Coronavirus GenBrowser for monitoring the transmission and evolution of SARS-CoV-2
Abstract Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
10.03.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2. |
---|---|
AbstractList | Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2. Abstract Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2. Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2. |
Author | Li, Haipeng Hao, Zi-Qian Yu, Dalang Jin, Tong Su, Xiao Pan, Yi-Hsuan Duan, Guangya Ma, Lina Hu, Wangjie Yang, Xiao Tang, Bixia Mu, Hailong Zhang, Mochen Li, Cui-Ping Dai, Long Cui, Ying Zhao, Wenming Yang, Jianing Zhu, Junwei Zhang, Guoqing |
Author_xml | – sequence: 1 givenname: Dalang surname: Yu fullname: Yu, Dalang email: yudalang2017@sibs.ac.cn – sequence: 2 givenname: Xiao surname: Yang fullname: Yang, Xiao email: yangxiao@picb.ac.cn – sequence: 3 givenname: Bixia surname: Tang fullname: Tang, Bixia email: tangbx@big.ac.cn – sequence: 4 givenname: Yi-Hsuan surname: Pan fullname: Pan, Yi-Hsuan email: yxpan@sat.ecnu.edu.cn – sequence: 5 givenname: Jianing surname: Yang fullname: Yang, Jianing email: yangjianing2019@sibs.ac.cn – sequence: 6 givenname: Guangya surname: Duan fullname: Duan, Guangya email: duanguangya2019m@big.ac.cn – sequence: 7 givenname: Junwei surname: Zhu fullname: Zhu, Junwei email: zhujw@big.ac.cn – sequence: 8 givenname: Zi-Qian surname: Hao fullname: Hao, Zi-Qian email: zhaowm@big.ac.cn – sequence: 9 givenname: Hailong surname: Mu fullname: Mu, Hailong email: mhl_dyx@126.com – sequence: 10 givenname: Long surname: Dai fullname: Dai, Long email: dailong@picb.ac.cn – sequence: 11 givenname: Wangjie surname: Hu fullname: Hu, Wangjie email: huwangjie@picb.ac.cn – sequence: 12 givenname: Mochen surname: Zhang fullname: Zhang, Mochen email: gqzhang@picb.ac.cn – sequence: 13 givenname: Ying surname: Cui fullname: Cui, Ying email: cuiying2019m@big.ac.cn – sequence: 14 givenname: Tong surname: Jin fullname: Jin, Tong email: jintong2019m@big.ac.cn – sequence: 15 givenname: Cui-Ping surname: Li fullname: Li, Cui-Ping email: lihaipeng@picb.ac.cn – sequence: 16 givenname: Lina surname: Ma fullname: Ma, Lina email: malina@big.ac.cn – sequence: 18 givenname: Xiao surname: Su fullname: Su, Xiao email: xsu@ips.ac.cn – sequence: 19 givenname: Guoqing surname: Zhang fullname: Zhang, Guoqing email: gqzhang@picb.ac.cn – sequence: 20 givenname: Wenming surname: Zhao fullname: Zhao, Wenming email: zhaowm@big.ac.cn – sequence: 21 givenname: Haipeng orcidid: 0000-0001-7856-4488 surname: Li fullname: Li, Haipeng email: lihaipeng@picb.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35043153$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1LHDEUxUOxdNX65LsMCCLIaL4mM_MibJdqC4Kwtn0NyUyyRmZz12Rmi_99M-xuqSJ9urnkdw_n3nOA9jx4g9AxwZcE1-xKO32ltdJFxT6gfcLLMue44HvjW5R5wQWboIMYnzCmuKzIJzRhBeaMFGwfzWcQwKu1C0PMbo3_EuB3NCGzELIleNdDcH6R9Y8m64PycelidOAz5dvMrKEb-rEDmz1M5w_5DH7l9DP6aFUXzdG2HqKfN19_zL7ld_e332fTu7zhHPe5LWuuKS-UVqypK9IKLHip6oqSttaiNYwWpLQCa4obVRhtrTLCKs64Zrht2SG63uiuBr00bWN8ctjJVXBLFV4kKCdf_3j3KBewllVNieAsCZxvBQI8Dyb2Mm3XmK5T3sAQJRWUUF4zMqKnb9AnGIJP6yWKY1FWApNEnfzr6K-V3bkTQDZAEyDGYKxsXK_GEyaDrpMEyzFSmSKV20jTzMWbmZ3s-_TZhoZh9V_wDzYtsS8 |
CitedBy_id | crossref_primary_10_1360_TB_2023_0708 crossref_primary_10_1016_j_bsheal_2023_07_004 crossref_primary_10_1007_s00285_023_02006_3 crossref_primary_10_1155_2023_6638714 crossref_primary_10_1017_S1479262123001132 crossref_primary_10_1016_j_csbj_2023_01_038 crossref_primary_10_1016_j_eclinm_2024_102582 crossref_primary_10_1038_s42003_023_04759_5 crossref_primary_10_1039_D2CP01724E crossref_primary_10_1093_database_baad065 crossref_primary_10_1007_s00430_023_00783_8 crossref_primary_10_1038_s41392_024_01847_8 crossref_primary_10_1155_2022_2109641 crossref_primary_10_1007_s00239_022_10073_1 crossref_primary_10_1128_spectrum_02269_23 crossref_primary_10_1186_s12889_024_20657_9 crossref_primary_10_1093_molbev_msad142 crossref_primary_10_1016_j_bsheal_2023_05_006 crossref_primary_10_3389_fpubh_2024_1491623 crossref_primary_10_3390_v16071150 |
Cites_doi | 10.1093/ve/vex042 10.1073/pnas.2004999117 10.1007/BF01659391 10.1002/gch2.1018 10.1093/nsr/nwaa036 10.1038/s41586-021-03677-y 10.1016/S0140-6736(03)13414-9 10.1137/0128004 10.1126/science.1092002 10.1371/journal.pcbi.1006650 10.1038/s41588-020-0700-8 10.1093/bioinformatics/bty407 10.1093/nar/gkaa892 10.1093/nar/gkaa1022 10.1016/j.gpb.2021.04.001 10.1126/science.1176297 10.1016/j.cell.2020.06.043 10.1093/nsr/nwz079 10.24272/j.issn.2095-8137.2020.022 10.1126/science.abb9263 10.24272/j.issn.2095-8137.2020.065 10.2807/1560-7917.ES.2017.22.13.30494 10.1101/2021.04.30.442029 10.1038/s41586-020-2008-3 10.1038/s41588-020-0697-z 10.2307/2529676 10.1038/s41422-020-0308-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
CorporateAuthor | Language translation team |
CorporateAuthor_xml | – name: Language translation team |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbab583 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8921643 35043153 10_1093_bib_bbab583 10.1093/bib/bbab583 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Project of China grantid: 2020YFC084-7000 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2017SHZDZX01 – fundername: Shanghai Institute of Nutrition and Health grantid: JBGSRWBD-SINH-2021-10 – fundername: Chinese Academy of Sciences grantid: XDB38030100 – fundername: ; grantid: JBGSRWBD-SINH-2021-10 – fundername: ; grantid: XDB38030100 – fundername: ; grantid: 2017SHZDZX01 – fundername: ; grantid: 2020YFC084-7000 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c440t-f794b245aba3c981d60647a9821d9b6de32517f60b20ca5ebffae6fa434b30dd3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:11:29 EDT 2025 Fri Jul 11 05:46:08 EDT 2025 Mon Jun 30 08:46:43 EDT 2025 Mon Jul 21 06:05:02 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 03:39:38 EDT 2025 Wed Apr 02 07:00:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | SARS-CoV-2 transmission evolution coronavirus GenBrowser genomic epidemiology |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-f794b245aba3c981d60647a9821d9b6de32517f60b20ca5ebffae6fa434b30dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Dalang Yu, Xiao Yang, Bixia Tang, Yi-Hsuan Pan, Jianing Yang and Guangya Duan Joint authors. |
ORCID | 0000-0001-7856-4488 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbab583 |
PMID | 35043153 |
PQID | 2640678601 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8921643 proquest_miscellaneous_2621249313 proquest_journals_2640678601 pubmed_primary_35043153 crossref_citationtrail_10_1093_bib_bbab583 crossref_primary_10_1093_bib_bbab583 oup_primary_10_1093_bib_bbab583 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-10 |
PublicationDateYYYYMMDD | 2022-03-10 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Hadfield (2022031506295918700_ref8) 2018; 34 Hartigan (2022031506295918700_ref14) 1973; 29 Ruan (2022031506295918700_ref25) 2003; 361 Yu (2022031506295918700_ref23) 2019; 6 Deng (2022031506295918700_ref30) 2020; 369 Korber (2022031506295918700_ref27) 2020; 182 Rambaut (2022031506295918700_ref28) 2020 Chen (2022031506295918700_ref12) 2021 Wu (2022031506295918700_ref19) 2020; 579 He (2022031506295918700_ref26) 2004; 303 Yang (2022031506295918700_ref22) 2021 Ohta (2022031506295918700_ref20) 1971; 1 Flynn (2022031506295918700_ref7) 2020; 52 Chen (2022031506295918700_ref11) 2020; 42 Tang (2022031506295918700_ref16) 2020; 7 Sayers (2022031506295918700_ref3) 2021; 49 Yu (2022031506295918700_ref2) 2020; 41 Sagulenko (2022031506295918700_ref15) 2018; 4 Fernandes (2022031506295918700_ref6) 2020; 52 Bouckaert (2022031506295918700_ref18) 2019; 15 Hodcroft (2022031506295918700_ref29) 2021; 595 Forster (2022031506295918700_ref17) 2020; 117 Fineberg (2022031506295918700_ref1) 2009; 324 Gong (2022031506295918700_ref24) 2020; 41 Wang (2022031506295918700_ref21) 2020; 30 Shu (2022031506295918700_ref4) 2017; 22 Sankoff (2022031506295918700_ref13) 1975; 28 Zhao (2022031506295918700_ref9) 2020; 42 Elbe (2022031506295918700_ref5) 2017; 1 Xue (2022031506295918700_ref10) 2021; 49 |
References_xml | – volume: 4 year: 2018 ident: 2022031506295918700_ref15 article-title: TreeTime: maximum-likelihood phylodynamic analysis publication-title: Virus Evol doi: 10.1093/ve/vex042 – volume: 117 start-page: 9241 year: 2020 ident: 2022031506295918700_ref17 article-title: Phylogenetic network analysis of SARS-CoV-2 genomes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2004999117 – volume: 1 start-page: 18 year: 1971 ident: 2022031506295918700_ref20 article-title: On the constancy of the evolutionary rate in cistrons publication-title: J Mol Evol doi: 10.1007/BF01659391 – volume: 1 start-page: 33 year: 2017 ident: 2022031506295918700_ref5 article-title: Data, disease and diplomacy: GISAID's innovative contribution to global health publication-title: Glob Chall doi: 10.1002/gch2.1018 – volume: 7 start-page: 1012 year: 2020 ident: 2022031506295918700_ref16 article-title: On the origin and continuing evolution of SARS-CoV-2 publication-title: Natl Sci Rev doi: 10.1093/nsr/nwaa036 – volume: 595 start-page: 707 year: 2021 ident: 2022031506295918700_ref29 article-title: Spread of a SARS-CoV-2 variant through Europe in the summer of 2020 publication-title: Nature doi: 10.1038/s41586-021-03677-y – volume: 361 start-page: 1779 year: 2003 ident: 2022031506295918700_ref25 article-title: Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection publication-title: Lancet doi: 10.1016/S0140-6736(03)13414-9 – volume: 28 start-page: 35 year: 1975 ident: 2022031506295918700_ref13 article-title: Minimal mutation trees of sequences publication-title: SIAM J Appl Math doi: 10.1137/0128004 – volume: 303 start-page: 1666 year: 2004 ident: 2022031506295918700_ref26 article-title: Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China publication-title: Science doi: 10.1126/science.1092002 – year: 2020 ident: 2022031506295918700_ref28 article-title: Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations publication-title: virologicalorg – volume: 15 year: 2019 ident: 2022031506295918700_ref18 article-title: BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006650 – volume: 52 start-page: 986 year: 2020 ident: 2022031506295918700_ref6 article-title: The UCSC SARS-CoV-2 Genome Browser publication-title: Nat Genet doi: 10.1038/s41588-020-0700-8 – volume: 34 start-page: 4121 year: 2018 ident: 2022031506295918700_ref8 article-title: Nextstrain: real-time tracking of pathogen evolution publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty407 – volume: 49 start-page: D10 year: 2021 ident: 2022031506295918700_ref3 article-title: Database resources of the National Center for Biotechnology Information publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa892 – volume: 49 start-page: D18 year: 2021 ident: 2022031506295918700_ref10 article-title: Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2021 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1022 – year: 2021 ident: 2022031506295918700_ref12 article-title: Genome Warehouse: a public repository housing genome-scale data publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2021.04.001 – volume: 324 start-page: 987 year: 2009 ident: 2022031506295918700_ref1 article-title: Epidemic science in real time publication-title: Science doi: 10.1126/science.1176297 – volume: 182 start-page: 812 year: 2020 ident: 2022031506295918700_ref27 article-title: Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 6 start-page: 867 year: 2019 ident: 2022031506295918700_ref23 article-title: eGPS 1.0: comprehensive software for multi-omic and evolutionary analyses publication-title: Natl Sci Rev doi: 10.1093/nsr/nwz079 – volume: 41 start-page: 247 year: 2020 ident: 2022031506295918700_ref2 article-title: Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data publication-title: Zool Res doi: 10.24272/j.issn.2095-8137.2020.022 – volume: 369 start-page: 582 year: 2020 ident: 2022031506295918700_ref30 article-title: Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California publication-title: Science doi: 10.1126/science.abb9263 – volume: 42 start-page: 799 year: 2020 ident: 2022031506295918700_ref11 article-title: CNGBdb: China National GeneBank DataBase publication-title: Hereditas (Beijing) – volume: 41 start-page: 705 year: 2020 ident: 2022031506295918700_ref24 article-title: An online coronavirus analysis platform from the National Genomics Data Center publication-title: Zool Res doi: 10.24272/j.issn.2095-8137.2020.065 – volume: 22 start-page: 2 year: 2017 ident: 2022031506295918700_ref4 article-title: GISAID: global initiative on sharing all influenza data - from vision to reality publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2017.22.13.30494 – year: 2021 ident: 2022031506295918700_ref22 article-title: A Kozak-related non-coding deletion effectively increases B.1.1.7 transmissibility doi: 10.1101/2021.04.30.442029 – volume: 579 start-page: 265 year: 2020 ident: 2022031506295918700_ref19 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 52 start-page: 986 year: 2020 ident: 2022031506295918700_ref7 article-title: Exploring the coronavirus pandemic with the WashU Virus Genome Browser publication-title: Nat Genet doi: 10.1038/s41588-020-0697-z – volume: 42 start-page: 212 year: 2020 ident: 2022031506295918700_ref9 article-title: The 2019 novel coronavirus resource publication-title: Hereditas (Beijing) – volume: 29 start-page: 53 year: 1973 ident: 2022031506295918700_ref14 article-title: Minimum mutation fits to a given tree publication-title: Biometrics doi: 10.2307/2529676 – volume: 30 start-page: 408 year: 2020 ident: 2022031506295918700_ref21 article-title: Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies publication-title: Cell Res doi: 10.1038/s41422-020-0308-7 |
SSID | ssj0020781 |
Score | 2.4472134 |
Snippet | Abstract
Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2... Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Computational Biology - methods Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - virology Data retrieval Databases, Genetic Disease transmission DNA Mutational Analysis Epidemiology Evolution Genome, Viral Genomics Humans Java Molecular Epidemiology - methods Molecular Sequence Annotation Mutation Nomenclature Pandemics Positive selection Problem Solving Protocol Public Health Surveillance - methods SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 Software Viral diseases Web Browser |
Title | Coronavirus GenBrowser for monitoring the transmission and evolution of SARS-CoV-2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35043153 https://www.proquest.com/docview/2640678601 https://www.proquest.com/docview/2621249313 https://pubmed.ncbi.nlm.nih.gov/PMC8921643 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA4iCF7Et9WqETwJwW2SzTZHKT4QVGhVelsmuwkWdCt9gf_eme66WBE9Z_bBTJL5Jpn5hrFTBbgdZqolIJa50NZYQaxzAp1dkJCBCpZqh-_uzc2Tvu3H_SpBdvzLFb5V527gzp0DF7eJ1BPdL1HkPz7067iK-GrKIqJEELt7VYb349kFx7NQzPYNU_5Mjfzma67W2VoFEvlFadUNtuSLTbZSto382GLdDtEOwGwwmo75tS8olMaZxBF_8rf5GqXDOo7Qjk_IFaEp6UyMQ5FzP6vmGh8G3rvo9kRn-CzkNnu6unzs3IiqN4LItI4mIuA6clLH4EBlFkGnoapRsG3Zyq0zuVfERRZM5GSUQexdCOBNAK20U1Geqx22XAwLv8e4By91Ygy0DQ7m2kY6S1QrBBNsAiFqsLMvxaVZRRxO_Ste0_ICW6Wo5bTScoOd1sLvJV_G72LHaIG_JZpf1kmrZTVOEb2Rd8UgssFO6mHUIt1yQOGHU5KR1FBbtfAVu6Ux6-8o4mvDPb7BkgUz1wJEtr04Ugxe5qTbbSsxslT7__74AVuVVCIxz_lrsuXJaOoPEbhM3NF82n4CsWbsmQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronavirus+GenBrowser+for+monitoring+the+transmission+and+evolution+of+SARS-CoV-2&rft.jtitle=Briefings+in+bioinformatics&rft.au=Dalang+Yu&rft.au=Yang%2C+Xiao&rft.au=Tang%2C+Bixia&rft.au=Pan%2C+Yi-Hsuan&rft.date=2022-03-10&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbab583&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |