Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity

Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 13; no. 15; pp. 7134 - 7139
Main Authors Peng, Xianyun, Bao, Haihong, Sun, Jiaqiang, Mao, Zhiyong, Qiu, Yuan, Mo, Zhaojun, Zhuo, Longchao, Zhang, Shusheng, Luo, Jun, Liu, Xijun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm −2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg Pt −1 , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. Single Pt atomic sites are stabilized on MXene support via the formation of Pt-O and Pt-Ti bonds. The unique asymmetric coordination environment of single Pt sites induces local electric field polarization, which remarkably enhances HER activity.
AbstractList Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm−2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mgPt−1, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm-2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mgPt-1, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm-2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mgPt-1, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm −2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg Pt −1 , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. Single Pt atomic sites are stabilized on MXene support via the formation of Pt-O and Pt-Ti bonds. The unique asymmetric coordination environment of single Pt sites induces local electric field polarization, which remarkably enhances HER activity.
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm −2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg Pt −1 , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.
Author Luo, Jun
Sun, Jiaqiang
Zhang, Shusheng
Qiu, Yuan
Bao, Haihong
Liu, Xijun
Mao, Zhiyong
Peng, Xianyun
Zhuo, Longchao
Mo, Zhaojun
AuthorAffiliation Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices
State Key Laboratory of Coal Conversion
Chinese Academy of Sciences
School of Materials Science and Engineering
Civil Aviation University of China
College of Chemistry
Tianjin University of Technology
Xi'an University of Technology
Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response
Institute of Coal Chemistry
Ganjiang Innovation Academy
Zhengzhou University
AuthorAffiliation_xml – name: Zhengzhou University
– name: Tianjin University of Technology
– name: Chinese Academy of Sciences
– name: Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response
– name: School of Materials Science and Engineering
– name: Civil Aviation University of China
– name: Xi'an University of Technology
– name: Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices
– name: Institute of Coal Chemistry
– name: State Key Laboratory of Coal Conversion
– name: College of Chemistry
– name: Ganjiang Innovation Academy
Author_xml – sequence: 1
  givenname: Xianyun
  surname: Peng
  fullname: Peng, Xianyun
– sequence: 2
  givenname: Haihong
  surname: Bao
  fullname: Bao, Haihong
– sequence: 3
  givenname: Jiaqiang
  surname: Sun
  fullname: Sun, Jiaqiang
– sequence: 4
  givenname: Zhiyong
  surname: Mao
  fullname: Mao, Zhiyong
– sequence: 5
  givenname: Yuan
  surname: Qiu
  fullname: Qiu, Yuan
– sequence: 6
  givenname: Zhaojun
  surname: Mo
  fullname: Mo, Zhaojun
– sequence: 7
  givenname: Longchao
  surname: Zhuo
  fullname: Zhuo, Longchao
– sequence: 8
  givenname: Shusheng
  surname: Zhang
  fullname: Zhang, Shusheng
– sequence: 9
  givenname: Jun
  surname: Luo
  fullname: Luo, Jun
– sequence: 10
  givenname: Xijun
  surname: Liu
  fullname: Liu, Xijun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33889881$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9LHTEQB_AgFn_Vi_dKoBcpPJ1sdrPZo1itBalSvC952YmNZJNnkhVe__rG9_QJ0kPIHD4zDPPdJ9s-eCTkiMEpA96dDcxHgLZrcIvsVVDDjPO22t7Uot4l-yk9AoiOC75DdjmXspOS7ZHpGjPGoHIYqQ4hDtarbIOn1g-TxkTRoc7RamosuoEuglPR_l2bYGiy_sEhvculyoXnQBcxjCEj_bMcYnhAT_E5uGnVoHS2zzYvP5NPRrmEh6__Abm_ury_uJ7d3P74eXF-M9N1DXlmdKeNEkZxAC2NbucwdM0gylNMN1zJSoHgjKlKCSVVxWRleNtAO2941fIDcrIeW1Z6mjDlfrRJo3PKY5hSXzVMNrXoBCv06wf6GKboy3IvSoiuBmiKOn5V03zEoV9EO6q47N_uWcC3NdAxpBTRbAiD_iWs_jv79XsV1mXB8AFrm1eXzVFZ9_-WL-uWmPRm9Hv-_B90W6Hi
CitedBy_id crossref_primary_10_1007_s12274_022_4929_7
crossref_primary_10_3390_nano13020309
crossref_primary_10_1016_j_inoche_2022_110170
crossref_primary_10_1002_ange_202109579
crossref_primary_10_1016_j_cej_2022_134711
crossref_primary_10_1039_D3TA05597C
crossref_primary_10_1073_pnas_2319136121
crossref_primary_10_1016_j_ijhydene_2023_10_124
crossref_primary_10_1016_j_jphotochem_2023_114645
crossref_primary_10_1126_sciadv_adq2948
crossref_primary_10_1002_smll_202204524
crossref_primary_10_1021_acsmaterialslett_2c00306
crossref_primary_10_1016_j_cclet_2024_110392
crossref_primary_10_1016_j_jallcom_2022_166113
crossref_primary_10_1002_ntls_20220047
crossref_primary_10_1039_D2CS00698G
crossref_primary_10_1016_j_ccr_2025_216462
crossref_primary_10_1007_s40843_022_2379_8
crossref_primary_10_2139_ssrn_4193673
crossref_primary_10_1016_j_cej_2024_155302
crossref_primary_10_1016_j_ceramint_2021_07_278
crossref_primary_10_1002_aenm_202103867
crossref_primary_10_1039_D2NR07291B
crossref_primary_10_1002_anie_202109579
crossref_primary_10_1002_cctc_202201633
crossref_primary_10_1002_sstr_202200086
crossref_primary_10_1016_j_jpcs_2024_112428
crossref_primary_10_1002_aenm_202300148
crossref_primary_10_1016_j_electacta_2021_139567
crossref_primary_10_1039_D4NR00020J
Cites_doi 10.1021/cr500486u
10.1038/s41467-019-12459-0
10.1038/s41467-020-20336-4
10.1021/jacs.9b12111
10.1021/acs.jpcc.5b11887
10.1038/s41467-020-14848-2
10.1002/aenm.202000882
10.1002/smtd.202000208
10.1038/s41467-019-09765-y
10.1038/ncomms16100
10.1016/j.apcatb.2018.08.075
10.1021/acs.jpcc.7b05270
10.1002/celc.201800507
10.1016/j.apsusc.2015.11.089
10.1126/sciadv.aaw3072
10.1002/anie.201600750
10.1016/j.nanoen.2018.11.034
10.1002/anie.201706921
10.1038/s41557-018-0092-x
10.1039/C9CC04481G
10.1021/acsaem.8b00817
10.1021/acsnano.9b02579
10.1002/anie.201913080
10.1002/anie.201911696
10.1016/j.nanoen.2020.104529
10.1002/asia.201901100
10.1038/s41586-019-1649-6
10.1038/s41467-017-00643-z
10.1038/ncomms13638
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d1nr00795e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 7139
ExternalDocumentID 33889881
10_1039_D1NR00795E
d1nr00795e
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAPBV
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
-JG
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c440t-fc9cfa6fa300c8fc7b0d95d695da1c53a82a06311a2a6a8a2182f37507b53273
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 11:05:28 EDT 2025
Mon Jun 30 04:30:39 EDT 2025
Wed Feb 19 02:27:42 EST 2025
Tue Jul 01 01:14:08 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
Sun Apr 24 14:59:24 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-fc9cfa6fa300c8fc7b0d95d695da1c53a82a06311a2a6a8a2182f37507b53273
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1nr00795e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3983-2894
0000-0001-5084-2087
0000-0002-2624-6901
0000-0003-0125-3408
0000-0002-1673-7782
PMID 33889881
PQID 2516694005
PQPubID 2047485
PageCount 6
ParticipantIDs crossref_primary_10_1039_D1NR00795E
proquest_miscellaneous_2518546961
rsc_primary_d1nr00795e
crossref_citationtrail_10_1039_D1NR00795E
pubmed_primary_33889881
proquest_journals_2516694005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-21
PublicationDateYYYYMMDD 2021-04-21
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D1NR00795E-(cit13)/*[position()=1]) 2020; 13
Zhou (D1NR00795E-(cit17)/*[position()=1]) 2018; 10
Zhang (D1NR00795E-(cit20)/*[position()=1]) 2017; 56
Wang (D1NR00795E-(cit32)/*[position()=1]) 2019; 58
Bao (D1NR00795E-(cit5)/*[position()=1]) 2021; 12
Gao (D1NR00795E-(cit31)/*[position()=1]) 2019; 575
Zhang (D1NR00795E-(cit4)/*[position()=1]) 2019; 55
Huang (D1NR00795E-(cit16)/*[position()=1]) 2019; 5
Cheng (D1NR00795E-(cit8)/*[position()=1]) 2016; 7
Wang (D1NR00795E-(cit21)/*[position()=1]) 2018; 1
Xu (D1NR00795E-(cit2)/*[position()=1]) 2020; 70
Halim (D1NR00795E-(cit23)/*[position()=1]) 2016; 362
Ren (D1NR00795E-(cit14)/*[position()=1]) 2019; 10
Hong (D1NR00795E-(cit22)/*[position()=1]) 2019; 13
Liu (D1NR00795E-(cit18)/*[position()=1]) 2016; 537
Jiang (D1NR00795E-(cit11)/*[position()=1]) 2019; 10
Shen (D1NR00795E-(cit15)/*[position()=1]) 2020; 59
Zhang (D1NR00795E-(cit19)/*[position()=1]) 2020; 10
Zhang (D1NR00795E-(cit3)/*[position()=1]) 2020; 4
Han (D1NR00795E-(cit12)/*[position()=1]) 2020; 142
Pan (D1NR00795E-(cit33)/*[position()=1]) 2019; 56
Pandey (D1NR00795E-(cit29)/*[position()=1]) 2017; 121
Geng (D1NR00795E-(cit10)/*[position()=1]) 2019; 240
Spronsen (D1NR00795E-(cit24)/*[position()=1]) 2017; 8
Huang (D1NR00795E-(cit25)/*[position()=1]) 2013; 6
Li (D1NR00795E-(cit6)/*[position()=1]) 2016; 55
Munnik (D1NR00795E-(cit1)/*[position()=1]) 2015; 115
Jiang (D1NR00795E-(cit30)/*[position()=1]) 2019; 10
Fang (D1NR00795E-(cit26)/*[position()=1]) 2020; 11
Zhang (D1NR00795E-(cit27)/*[position()=1]) 2017; 8
Liu (D1NR00795E-(cit7)/*[position()=1]) 2018; 5
Qiu (D1NR00795E-(cit9)/*[position()=1]) 2019; 14
Ashton (D1NR00795E-(cit28)/*[position()=1]) 2016; 120
References_xml – volume: 115
  start-page: 6687
  year: 2015
  ident: D1NR00795E-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500486u
– volume: 10
  start-page: 4500
  year: 2019
  ident: D1NR00795E-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12459-0
– volume: 12
  start-page: 238
  year: 2021
  ident: D1NR00795E-(cit5)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20336-4
– volume: 142
  start-page: 12563
  year: 2020
  ident: D1NR00795E-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12111
– volume: 120
  start-page: 3550
  year: 2016
  ident: D1NR00795E-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11887
– volume: 11
  start-page: 1029
  year: 2020
  ident: D1NR00795E-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14848-2
– volume: 10
  start-page: 2000882
  year: 2020
  ident: D1NR00795E-(cit19)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000882
– volume: 4
  start-page: 2000208
  year: 2020
  ident: D1NR00795E-(cit3)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.202000208
– volume: 10
  start-page: 1743
  year: 2019
  ident: D1NR00795E-(cit11)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 8
  start-page: 16100
  year: 2017
  ident: D1NR00795E-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16100
– volume: 240
  start-page: 234
  year: 2019
  ident: D1NR00795E-(cit10)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.08.075
– volume: 121
  start-page: 13593
  year: 2017
  ident: D1NR00795E-(cit29)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b05270
– volume: 5
  start-page: 2963
  year: 2018
  ident: D1NR00795E-(cit7)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800507
– volume: 362
  start-page: 406
  year: 2016
  ident: D1NR00795E-(cit23)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.089
– volume: 5
  start-page: 3072
  year: 2019
  ident: D1NR00795E-(cit16)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw3072
– volume: 55
  start-page: 4977
  year: 2016
  ident: D1NR00795E-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600750
– volume: 56
  start-page: 411
  year: 2019
  ident: D1NR00795E-(cit33)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.034
– volume: 56
  start-page: 13694
  year: 2017
  ident: D1NR00795E-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706921
– volume: 10
  start-page: 974
  year: 2018
  ident: D1NR00795E-(cit17)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0092-x
– volume: 10
  start-page: 1743
  year: 2019
  ident: D1NR00795E-(cit30)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 55
  start-page: 10511
  year: 2019
  ident: D1NR00795E-(cit4)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04481G
– volume: 13
  start-page: 1482
  year: 2020
  ident: D1NR00795E-(cit13)/*[position()=1]
  publication-title: Nano Res.
– volume: 1
  start-page: 6781
  year: 2018
  ident: D1NR00795E-(cit21)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00817
– volume: 13
  start-page: 8917
  year: 2019
  ident: D1NR00795E-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02579
– volume: 59
  start-page: 2313
  year: 2020
  ident: D1NR00795E-(cit15)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201913080
– volume: 58
  start-page: 19060
  year: 2019
  ident: D1NR00795E-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911696
– volume: 70
  start-page: 104529
  year: 2020
  ident: D1NR00795E-(cit2)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104529
– volume: 6
  start-page: 350570
  year: 2013
  ident: D1NR00795E-(cit25)/*[position()=1]
  publication-title: Int. J. Photoenergy
– volume: 14
  start-page: 2770
  year: 2019
  ident: D1NR00795E-(cit9)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201901100
– volume: 537
  start-page: 7620
  year: 2016
  ident: D1NR00795E-(cit18)/*[position()=1]
  publication-title: Nature
– volume: 575
  start-page: 480
  year: 2019
  ident: D1NR00795E-(cit31)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1649-6
– volume: 8
  start-page: 429
  year: 2017
  ident: D1NR00795E-(cit24)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00643-z
– volume: 7
  start-page: 13638
  year: 2016
  ident: D1NR00795E-(cit8)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
SSID ssj0069363
Score 2.4810102
Snippet Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively...
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively...
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively...
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7134
SubjectTerms Catalytic activity
Coordination
Density functional theory
Electric fields
Electrocatalysts
Electronic structure
Hydrogen evolution reactions
Polarization
Title Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity
URI https://www.ncbi.nlm.nih.gov/pubmed/33889881
https://www.proquest.com/docview/2516694005
https://www.proquest.com/docview/2518546961
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK9gIPiF9jhYGM4AVFGUmcOPHjBoMKtGlCRVS8VI5j00ojGV2C1P0F_Nmc7cTJWB8GD40ax0ma3pe77-zzHUKvRM4jQtLQp6qI_ViCw8rASvjAdBnhKpKRKdN5fEInX-KPs2Q2Gv0eRC01db4vLjeuK_kfqUIbyFWvkv0HybqLQgN8B_nCFiQM2xvJeKJjWSpwm394ogIvcmmH9jzwsxsdaWVr3CyFZ-LUdEEG8IwvHUnUwwRn0jutPT2FbFI9nJvoPOkt1sWq-q4rAPxqn8Bk3dCFJoZ0FnRzdQFSlr2GtbpjBqhbNw54h9yMyE74clG1ptJMRNmFIUv-E7q75mPb-dtiue46t8MSIN0g9u1aZ6u9Ih2qSIhNUb4vh23pVfVLhjBLBspUL3MdGGbYZRuVfkB0ztR34clnIDwsOepNWzed_5fFc3GIZgaesHl_7i20HYHDARpz--DT4YevnVWnjJiqfO6xulS3hL3pz75Kbq55LMBfVl1dGcNfpvfQ3dbxwAcWRffRSJYP0J1BOsqHqOnxhId4wi2ecIcnbPCEh3jClcIWT_i0xgZPuK5wiyfc4Qk7POEOT4_Q9P3R9O3Eb8ty-CKOg9pXggnFqeIkCESmRJoHBUsKCh8eioTwLOJAfMOQR5zyjOsaAYoAM03zhABb3kFbZVXKXYSVTMEc5LRIiYrBdPIsFFxJuBYBLz4pxuh193fORZuyXldOOZtfF9wYvXR9z22ilo299jqpzNsX-WIOFJ9SBsYsGaMX7jCoWT13xktZNaZPlsSU0XCMHltputsQkmUsy-DIDojXNRdhuTJ3lU9u9Nueotv9i7SHtupVI58B463z5y0Y_wAnH65C
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+coordination+induces+electric+field+polarization+of+single+Pt+sites+to+promote+hydrogen+evolution+activity&rft.jtitle=Nanoscale&rft.au=Peng%2C+Xianyun&rft.au=Bao%2C+Haihong&rft.au=Sun%2C+Jiaqiang&rft.au=Mao%2C+Zhiyong&rft.date=2021-04-21&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=13&rft.issue=15&rft.spage=7134&rft.epage=7139&rft_id=info:doi/10.1039%2FD1NR00795E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1NR00795E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon