei
  fullname: Wei, Wenyu
  organization: Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong Kong
– sequence: 8
  givenname: Zhiyang
  surname: Liu
  fullname: Liu, Zhiyang
  organization: Shenzhen Research Institute of City University of Hong Kong
– sequence: 9
  givenname: Demian Ifeanyi
  surname: Njoku
  fullname: Njoku, Demian Ifeanyi
  organization: Hong Kong Metropolitan University
– sequence: 10
  givenname: Jian Lin
  surname: Chen
  fullname: Chen, Jian Lin
  organization: Hong Kong Metropolitan University
– sequence: 11
  givenname: Yi
  surname: Hu
  fullname: Hu, Yi
  email: huyi@pumch.cn
  organization: Peking Union Medical College Hospital
– sequence: 12
  givenname: Hongyan
  orcidid: 0000-0003-0932-6405
  surname: Sun
  fullname: Sun, Hongyan
  email: hongysun@cityu.edu.hk
  organization: Shenzhen Research Institute of City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38369941$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtOwzAURS1URAt0yhB5Ayn-5eMhSltAKhSpZRy9xA41SpzICUJhAktgjayERIWKyfvde9_gnKKRraxG6IKSGSWEXTVlq2aMME6o79MjNGE8CDwZkGj0bx6jadO8kD5AKPcZPUFjHvFASkEn6GNh37tSf39-zY3TWasVBqvw2j2D1UUxCJtaZyY3Gd7UO-2GS1v1ZWlS7fAD2Kp1YJu8ciW0prJ4YXdgM93gx13VVqqzUPbhbZ-FusPG4niQHY77_805Os6haPT0t5-hp-ViG996q_XNXXy98jIhKPUgFwpYlPsUqAq5ICzXimRShVIJkFT0BkJyySBngkCoQGpO0jDyVaoYC_kZutz_rV_TUqukdqYE1yV_JHqD3BveTKG7g05JMqBOBtTJAXWyud_ODxv_ASgpen4
CitedBy_id crossref_primary_10_1021_acsabm_4c01696
crossref_primary_10_1002_smll_202409052
crossref_primary_10_1016_j_drudis_2024_104099
crossref_primary_10_1080_14686996_2024_2373045
crossref_primary_10_1021_acs_biomac_4c00722
crossref_primary_10_1016_j_ijbiomac_2024_139103
ContentType Journal Article
Copyright 2024 The Authors. Small Methods published by Wiley‐VCH GmbH
2024 The Authors. Small Methods published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 The Authors. Small Methods published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Small Methods published by Wiley‐VCH GmbH.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/smtd.202301551
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 38369941
SMTD202301551
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Excellent Young Scientists Fund of China
  funderid: 32122003
– fundername: National High Level Hospital Clinical Research Funding
  funderid: 2022‐PUMCH‐E‐004
– fundername: Research Grants Council of Hong Kong
  funderid: 11305221; 11302320
– fundername: National High Level Hospital Clinical Research Funding
  grantid: 2022-PUMCH-E-004
– fundername: Research Grants Council of Hong Kong
  grantid: 11302320
– fundername: Research Grants Council of Hong Kong
  grantid: 11305221
– fundername: National Natural Science Excellent Young Scientists Fund of China
  grantid: 32122003
GroupedDBID 0R~
1OC
24P
33P
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAMMB
ABJNI
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
ARCSS
CGR
CUY
CVF
ECM
EIF
EJD
NPM
ID FETCH-LOGICAL-c4411-af4da28f51a1d73402fed0c9d79d4a914af400f92af240a7da9e30b785dbd2273
IEDL.DBID 24P
ISSN 2366-9608
IngestDate Mon Jul 21 05:52:43 EDT 2025
Wed Jan 22 17:14:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords enzyme
PDT
nanotransformation
organelle
self‐assembly
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Small Methods published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4411-af4da28f51a1d73402fed0c9d79d4a914af400f92af240a7da9e30b785dbd2273
ORCID 0000-0003-0932-6405
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202301551
PMID 38369941
PageCount 13
ParticipantIDs pubmed_primary_38369941
wiley_primary_10_1002_smtd_202301551_SMTD202301551
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small methods
PublicationTitleAlternate Small Methods
PublicationYear 2024
References 2019; 7
2018; 182
2019; 3
2018; 140
2019; 5
2020; 20
2023; 18
2019; 55
2020; 120
2020; 142
2023; 145
2011; 61
2019; 58
2020; 17
2020; 59
2020; 15
2020; 14
2017; 29
2020; 12
2021; 121
2020; 10
2021; 50
2019; 141
2003; 278
2017; 139
2016; 55
2015; 27
2021; 12
2022; 61
2017; 11
2019; 24
2017; 56
1999; 274
2019; 29
2017; 141
1997; 390
2018; 12
2001; 33
2016; 28
2018; 10
2016; 8
2022; 18
2018; 57
References_xml – volume: 3
  start-page: 2
  year: 2019
  publication-title: ACS Appl. Bio. Mater.
– volume: 120
  start-page: 9994
  year: 2020
  publication-title: Chem. Rev.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 57
  start-page: 4931
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 8266
  year: 2018
  publication-title: ACS Nano
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 9152
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 9566
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 1286
  year: 2020
  publication-title: Nano. Lett.
– volume: 55
  start-page: 3191
  year: 2019
  publication-title: Chem. Comm.
– volume: 182
  start-page: 269
  year: 2018
  publication-title: Biomaterials
– volume: 139
  start-page: 1921
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2374
  year: 2020
  publication-title: Acta. Pharm. Sin. B.
– volume: 12
  start-page: 6488
  year: 2021
  publication-title: Chem. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 1094
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 390
  start-page: 141
  year: 1997
  publication-title: Mutat. Res. Genet. Toxicol. Environ. Mutagen.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 15
  start-page: 145
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 140
  start-page: 2301
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 274
  year: 1999
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 657
  year: 2020
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 50
  start-page: 4185
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 278
  start-page: 4660
  year: 2003
  publication-title: J. Biol. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 145
  start-page: 7918
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 58
  start-page: 5567
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  start-page: 652
  year: 2001
  publication-title: Hepatology
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 609
  year: 2019
  publication-title: Cell Stress Chaperones
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1477
  year: 2019
  publication-title: Biomater. Sci.
– volume: 14
  start-page: 7170
  year: 2020
  publication-title: ACS Nano
– volume: 140
  start-page: 3505
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 250
  year: 2011
  publication-title: CA. Cancer. J. Clin.
– volume: 141
  start-page: 199
  year: 2017
  publication-title: Biomaterials
– volume: 27
  start-page: 6125
  year: 2015
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3178
  year: 2017
  publication-title: ACS Nano
– volume: 12
  start-page: 3804
  year: 2018
  publication-title: ACS Nano
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 3036
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 7271
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 254
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 5
  start-page: 2442
  year: 2019
  publication-title: Chem.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
SSID ssj0002013521
Score 2.3183935
Snippet Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e2301551
SubjectTerms Alkaline Phosphatase - metabolism
Animals
Cell Line, Tumor
enzyme
Humans
Mitochondria - drug effects
Mitochondria - metabolism
Nanofibers - chemistry
Nanoparticles - chemistry
nanotransformation
Neoplasms - drug therapy
organelle
PDT
Photochemotherapy - methods
Photosensitizing Agents - chemistry
Photosensitizing Agents - pharmacology
Reactive Oxygen Species - metabolism
self‐assembly
Sirtuins - chemistry
Sirtuins - metabolism
Title Enzyme‐Directed and Organelle‐Specific Sphere‐to‐Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202301551
https://www.ncbi.nlm.nih.gov/pubmed/38369941
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAg3pSXPLBGjV3n4RGVVhVSq0ptpW6RE9tqhzqoCQMs8BP4jfwSznEJYWWxkpzjwefzfefkvkPoXmWSwtqNvExz32OEES9WXYh5JFdx2rVfhmzu8GgcDufsaREsGln8jh-iPnCzllHt19bARVp0fklDi3VpmT4BQluvv4v2bH6tZc-nbFKfsoB7A4RBqgpzYegBXI9_mBt92vk7RMMHNXFq5WgGR-hwixDxg1PpMdpR5gQdNHgDT9F737y9rtXXx6fbsZTEwkhc5VXag3gQVHXl9SrDU8sbYJ-UOTQD-4MIhi01LxuINTe4b5ZW_wWeLPMyl65OPZ45zgG8MrhnxRvcg_GLMzQf9Ge9obetpOBlAHeIJzSTgsY6IILIqAsxo1bSz7iMuGSCEwYdfF9zKjR4eBFJwVXXT6M4kKmkgHDOUcvkRl0irHhAM8EFZ0RAaAdrINAqlb7UkcjA_tvows1i8uzoMhKIgUMO3duIVtNaCxxjMk2sGpJaDcl0NHus767-89I12odr5lIGb1Cr3LyoW8AOZXpXLQ9ox5PRNxpAw08
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeFOeHlijJo7z8IhKqwJtVampxBY5sa12aILaMMACP4HfyC_hHLchrCyRYjse7PPddxffdwjdylQQkN3AShWzLepQxwqlCz6PYDJMXP1nSOcOD4Z-b0Ifn731bUKdC2P4IaqAmz4Zpb7WB1wHpFu_rKHLeaGpPgFDa7O_ibaoTwJ9NgkdVWEWsG8AMZyyxJzvW4DXwzV1o01af6eoGaE6UC0tTXcf7a0gIr4ze3qANmR2iHZrxIFH6KOTvb_N5ffnl1FZUmCeCVwmVupIPHSUheXVLMVjTRygW4ocHl19QwSDTs2LGmTNM9zJploAlng0zYtcmEL1ODKkA3iW4bbuXuA2zL88RpNuJ2r3rFUpBSsFvONYXFHBSag8hzsicMFpVFLYKRMBE5Qzh8IA21aMcAUmngeCM-naSRB6IhEEIM4JamR5Js8QlswjKWecUYeDbwdC4CmZCFuogKegAJro1Kxi_GL4MmJwgn0Gw5uIlMtadRjKZBLrbYirbYjHg-i-ejv_z0c3aLsXDfpx_2H4dIF2oJ2a_MFL1CgWr_IKgESRXJei8gMRw8Wv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgGxJvy9MAaNQ_n4RG1jXi1qtRW6hY5sa12qFO1YYAFfgK_kV_COS4hrCyRYjsefHe-7-zcdwjdioy7oLuhlUlqW8QhjhUJD2IeTkWUevpmSOcO9_rB_Zg8TvxJLYvf8ENUB27aMsr9Whv4gsvWL2noal5opk-A0Nrrb6Kt8sZPczuTQXXKAu4NEIZTVpgLAgvgevTD3Gi7rb9T1HxQHaeWjibeR3trhIjvjEgP0IZQh2i3xht4hN676u11Lr4-Ps2OJThmiuMyr1IfxENHWVdezjI81LwBuqXI4RHrH0QwbKl5UUOsucJdNdXyX-HBNC9yburU45HhHMAzhdu6e4nbMP_qGI3j7qh9b60rKVgZwB3HYpJw5kbSd5jDQw9iRim4nVEeUk4YdQgMsG1JXSbBw7OQMyo8Ow0jn6fcBYRzghoqV-IMYUF9N2OUUeIwCO1AB3wpUm5zGbIM7L-JTs0qJgtDl5FADBxQGN5EbrmsVYdhTHYTLYakEkMy7I061dv5fz66QduDTpw8P_SfLtAONBOTPXiJGsXyRVwBjCjS61JTvgEhTMTh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme%E2%80%90Directed+and+Organelle%E2%80%90Specific+Sphere%E2%80%90to%E2%80%90Fiber+Nanotransformation+Enhances+Photodynamic+Therapy+in+Cancer+Cells&rft.jtitle=Small+methods&rft.au=Gan%2C+Shenglong&rft.au=Yang%2C+Liu&rft.au=Heng%2C+Yiyuan&rft.au=Chen%2C+Qingxin&rft.date=2024-11-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=8&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202301551&rft.externalDBID=10.1002%252Fsmtd.202301551&rft.externalDocID=SMTD202301551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon