Enzyme‐Directed and Organelle‐Specific Sphere‐to‐Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells
Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions...
Saved in:
Published in | Small methods Vol. 8; no. 11; pp. e2301551 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme‐responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co‐assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase‐induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme‐responsive nanoplatform is expanded to selectively target mitochondria by mitochondria‐specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co‐assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme‐instructed in situ fibrillar transformation of peptide/photosensitizers co‐assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme‐responsive biomaterials for cancer therapy.
A general approach utilizing enzyme‐responsive nanoplatforms to enhance photodynamic therapy is developed. When exposed to the cytoplasmic enzyme alkaline phosphatase or the mitochondrial enzyme sirtuin 5, the co‐assembled nanoparticles can be transformed into nanofibers in the cytoplasm or specifically within the mitochondria. The resulting nanofibers exhibit enhanced ROS formation and significant anticancer efficacy via photodynamic therapy. |
---|---|
AbstractList | Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme-responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co-assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase-induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme-responsive nanoplatform is expanded to selectively target mitochondria by mitochondria-specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co-assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme-instructed in situ fibrillar transformation of peptide/photosensitizers co-assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme-responsive biomaterials for cancer therapy. Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme‐responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co‐assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase‐induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme‐responsive nanoplatform is expanded to selectively target mitochondria by mitochondria‐specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co‐assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme‐instructed in situ fibrillar transformation of peptide/photosensitizers co‐assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme‐responsive biomaterials for cancer therapy. A general approach utilizing enzyme‐responsive nanoplatforms to enhance photodynamic therapy is developed. When exposed to the cytoplasmic enzyme alkaline phosphatase or the mitochondrial enzyme sirtuin 5, the co‐assembled nanoparticles can be transformed into nanofibers in the cytoplasm or specifically within the mitochondria. The resulting nanofibers exhibit enhanced ROS formation and significant anticancer efficacy via photodynamic therapy. |
Author | Gan, Shenglong Heng, Yiyuan Hu, Yi Chen, Qingxin Wang, Dongqing Njoku, Demian Ifeanyi Chen, Jian Lin Sun, Hongyan Wei, Wenyu Yang, Liu Zhang, Jie Liu, Zhiyang |
Author_xml | – sequence: 1 givenname: Shenglong surname: Gan fullname: Gan, Shenglong organization: Shenzhen Research Institute of City University of Hong Kong – sequence: 2 givenname: Liu surname: Yang fullname: Yang, Liu organization: Central South University – sequence: 3 givenname: Yiyuan surname: Heng fullname: Heng, Yiyuan organization: Shenzhen Research Institute of City University of Hong Kong – sequence: 4 givenname: Qingxin surname: Chen fullname: Chen, Qingxin organization: Shenzhen Research Institute of City University of Hong Kong – sequence: 5 givenname: Dongqing surname: Wang fullname: Wang, Dongqing organization: University of Electronic Science and Technology of China – sequence: 6 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Shenzhen Research Institute of City University of Hong Kong – sequence: 7 givenname: Wenyu surname: Wei fullname: Wei, Wenyu organization: Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong Kong – sequence: 8 givenname: Zhiyang surname: Liu fullname: Liu, Zhiyang organization: Shenzhen Research Institute of City University of Hong Kong – sequence: 9 givenname: Demian Ifeanyi surname: Njoku fullname: Njoku, Demian Ifeanyi organization: Hong Kong Metropolitan University – sequence: 10 givenname: Jian Lin surname: Chen fullname: Chen, Jian Lin organization: Hong Kong Metropolitan University – sequence: 11 givenname: Yi surname: Hu fullname: Hu, Yi email: huyi@pumch.cn organization: Peking Union Medical College Hospital – sequence: 12 givenname: Hongyan orcidid: 0000-0003-0932-6405 surname: Sun fullname: Sun, Hongyan email: hongysun@cityu.edu.hk organization: Shenzhen Research Institute of City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38369941$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkEtOwzAURS1URAt0yhB5Ayn-5eMhSltAKhSpZRy9xA41SpzICUJhAktgjayERIWKyfvde9_gnKKRraxG6IKSGSWEXTVlq2aMME6o79MjNGE8CDwZkGj0bx6jadO8kD5AKPcZPUFjHvFASkEn6GNh37tSf39-zY3TWasVBqvw2j2D1UUxCJtaZyY3Gd7UO-2GS1v1ZWlS7fAD2Kp1YJu8ciW0prJ4YXdgM93gx13VVqqzUPbhbZ-FusPG4niQHY77_805Os6haPT0t5-hp-ViG996q_XNXXy98jIhKPUgFwpYlPsUqAq5ICzXimRShVIJkFT0BkJyySBngkCoQGpO0jDyVaoYC_kZutz_rV_TUqukdqYE1yV_JHqD3BveTKG7g05JMqBOBtTJAXWyud_ODxv_ASgpen4 |
CitedBy_id | crossref_primary_10_1021_acsabm_4c01696 crossref_primary_10_1002_smll_202409052 crossref_primary_10_1016_j_drudis_2024_104099 crossref_primary_10_1080_14686996_2024_2373045 crossref_primary_10_1021_acs_biomac_4c00722 crossref_primary_10_1016_j_ijbiomac_2024_139103 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Small Methods published by Wiley‐VCH GmbH 2024 The Authors. Small Methods published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 The Authors. Small Methods published by Wiley‐VCH GmbH – notice: 2024 The Authors. Small Methods published by Wiley‐VCH GmbH. |
DBID | 24P CGR CUY CVF ECM EIF NPM |
DOI | 10.1002/smtd.202301551 |
DatabaseName | Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2366-9608 |
EndPage | n/a |
ExternalDocumentID | 38369941 SMTD202301551 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Excellent Young Scientists Fund of China funderid: 32122003 – fundername: National High Level Hospital Clinical Research Funding funderid: 2022‐PUMCH‐E‐004 – fundername: Research Grants Council of Hong Kong funderid: 11305221; 11302320 – fundername: National High Level Hospital Clinical Research Funding grantid: 2022-PUMCH-E-004 – fundername: Research Grants Council of Hong Kong grantid: 11302320 – fundername: Research Grants Council of Hong Kong grantid: 11305221 – fundername: National Natural Science Excellent Young Scientists Fund of China grantid: 32122003 |
GroupedDBID | 0R~ 1OC 24P 33P AAHHS AAHQN AAIHA AAMNL AANLZ AAZKR ACCFJ ACCZN ACGFS ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WOHZO WXSBR ZZTAW AAMMB ABJNI ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY ARCSS CGR CUY CVF ECM EIF EJD NPM |
ID | FETCH-LOGICAL-c4411-af4da28f51a1d73402fed0c9d79d4a914af400f92af240a7da9e30b785dbd2273 |
IEDL.DBID | 24P |
ISSN | 2366-9608 |
IngestDate | Mon Jul 21 05:52:43 EDT 2025 Wed Jan 22 17:14:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | enzyme PDT nanotransformation organelle self‐assembly |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Small Methods published by Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4411-af4da28f51a1d73402fed0c9d79d4a914af400f92af240a7da9e30b785dbd2273 |
ORCID | 0000-0003-0932-6405 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202301551 |
PMID | 38369941 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_38369941 wiley_primary_10_1002_smtd_202301551_SMTD202301551 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Small methods |
PublicationTitleAlternate | Small Methods |
PublicationYear | 2024 |
References | 2019; 7 2018; 182 2019; 3 2018; 140 2019; 5 2020; 20 2023; 18 2019; 55 2020; 120 2020; 142 2023; 145 2011; 61 2019; 58 2020; 17 2020; 59 2020; 15 2020; 14 2017; 29 2020; 12 2021; 121 2020; 10 2021; 50 2019; 141 2003; 278 2017; 139 2016; 55 2015; 27 2021; 12 2022; 61 2017; 11 2019; 24 2017; 56 1999; 274 2019; 29 2017; 141 1997; 390 2018; 12 2001; 33 2016; 28 2018; 10 2016; 8 2022; 18 2018; 57 |
References_xml | – volume: 3 start-page: 2 year: 2019 publication-title: ACS Appl. Bio. Mater. – volume: 120 start-page: 9994 year: 2020 publication-title: Chem. Rev. – volume: 18 year: 2022 publication-title: Small – volume: 57 start-page: 4931 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 8266 year: 2018 publication-title: ACS Nano – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 9152 year: 2021 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 9566 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 1286 year: 2020 publication-title: Nano. Lett. – volume: 55 start-page: 3191 year: 2019 publication-title: Chem. Comm. – volume: 182 start-page: 269 year: 2018 publication-title: Biomaterials – volume: 139 start-page: 1921 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2374 year: 2020 publication-title: Acta. Pharm. Sin. B. – volume: 12 start-page: 6488 year: 2021 publication-title: Chem. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 1094 year: 2023 publication-title: Nat. Nanotechnol. – volume: 390 start-page: 141 year: 1997 publication-title: Mutat. Res. Genet. Toxicol. Environ. Mutagen. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 15 start-page: 145 year: 2020 publication-title: Nat. Nanotechnol. – volume: 140 start-page: 2301 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 274 year: 1999 publication-title: J. Biol. Chem. – volume: 17 start-page: 657 year: 2020 publication-title: Nat. Rev. Clin. Oncol. – volume: 50 start-page: 4185 year: 2021 publication-title: Chem. Soc. Rev. – volume: 278 start-page: 4660 year: 2003 publication-title: J. Biol. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 145 start-page: 7918 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces. – volume: 58 start-page: 5567 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 33 start-page: 652 year: 2001 publication-title: Hepatology – volume: 12 year: 2020 publication-title: Nanoscale – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 609 year: 2019 publication-title: Cell Stress Chaperones – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1477 year: 2019 publication-title: Biomater. Sci. – volume: 14 start-page: 7170 year: 2020 publication-title: ACS Nano – volume: 140 start-page: 3505 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 250 year: 2011 publication-title: CA. Cancer. J. Clin. – volume: 141 start-page: 199 year: 2017 publication-title: Biomaterials – volume: 27 start-page: 6125 year: 2015 publication-title: Adv. Mater. – volume: 11 start-page: 3178 year: 2017 publication-title: ACS Nano – volume: 12 start-page: 3804 year: 2018 publication-title: ACS Nano – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 3036 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 7271 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 254 year: 2016 publication-title: Adv. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces. – volume: 5 start-page: 2442 year: 2019 publication-title: Chem. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. |
SSID | ssj0002013521 |
Score | 2.3183935 |
Snippet | Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | e2301551 |
SubjectTerms | Alkaline Phosphatase - metabolism Animals Cell Line, Tumor enzyme Humans Mitochondria - drug effects Mitochondria - metabolism Nanofibers - chemistry Nanoparticles - chemistry nanotransformation Neoplasms - drug therapy organelle PDT Photochemotherapy - methods Photosensitizing Agents - chemistry Photosensitizing Agents - pharmacology Reactive Oxygen Species - metabolism self‐assembly Sirtuins - chemistry Sirtuins - metabolism |
Title | Enzyme‐Directed and Organelle‐Specific Sphere‐to‐Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202301551 https://www.ncbi.nlm.nih.gov/pubmed/38369941 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAg3pSXPLBGjV3n4RGVVhVSq0ptpW6RE9tqhzqoCQMs8BP4jfwSznEJYWWxkpzjwefzfefkvkPoXmWSwtqNvExz32OEES9WXYh5JFdx2rVfhmzu8GgcDufsaREsGln8jh-iPnCzllHt19bARVp0fklDi3VpmT4BQluvv4v2bH6tZc-nbFKfsoB7A4RBqgpzYegBXI9_mBt92vk7RMMHNXFq5WgGR-hwixDxg1PpMdpR5gQdNHgDT9F737y9rtXXx6fbsZTEwkhc5VXag3gQVHXl9SrDU8sbYJ-UOTQD-4MIhi01LxuINTe4b5ZW_wWeLPMyl65OPZ45zgG8MrhnxRvcg_GLMzQf9Ge9obetpOBlAHeIJzSTgsY6IILIqAsxo1bSz7iMuGSCEwYdfF9zKjR4eBFJwVXXT6M4kKmkgHDOUcvkRl0irHhAM8EFZ0RAaAdrINAqlb7UkcjA_tvows1i8uzoMhKIgUMO3duIVtNaCxxjMk2sGpJaDcl0NHus767-89I12odr5lIGb1Cr3LyoW8AOZXpXLQ9ox5PRNxpAw08 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeFOeHlijJo7z8IhKqwJtVampxBY5sa12aILaMMACP4HfyC_hHLchrCyRYjse7PPddxffdwjdylQQkN3AShWzLepQxwqlCz6PYDJMXP1nSOcOD4Z-b0Ifn731bUKdC2P4IaqAmz4Zpb7WB1wHpFu_rKHLeaGpPgFDa7O_ibaoTwJ9NgkdVWEWsG8AMZyyxJzvW4DXwzV1o01af6eoGaE6UC0tTXcf7a0gIr4ze3qANmR2iHZrxIFH6KOTvb_N5ffnl1FZUmCeCVwmVupIPHSUheXVLMVjTRygW4ocHl19QwSDTs2LGmTNM9zJploAlng0zYtcmEL1ODKkA3iW4bbuXuA2zL88RpNuJ2r3rFUpBSsFvONYXFHBSag8hzsicMFpVFLYKRMBE5Qzh8IA21aMcAUmngeCM-naSRB6IhEEIM4JamR5Js8QlswjKWecUYeDbwdC4CmZCFuogKegAJro1Kxi_GL4MmJwgn0Gw5uIlMtadRjKZBLrbYirbYjHg-i-ejv_z0c3aLsXDfpx_2H4dIF2oJ2a_MFL1CgWr_IKgESRXJei8gMRw8Wv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgGxJvy9MAaNQ_n4RG1jXi1qtRW6hY5sa12qFO1YYAFfgK_kV_COS4hrCyRYjsefHe-7-zcdwjdioy7oLuhlUlqW8QhjhUJD2IeTkWUevpmSOcO9_rB_Zg8TvxJLYvf8ENUB27aMsr9Whv4gsvWL2noal5opk-A0Nrrb6Kt8sZPczuTQXXKAu4NEIZTVpgLAgvgevTD3Gi7rb9T1HxQHaeWjibeR3trhIjvjEgP0IZQh2i3xht4hN676u11Lr4-Ps2OJThmiuMyr1IfxENHWVdezjI81LwBuqXI4RHrH0QwbKl5UUOsucJdNdXyX-HBNC9yburU45HhHMAzhdu6e4nbMP_qGI3j7qh9b60rKVgZwB3HYpJw5kbSd5jDQw9iRim4nVEeUk4YdQgMsG1JXSbBw7OQMyo8Ow0jn6fcBYRzghoqV-IMYUF9N2OUUeIwCO1AB3wpUm5zGbIM7L-JTs0qJgtDl5FADBxQGN5EbrmsVYdhTHYTLYakEkMy7I061dv5fz66QduDTpw8P_SfLtAONBOTPXiJGsXyRVwBjCjS61JTvgEhTMTh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme%E2%80%90Directed+and+Organelle%E2%80%90Specific+Sphere%E2%80%90to%E2%80%90Fiber+Nanotransformation+Enhances+Photodynamic+Therapy+in+Cancer+Cells&rft.jtitle=Small+methods&rft.au=Gan%2C+Shenglong&rft.au=Yang%2C+Liu&rft.au=Heng%2C+Yiyuan&rft.au=Chen%2C+Qingxin&rft.date=2024-11-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=8&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202301551&rft.externalDBID=10.1002%252Fsmtd.202301551&rft.externalDocID=SMTD202301551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon |