Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research

Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential. To push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 130; no. Pt B; pp. 212 - 222
Main Authors Kroll, Katharina, Chabria, Mamta, Wang, Ken, Häusermann, Fabian, Schuler, Franz, Polonchuk, Liudmila
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2017
Subjects
Online AccessGet full text
ISSN0079-6107
1873-1732
1873-1732
DOI10.1016/j.pbiomolbio.2017.07.003

Cover

Loading…
Abstract Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential. To push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical stimulation and explored how these mimetic biophysical cues interplay and influence the cell behaviour. We introduced a novel device capable of applying synchronized electrical and mechanical stimuli to hiPSC-CM monolayers cultured on a PDMS membrane and evaluated effects of conditioning on cardiomyocyte structure and function. Human iPSC-CMs retained their cardiac phenotype and displayed adaptive structural responses to electrical (E), mechanical (M) and combined electro-mechanical (EM) stimuli, including enhanced membrane N-cadherin signal, stress-fiber formation and sarcomeric length shortening, most prominent under the EM stimulation. On the functional level, EM conditioning significantly reduced the transmembrane calcium current, resulting in a shift towards triangulation of intracellular calcium transients. In contrast, E and M stimulation applied independently increased the proportion of cells with L-Type calcium currents. In addition, calcium transients measured in the M-conditioned samples advanced to a more rectangular shape. The new methodology is a simple and elegant technique to systematically investigate and manipulate cardiomyocyte remodelling for translational applications. In the present study, we adjusted critical parameters to optimize a regimen for hiPSC-CM transformation. In the future, this technology will open up new avenues for electro-mechanical stimulation by allowing temporal and spatial control of stimuli which can be easily scaled up in complexity for cardiac development and disease modelling.
AbstractList Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential.RATIONALEImpaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential.To push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical stimulation and explored how these mimetic biophysical cues interplay and influence the cell behaviour.OBJECTIVETo push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical stimulation and explored how these mimetic biophysical cues interplay and influence the cell behaviour.We introduced a novel device capable of applying synchronized electrical and mechanical stimuli to hiPSC-CM monolayers cultured on a PDMS membrane and evaluated effects of conditioning on cardiomyocyte structure and function. Human iPSC-CMs retained their cardiac phenotype and displayed adaptive structural responses to electrical (E), mechanical (M) and combined electro-mechanical (EM) stimuli, including enhanced membrane N-cadherin signal, stress-fiber formation and sarcomeric length shortening, most prominent under the EM stimulation. On the functional level, EM conditioning significantly reduced the transmembrane calcium current, resulting in a shift towards triangulation of intracellular calcium transients. In contrast, E and M stimulation applied independently increased the proportion of cells with L-Type calcium currents. In addition, calcium transients measured in the M-conditioned samples advanced to a more rectangular shape.METHODS AND RESULTSWe introduced a novel device capable of applying synchronized electrical and mechanical stimuli to hiPSC-CM monolayers cultured on a PDMS membrane and evaluated effects of conditioning on cardiomyocyte structure and function. Human iPSC-CMs retained their cardiac phenotype and displayed adaptive structural responses to electrical (E), mechanical (M) and combined electro-mechanical (EM) stimuli, including enhanced membrane N-cadherin signal, stress-fiber formation and sarcomeric length shortening, most prominent under the EM stimulation. On the functional level, EM conditioning significantly reduced the transmembrane calcium current, resulting in a shift towards triangulation of intracellular calcium transients. In contrast, E and M stimulation applied independently increased the proportion of cells with L-Type calcium currents. In addition, calcium transients measured in the M-conditioned samples advanced to a more rectangular shape.The new methodology is a simple and elegant technique to systematically investigate and manipulate cardiomyocyte remodelling for translational applications. In the present study, we adjusted critical parameters to optimize a regimen for hiPSC-CM transformation. In the future, this technology will open up new avenues for electro-mechanical stimulation by allowing temporal and spatial control of stimuli which can be easily scaled up in complexity for cardiac development and disease modelling.CONCLUSIONThe new methodology is a simple and elegant technique to systematically investigate and manipulate cardiomyocyte remodelling for translational applications. In the present study, we adjusted critical parameters to optimize a regimen for hiPSC-CM transformation. In the future, this technology will open up new avenues for electro-mechanical stimulation by allowing temporal and spatial control of stimuli which can be easily scaled up in complexity for cardiac development and disease modelling.
Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential. To push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical stimulation and explored how these mimetic biophysical cues interplay and influence the cell behaviour. We introduced a novel device capable of applying synchronized electrical and mechanical stimuli to hiPSC-CM monolayers cultured on a PDMS membrane and evaluated effects of conditioning on cardiomyocyte structure and function. Human iPSC-CMs retained their cardiac phenotype and displayed adaptive structural responses to electrical (E), mechanical (M) and combined electro-mechanical (EM) stimuli, including enhanced membrane N-cadherin signal, stress-fiber formation and sarcomeric length shortening, most prominent under the EM stimulation. On the functional level, EM conditioning significantly reduced the transmembrane calcium current, resulting in a shift towards triangulation of intracellular calcium transients. In contrast, E and M stimulation applied independently increased the proportion of cells with L-Type calcium currents. In addition, calcium transients measured in the M-conditioned samples advanced to a more rectangular shape. The new methodology is a simple and elegant technique to systematically investigate and manipulate cardiomyocyte remodelling for translational applications. In the present study, we adjusted critical parameters to optimize a regimen for hiPSC-CM transformation. In the future, this technology will open up new avenues for electro-mechanical stimulation by allowing temporal and spatial control of stimuli which can be easily scaled up in complexity for cardiac development and disease modelling.
Author Schuler, Franz
Kroll, Katharina
Häusermann, Fabian
Chabria, Mamta
Wang, Ken
Polonchuk, Liudmila
Author_xml – sequence: 1
  givenname: Katharina
  orcidid: 0000-0001-5707-9109
  surname: Kroll
  fullname: Kroll, Katharina
– sequence: 2
  givenname: Mamta
  surname: Chabria
  fullname: Chabria, Mamta
– sequence: 3
  givenname: Ken
  surname: Wang
  fullname: Wang, Ken
– sequence: 4
  givenname: Fabian
  surname: Häusermann
  fullname: Häusermann, Fabian
– sequence: 5
  givenname: Franz
  surname: Schuler
  fullname: Schuler, Franz
– sequence: 6
  givenname: Liudmila
  surname: Polonchuk
  fullname: Polonchuk, Liudmila
  email: liudmila.polonchuk@roche.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28688751$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFrGzEQhUVJaJy0f6HssZd1Z6RdafdSaE2aFAINNDkLWZqtZXYlV1oH_O8r1wmFXloYpMt7n_TmXbKzEAMxViEsEVB-2C53ax-nOJZzyQHVEsqAeMUW2ClRoxL8jC0AVF9LBHXBLnPeAgBHJV-zC97JrlMtLpi-HsnOKdYT2Y0J3pqxsjE4P_sYfPhRxaHa7CcTKn__fVU7Sv6JXGVNcuUDh2gPM-VqiKmakwl5NEdfYSTKZJLdvGHngxkzvX2-r9jjl-uH1W199-3m6-rTXW2bBuZ6GJwz2KIBxwn7DlRLtJZohEOHvB_AYre25BrgkrhUDVcS-sYJEsaJVlyx9yfuLsWfe8qznny2NI4mUNxnjX1JLlveN0X67lm6X0_k9C75yaSDfllKEXw8CWyKOScatPXz72Alox81gj62oLf6Twv62IKGMiAKoPsL8PLGf1g_n6xUlvXkKelsPYWS3KdSlHbR_xvyC59JqgY
CitedBy_id crossref_primary_10_3390_ijms23073482
crossref_primary_10_1021_acsbiomaterials_8b01568
crossref_primary_10_1016_j_pbiomolbio_2018_12_001
crossref_primary_10_1103_PhysRevE_98_052402
crossref_primary_10_1038_s41528_020_0075_z
crossref_primary_10_1088_2516_1091_ad9699
crossref_primary_10_1016_j_biopha_2022_113970
crossref_primary_10_1159_000512792
crossref_primary_10_3389_fbioe_2023_1253602
crossref_primary_10_1038_s41592_024_02480_7
crossref_primary_10_3389_fcvm_2018_00052
crossref_primary_10_1155_2019_8203950
crossref_primary_10_3389_fbioe_2022_1031183
crossref_primary_10_1152_ajpheart_00941_2020
crossref_primary_10_3390_ijms21176388
crossref_primary_10_1007_s12551_024_01267_6
crossref_primary_10_1016_j_yjmcc_2023_01_007
crossref_primary_10_1016_j_biomaterials_2019_119551
crossref_primary_10_1038_s41536_021_00140_4
crossref_primary_10_1007_s00449_024_03004_5
crossref_primary_10_1016_j_celrep_2023_113668
crossref_primary_10_1007_s42242_023_00232_8
crossref_primary_10_3390_biotech11030023
crossref_primary_10_3389_fbioe_2019_00373
crossref_primary_10_3389_fphys_2023_1213959
crossref_primary_10_1016_j_vascn_2019_106599
crossref_primary_10_34133_bmr_0030
crossref_primary_10_3390_ijms21082819
crossref_primary_10_1038_s41598_020_67169_1
crossref_primary_10_1093_cvr_cvab115
crossref_primary_10_3390_cells10123483
crossref_primary_10_1016_j_isci_2022_104330
crossref_primary_10_3389_fcell_2020_00178
crossref_primary_10_1021_acsomega_2c01807
crossref_primary_10_1080_17425255_2021_1894122
crossref_primary_10_1016_j_actbio_2021_04_018
crossref_primary_10_3389_fcell_2022_986107
crossref_primary_10_1002_admt_201800659
crossref_primary_10_3389_fphar_2021_617922
crossref_primary_10_3390_ijms21124354
crossref_primary_10_3390_biomedicines10112987
crossref_primary_10_3390_ijms21238893
crossref_primary_10_1080_14712598_2018_1473370
crossref_primary_10_1016_j_nano_2021_102367
crossref_primary_10_54912_jci_2024_0027
crossref_primary_10_1016_j_medntd_2023_100220
crossref_primary_10_1152_ajpheart_00536_2024
crossref_primary_10_3389_fchem_2023_1267018
crossref_primary_10_3389_fcell_2022_855763
crossref_primary_10_3389_fphys_2021_710619
crossref_primary_10_1007_s10439_022_02902_7
crossref_primary_10_1042_BSR20200833
crossref_primary_10_1002_adhm_202403995
crossref_primary_10_3390_cells13242098
crossref_primary_10_1016_j_pbiomolbio_2017_09_016
crossref_primary_10_3390_gels9090677
crossref_primary_10_20935_AcadBiol6081
crossref_primary_10_3390_biology10080730
Cites_doi 10.1007/s00424-011-0951-4
10.1016/j.yjmcc.2015.05.003
10.1007/s10439-013-0833-3
10.1111/j.1582-4934.2009.00996.x
10.1371/journal.pone.0042562
10.1088/1758-5082/6/2/024113
10.1016/j.biomaterials.2012.11.055
10.1161/CIRCRESAHA.110.237206
10.1186/scrt308
10.1016/j.bpj.2015.11.697
10.1038/nrcardio.2016.36
10.1016/S0962-8924(00)01793-1
10.1161/CIRCRESAHA.109.211458
10.1073/pnas.0906504107
10.1016/j.cell.2006.07.024
10.1016/j.tcb.2005.07.001
10.1016/j.ahj.2009.06.007
10.1016/j.biomaterials.2014.02.001
10.1007/BF00269092
10.1096/fasebj.14.5.669
10.1089/ten.tea.2012.0135
10.1089/scd.2014.0533
10.1007/s00395-010-0131-2
10.1016/S0008-6363(97)00272-1
10.1161/CIRCULATIONAHA.112.134932
10.1073/pnas.0407817101
10.1007/BF00240929
10.1152/ajpheart.00556.2014
10.2174/138161209788923804
10.1089/ten.2006.0359
10.1093/cvr/cvm079
10.1016/j.bpj.2011.09.057
10.1161/01.cir.0000032893.55215.fc
10.1089/ten.tea.2013.0355
10.1109/IEMBS.2006.259747
10.1016/j.yjmcc.2013.12.011
10.1098/rstb.2007.2121
10.1089/ten.tea.2007.0244
10.1161/CIRCRESAHA.114.300558
10.1371/journal.pone.0026397
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.pbiomolbio.2017.07.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-1732
EndPage 222
ExternalDocumentID 28688751
10_1016_j_pbiomolbio_2017_07_003
S0079610717300305
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F20
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SPD
SSU
SSZ
T5K
UNMZH
UQL
VQP
WUQ
XFK
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c440t-ffdda151a0d2e198075eeb61a3d1d129f0c18bced4026e2674276094d3e3ad353
IEDL.DBID .~1
ISSN 0079-6107
1873-1732
IngestDate Fri Jul 11 02:55:28 EDT 2025
Wed Feb 19 02:41:53 EST 2025
Tue Jul 01 00:42:39 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Fri Feb 23 02:29:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Electrophysiology
Stem cell-derived cardiomyocytes
Maturation
Electro-mechanical stimulation
Ca2+ handling
Ca(2+) handling
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-ffdda151a0d2e198075eeb61a3d1d129f0c18bced4026e2674276094d3e3ad353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5707-9109
PMID 28688751
PQID 1917665294
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1917665294
pubmed_primary_28688751
crossref_citationtrail_10_1016_j_pbiomolbio_2017_07_003
crossref_primary_10_1016_j_pbiomolbio_2017_07_003
elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2017_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in biophysics and molecular biology
PublicationTitleAlternate Prog Biophys Mol Biol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Salick, Napiwocki, Sha (bib36) 2014; 35
Morgan, Black (bib27) 2014; 20
Miklas, Nunes, Sofla (bib26) 2014; 6
Shiba, Hauch, Laflamme (bib39) 2009; 15
Paci (bib29) 2013; 41
van den Heuvel, van Veen, Lim, Jonsson (bib43) 2014; 67
Rao, Prodromakis, Kolker (bib34) 2013; 34
Eder, Vollert, Hansen, Eschenhagen (bib12) 2015
Hansen, Eder, Bonstrup (bib18) 2010; 107
Feric, Radisic (bib13) 2015
Rodriguez, Han, Regnier, Sniadecki (bib35) 2011; 101
Schaaf, Shibamiya, Mewe (bib37) 2011; 6
Balke (bib3) 1998; 37
McCain, Parker (bib23) 2011; 462
Takahashi, Yamanaka (bib40) 2006; 126
Lu, Mende, Yang (bib22) 2013; 19
Agarkova, Perriard (bib1) 2005; 15
Birla, Huang, Dennis (bib5) 2007; 13
Lee, Taghavi, Yan (bib21) 2012; 7
Wang, Lee, Mirams (bib45) 2015; 308
Hamdani, Kooij, van Dijk (bib17) 2008; 77
Tulloch, Muskheli, Razumova (bib42) 2011; 109
Veerman, Kosmidis, Mummery, Casini, Verkerk, Bellin (bib44) 2015; 24
Chow, Boheler, Li (bib9) 2013; 4
Gregorio, Antin (bib16) 2000; 10
Chiu, Iyer, King, Radisic (bib8) 2011; 17
Coppini, Ferrantini, Yao (bib10) 2013; 127
Radisic, Park, Shing (bib32) 2004; 101
Schoenauer, Emmert, Felley (bib38) 2011; 106
Akhyari, Fedak, Weisel (bib2) 2002; 106
Germanguz, Sedan, Zeevi-Levin, Shtrichman, Barak, Ziskind (bib15) 2011; 15
Messerli, Eppenberger-Eberhardt, Rutishauser (bib24) 1993; 100
Radisic, Park, Gerecht, Cannizzaro, Langer, Vunjak-Novakovic (bib33) 2007; 362
Yang, Pabon, Murry (bib46) 2014; 114
Fink, Ergün, Kralisch, Remmers, Weil, Eschenhagen (bib14) 2000; 14
Hwang, Kryshtal, Feaster (bib19) 2015; 85
Chiou, Rocks, Cho, Merkus, Robison, Tewari, Vogel, Majkut (bib7) 2016; 110
Tandon, Cannizzaro, Figallo, Voldman, Vunjak-Novakovic (bib41) 2006; 1
Kim, Lipke, Kim (bib20) 2010; 107
Chen, Matsa, Wu (bib6) March 2016
Nag, Lee, Sarkar (bib28) 1996; 17
Piccini, Whellan, Berridge (bib30) 2009; 158
Feric (10.1016/j.pbiomolbio.2017.07.003_bib13) 2015
Lu (10.1016/j.pbiomolbio.2017.07.003_bib22) 2013; 19
Schoenauer (10.1016/j.pbiomolbio.2017.07.003_bib38) 2011; 106
Salick (10.1016/j.pbiomolbio.2017.07.003_bib36) 2014; 35
Chen (10.1016/j.pbiomolbio.2017.07.003_bib6) 2016
Takahashi (10.1016/j.pbiomolbio.2017.07.003_bib40) 2006; 126
Agarkova (10.1016/j.pbiomolbio.2017.07.003_bib1) 2005; 15
Rao (10.1016/j.pbiomolbio.2017.07.003_bib34) 2013; 34
Birla (10.1016/j.pbiomolbio.2017.07.003_bib5) 2007; 13
Veerman (10.1016/j.pbiomolbio.2017.07.003_bib44) 2015; 24
Radisic (10.1016/j.pbiomolbio.2017.07.003_bib33) 2007; 362
Rodriguez (10.1016/j.pbiomolbio.2017.07.003_bib35) 2011; 101
Piccini (10.1016/j.pbiomolbio.2017.07.003_bib30) 2009; 158
Chow (10.1016/j.pbiomolbio.2017.07.003_bib9) 2013; 4
Miklas (10.1016/j.pbiomolbio.2017.07.003_bib26) 2014; 6
Balke (10.1016/j.pbiomolbio.2017.07.003_bib3) 1998; 37
Kim (10.1016/j.pbiomolbio.2017.07.003_bib20) 2010; 107
Germanguz (10.1016/j.pbiomolbio.2017.07.003_bib15) 2011; 15
Yang (10.1016/j.pbiomolbio.2017.07.003_bib46) 2014; 114
Morgan (10.1016/j.pbiomolbio.2017.07.003_bib27) 2014; 20
Messerli (10.1016/j.pbiomolbio.2017.07.003_bib24) 1993; 100
Tandon (10.1016/j.pbiomolbio.2017.07.003_bib41) 2006; 1
Chiou (10.1016/j.pbiomolbio.2017.07.003_bib7) 2016; 110
Hwang (10.1016/j.pbiomolbio.2017.07.003_bib19) 2015; 85
Hansen (10.1016/j.pbiomolbio.2017.07.003_bib18) 2010; 107
Schaaf (10.1016/j.pbiomolbio.2017.07.003_bib37) 2011; 6
Chiu (10.1016/j.pbiomolbio.2017.07.003_bib8) 2011; 17
Shiba (10.1016/j.pbiomolbio.2017.07.003_bib39) 2009; 15
Tulloch (10.1016/j.pbiomolbio.2017.07.003_bib42) 2011; 109
Coppini (10.1016/j.pbiomolbio.2017.07.003_bib10) 2013; 127
Fink (10.1016/j.pbiomolbio.2017.07.003_bib14) 2000; 14
Hamdani (10.1016/j.pbiomolbio.2017.07.003_bib17) 2008; 77
Akhyari (10.1016/j.pbiomolbio.2017.07.003_bib2) 2002; 106
McCain (10.1016/j.pbiomolbio.2017.07.003_bib23) 2011; 462
Paci (10.1016/j.pbiomolbio.2017.07.003_bib29) 2013; 41
Nag (10.1016/j.pbiomolbio.2017.07.003_bib28) 1996; 17
Radisic (10.1016/j.pbiomolbio.2017.07.003_bib32) 2004; 101
van den Heuvel (10.1016/j.pbiomolbio.2017.07.003_bib43) 2014; 67
Wang (10.1016/j.pbiomolbio.2017.07.003_bib45) 2015; 308
Eder (10.1016/j.pbiomolbio.2017.07.003_bib12) 2015
Lee (10.1016/j.pbiomolbio.2017.07.003_bib21) 2012; 7
Gregorio (10.1016/j.pbiomolbio.2017.07.003_bib16) 2000; 10
References_xml – volume: 107
  start-page: 565
  year: 2010
  end-page: 570
  ident: bib20
  article-title: Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs
  publication-title: Proc. Natl. Acad. Sci.
– volume: 35
  start-page: 4454
  year: 2014
  end-page: 4464
  ident: bib36
  article-title: Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes
  publication-title: Biomaterials
– volume: 15
  start-page: 2791
  year: 2009
  end-page: 2806
  ident: bib39
  article-title: Cardiac applications for human pluripotent stem cells
  publication-title: Curr. Pharm. Des.
– volume: 15
  start-page: 477
  year: 2005
  end-page: 485
  ident: bib1
  article-title: The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere
  publication-title: Trends Cell Biol.
– volume: 13
  start-page: 2239
  year: 2007
  end-page: 2248
  ident: bib5
  article-title: Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle
  publication-title: Tissue Eng.
– volume: 7
  start-page: e42562
  year: 2012
  ident: bib21
  article-title: Situ optical mapping of voltage and calcium in the heart
  publication-title: PLoS One
– year: March 2016
  ident: bib6
  article-title: Induced pluripotent stem cells: at the heart of cardiovascular precision medicine
  publication-title: Nat. Rev. Cardiol.
– volume: 4
  start-page: 97
  year: 2013
  ident: bib9
  article-title: Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives
  publication-title: Stem Cell Res. Ther.
– volume: 67
  start-page: 12
  year: 2014
  end-page: 25
  ident: bib43
  article-title: Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes
  publication-title: J. Mol. Cell Cardiol.
– volume: 15
  start-page: 38
  year: 2011
  end-page: 51
  ident: bib15
  article-title: Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells
  publication-title: J.Cell. Mol.Med
– volume: 24
  start-page: 1035
  year: 2015
  end-page: 1052
  ident: bib44
  article-title: Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?
  publication-title: Stem Cells Dev.
– volume: 19
  start-page: 403
  year: 2013
  end-page: 414
  ident: bib22
  article-title: Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion
  publication-title: Tissue Eng. Part A
– volume: 101
  start-page: 2455
  year: 2011
  end-page: 2464
  ident: bib35
  article-title: Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium
  publication-title: Biophys. J.
– volume: 10
  start-page: 355
  year: 2000
  end-page: 362
  ident: bib16
  article-title: To the heart of myofibril assembly
  publication-title: Trends Cell Biol.
– volume: 107
  start-page: 35
  year: 2010
  end-page: 44
  ident: bib18
  article-title: Development of a drug screening platform based on engineered heart tissue
  publication-title: Circ. Res.
– volume: 34
  start-page: 2399
  year: 2013
  end-page: 2411
  ident: bib34
  article-title: The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells
  publication-title: Biomaterials
– year: 2015
  ident: bib12
  article-title: Human engineered heart tissue as a model system for drug testing
  publication-title: Adv. Drug Deliv. Rev.
– volume: 106
  start-page: 233
  year: 2011
  end-page: 247
  ident: bib38
  article-title: EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy
  publication-title: Basic Res. Cardiol.
– volume: 100
  start-page: 193
  year: 1993
  end-page: 202
  ident: bib24
  article-title: Remodelling of cardiomyocyte cytoarchitecture visualized by three-dimensional (3D) confocal microscopy
  publication-title: Histochemistry
– volume: 17
  start-page: 1465
  year: 2011
  end-page: 1477
  ident: bib8
  article-title: Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids
  publication-title: Tissue Eng. Part A
– volume: 41
  start-page: 2334
  year: 2013
  end-page: 2348
  ident: bib29
  article-title: Computational models of ventricular- and atrial-like human induced pluripotent stem cell derived cardiomyocytes
  publication-title: Ann. Biomed. Eng.
– volume: 14
  start-page: 669
  year: 2000
  end-page: 679
  ident: bib14
  article-title: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement
  publication-title: FASEB J.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib40
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 114
  start-page: 511
  year: 2014
  end-page: 523
  ident: bib46
  article-title: Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes
  publication-title: Circ. Res.
– volume: 6
  start-page: e26397
  year: 2011
  ident: bib37
  article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology
  publication-title: PLoS One
– volume: 308
  start-page: H1112
  year: 2015
  end-page: H1125
  ident: bib45
  article-title: Cardiac tissue slices: preparation, handling, and successful optical mapping
  publication-title: Am. J. Physiol. - Hear Circ. Physiol.
– volume: 1
  start-page: 845
  year: 2006
  end-page: 848
  ident: bib41
  article-title: Characterization of electrical stimulation electrodes for cardiac tissue engineering
  publication-title: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf.
– volume: 37
  start-page: 290
  year: 1998
  end-page: 299
  ident: bib3
  article-title: Alterations in calcium handling in cardiac hypertrophy and heart failure
  publication-title: Cardiovasc Res.
– year: 2015
  ident: bib13
  article-title: Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues
  publication-title: Adv. Drug Deliv. Rev.
– volume: 127
  start-page: 575
  year: 2013
  end-page: 584
  ident: bib10
  article-title: Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy
  publication-title: Circulation
– volume: 20
  start-page: 1654
  year: 2014
  end-page: 1667
  ident: bib27
  article-title: Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs
  publication-title: Tissue Eng. Part A
– volume: 158
  start-page: 317
  year: 2009
  end-page: 326
  ident: bib30
  article-title: Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the Critical Path Initiative
  publication-title: Am. Heart J.
– volume: 110
  start-page: p120a
  year: 2016
  ident: bib7
  article-title: Mechanical signaling coordinates the embryonic heart beat
  publication-title: Biophysical J.
– volume: 6
  start-page: 024113
  year: 2014
  ident: bib26
  article-title: Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation
  publication-title: Biofabrication
– volume: 106
  start-page: I137
  year: 2002
  end-page: I142
  ident: bib2
  article-title: Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts
  publication-title: Circulation
– volume: 17
  start-page: 313
  year: 1996
  end-page: 334
  ident: bib28
  article-title: Remodelling of adult cardiac muscle cells in culture: dynamic process of disorganization and reorganization of myofibrils
  publication-title: J. Muscle Res. Cell Motil.
– volume: 109
  start-page: 47
  year: 2011
  end-page: 59
  ident: bib42
  article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture
  publication-title: Circ. Res.
– volume: 462
  start-page: 89
  year: 2011
  end-page: 104
  ident: bib23
  article-title: Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function
  publication-title: Pflugers Arch.
– volume: 101
  start-page: 18129
  year: 2004
  end-page: 18134
  ident: bib32
  article-title: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 85
  start-page: 79
  year: 2015
  end-page: 88
  ident: bib19
  article-title: Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories
  publication-title: J. Mol. Cell Cardiol.
– volume: 362
  start-page: 1357
  year: 2007
  end-page: 1368
  ident: bib33
  article-title: Biomimetic approach to cardiac tissue engineering
  publication-title: Philos. Trans. R. Soc. Lond B Biol. Sci.
– volume: 77
  start-page: 649
  year: 2008
  end-page: 658
  ident: bib17
  article-title: Sarcomeric dysfunction in heart failure
  publication-title: Cardiovasc Res.
– volume: 462
  start-page: 89
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib23
  article-title: Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-011-0951-4
– volume: 85
  start-page: 79
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib19
  article-title: Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2015.05.003
– volume: 41
  start-page: 2334
  issue: 11
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib29
  article-title: Computational models of ventricular- and atrial-like human induced pluripotent stem cell derived cardiomyocytes
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0833-3
– volume: 15
  start-page: 38
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib15
  article-title: Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells
  publication-title: J.Cell. Mol.Med
  doi: 10.1111/j.1582-4934.2009.00996.x
– volume: 7
  start-page: e42562
  issue: 8
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib21
  article-title: Situ optical mapping of voltage and calcium in the heart
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042562
– volume: 6
  start-page: 024113
  issue: 2
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib26
  article-title: Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/2/024113
– volume: 34
  start-page: 2399
  issue: 10
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib34
  article-title: The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.055
– volume: 109
  start-page: 47
  issue: 1
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib42
  article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.237206
– volume: 4
  start-page: 97
  issue: 4
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib9
  article-title: Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/scrt308
– volume: 110
  start-page: p120a
  issue: 3
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib7
  article-title: Mechanical signaling coordinates the embryonic heart beat
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2015.11.697
– year: 2016
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib6
  article-title: Induced pluripotent stem cells: at the heart of cardiovascular precision medicine
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2016.36
– volume: 10
  start-page: 355
  issue: 9
  year: 2000
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib16
  article-title: To the heart of myofibril assembly
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(00)01793-1
– volume: 107
  start-page: 35
  issue: 1
  year: 2010
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib18
  article-title: Development of a drug screening platform based on engineered heart tissue
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.211458
– year: 2015
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib12
  article-title: Human engineered heart tissue as a model system for drug testing
  publication-title: Adv. Drug Deliv. Rev.
– volume: 107
  start-page: 565
  issue: 2
  year: 2010
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib20
  article-title: Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0906504107
– volume: 126
  start-page: 663
  issue: 4
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib40
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 15
  start-page: 477
  issue: 9
  year: 2005
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib1
  article-title: The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2005.07.001
– volume: 158
  start-page: 317
  issue: 3
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib30
  article-title: Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the Critical Path Initiative
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2009.06.007
– volume: 35
  start-page: 4454
  issue: 15
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib36
  article-title: Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.001
– volume: 100
  start-page: 193
  issue: 3
  year: 1993
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib24
  article-title: Remodelling of cardiomyocyte cytoarchitecture visualized by three-dimensional (3D) confocal microscopy
  publication-title: Histochemistry
  doi: 10.1007/BF00269092
– volume: 14
  start-page: 669
  issue: 5
  year: 2000
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib14
  article-title: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement
  publication-title: FASEB J.
  doi: 10.1096/fasebj.14.5.669
– volume: 19
  start-page: 403
  issue: 3–4
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib22
  article-title: Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2012.0135
– volume: 24
  start-page: 1035
  issue: 9
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib44
  article-title: Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2014.0533
– volume: 106
  start-page: 233
  issue: 2
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib38
  article-title: EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-010-0131-2
– volume: 37
  start-page: 290
  issue: 2
  year: 1998
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib3
  article-title: Alterations in calcium handling in cardiac hypertrophy and heart failure
  publication-title: Cardiovasc Res.
  doi: 10.1016/S0008-6363(97)00272-1
– volume: 127
  start-page: 575
  issue: 5
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib10
  article-title: Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.134932
– volume: 101
  start-page: 18129
  issue: 52
  year: 2004
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib32
  article-title: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407817101
– volume: 17
  start-page: 313
  issue: 3
  year: 1996
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib28
  article-title: Remodelling of adult cardiac muscle cells in culture: dynamic process of disorganization and reorganization of myofibrils
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1007/BF00240929
– year: 2015
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib13
  article-title: Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues
  publication-title: Adv. Drug Deliv. Rev.
– volume: 308
  start-page: H1112
  issue: 9
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib45
  article-title: Cardiac tissue slices: preparation, handling, and successful optical mapping
  publication-title: Am. J. Physiol. - Hear Circ. Physiol.
  doi: 10.1152/ajpheart.00556.2014
– volume: 15
  start-page: 2791
  issue: 24
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib39
  article-title: Cardiac applications for human pluripotent stem cells
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209788923804
– volume: 13
  start-page: 2239
  issue: 9
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib5
  article-title: Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.0359
– volume: 77
  start-page: 649
  issue: 4
  year: 2008
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib17
  article-title: Sarcomeric dysfunction in heart failure
  publication-title: Cardiovasc Res.
  doi: 10.1093/cvr/cvm079
– volume: 101
  start-page: 2455
  issue: 10
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib35
  article-title: Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.09.057
– volume: 106
  start-page: I137
  year: 2002
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib2
  article-title: Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts
  publication-title: Circulation
  doi: 10.1161/01.cir.0000032893.55215.fc
– volume: 20
  start-page: 1654
  issue: 11–12
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib27
  article-title: Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2013.0355
– volume: 1
  start-page: 845
  issue: 4
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib41
  article-title: Characterization of electrical stimulation electrodes for cardiac tissue engineering
  publication-title: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf.
  doi: 10.1109/IEMBS.2006.259747
– volume: 67
  start-page: 12
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib43
  article-title: Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2013.12.011
– volume: 362
  start-page: 1357
  issue: 1484
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib33
  article-title: Biomimetic approach to cardiac tissue engineering
  publication-title: Philos. Trans. R. Soc. Lond B Biol. Sci.
  doi: 10.1098/rstb.2007.2121
– volume: 17
  start-page: 1465
  issue: 11–12
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib8
  article-title: Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2007.0244
– volume: 114
  start-page: 511
  issue: 3
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib46
  article-title: Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.300558
– volume: 6
  start-page: e26397
  issue: 10
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.07.003_bib37
  article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026397
SSID ssj0002176
Score 2.4424834
Snippet Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 212
SubjectTerms Biological Transport
Biomechanical Phenomena
Ca2+ handling
Calcium - metabolism
Cytoskeleton - metabolism
Electro-mechanical stimulation
Electrophysiological Phenomena
Electrophysiology
Humans
Induced Pluripotent Stem Cells - cytology
Maturation
Mechanical Phenomena
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Sarcomeres - metabolism
Stem cell-derived cardiomyocytes
Translational Medical Research
Title Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research
URI https://dx.doi.org/10.1016/j.pbiomolbio.2017.07.003
https://www.ncbi.nlm.nih.gov/pubmed/28688751
https://www.proquest.com/docview/1917665294
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DEXwRv51fRPA12qxtsuGTjMlUFEEF30LbS3CyrUOnsBf_du_SVBERBF8KLUkb7q653-W-GDu0UuVgVSEAdCoSUJHIdC6Fsjp2ELed9Jy-ulb9--TiIX1osG6dC0NhlWHvr_Z0v1uHJ8eBmseTwYByfHUHlT-5kT0Spgz2RJOUH71_hXkg5Pb-ShwsaHSI5qlivCaU414O8UpBXtqX8azbZ_1UUb9BUK-KzpbZUsCQ_LRa5gpr2PEqW6i6Ss7WmOlVrW3EyFJaL3GBo9ULg3D2ykvHfWs-Pri57QpAGXyzwAsfmTqalcUM4SdHMMunpMiG4biQh7pAj-vs_qx31-2L0EdBFEkSTYVzABlq9iyClpUdKj9sba5kFoME1PcuKmQ7R4KjLalsS6G1rBWafRDbOIM4jTfY3Lgc2y0knQJHubXa6QiBVJ7hi53tZInD99oUmkzXpDNFKDJOvS6Gpo4mezJfRDdEdBORBzxuMvk5c1IV2vjDnJOaO-ab0BjUB3-YfVAz1OA_RY6SbGzL1xdDNqxSaauTNNlmxenPNbXaCvflVG7_69s7bJHuqqTGXTY3fX61e4hupvm-F999Nn96ftm__gAxbPyZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BEYIXNAZsZRsz0l4t4iaxW_FUVaB2QDUJkHizkpwtikpTQUHqf89d4nSapklIe8lDEjvWnXP3O98XwA-ndI5OFxLRpDJBHcnM5EpqZ2KPcderitNXYz28TX7epXdrMGhyYTisMsj-WqZX0jrcOQnUPJlPJpzja3qk_NmNXCHhddjg6lRpCzb6o4vheCWQCXVXLkt6X_KAENBTh3nNOc29nNKV47xMVcmz6aD1t5b6FwqttNH5B9gJMFL065XuwpqbfYTNurHkcg_sWd3dRj46zuxlRggyfHESjl9F6UXVnU9Mfl0PJNI2fHUoiio49XFZFktCoILwrFiwLpuGE0MRSgPd78Pt-dnNYChDKwVZJEm0kN4jZqTcswg7TvW4ArFzuVZZjApJ5fuoUN2caE7mpHYdTQaz0WT5YeziDOM0PoDWrJy5z0Q6jZ7Ta403EWGpPKOJvetliad5XYptMA3pbBHqjHO7i6ltAsoe7G-iWya6jdgJHrdBrUbO61ob7xhz2nDH_rFvLKmEd4w-bhhq6bdiX0k2c-XLs2UzVuu000va8Knm9GpNna4m0Zyqw__69nfYGt5cXdrL0fjiC2zzkzrH8Su0Fk8v7huBnUV-FDbzG8-r_0o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electro-mechanical+conditioning+of+human+iPSC-derived+cardiomyocytes+for+translational+research&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Kroll%2C+Katharina&rft.au=Chabria%2C+Mamta&rft.au=Wang%2C+Ken&rft.au=H%C3%A4usermann%2C+Fabian&rft.date=2017-11-01&rft.issn=0079-6107&rft.volume=130&rft.spage=212&rft.epage=222&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2017.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pbiomolbio_2017_07_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon