Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity
Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-...
Saved in:
Published in | Nanoscale Vol. 13; no. 15; pp. 7134 - 7139 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene)
via
the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm
−2
and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg
Pt
−1
, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.
Single Pt atomic sites are stabilized on MXene support
via
the formation of Pt-O and Pt-Ti bonds. The unique asymmetric coordination environment of single Pt sites induces local electric field polarization, which remarkably enhances HER activity. |
---|---|
AbstractList | Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm−2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mgPt−1, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm-2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mgPt-1, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity.Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm-2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mgPt-1, at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm −2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg Pt −1 , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. Single Pt atomic sites are stabilized on MXene support via the formation of Pt-O and Pt-Ti bonds. The unique asymmetric coordination environment of single Pt sites induces local electric field polarization, which remarkably enhances HER activity. Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm −2 and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg Pt −1 , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively catalyze the hydrogen evolution reaction (HER). Due to the local electric field polarization derived from its unique asymmetric coordination, Pt-SA/MXene displays remarkably higher catalytic HER activity in an alkaline electrolyte. In detail, the Pt-SA/MXene electrocatalyst only needs a low overpotential of 33 mV to reach a current density of 10 mA cm and maintains the performance over 27 h. Besides, Pt-SA/MXene also has a competitive mass activity, 23.5 A mg , at an overpotential of 100 mV, which is 29.4 times greater than that of the commercial Pt/C counterpart. Density functional theory (DFT) calculations revealed that the polarized electric field could efficiently tailor the electronic structure of Pt-SA/MXene and reduce the energy barrier of adsorption/desorption of the H* intermediate step, further improving its HER catalytic activity. |
Author | Luo, Jun Sun, Jiaqiang Zhang, Shusheng Qiu, Yuan Bao, Haihong Liu, Xijun Mao, Zhiyong Peng, Xianyun Zhuo, Longchao Mo, Zhaojun |
AuthorAffiliation | Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices State Key Laboratory of Coal Conversion Chinese Academy of Sciences School of Materials Science and Engineering Civil Aviation University of China College of Chemistry Tianjin University of Technology Xi'an University of Technology Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response Institute of Coal Chemistry Ganjiang Innovation Academy Zhengzhou University |
AuthorAffiliation_xml | – name: Zhengzhou University – name: Tianjin University of Technology – name: Chinese Academy of Sciences – name: Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response – name: School of Materials Science and Engineering – name: Civil Aviation University of China – name: Xi'an University of Technology – name: Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices – name: Institute of Coal Chemistry – name: State Key Laboratory of Coal Conversion – name: College of Chemistry – name: Ganjiang Innovation Academy |
Author_xml | – sequence: 1 givenname: Xianyun surname: Peng fullname: Peng, Xianyun – sequence: 2 givenname: Haihong surname: Bao fullname: Bao, Haihong – sequence: 3 givenname: Jiaqiang surname: Sun fullname: Sun, Jiaqiang – sequence: 4 givenname: Zhiyong surname: Mao fullname: Mao, Zhiyong – sequence: 5 givenname: Yuan surname: Qiu fullname: Qiu, Yuan – sequence: 6 givenname: Zhaojun surname: Mo fullname: Mo, Zhaojun – sequence: 7 givenname: Longchao surname: Zhuo fullname: Zhuo, Longchao – sequence: 8 givenname: Shusheng surname: Zhang fullname: Zhang, Shusheng – sequence: 9 givenname: Jun surname: Luo fullname: Luo, Jun – sequence: 10 givenname: Xijun surname: Liu fullname: Liu, Xijun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33889881$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9LHTEQB_AgFn_Vi_dKoBcpPJ1sdrPZo1itBalSvC952YmNZJNnkhVe__rG9_QJ0kPIHD4zDPPdJ9s-eCTkiMEpA96dDcxHgLZrcIvsVVDDjPO22t7Uot4l-yk9AoiOC75DdjmXspOS7ZHpGjPGoHIYqQ4hDtarbIOn1g-TxkTRoc7RamosuoEuglPR_l2bYGiy_sEhvculyoXnQBcxjCEj_bMcYnhAT_E5uGnVoHS2zzYvP5NPRrmEh6__Abm_ury_uJ7d3P74eXF-M9N1DXlmdKeNEkZxAC2NbucwdM0gylNMN1zJSoHgjKlKCSVVxWRleNtAO2941fIDcrIeW1Z6mjDlfrRJo3PKY5hSXzVMNrXoBCv06wf6GKboy3IvSoiuBmiKOn5V03zEoV9EO6q47N_uWcC3NdAxpBTRbAiD_iWs_jv79XsV1mXB8AFrm1eXzVFZ9_-WL-uWmPRm9Hv-_B90W6Hi |
CitedBy_id | crossref_primary_10_1007_s12274_022_4929_7 crossref_primary_10_3390_nano13020309 crossref_primary_10_1016_j_inoche_2022_110170 crossref_primary_10_1002_ange_202109579 crossref_primary_10_1016_j_cej_2022_134711 crossref_primary_10_1039_D3TA05597C crossref_primary_10_1073_pnas_2319136121 crossref_primary_10_1016_j_ijhydene_2023_10_124 crossref_primary_10_1016_j_jphotochem_2023_114645 crossref_primary_10_1126_sciadv_adq2948 crossref_primary_10_1002_smll_202204524 crossref_primary_10_1021_acsmaterialslett_2c00306 crossref_primary_10_1016_j_cclet_2024_110392 crossref_primary_10_1016_j_jallcom_2022_166113 crossref_primary_10_1002_ntls_20220047 crossref_primary_10_1039_D2CS00698G crossref_primary_10_1016_j_ccr_2025_216462 crossref_primary_10_1007_s40843_022_2379_8 crossref_primary_10_2139_ssrn_4193673 crossref_primary_10_1016_j_cej_2024_155302 crossref_primary_10_1016_j_ceramint_2021_07_278 crossref_primary_10_1002_aenm_202103867 crossref_primary_10_1039_D2NR07291B crossref_primary_10_1002_anie_202109579 crossref_primary_10_1002_cctc_202201633 crossref_primary_10_1002_sstr_202200086 crossref_primary_10_1016_j_jpcs_2024_112428 crossref_primary_10_1002_aenm_202300148 crossref_primary_10_1016_j_electacta_2021_139567 crossref_primary_10_1039_D4NR00020J |
Cites_doi | 10.1021/cr500486u 10.1038/s41467-019-12459-0 10.1038/s41467-020-20336-4 10.1021/jacs.9b12111 10.1021/acs.jpcc.5b11887 10.1038/s41467-020-14848-2 10.1002/aenm.202000882 10.1002/smtd.202000208 10.1038/s41467-019-09765-y 10.1038/ncomms16100 10.1016/j.apcatb.2018.08.075 10.1021/acs.jpcc.7b05270 10.1002/celc.201800507 10.1016/j.apsusc.2015.11.089 10.1126/sciadv.aaw3072 10.1002/anie.201600750 10.1016/j.nanoen.2018.11.034 10.1002/anie.201706921 10.1038/s41557-018-0092-x 10.1039/C9CC04481G 10.1021/acsaem.8b00817 10.1021/acsnano.9b02579 10.1002/anie.201913080 10.1002/anie.201911696 10.1016/j.nanoen.2020.104529 10.1002/asia.201901100 10.1038/s41586-019-1649-6 10.1038/s41467-017-00643-z 10.1038/ncomms13638 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d1nr00795e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 7139 |
ExternalDocumentID | 33889881 10_1039_D1NR00795E d1nr00795e |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AAJAE AANOJ AAPBV ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKBGW AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY -JG NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c440t-fc9cfa6fa300c8fc7b0d95d695da1c53a82a06311a2a6a8a2182f37507b53273 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 11:05:28 EDT 2025 Mon Jun 30 04:30:39 EDT 2025 Wed Feb 19 02:27:42 EST 2025 Tue Jul 01 01:14:08 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Sun Apr 24 14:59:24 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c440t-fc9cfa6fa300c8fc7b0d95d695da1c53a82a06311a2a6a8a2182f37507b53273 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1nr00795e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3983-2894 0000-0001-5084-2087 0000-0002-2624-6901 0000-0003-0125-3408 0000-0002-1673-7782 |
PMID | 33889881 |
PQID | 2516694005 |
PQPubID | 2047485 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1039_D1NR00795E proquest_miscellaneous_2518546961 rsc_primary_d1nr00795e crossref_citationtrail_10_1039_D1NR00795E pubmed_primary_33889881 proquest_journals_2516694005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-21 |
PublicationDateYYYYMMDD | 2021-04-21 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D1NR00795E-(cit13)/*[position()=1]) 2020; 13 Zhou (D1NR00795E-(cit17)/*[position()=1]) 2018; 10 Zhang (D1NR00795E-(cit20)/*[position()=1]) 2017; 56 Wang (D1NR00795E-(cit32)/*[position()=1]) 2019; 58 Bao (D1NR00795E-(cit5)/*[position()=1]) 2021; 12 Gao (D1NR00795E-(cit31)/*[position()=1]) 2019; 575 Zhang (D1NR00795E-(cit4)/*[position()=1]) 2019; 55 Huang (D1NR00795E-(cit16)/*[position()=1]) 2019; 5 Cheng (D1NR00795E-(cit8)/*[position()=1]) 2016; 7 Wang (D1NR00795E-(cit21)/*[position()=1]) 2018; 1 Xu (D1NR00795E-(cit2)/*[position()=1]) 2020; 70 Halim (D1NR00795E-(cit23)/*[position()=1]) 2016; 362 Ren (D1NR00795E-(cit14)/*[position()=1]) 2019; 10 Hong (D1NR00795E-(cit22)/*[position()=1]) 2019; 13 Liu (D1NR00795E-(cit18)/*[position()=1]) 2016; 537 Jiang (D1NR00795E-(cit11)/*[position()=1]) 2019; 10 Shen (D1NR00795E-(cit15)/*[position()=1]) 2020; 59 Zhang (D1NR00795E-(cit19)/*[position()=1]) 2020; 10 Zhang (D1NR00795E-(cit3)/*[position()=1]) 2020; 4 Han (D1NR00795E-(cit12)/*[position()=1]) 2020; 142 Pan (D1NR00795E-(cit33)/*[position()=1]) 2019; 56 Pandey (D1NR00795E-(cit29)/*[position()=1]) 2017; 121 Geng (D1NR00795E-(cit10)/*[position()=1]) 2019; 240 Spronsen (D1NR00795E-(cit24)/*[position()=1]) 2017; 8 Huang (D1NR00795E-(cit25)/*[position()=1]) 2013; 6 Li (D1NR00795E-(cit6)/*[position()=1]) 2016; 55 Munnik (D1NR00795E-(cit1)/*[position()=1]) 2015; 115 Jiang (D1NR00795E-(cit30)/*[position()=1]) 2019; 10 Fang (D1NR00795E-(cit26)/*[position()=1]) 2020; 11 Zhang (D1NR00795E-(cit27)/*[position()=1]) 2017; 8 Liu (D1NR00795E-(cit7)/*[position()=1]) 2018; 5 Qiu (D1NR00795E-(cit9)/*[position()=1]) 2019; 14 Ashton (D1NR00795E-(cit28)/*[position()=1]) 2016; 120 |
References_xml | – volume: 115 start-page: 6687 year: 2015 ident: D1NR00795E-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500486u – volume: 10 start-page: 4500 year: 2019 ident: D1NR00795E-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-12459-0 – volume: 12 start-page: 238 year: 2021 ident: D1NR00795E-(cit5)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-20336-4 – volume: 142 start-page: 12563 year: 2020 ident: D1NR00795E-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12111 – volume: 120 start-page: 3550 year: 2016 ident: D1NR00795E-(cit28)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11887 – volume: 11 start-page: 1029 year: 2020 ident: D1NR00795E-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-14848-2 – volume: 10 start-page: 2000882 year: 2020 ident: D1NR00795E-(cit19)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000882 – volume: 4 start-page: 2000208 year: 2020 ident: D1NR00795E-(cit3)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.202000208 – volume: 10 start-page: 1743 year: 2019 ident: D1NR00795E-(cit11)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 8 start-page: 16100 year: 2017 ident: D1NR00795E-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms16100 – volume: 240 start-page: 234 year: 2019 ident: D1NR00795E-(cit10)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.08.075 – volume: 121 start-page: 13593 year: 2017 ident: D1NR00795E-(cit29)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05270 – volume: 5 start-page: 2963 year: 2018 ident: D1NR00795E-(cit7)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201800507 – volume: 362 start-page: 406 year: 2016 ident: D1NR00795E-(cit23)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.089 – volume: 5 start-page: 3072 year: 2019 ident: D1NR00795E-(cit16)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw3072 – volume: 55 start-page: 4977 year: 2016 ident: D1NR00795E-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600750 – volume: 56 start-page: 411 year: 2019 ident: D1NR00795E-(cit33)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.034 – volume: 56 start-page: 13694 year: 2017 ident: D1NR00795E-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706921 – volume: 10 start-page: 974 year: 2018 ident: D1NR00795E-(cit17)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-018-0092-x – volume: 10 start-page: 1743 year: 2019 ident: D1NR00795E-(cit30)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 55 start-page: 10511 year: 2019 ident: D1NR00795E-(cit4)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC04481G – volume: 13 start-page: 1482 year: 2020 ident: D1NR00795E-(cit13)/*[position()=1] publication-title: Nano Res. – volume: 1 start-page: 6781 year: 2018 ident: D1NR00795E-(cit21)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00817 – volume: 13 start-page: 8917 year: 2019 ident: D1NR00795E-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b02579 – volume: 59 start-page: 2313 year: 2020 ident: D1NR00795E-(cit15)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.201913080 – volume: 58 start-page: 19060 year: 2019 ident: D1NR00795E-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911696 – volume: 70 start-page: 104529 year: 2020 ident: D1NR00795E-(cit2)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104529 – volume: 6 start-page: 350570 year: 2013 ident: D1NR00795E-(cit25)/*[position()=1] publication-title: Int. J. Photoenergy – volume: 14 start-page: 2770 year: 2019 ident: D1NR00795E-(cit9)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201901100 – volume: 537 start-page: 7620 year: 2016 ident: D1NR00795E-(cit18)/*[position()=1] publication-title: Nature – volume: 575 start-page: 480 year: 2019 ident: D1NR00795E-(cit31)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1649-6 – volume: 8 start-page: 429 year: 2017 ident: D1NR00795E-(cit24)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00643-z – volume: 7 start-page: 13638 year: 2016 ident: D1NR00795E-(cit8)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13638 |
SSID | ssj0069363 |
Score | 2.4810102 |
Snippet | Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene)
via
the formation of Pt-O and Pt-Ti bonds to effectively... Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively... Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt-O and Pt-Ti bonds to effectively... Herein, we reported a kind of single Pt site (Pt-SA) stabilized on an MXene support (Pt-SA/MXene) via the formation of Pt–O and Pt–Ti bonds to effectively... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7134 |
SubjectTerms | Catalytic activity Coordination Density functional theory Electric fields Electrocatalysts Electronic structure Hydrogen evolution reactions Polarization |
Title | Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33889881 https://www.proquest.com/docview/2516694005 https://www.proquest.com/docview/2518546961 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK9gIPiF9jhYGM4AVFGUmcOPHjBoMKtGlCRVS8VI5j00ojGV2C1P0F_Nmc7cTJWB8GD40ax0ma3pe77-zzHUKvRM4jQtLQp6qI_ViCw8rASvjAdBnhKpKRKdN5fEInX-KPs2Q2Gv0eRC01db4vLjeuK_kfqUIbyFWvkv0HybqLQgN8B_nCFiQM2xvJeKJjWSpwm394ogIvcmmH9jzwsxsdaWVr3CyFZ-LUdEEG8IwvHUnUwwRn0jutPT2FbFI9nJvoPOkt1sWq-q4rAPxqn8Bk3dCFJoZ0FnRzdQFSlr2GtbpjBqhbNw54h9yMyE74clG1ptJMRNmFIUv-E7q75mPb-dtiue46t8MSIN0g9u1aZ6u9Ih2qSIhNUb4vh23pVfVLhjBLBspUL3MdGGbYZRuVfkB0ztR34clnIDwsOepNWzed_5fFc3GIZgaesHl_7i20HYHDARpz--DT4YevnVWnjJiqfO6xulS3hL3pz75Kbq55LMBfVl1dGcNfpvfQ3dbxwAcWRffRSJYP0J1BOsqHqOnxhId4wi2ecIcnbPCEh3jClcIWT_i0xgZPuK5wiyfc4Qk7POEOT4_Q9P3R9O3Eb8ty-CKOg9pXggnFqeIkCESmRJoHBUsKCh8eioTwLOJAfMOQR5zyjOsaAYoAM03zhABb3kFbZVXKXYSVTMEc5LRIiYrBdPIsFFxJuBYBLz4pxuh193fORZuyXldOOZtfF9wYvXR9z22ilo299jqpzNsX-WIOFJ9SBsYsGaMX7jCoWT13xktZNaZPlsSU0XCMHltputsQkmUsy-DIDojXNRdhuTJ3lU9u9Nueotv9i7SHtupVI58B463z5y0Y_wAnH65C |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+coordination+induces+electric+field+polarization+of+single+Pt+sites+to+promote+hydrogen+evolution+activity&rft.jtitle=Nanoscale&rft.au=Peng%2C+Xianyun&rft.au=Bao%2C+Haihong&rft.au=Sun%2C+Jiaqiang&rft.au=Mao%2C+Zhiyong&rft.date=2021-04-21&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=13&rft.issue=15&rft.spage=7134&rft.epage=7139&rft_id=info:doi/10.1039%2FD1NR00795E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1NR00795E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |