Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits
The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Mont...
Saved in:
Published in | Statistics in medicine Vol. 30; no. 20; pp. 2551 - 2561 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
10.09.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.4280 |
Cover
Loading…
Abstract | The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation–maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one‐dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M‐step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation–maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one‐dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M‐step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. Copyright © 2011 John Wiley & Sons, Ltd. The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies.The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. [PUBLICATION ABSTRACT] |
Author | Chu, Haitao May, Ryan C. Ibrahim, Joseph G. |
Author_xml | – sequence: 1 givenname: Ryan C. surname: May fullname: May, Ryan C. email: ryanmay@unc.edu, Ryan C. May, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA, ryanmay@unc.edu organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA – sequence: 2 givenname: Joseph G. surname: Ibrahim fullname: Ibrahim, Joseph G. organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA – sequence: 3 givenname: Haitao surname: Chu fullname: Chu, Haitao organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21710558$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVtvEzEQhS1URNOCxC9AFk-8bPBt17svSLSipVIKVIB4tBzvpHHqtYPt7YVfj0NLoBU8eSR_c2bOnD2044MHhJ5TMqWEsNfJDlPBWvIITSjpZEVY3e6gCWFSVo2k9S7aS2lFCKU1k0_QLqOSkrpuJyic6ms7jAN29gKcXYbQY0jZDjrb4LH1-Bw8RO3sD-gL5EFHPIQeXMJXNi_xMLps1w6wCZc6Wp0h4TTOV2AyzgH3kEu1kXJ2sDk9RY8X2iV4dvfuo69H774cvq9mH49PDt_OKiMEJZUxna6pBtp0UgpWdwvGDGkaSnpgrDeSw3xBGDSwMAIEF9wI2VHZ8Z5JOm_4Pnpzq7se5wP0BnwuJtQ6FmfxRgVt1f0fb5fqPFwqzmXN67oIvLoTiOH7WE6iBpsMOKc9hDEp2rByeUrbzayXD9BVGKMv9lTbCskFk6xAL_5eaLvJ7yj-DDQxpBRhsUUoUZuUVUlZbVIu6PQBamz-FVixYt2_Gqrbhivr4Oa_wurzyel93qYM11texwvVyHIg9e3DsRLN0dmnbnamDvhPTCjJIg |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1177_0962280217727033 crossref_primary_10_1111_biom_12922 crossref_primary_10_1097_EDE_0000000000001052 crossref_primary_10_1080_15598608_2013_772018 crossref_primary_10_1093_annweh_wxw003 crossref_primary_10_1007_s40300_023_00263_2 crossref_primary_10_1515_ijb_2017_0058 crossref_primary_10_1016_j_envres_2021_110710 crossref_primary_10_1002_sim_9343 crossref_primary_10_1177_0962280217690414 crossref_primary_10_1080_10618600_2022_2035233 crossref_primary_10_1002_sim_7942 crossref_primary_10_1002_sim_6830 crossref_primary_10_1002_env_2536 crossref_primary_10_1016_j_chemosphere_2016_08_023 crossref_primary_10_1007_s12561_013_9099_4 crossref_primary_10_1007_s12561_023_09408_3 crossref_primary_10_1016_j_envint_2014_02_010 crossref_primary_10_1002_sim_9978 crossref_primary_10_1186_s12940_018_0400_3 crossref_primary_10_1111_rssc_12164 crossref_primary_10_1002_sim_6466 crossref_primary_10_1002_sim_7335 crossref_primary_10_1002_sim_9536 crossref_primary_10_1016_j_scitotenv_2015_02_089 crossref_primary_10_1146_annurev_statistics_040522_095944 crossref_primary_10_1016_S2542_5196_17_30094_3 crossref_primary_10_1002_sim_8028 crossref_primary_10_1016_j_fertnstert_2015_01_005 crossref_primary_10_1111_jors_12751 crossref_primary_10_1097_QAD_0000000000002371 |
Cites_doi | 10.2307/1907382 10.1093/aje/kwj039 10.2307/2347565 10.1080/01621459.1990.10474930 10.1289/ehp.7199 10.1111/j.2517-6161.1982.tb01203.x 10.1097/EDE.0b013e3181ce97d8 10.1111/j.1468-2354.2007.00470.x 10.1093/aje/kwf217 10.1002/sim.3285 10.1093/biomet/83.4.916 10.1063/1.1699114 10.1023/A:1023630425376 10.1016/j.chemosphere.2006.04.051 10.1080/01621459.1990.10474938 10.2307/2986138 10.1111/1467-9868.00170 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O 10.1093/ije/dyp269 |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Sep 10, 2011 Copyright © 2011 John Wiley & Sons, Ltd. 2011 |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Sep 10, 2011 – notice: Copyright © 2011 John Wiley & Sons, Ltd. 2011 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.4280 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2561 |
ExternalDocumentID | PMC3375355 2432644011 21710558 10_1002_sim_4280 SIM4280 ark_67375_WNG_46FQP9LQ_B |
Genre | article Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIH funderid: GM 70335; CA 74015 – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NCI NIH HHS grantid: CA 74015 – fundername: NCI NIH HHS grantid: T32 CA106209 – fundername: NIGMS NIH HHS grantid: R01 GM070335 – fundername: NIGMS NIH HHS grantid: GM 70335 – fundername: NCI NIH HHS grantid: R01 CA074015 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4410-cc9a51ae169774259f22c06610de22dc73ebf02e6efc4e4343c4791793d271b63 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:33:52 EDT 2025 Fri Jul 11 15:14:25 EDT 2025 Fri Jul 25 04:57:51 EDT 2025 Mon Jul 21 05:50:48 EDT 2025 Sun Jul 06 05:06:11 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:47:49 EST 2025 Wed Oct 30 09:54:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | NHANES Gibbs sampling logistic regression EM algorithm maximum likelihood estimation Monte Carlo EM |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4410-cc9a51ae169774259f22c06610de22dc73ebf02e6efc4e4343c4791793d271b63 |
Notes | NIH - No. GM 70335; No. CA 74015 istex:F55C2F5F16C110BC84E5D47CDE878B8D544782D1 ark:/67375/WNG-46FQP9LQ-B ArticleID:SIM4280 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ryanmay@unc.edu |
PMID | 21710558 |
PQID | 884734272 |
PQPubID | 48361 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3375355 proquest_miscellaneous_1620021186 proquest_journals_884734272 pubmed_primary_21710558 crossref_primary_10_1002_sim_4280 crossref_citationtrail_10_1002_sim_4280 wiley_primary_10_1002_sim_4280_SIM4280 istex_primary_ark_67375_WNG_46FQP9LQ_B |
PublicationCentury | 2000 |
PublicationDate | 10 September 2011 |
PublicationDateYYYYMMDD | 2011-09-10 |
PublicationDate_xml | – month: 09 year: 2011 text: 10 September 2011 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | D'Angelo G, Weissfeld L. An index approach for the Cox model with left censored covariates. Statistics in Medicine 2008; 27:4502-4514. Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996; 72:916-922. Nie L, Chu H, Liu C, Cole SR, Vexler A, Schisterman EF. Linear regression with an independent variable subject to a detection limit. Epidemiology 2010; 21(4):S17-S24. Wei GC, Tanner MA. A Monte Carlo implementation of the EM algorithm and the poor dan's data augmentation algorithms. Journal of the American Statistical Association 1990; 85:699-704. Schisterman E, Vexler A, Whitcomb B, Liu A. The limitations due to exposure detection limits for regression models. American Journal of Epidemiology 2006; 163(4):374-383. Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection.International Journal of Epidemiology 2009; 38:1674-1680. Gilks WR, Best NG, Tan KKC. Adaptive rejection metropolis sampling within Gibbs sampling. Applied Statistics 1995; 44:455-472. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953; 21:1087-1092. Lynn H. Maximum likelihood inference for left-censored HIV RNA data. Statistics in Medicine 2001; 20:33-45. Rigobon R, Stoker TM. Estimation with censored regressors: basic issues. International Economic Review 2007; 48(4):1441-1467. Ibrahim JG. Incomplete data in generalized linear models. Journal of the American Statistical Association 1990; 85:765-769. Thompson M, Nelson KP. Linear regression with Type I interval- and left-censored response data. Environmental and Ecological Statistics 2003; 10:221-230. Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348. Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere 2006; 65:2434-2439. Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. American Journal of Epidemiology 2003; 157(4):355-363. Singh A, Nocerino J. Chemometrics and Intelligent Laboratory Systems, Vol. 60, 2002. Ibrahim JG, Lipsitz SR, Chen M. Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society, Series B 1999; 61:173-190. Louis T. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233. Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, Bernstein L, Hartge P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives 2004; 112(17):1691-1696. Helsel DR. Nondetects and Data Analysis: Statistics for Censored Environmental Data: New York, 2004. Tobin J. Estimation of relationships for limited dependent variables. Econometrica 1958; 26:24-36. 2004; 112 1990; 85 2010; 21 2006; 65 1958; 26 2008; 27 1995; 44 1982; 44 2006; 163 1996; 72 2004 2002; 60 1999; 61 2003; 157 2009; 38 2003; 10 1953; 21 2007; 48 2001; 20 1992; 41 e_1_2_8_17_1 e_1_2_8_18_1 Helsel DR (e_1_2_8_6_1) 2004 e_1_2_8_19_1 Louis T (e_1_2_8_23_1) 1982; 44 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Singh A (e_1_2_8_10_1) 2002 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 |
References_xml | – reference: Ibrahim JG. Incomplete data in generalized linear models. Journal of the American Statistical Association 1990; 85:765-769. – reference: D'Angelo G, Weissfeld L. An index approach for the Cox model with left censored covariates. Statistics in Medicine 2008; 27:4502-4514. – reference: Helsel DR. Nondetects and Data Analysis: Statistics for Censored Environmental Data: New York, 2004. – reference: Schisterman E, Vexler A, Whitcomb B, Liu A. The limitations due to exposure detection limits for regression models. American Journal of Epidemiology 2006; 163(4):374-383. – reference: Nie L, Chu H, Liu C, Cole SR, Vexler A, Schisterman EF. Linear regression with an independent variable subject to a detection limit. Epidemiology 2010; 21(4):S17-S24. – reference: Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, Bernstein L, Hartge P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives 2004; 112(17):1691-1696. – reference: Gilks WR, Best NG, Tan KKC. Adaptive rejection metropolis sampling within Gibbs sampling. Applied Statistics 1995; 44:455-472. – reference: Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere 2006; 65:2434-2439. – reference: Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348. – reference: Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. American Journal of Epidemiology 2003; 157(4):355-363. – reference: Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953; 21:1087-1092. – reference: Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection.International Journal of Epidemiology 2009; 38:1674-1680. – reference: Tobin J. Estimation of relationships for limited dependent variables. Econometrica 1958; 26:24-36. – reference: Thompson M, Nelson KP. Linear regression with Type I interval- and left-censored response data. Environmental and Ecological Statistics 2003; 10:221-230. – reference: Wei GC, Tanner MA. A Monte Carlo implementation of the EM algorithm and the poor dan's data augmentation algorithms. Journal of the American Statistical Association 1990; 85:699-704. – reference: Rigobon R, Stoker TM. Estimation with censored regressors: basic issues. International Economic Review 2007; 48(4):1441-1467. – reference: Ibrahim JG, Lipsitz SR, Chen M. Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society, Series B 1999; 61:173-190. – reference: Lynn H. Maximum likelihood inference for left-censored HIV RNA data. Statistics in Medicine 2001; 20:33-45. – reference: Louis T. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233. – reference: Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996; 72:916-922. – reference: Singh A, Nocerino J. Chemometrics and Intelligent Laboratory Systems, Vol. 60, 2002. – volume: 41 start-page: 337 year: 1992 end-page: 348 article-title: Adaptive rejection sampling for Gibbs sampling publication-title: Applied Statistics – volume: 27 start-page: 4502 year: 2008 end-page: 4514 article-title: An index approach for the Cox model with left censored covariates publication-title: Statistics in Medicine – volume: 10 start-page: 221 year: 2003 end-page: 230 article-title: Linear regression with Type I interval‐ and left‐censored response data publication-title: Environmental and Ecological Statistics – volume: 163 start-page: 374 issue: 4 year: 2006 end-page: 383 article-title: The limitations due to exposure detection limits for regression models publication-title: American Journal of Epidemiology – volume: 85 start-page: 765 year: 1990 end-page: 769 article-title: Incomplete data in generalized linear models publication-title: Journal of the American Statistical Association – volume: 85 start-page: 699 year: 1990 end-page: 704 article-title: A Monte Carlo implementation of the EM algorithm and the poor dan's data augmentation algorithms publication-title: Journal of the American Statistical Association – volume: 21 start-page: 1087 year: 1953 end-page: 1092 article-title: Equations of state calculations by fast computing machines publication-title: Journal of Chemical Physics – start-page: 2005 end-page: 2006 – volume: 44 start-page: 455 year: 1995 end-page: 472 article-title: Adaptive rejection metropolis sampling within Gibbs sampling publication-title: Applied Statistics – volume: 26 start-page: 24 year: 1958 end-page: 36 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica – volume: 72 start-page: 916 year: 1996 end-page: 922 article-title: A conditional model for incomplete covariates in parametric regression models publication-title: Biometrika – year: 2004 – volume: 60 year: 2002 – volume: 112 start-page: 1691 issue: 17 year: 2004 end-page: 1696 article-title: Epidemiologic evaluation of measurement data in the presence of detection limits publication-title: Environmental Health Perspectives – volume: 20 start-page: 33 year: 2001 end-page: 45 article-title: Maximum likelihood inference for left‐censored HIV RNA data publication-title: Statistics in Medicine – volume: 38 start-page: 1674 year: 2009 end-page: 1680 article-title: Estimating the odds ratio when exposure has a limit of detection publication-title: International Journal of Epidemiology – volume: 65 start-page: 2434 year: 2006 end-page: 2439 article-title: Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it publication-title: Chemosphere – volume: 48 start-page: 1441 issue: 4 year: 2007 end-page: 1467 article-title: Estimation with censored regressors: basic issues publication-title: International Economic Review – volume: 157 start-page: 355 issue: 4 year: 2003 end-page: 363 article-title: Effects of exposure measurement error when an exposure variable is constrained by a lower limit publication-title: American Journal of Epidemiology – volume: 61 start-page: 173 year: 1999 end-page: 190 article-title: Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable publication-title: Journal of the Royal Statistical Society, Series B – volume: 21 start-page: S17 issue: 4 year: 2010 end-page: S24 article-title: Linear regression with an independent variable subject to a detection limit publication-title: Epidemiology – volume: 44 start-page: 226 year: 1982 end-page: 233 article-title: Finding the observed information matrix when using the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B – ident: e_1_2_8_2_1 – ident: e_1_2_8_15_1 doi: 10.2307/1907382 – ident: e_1_2_8_13_1 doi: 10.1093/aje/kwj039 – ident: e_1_2_8_21_1 doi: 10.2307/2347565 – ident: e_1_2_8_19_1 doi: 10.1080/01621459.1990.10474930 – volume-title: Nondetects and Data Analysis: Statistics for Censored Environmental Data year: 2004 ident: e_1_2_8_6_1 – ident: e_1_2_8_9_1 doi: 10.1289/ehp.7199 – volume: 44 start-page: 226 year: 1982 ident: e_1_2_8_23_1 article-title: Finding the observed information matrix when using the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: e_1_2_8_5_1 doi: 10.1097/EDE.0b013e3181ce97d8 – ident: e_1_2_8_3_1 doi: 10.1111/j.1468-2354.2007.00470.x – ident: e_1_2_8_12_1 doi: 10.1093/aje/kwf217 – ident: e_1_2_8_4_1 doi: 10.1002/sim.3285 – ident: e_1_2_8_17_1 doi: 10.1093/biomet/83.4.916 – ident: e_1_2_8_22_1 doi: 10.1063/1.1699114 – ident: e_1_2_8_11_1 doi: 10.1023/A:1023630425376 – ident: e_1_2_8_8_1 doi: 10.1016/j.chemosphere.2006.04.051 – ident: e_1_2_8_16_1 doi: 10.1080/01621459.1990.10474938 – ident: e_1_2_8_20_1 doi: 10.2307/2986138 – volume-title: Chemometrics and Intelligent Laboratory Systems year: 2002 ident: e_1_2_8_10_1 – ident: e_1_2_8_18_1 doi: 10.1111/1467-9868.00170 – ident: e_1_2_8_7_1 doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O – ident: e_1_2_8_14_1 doi: 10.1093/ije/dyp269 |
SSID | ssj0011527 |
Score | 2.1903138 |
Snippet | The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2551 |
SubjectTerms | Algorithms Computer Simulation Data analysis EM algorithm Gibbs sampling Humans Likelihood Functions Limit of Detection Linear Models logistic regression Male maximum likelihood estimation Maximum likelihood method Medical statistics Metals, Heavy - urine Monte Carlo EM Monte Carlo Method Monte Carlo simulation Neoplasms - urine NHANES Urology |
Title | Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits |
URI | https://api.istex.fr/ark:/67375/WNG-46FQP9LQ-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.4280 https://www.ncbi.nlm.nih.gov/pubmed/21710558 https://www.proquest.com/docview/884734272 https://www.proquest.com/docview/1620021186 https://pubmed.ncbi.nlm.nih.gov/PMC3375355 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQJqFJiI0Co2wgIyF4Slc7iZM8DkQZiE4MmJjEg-U4DkRdE9Qk07S_njs7CRSGhHjKg8_yj9zZn8_n7wh56sdh4IPieki25wV-HHiJzhMvj2INeF6I3Drc5sfi6DR4exaedVGV-BbG8UMMDje0DLteo4GrtD74SRpaF8sJYGc8rmOoFuKhDwNzFOuzteINpYhY2PPOTvlBX3FtJ9rESb28Dmb-GS35K4q129Bsm3zpB-CiTxaTtkkn-uo3bsf_G-EOud2hU3ro1OkOuWHKEbk57-7fR-SW8_JR93hpRLYQqzqq57ukmqvLYtku6XmxgJaRL5kih4d7HEmLkn51HNfFlckodk-tqM3EU1N0B9M-uJHq6gKO8IiCad2m6CmiTUUz09i4sRLqLoumvkdOZ68-vTzyunwOngbQNfW0TlTIlGECQSecu3LONagDm2aG80xHvknzKTfC5Dow-ORVB1GCK0jGI5YK_z7ZKKvSPCA0UyxLmHG3xjzJY6UxMaESBrlNfTEmz_t_K3VHdo45N86lo2nmEiZX4uSOyZNB8rsj-LhG5plVj0FArRYYEBeF8vPxaxmI2cn75N2JfDEme73-yG4tqGUMAMAPeMShqaEUjBhvZlRpqraWTNhYGRZDx3edtg1twZkRk5jGYxKt6eEggATh6yVl8c0ShYMRhoAnoftWzf46PvnxzRy_D_9VcI9sOd96Atv4PtloVq15BOCsSR9bM_wBHx82vw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaqVoJKiGM5upTDSAiesl07iZOIJ65lC5sVhVbtA5KVOE6JtpugTYKq_npm4iSwUCTEUx48lo_M2J_H428IeWr7rmOD4lpItmc5tu9YgUoDK_V8BXheiLRxuIVzMT1y3p-4JxvkRfcWxvBD9A43tIxmvUYDR4f03k_W0DJbjgA8w3l9CxN6o1W--dRzR7EuXyveUQqPuR3z7JjvdTXX9qItnNbzy4Dmn_GSv-LYZiOa3CBfuiGY-JPFqK7ikbr4jd3xP8d4k1xvASp9aTTqFtnQ-YBcCdsr-AG5Zhx91LxfGpBthKuG7fk2KcLoPFvWS3qWLaBppEymSONh3kfSLKenhuY6u9AJxf5FK9ok4ykpeoRpF99IVfEdTvEIhGlZx-gsolVBE101oWM51F1mVXmHHE3eHr6eWm1KB0sB7hpbSgWRyyLNBOJOOHqlnCvQCDZONOeJ8mwdp2OuhU6Vo_HVq3K8ABeRhHssFvZdspkXud4hNIlYEjBtLo55kPqRwtyEkdBIb2qLIXne_VypWr5zTLtxJg1TM5cwuRInd0ie9JLfDMfHJTLPGv3oBaLVAmPiPFcez99JR0wOPgazA_lqSHY7BZLtclBKHzCA7XCPQ1N9KdgxXs5EuS7qUjLRhMswHzp-z6hb3xYcGzGPqT8k3poi9gLIEb5ekmdfG65wsEMXICV0v9Gzv45Pft4P8Xv_XwUfk6vTw3AmZ_vzD7tk27jaA9jVH5DNalXrh4DVqvhRY5M_AFS_Otg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQK1WVEI_ltS0PIyE4ZRs7iZMcgbK00F21QEWlHqzEcWi03Wy1SVDVX8-MnQQWioQ45ZCJ_MiM_c14_A0hL7wo8D1QXAfJ9hzfi3wnVnns5GGkAM8LkZuA22Qq9o79DyfBSZtViXdhLD9EH3BDyzDrNRr4RZbv_CQNrYr5CLAzuOvrvnAjdLx2P_XUUawr14pHlCJkQUc86_Kd7suVrWgdZ_XyOpz5Z7rkrzDW7EPj2-S0G4FNP5mNmjodqavfyB3_b4h3yK0WntLXVp_ukhu6HJCNSXsAPyA3bZiP2ttLA7KJYNVyPd8ji0lyWcybOT0vZtAyEiZTJPGwtyNpUdJvluS6uNIZxe4lS2pK8VQU48G0y26kavEdfHiEwbRqUgwV0XpBM12bxLESvp0XdXWfHI_ffXm757QFHRwFqMt1lIqTgCWaCUSd4HjlnCvQB-ZmmvNMhZ5Oc5droXPla7zzqvwwxiUk4yFLhfeArJWLUj8iNEtYFjNtj415nEeJwsqEidBIbuqJIXnV_VupWrZzLLpxLi1PM5cwuRInd0ie95IXluHjGpmXRj16gWQ5w4y4MJBfp--lL8ZHh_HBkXwzJNud_sh2MahkBAjA83nIoan-LVgxHs0kpV40lWTCJMuwCDr-0Gpb3xY4jVjFNBqScEUPewFkCF99UxZnhikcrDAAQAndN2r21_HJz_sTfG79q-AzsnG4O5YH-9OP22TTxtlj2NIfk7V62egnANTq9KmxyB-hGzmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+in+generalized+linear+models+with+multiple+covariates+subject+to+detection+limits&rft.jtitle=Statistics+in+medicine&rft.au=May%2C+Ryan+C.&rft.au=Ibrahim%2C+Joseph+G.&rft.au=Chu%2C+Haitao&rft.date=2011-09-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=30&rft.issue=20&rft.spage=2551&rft.epage=2561&rft_id=info:doi/10.1002%2Fsim.4280&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_46FQP9LQ_B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |