Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits

The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Mont...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 30; no. 20; pp. 2551 - 2561
Main Authors May, Ryan C., Ibrahim, Joseph G., Chu, Haitao
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.09.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.4280

Cover

Loading…
Abstract The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation–maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one‐dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M‐step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation–maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one‐dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M‐step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. Copyright © 2011 John Wiley & Sons, Ltd.
The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies.
The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies.The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies.
The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies. [PUBLICATION ABSTRACT]
Author Chu, Haitao
May, Ryan C.
Ibrahim, Joseph G.
Author_xml – sequence: 1
  givenname: Ryan C.
  surname: May
  fullname: May, Ryan C.
  email: ryanmay@unc.edu, Ryan C. May, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA, ryanmay@unc.edu
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
– sequence: 2
  givenname: Joseph G.
  surname: Ibrahim
  fullname: Ibrahim, Joseph G.
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
– sequence: 3
  givenname: Haitao
  surname: Chu
  fullname: Chu, Haitao
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21710558$$D View this record in MEDLINE/PubMed
BookMark eNp1kVtvEzEQhS1URNOCxC9AFk-8bPBt17svSLSipVIKVIB4tBzvpHHqtYPt7YVfj0NLoBU8eSR_c2bOnD2044MHhJ5TMqWEsNfJDlPBWvIITSjpZEVY3e6gCWFSVo2k9S7aS2lFCKU1k0_QLqOSkrpuJyic6ms7jAN29gKcXYbQY0jZDjrb4LH1-Bw8RO3sD-gL5EFHPIQeXMJXNi_xMLps1w6wCZc6Wp0h4TTOV2AyzgH3kEu1kXJ2sDk9RY8X2iV4dvfuo69H774cvq9mH49PDt_OKiMEJZUxna6pBtp0UgpWdwvGDGkaSnpgrDeSw3xBGDSwMAIEF9wI2VHZ8Z5JOm_4Pnpzq7se5wP0BnwuJtQ6FmfxRgVt1f0fb5fqPFwqzmXN67oIvLoTiOH7WE6iBpsMOKc9hDEp2rByeUrbzayXD9BVGKMv9lTbCskFk6xAL_5eaLvJ7yj-DDQxpBRhsUUoUZuUVUlZbVIu6PQBamz-FVixYt2_Gqrbhivr4Oa_wurzyel93qYM11texwvVyHIg9e3DsRLN0dmnbnamDvhPTCjJIg
CODEN SMEDDA
CitedBy_id crossref_primary_10_1177_0962280217727033
crossref_primary_10_1111_biom_12922
crossref_primary_10_1097_EDE_0000000000001052
crossref_primary_10_1080_15598608_2013_772018
crossref_primary_10_1093_annweh_wxw003
crossref_primary_10_1007_s40300_023_00263_2
crossref_primary_10_1515_ijb_2017_0058
crossref_primary_10_1016_j_envres_2021_110710
crossref_primary_10_1002_sim_9343
crossref_primary_10_1177_0962280217690414
crossref_primary_10_1080_10618600_2022_2035233
crossref_primary_10_1002_sim_7942
crossref_primary_10_1002_sim_6830
crossref_primary_10_1002_env_2536
crossref_primary_10_1016_j_chemosphere_2016_08_023
crossref_primary_10_1007_s12561_013_9099_4
crossref_primary_10_1007_s12561_023_09408_3
crossref_primary_10_1016_j_envint_2014_02_010
crossref_primary_10_1002_sim_9978
crossref_primary_10_1186_s12940_018_0400_3
crossref_primary_10_1111_rssc_12164
crossref_primary_10_1002_sim_6466
crossref_primary_10_1002_sim_7335
crossref_primary_10_1002_sim_9536
crossref_primary_10_1016_j_scitotenv_2015_02_089
crossref_primary_10_1146_annurev_statistics_040522_095944
crossref_primary_10_1016_S2542_5196_17_30094_3
crossref_primary_10_1002_sim_8028
crossref_primary_10_1016_j_fertnstert_2015_01_005
crossref_primary_10_1111_jors_12751
crossref_primary_10_1097_QAD_0000000000002371
Cites_doi 10.2307/1907382
10.1093/aje/kwj039
10.2307/2347565
10.1080/01621459.1990.10474930
10.1289/ehp.7199
10.1111/j.2517-6161.1982.tb01203.x
10.1097/EDE.0b013e3181ce97d8
10.1111/j.1468-2354.2007.00470.x
10.1093/aje/kwf217
10.1002/sim.3285
10.1093/biomet/83.4.916
10.1063/1.1699114
10.1023/A:1023630425376
10.1016/j.chemosphere.2006.04.051
10.1080/01621459.1990.10474938
10.2307/2986138
10.1111/1467-9868.00170
10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
10.1093/ije/dyp269
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Sep 10, 2011
Copyright © 2011 John Wiley & Sons, Ltd. 2011
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Sep 10, 2011
– notice: Copyright © 2011 John Wiley & Sons, Ltd. 2011
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.4280
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2561
ExternalDocumentID PMC3375355
2432644011
21710558
10_1002_sim_4280
SIM4280
ark_67375_WNG_46FQP9LQ_B
Genre article
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIH
  funderid: GM 70335; CA 74015
– fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NCI NIH HHS
  grantid: CA 74015
– fundername: NCI NIH HHS
  grantid: T32 CA106209
– fundername: NIGMS NIH HHS
  grantid: R01 GM070335
– fundername: NIGMS NIH HHS
  grantid: GM 70335
– fundername: NCI NIH HHS
  grantid: R01 CA074015
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4410-cc9a51ae169774259f22c06610de22dc73ebf02e6efc4e4343c4791793d271b63
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:33:52 EDT 2025
Fri Jul 11 15:14:25 EDT 2025
Fri Jul 25 04:57:51 EDT 2025
Mon Jul 21 05:50:48 EDT 2025
Sun Jul 06 05:06:11 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:47:49 EST 2025
Wed Oct 30 09:54:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords NHANES
Gibbs sampling
logistic regression
EM algorithm
maximum likelihood estimation
Monte Carlo EM
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4410-cc9a51ae169774259f22c06610de22dc73ebf02e6efc4e4343c4791793d271b63
Notes NIH - No. GM 70335; No. CA 74015
istex:F55C2F5F16C110BC84E5D47CDE878B8D544782D1
ark:/67375/WNG-46FQP9LQ-B
ArticleID:SIM4280
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ryanmay@unc.edu
PMID 21710558
PQID 884734272
PQPubID 48361
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3375355
proquest_miscellaneous_1620021186
proquest_journals_884734272
pubmed_primary_21710558
crossref_primary_10_1002_sim_4280
crossref_citationtrail_10_1002_sim_4280
wiley_primary_10_1002_sim_4280_SIM4280
istex_primary_ark_67375_WNG_46FQP9LQ_B
PublicationCentury 2000
PublicationDate 10 September 2011
PublicationDateYYYYMMDD 2011-09-10
PublicationDate_xml – month: 09
  year: 2011
  text: 10 September 2011
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References D'Angelo G, Weissfeld L. An index approach for the Cox model with left censored covariates. Statistics in Medicine 2008; 27:4502-4514.
Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996; 72:916-922.
Nie L, Chu H, Liu C, Cole SR, Vexler A, Schisterman EF. Linear regression with an independent variable subject to a detection limit. Epidemiology 2010; 21(4):S17-S24.
Wei GC, Tanner MA. A Monte Carlo implementation of the EM algorithm and the poor dan's data augmentation algorithms. Journal of the American Statistical Association 1990; 85:699-704.
Schisterman E, Vexler A, Whitcomb B, Liu A. The limitations due to exposure detection limits for regression models. American Journal of Epidemiology 2006; 163(4):374-383.
Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection.International Journal of Epidemiology 2009; 38:1674-1680.
Gilks WR, Best NG, Tan KKC. Adaptive rejection metropolis sampling within Gibbs sampling. Applied Statistics 1995; 44:455-472.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953; 21:1087-1092.
Lynn H. Maximum likelihood inference for left-censored HIV RNA data. Statistics in Medicine 2001; 20:33-45.
Rigobon R, Stoker TM. Estimation with censored regressors: basic issues. International Economic Review 2007; 48(4):1441-1467.
Ibrahim JG. Incomplete data in generalized linear models. Journal of the American Statistical Association 1990; 85:765-769.
Thompson M, Nelson KP. Linear regression with Type I interval- and left-censored response data. Environmental and Ecological Statistics 2003; 10:221-230.
Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348.
Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere 2006; 65:2434-2439.
Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. American Journal of Epidemiology 2003; 157(4):355-363.
Singh A, Nocerino J. Chemometrics and Intelligent Laboratory Systems, Vol. 60, 2002.
Ibrahim JG, Lipsitz SR, Chen M. Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society, Series B 1999; 61:173-190.
Louis T. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233.
Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, Bernstein L, Hartge P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives 2004; 112(17):1691-1696.
Helsel DR. Nondetects and Data Analysis: Statistics for Censored Environmental Data: New York, 2004.
Tobin J. Estimation of relationships for limited dependent variables. Econometrica 1958; 26:24-36.
2004; 112
1990; 85
2010; 21
2006; 65
1958; 26
2008; 27
1995; 44
1982; 44
2006; 163
1996; 72
2004
2002; 60
1999; 61
2003; 157
2009; 38
2003; 10
1953; 21
2007; 48
2001; 20
1992; 41
e_1_2_8_17_1
e_1_2_8_18_1
Helsel DR (e_1_2_8_6_1) 2004
e_1_2_8_19_1
Louis T (e_1_2_8_23_1) 1982; 44
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Singh A (e_1_2_8_10_1) 2002
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
References_xml – reference: Ibrahim JG. Incomplete data in generalized linear models. Journal of the American Statistical Association 1990; 85:765-769.
– reference: D'Angelo G, Weissfeld L. An index approach for the Cox model with left censored covariates. Statistics in Medicine 2008; 27:4502-4514.
– reference: Helsel DR. Nondetects and Data Analysis: Statistics for Censored Environmental Data: New York, 2004.
– reference: Schisterman E, Vexler A, Whitcomb B, Liu A. The limitations due to exposure detection limits for regression models. American Journal of Epidemiology 2006; 163(4):374-383.
– reference: Nie L, Chu H, Liu C, Cole SR, Vexler A, Schisterman EF. Linear regression with an independent variable subject to a detection limit. Epidemiology 2010; 21(4):S17-S24.
– reference: Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, Bernstein L, Hartge P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives 2004; 112(17):1691-1696.
– reference: Gilks WR, Best NG, Tan KKC. Adaptive rejection metropolis sampling within Gibbs sampling. Applied Statistics 1995; 44:455-472.
– reference: Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere 2006; 65:2434-2439.
– reference: Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348.
– reference: Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. American Journal of Epidemiology 2003; 157(4):355-363.
– reference: Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953; 21:1087-1092.
– reference: Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection.International Journal of Epidemiology 2009; 38:1674-1680.
– reference: Tobin J. Estimation of relationships for limited dependent variables. Econometrica 1958; 26:24-36.
– reference: Thompson M, Nelson KP. Linear regression with Type I interval- and left-censored response data. Environmental and Ecological Statistics 2003; 10:221-230.
– reference: Wei GC, Tanner MA. A Monte Carlo implementation of the EM algorithm and the poor dan's data augmentation algorithms. Journal of the American Statistical Association 1990; 85:699-704.
– reference: Rigobon R, Stoker TM. Estimation with censored regressors: basic issues. International Economic Review 2007; 48(4):1441-1467.
– reference: Ibrahim JG, Lipsitz SR, Chen M. Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society, Series B 1999; 61:173-190.
– reference: Lynn H. Maximum likelihood inference for left-censored HIV RNA data. Statistics in Medicine 2001; 20:33-45.
– reference: Louis T. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233.
– reference: Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996; 72:916-922.
– reference: Singh A, Nocerino J. Chemometrics and Intelligent Laboratory Systems, Vol. 60, 2002.
– volume: 41
  start-page: 337
  year: 1992
  end-page: 348
  article-title: Adaptive rejection sampling for Gibbs sampling
  publication-title: Applied Statistics
– volume: 27
  start-page: 4502
  year: 2008
  end-page: 4514
  article-title: An index approach for the Cox model with left censored covariates
  publication-title: Statistics in Medicine
– volume: 10
  start-page: 221
  year: 2003
  end-page: 230
  article-title: Linear regression with Type I interval‐ and left‐censored response data
  publication-title: Environmental and Ecological Statistics
– volume: 163
  start-page: 374
  issue: 4
  year: 2006
  end-page: 383
  article-title: The limitations due to exposure detection limits for regression models
  publication-title: American Journal of Epidemiology
– volume: 85
  start-page: 765
  year: 1990
  end-page: 769
  article-title: Incomplete data in generalized linear models
  publication-title: Journal of the American Statistical Association
– volume: 85
  start-page: 699
  year: 1990
  end-page: 704
  article-title: A Monte Carlo implementation of the EM algorithm and the poor dan's data augmentation algorithms
  publication-title: Journal of the American Statistical Association
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equations of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– start-page: 2005
  end-page: 2006
– volume: 44
  start-page: 455
  year: 1995
  end-page: 472
  article-title: Adaptive rejection metropolis sampling within Gibbs sampling
  publication-title: Applied Statistics
– volume: 26
  start-page: 24
  year: 1958
  end-page: 36
  article-title: Estimation of relationships for limited dependent variables
  publication-title: Econometrica
– volume: 72
  start-page: 916
  year: 1996
  end-page: 922
  article-title: A conditional model for incomplete covariates in parametric regression models
  publication-title: Biometrika
– year: 2004
– volume: 60
  year: 2002
– volume: 112
  start-page: 1691
  issue: 17
  year: 2004
  end-page: 1696
  article-title: Epidemiologic evaluation of measurement data in the presence of detection limits
  publication-title: Environmental Health Perspectives
– volume: 20
  start-page: 33
  year: 2001
  end-page: 45
  article-title: Maximum likelihood inference for left‐censored HIV RNA data
  publication-title: Statistics in Medicine
– volume: 38
  start-page: 1674
  year: 2009
  end-page: 1680
  article-title: Estimating the odds ratio when exposure has a limit of detection
  publication-title: International Journal of Epidemiology
– volume: 65
  start-page: 2434
  year: 2006
  end-page: 2439
  article-title: Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it
  publication-title: Chemosphere
– volume: 48
  start-page: 1441
  issue: 4
  year: 2007
  end-page: 1467
  article-title: Estimation with censored regressors: basic issues
  publication-title: International Economic Review
– volume: 157
  start-page: 355
  issue: 4
  year: 2003
  end-page: 363
  article-title: Effects of exposure measurement error when an exposure variable is constrained by a lower limit
  publication-title: American Journal of Epidemiology
– volume: 61
  start-page: 173
  year: 1999
  end-page: 190
  article-title: Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 21
  start-page: S17
  issue: 4
  year: 2010
  end-page: S24
  article-title: Linear regression with an independent variable subject to a detection limit
  publication-title: Epidemiology
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: e_1_2_8_2_1
– ident: e_1_2_8_15_1
  doi: 10.2307/1907382
– ident: e_1_2_8_13_1
  doi: 10.1093/aje/kwj039
– ident: e_1_2_8_21_1
  doi: 10.2307/2347565
– ident: e_1_2_8_19_1
  doi: 10.1080/01621459.1990.10474930
– volume-title: Nondetects and Data Analysis: Statistics for Censored Environmental Data
  year: 2004
  ident: e_1_2_8_6_1
– ident: e_1_2_8_9_1
  doi: 10.1289/ehp.7199
– volume: 44
  start-page: 226
  year: 1982
  ident: e_1_2_8_23_1
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_2_8_5_1
  doi: 10.1097/EDE.0b013e3181ce97d8
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1468-2354.2007.00470.x
– ident: e_1_2_8_12_1
  doi: 10.1093/aje/kwf217
– ident: e_1_2_8_4_1
  doi: 10.1002/sim.3285
– ident: e_1_2_8_17_1
  doi: 10.1093/biomet/83.4.916
– ident: e_1_2_8_22_1
  doi: 10.1063/1.1699114
– ident: e_1_2_8_11_1
  doi: 10.1023/A:1023630425376
– ident: e_1_2_8_8_1
  doi: 10.1016/j.chemosphere.2006.04.051
– ident: e_1_2_8_16_1
  doi: 10.1080/01621459.1990.10474938
– ident: e_1_2_8_20_1
  doi: 10.2307/2986138
– volume-title: Chemometrics and Intelligent Laboratory Systems
  year: 2002
  ident: e_1_2_8_10_1
– ident: e_1_2_8_18_1
  doi: 10.1111/1467-9868.00170
– ident: e_1_2_8_7_1
  doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
– ident: e_1_2_8_14_1
  doi: 10.1093/ije/dyp269
SSID ssj0011527
Score 2.1903138
Snippet The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2551
SubjectTerms Algorithms
Computer Simulation
Data analysis
EM algorithm
Gibbs sampling
Humans
Likelihood Functions
Limit of Detection
Linear Models
logistic regression
Male
maximum likelihood estimation
Maximum likelihood method
Medical statistics
Metals, Heavy - urine
Monte Carlo EM
Monte Carlo Method
Monte Carlo simulation
Neoplasms - urine
NHANES
Urology
Title Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits
URI https://api.istex.fr/ark:/67375/WNG-46FQP9LQ-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.4280
https://www.ncbi.nlm.nih.gov/pubmed/21710558
https://www.proquest.com/docview/884734272
https://www.proquest.com/docview/1620021186
https://pubmed.ncbi.nlm.nih.gov/PMC3375355
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQJqFJiI0Co2wgIyF4Slc7iZM8DkQZiE4MmJjEg-U4DkRdE9Qk07S_njs7CRSGhHjKg8_yj9zZn8_n7wh56sdh4IPieki25wV-HHiJzhMvj2INeF6I3Drc5sfi6DR4exaedVGV-BbG8UMMDje0DLteo4GrtD74SRpaF8sJYGc8rmOoFuKhDwNzFOuzteINpYhY2PPOTvlBX3FtJ9rESb28Dmb-GS35K4q129Bsm3zpB-CiTxaTtkkn-uo3bsf_G-EOud2hU3ro1OkOuWHKEbk57-7fR-SW8_JR93hpRLYQqzqq57ukmqvLYtku6XmxgJaRL5kih4d7HEmLkn51HNfFlckodk-tqM3EU1N0B9M-uJHq6gKO8IiCad2m6CmiTUUz09i4sRLqLoumvkdOZ68-vTzyunwOngbQNfW0TlTIlGECQSecu3LONagDm2aG80xHvknzKTfC5Dow-ORVB1GCK0jGI5YK_z7ZKKvSPCA0UyxLmHG3xjzJY6UxMaESBrlNfTEmz_t_K3VHdo45N86lo2nmEiZX4uSOyZNB8rsj-LhG5plVj0FArRYYEBeF8vPxaxmI2cn75N2JfDEme73-yG4tqGUMAMAPeMShqaEUjBhvZlRpqraWTNhYGRZDx3edtg1twZkRk5jGYxKt6eEggATh6yVl8c0ShYMRhoAnoftWzf46PvnxzRy_D_9VcI9sOd96Atv4PtloVq15BOCsSR9bM_wBHx82vw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaqVoJKiGM5upTDSAiesl07iZOIJ65lC5sVhVbtA5KVOE6JtpugTYKq_npm4iSwUCTEUx48lo_M2J_H428IeWr7rmOD4lpItmc5tu9YgUoDK_V8BXheiLRxuIVzMT1y3p-4JxvkRfcWxvBD9A43tIxmvUYDR4f03k_W0DJbjgA8w3l9CxN6o1W--dRzR7EuXyveUQqPuR3z7JjvdTXX9qItnNbzy4Dmn_GSv-LYZiOa3CBfuiGY-JPFqK7ikbr4jd3xP8d4k1xvASp9aTTqFtnQ-YBcCdsr-AG5Zhx91LxfGpBthKuG7fk2KcLoPFvWS3qWLaBppEymSONh3kfSLKenhuY6u9AJxf5FK9ok4ykpeoRpF99IVfEdTvEIhGlZx-gsolVBE101oWM51F1mVXmHHE3eHr6eWm1KB0sB7hpbSgWRyyLNBOJOOHqlnCvQCDZONOeJ8mwdp2OuhU6Vo_HVq3K8ABeRhHssFvZdspkXud4hNIlYEjBtLo55kPqRwtyEkdBIb2qLIXne_VypWr5zTLtxJg1TM5cwuRInd0ie9JLfDMfHJTLPGv3oBaLVAmPiPFcez99JR0wOPgazA_lqSHY7BZLtclBKHzCA7XCPQ1N9KdgxXs5EuS7qUjLRhMswHzp-z6hb3xYcGzGPqT8k3poi9gLIEb5ekmdfG65wsEMXICV0v9Gzv45Pft4P8Xv_XwUfk6vTw3AmZ_vzD7tk27jaA9jVH5DNalXrh4DVqvhRY5M_AFS_Otg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQK1WVEI_ltS0PIyE4ZRs7iZMcgbK00F21QEWlHqzEcWi03Wy1SVDVX8-MnQQWioQ45ZCJ_MiM_c14_A0hL7wo8D1QXAfJ9hzfi3wnVnns5GGkAM8LkZuA22Qq9o79DyfBSZtViXdhLD9EH3BDyzDrNRr4RZbv_CQNrYr5CLAzuOvrvnAjdLx2P_XUUawr14pHlCJkQUc86_Kd7suVrWgdZ_XyOpz5Z7rkrzDW7EPj2-S0G4FNP5mNmjodqavfyB3_b4h3yK0WntLXVp_ukhu6HJCNSXsAPyA3bZiP2ttLA7KJYNVyPd8ji0lyWcybOT0vZtAyEiZTJPGwtyNpUdJvluS6uNIZxe4lS2pK8VQU48G0y26kavEdfHiEwbRqUgwV0XpBM12bxLESvp0XdXWfHI_ffXm757QFHRwFqMt1lIqTgCWaCUSd4HjlnCvQB-ZmmvNMhZ5Oc5droXPla7zzqvwwxiUk4yFLhfeArJWLUj8iNEtYFjNtj415nEeJwsqEidBIbuqJIXnV_VupWrZzLLpxLi1PM5cwuRInd0ie95IXluHjGpmXRj16gWQ5w4y4MJBfp--lL8ZHh_HBkXwzJNud_sh2MahkBAjA83nIoan-LVgxHs0kpV40lWTCJMuwCDr-0Gpb3xY4jVjFNBqScEUPewFkCF99UxZnhikcrDAAQAndN2r21_HJz_sTfG79q-AzsnG4O5YH-9OP22TTxtlj2NIfk7V62egnANTq9KmxyB-hGzmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+in+generalized+linear+models+with+multiple+covariates+subject+to+detection+limits&rft.jtitle=Statistics+in+medicine&rft.au=May%2C+Ryan+C.&rft.au=Ibrahim%2C+Joseph+G.&rft.au=Chu%2C+Haitao&rft.date=2011-09-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=30&rft.issue=20&rft.spage=2551&rft.epage=2561&rft_id=info:doi/10.1002%2Fsim.4280&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_46FQP9LQ_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon