Coronavirus GenBrowser for monitoring the transmission and evolution of SARS-CoV-2

Abstract Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 2
Main Authors Yu, Dalang, Yang, Xiao, Tang, Bixia, Pan, Yi-Hsuan, Yang, Jianing, Duan, Guangya, Zhu, Junwei, Hao, Zi-Qian, Mu, Hailong, Dai, Long, Hu, Wangjie, Zhang, Mochen, Cui, Ying, Jin, Tong, Li, Cui-Ping, Ma, Lina, Su, Xiao, Zhang, Guoqing, Zhao, Wenming, Li, Haipeng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 10.03.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.
AbstractList Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.
Abstract Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.
Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.
Author Li, Haipeng
Hao, Zi-Qian
Yu, Dalang
Jin, Tong
Su, Xiao
Pan, Yi-Hsuan
Duan, Guangya
Ma, Lina
Hu, Wangjie
Yang, Xiao
Tang, Bixia
Mu, Hailong
Zhang, Mochen
Li, Cui-Ping
Dai, Long
Cui, Ying
Zhao, Wenming
Yang, Jianing
Zhu, Junwei
Zhang, Guoqing
Author_xml – sequence: 1
  givenname: Dalang
  surname: Yu
  fullname: Yu, Dalang
  email: yudalang2017@sibs.ac.cn
– sequence: 2
  givenname: Xiao
  surname: Yang
  fullname: Yang, Xiao
  email: yangxiao@picb.ac.cn
– sequence: 3
  givenname: Bixia
  surname: Tang
  fullname: Tang, Bixia
  email: tangbx@big.ac.cn
– sequence: 4
  givenname: Yi-Hsuan
  surname: Pan
  fullname: Pan, Yi-Hsuan
  email: yxpan@sat.ecnu.edu.cn
– sequence: 5
  givenname: Jianing
  surname: Yang
  fullname: Yang, Jianing
  email: yangjianing2019@sibs.ac.cn
– sequence: 6
  givenname: Guangya
  surname: Duan
  fullname: Duan, Guangya
  email: duanguangya2019m@big.ac.cn
– sequence: 7
  givenname: Junwei
  surname: Zhu
  fullname: Zhu, Junwei
  email: zhujw@big.ac.cn
– sequence: 8
  givenname: Zi-Qian
  surname: Hao
  fullname: Hao, Zi-Qian
  email: zhaowm@big.ac.cn
– sequence: 9
  givenname: Hailong
  surname: Mu
  fullname: Mu, Hailong
  email: mhl_dyx@126.com
– sequence: 10
  givenname: Long
  surname: Dai
  fullname: Dai, Long
  email: dailong@picb.ac.cn
– sequence: 11
  givenname: Wangjie
  surname: Hu
  fullname: Hu, Wangjie
  email: huwangjie@picb.ac.cn
– sequence: 12
  givenname: Mochen
  surname: Zhang
  fullname: Zhang, Mochen
  email: gqzhang@picb.ac.cn
– sequence: 13
  givenname: Ying
  surname: Cui
  fullname: Cui, Ying
  email: cuiying2019m@big.ac.cn
– sequence: 14
  givenname: Tong
  surname: Jin
  fullname: Jin, Tong
  email: jintong2019m@big.ac.cn
– sequence: 15
  givenname: Cui-Ping
  surname: Li
  fullname: Li, Cui-Ping
  email: lihaipeng@picb.ac.cn
– sequence: 16
  givenname: Lina
  surname: Ma
  fullname: Ma, Lina
  email: malina@big.ac.cn
– sequence: 18
  givenname: Xiao
  surname: Su
  fullname: Su, Xiao
  email: xsu@ips.ac.cn
– sequence: 19
  givenname: Guoqing
  surname: Zhang
  fullname: Zhang, Guoqing
  email: gqzhang@picb.ac.cn
– sequence: 20
  givenname: Wenming
  surname: Zhao
  fullname: Zhao, Wenming
  email: zhaowm@big.ac.cn
– sequence: 21
  givenname: Haipeng
  orcidid: 0000-0001-7856-4488
  surname: Li
  fullname: Li, Haipeng
  email: lihaipeng@picb.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35043153$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1LHDEUxUOxdNX65LsMCCLIaL4mM_MibJdqC4Kwtn0NyUyyRmZz12Rmi_99M-xuqSJ9urnkdw_n3nOA9jx4g9AxwZcE1-xKO32ltdJFxT6gfcLLMue44HvjW5R5wQWboIMYnzCmuKzIJzRhBeaMFGwfzWcQwKu1C0PMbo3_EuB3NCGzELIleNdDcH6R9Y8m64PycelidOAz5dvMrKEb-rEDmz1M5w_5DH7l9DP6aFUXzdG2HqKfN19_zL7ld_e332fTu7zhHPe5LWuuKS-UVqypK9IKLHip6oqSttaiNYwWpLQCa4obVRhtrTLCKs64Zrht2SG63uiuBr00bWN8ctjJVXBLFV4kKCdf_3j3KBewllVNieAsCZxvBQI8Dyb2Mm3XmK5T3sAQJRWUUF4zMqKnb9AnGIJP6yWKY1FWApNEnfzr6K-V3bkTQDZAEyDGYKxsXK_GEyaDrpMEyzFSmSKV20jTzMWbmZ3s-_TZhoZh9V_wDzYtsS8
CitedBy_id crossref_primary_10_1360_TB_2023_0708
crossref_primary_10_1016_j_bsheal_2023_07_004
crossref_primary_10_1007_s00285_023_02006_3
crossref_primary_10_1155_2023_6638714
crossref_primary_10_1017_S1479262123001132
crossref_primary_10_1016_j_csbj_2023_01_038
crossref_primary_10_1016_j_eclinm_2024_102582
crossref_primary_10_1038_s42003_023_04759_5
crossref_primary_10_1039_D2CP01724E
crossref_primary_10_1093_database_baad065
crossref_primary_10_1007_s00430_023_00783_8
crossref_primary_10_1038_s41392_024_01847_8
crossref_primary_10_1155_2022_2109641
crossref_primary_10_1007_s00239_022_10073_1
crossref_primary_10_1128_spectrum_02269_23
crossref_primary_10_1186_s12889_024_20657_9
crossref_primary_10_1093_molbev_msad142
crossref_primary_10_1016_j_bsheal_2023_05_006
crossref_primary_10_3389_fpubh_2024_1491623
crossref_primary_10_3390_v16071150
Cites_doi 10.1093/ve/vex042
10.1073/pnas.2004999117
10.1007/BF01659391
10.1002/gch2.1018
10.1093/nsr/nwaa036
10.1038/s41586-021-03677-y
10.1016/S0140-6736(03)13414-9
10.1137/0128004
10.1126/science.1092002
10.1371/journal.pcbi.1006650
10.1038/s41588-020-0700-8
10.1093/bioinformatics/bty407
10.1093/nar/gkaa892
10.1093/nar/gkaa1022
10.1016/j.gpb.2021.04.001
10.1126/science.1176297
10.1016/j.cell.2020.06.043
10.1093/nsr/nwz079
10.24272/j.issn.2095-8137.2020.022
10.1126/science.abb9263
10.24272/j.issn.2095-8137.2020.065
10.2807/1560-7917.ES.2017.22.13.30494
10.1101/2021.04.30.442029
10.1038/s41586-020-2008-3
10.1038/s41588-020-0697-z
10.2307/2529676
10.1038/s41422-020-0308-7
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
CorporateAuthor Language translation team
CorporateAuthor_xml – name: Language translation team
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbab583
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8921643
35043153
10_1093_bib_bbab583
10.1093/bib/bbab583
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Project of China
  grantid: 2020YFC084-7000
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2017SHZDZX01
– fundername: Shanghai Institute of Nutrition and Health
  grantid: JBGSRWBD-SINH-2021-10
– fundername: Chinese Academy of Sciences
  grantid: XDB38030100
– fundername: ;
  grantid: JBGSRWBD-SINH-2021-10
– fundername: ;
  grantid: XDB38030100
– fundername: ;
  grantid: 2017SHZDZX01
– fundername: ;
  grantid: 2020YFC084-7000
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c440t-f794b245aba3c981d60647a9821d9b6de32517f60b20ca5ebffae6fa434b30dd3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:11:29 EDT 2025
Fri Jul 11 05:46:08 EDT 2025
Mon Jun 30 08:46:43 EDT 2025
Mon Jul 21 06:05:02 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 03:39:38 EDT 2025
Wed Apr 02 07:00:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords SARS-CoV-2
transmission
evolution
coronavirus GenBrowser
genomic epidemiology
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-f794b245aba3c981d60647a9821d9b6de32517f60b20ca5ebffae6fa434b30dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Dalang Yu, Xiao Yang, Bixia Tang, Yi-Hsuan Pan, Jianing Yang and Guangya Duan Joint authors.
ORCID 0000-0001-7856-4488
OpenAccessLink https://dx.doi.org/10.1093/bib/bbab583
PMID 35043153
PQID 2640678601
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8921643
proquest_miscellaneous_2621249313
proquest_journals_2640678601
pubmed_primary_35043153
crossref_citationtrail_10_1093_bib_bbab583
crossref_primary_10_1093_bib_bbab583
oup_primary_10_1093_bib_bbab583
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-10
PublicationDateYYYYMMDD 2022-03-10
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Hadfield (2022031506295918700_ref8) 2018; 34
Hartigan (2022031506295918700_ref14) 1973; 29
Ruan (2022031506295918700_ref25) 2003; 361
Yu (2022031506295918700_ref23) 2019; 6
Deng (2022031506295918700_ref30) 2020; 369
Korber (2022031506295918700_ref27) 2020; 182
Rambaut (2022031506295918700_ref28) 2020
Chen (2022031506295918700_ref12) 2021
Wu (2022031506295918700_ref19) 2020; 579
He (2022031506295918700_ref26) 2004; 303
Yang (2022031506295918700_ref22) 2021
Ohta (2022031506295918700_ref20) 1971; 1
Flynn (2022031506295918700_ref7) 2020; 52
Chen (2022031506295918700_ref11) 2020; 42
Tang (2022031506295918700_ref16) 2020; 7
Sayers (2022031506295918700_ref3) 2021; 49
Yu (2022031506295918700_ref2) 2020; 41
Sagulenko (2022031506295918700_ref15) 2018; 4
Fernandes (2022031506295918700_ref6) 2020; 52
Bouckaert (2022031506295918700_ref18) 2019; 15
Hodcroft (2022031506295918700_ref29) 2021; 595
Forster (2022031506295918700_ref17) 2020; 117
Fineberg (2022031506295918700_ref1) 2009; 324
Gong (2022031506295918700_ref24) 2020; 41
Wang (2022031506295918700_ref21) 2020; 30
Shu (2022031506295918700_ref4) 2017; 22
Sankoff (2022031506295918700_ref13) 1975; 28
Zhao (2022031506295918700_ref9) 2020; 42
Elbe (2022031506295918700_ref5) 2017; 1
Xue (2022031506295918700_ref10) 2021; 49
References_xml – volume: 4
  year: 2018
  ident: 2022031506295918700_ref15
  article-title: TreeTime: maximum-likelihood phylodynamic analysis
  publication-title: Virus Evol
  doi: 10.1093/ve/vex042
– volume: 117
  start-page: 9241
  year: 2020
  ident: 2022031506295918700_ref17
  article-title: Phylogenetic network analysis of SARS-CoV-2 genomes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2004999117
– volume: 1
  start-page: 18
  year: 1971
  ident: 2022031506295918700_ref20
  article-title: On the constancy of the evolutionary rate in cistrons
  publication-title: J Mol Evol
  doi: 10.1007/BF01659391
– volume: 1
  start-page: 33
  year: 2017
  ident: 2022031506295918700_ref5
  article-title: Data, disease and diplomacy: GISAID's innovative contribution to global health
  publication-title: Glob Chall
  doi: 10.1002/gch2.1018
– volume: 7
  start-page: 1012
  year: 2020
  ident: 2022031506295918700_ref16
  article-title: On the origin and continuing evolution of SARS-CoV-2
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwaa036
– volume: 595
  start-page: 707
  year: 2021
  ident: 2022031506295918700_ref29
  article-title: Spread of a SARS-CoV-2 variant through Europe in the summer of 2020
  publication-title: Nature
  doi: 10.1038/s41586-021-03677-y
– volume: 361
  start-page: 1779
  year: 2003
  ident: 2022031506295918700_ref25
  article-title: Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13414-9
– volume: 28
  start-page: 35
  year: 1975
  ident: 2022031506295918700_ref13
  article-title: Minimal mutation trees of sequences
  publication-title: SIAM J Appl Math
  doi: 10.1137/0128004
– volume: 303
  start-page: 1666
  year: 2004
  ident: 2022031506295918700_ref26
  article-title: Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China
  publication-title: Science
  doi: 10.1126/science.1092002
– year: 2020
  ident: 2022031506295918700_ref28
  article-title: Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations
  publication-title: virologicalorg
– volume: 15
  year: 2019
  ident: 2022031506295918700_ref18
  article-title: BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006650
– volume: 52
  start-page: 986
  year: 2020
  ident: 2022031506295918700_ref6
  article-title: The UCSC SARS-CoV-2 Genome Browser
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-0700-8
– volume: 34
  start-page: 4121
  year: 2018
  ident: 2022031506295918700_ref8
  article-title: Nextstrain: real-time tracking of pathogen evolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty407
– volume: 49
  start-page: D10
  year: 2021
  ident: 2022031506295918700_ref3
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa892
– volume: 49
  start-page: D18
  year: 2021
  ident: 2022031506295918700_ref10
  article-title: Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2021
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1022
– year: 2021
  ident: 2022031506295918700_ref12
  article-title: Genome Warehouse: a public repository housing genome-scale data
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2021.04.001
– volume: 324
  start-page: 987
  year: 2009
  ident: 2022031506295918700_ref1
  article-title: Epidemic science in real time
  publication-title: Science
  doi: 10.1126/science.1176297
– volume: 182
  start-page: 812
  year: 2020
  ident: 2022031506295918700_ref27
  article-title: Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 6
  start-page: 867
  year: 2019
  ident: 2022031506295918700_ref23
  article-title: eGPS 1.0: comprehensive software for multi-omic and evolutionary analyses
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwz079
– volume: 41
  start-page: 247
  year: 2020
  ident: 2022031506295918700_ref2
  article-title: Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data
  publication-title: Zool Res
  doi: 10.24272/j.issn.2095-8137.2020.022
– volume: 369
  start-page: 582
  year: 2020
  ident: 2022031506295918700_ref30
  article-title: Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California
  publication-title: Science
  doi: 10.1126/science.abb9263
– volume: 42
  start-page: 799
  year: 2020
  ident: 2022031506295918700_ref11
  article-title: CNGBdb: China National GeneBank DataBase
  publication-title: Hereditas (Beijing)
– volume: 41
  start-page: 705
  year: 2020
  ident: 2022031506295918700_ref24
  article-title: An online coronavirus analysis platform from the National Genomics Data Center
  publication-title: Zool Res
  doi: 10.24272/j.issn.2095-8137.2020.065
– volume: 22
  start-page: 2
  year: 2017
  ident: 2022031506295918700_ref4
  article-title: GISAID: global initiative on sharing all influenza data - from vision to reality
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2017.22.13.30494
– year: 2021
  ident: 2022031506295918700_ref22
  article-title: A Kozak-related non-coding deletion effectively increases B.1.1.7 transmissibility
  doi: 10.1101/2021.04.30.442029
– volume: 579
  start-page: 265
  year: 2020
  ident: 2022031506295918700_ref19
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 52
  start-page: 986
  year: 2020
  ident: 2022031506295918700_ref7
  article-title: Exploring the coronavirus pandemic with the WashU Virus Genome Browser
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-0697-z
– volume: 42
  start-page: 212
  year: 2020
  ident: 2022031506295918700_ref9
  article-title: The 2019 novel coronavirus resource
  publication-title: Hereditas (Beijing)
– volume: 29
  start-page: 53
  year: 1973
  ident: 2022031506295918700_ref14
  article-title: Minimum mutation fits to a given tree
  publication-title: Biometrics
  doi: 10.2307/2529676
– volume: 30
  start-page: 408
  year: 2020
  ident: 2022031506295918700_ref21
  article-title: Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies
  publication-title: Cell Res
  doi: 10.1038/s41422-020-0308-7
SSID ssj0020781
Score 2.4472134
Snippet Abstract Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2...
Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Computational Biology - methods
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - virology
Data retrieval
Databases, Genetic
Disease transmission
DNA Mutational Analysis
Epidemiology
Evolution
Genome, Viral
Genomics
Humans
Java
Molecular Epidemiology - methods
Molecular Sequence Annotation
Mutation
Nomenclature
Pandemics
Positive selection
Problem Solving Protocol
Public Health Surveillance - methods
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Software
Viral diseases
Web Browser
Title Coronavirus GenBrowser for monitoring the transmission and evolution of SARS-CoV-2
URI https://www.ncbi.nlm.nih.gov/pubmed/35043153
https://www.proquest.com/docview/2640678601
https://www.proquest.com/docview/2621249313
https://pubmed.ncbi.nlm.nih.gov/PMC8921643
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA4iCF7Et9WqETwJwW2SzTZHKT4QVGhVelsmuwkWdCt9gf_eme66WBE9Z_bBTJL5Jpn5hrFTBbgdZqolIJa50NZYQaxzAp1dkJCBCpZqh-_uzc2Tvu3H_SpBdvzLFb5V527gzp0DF7eJ1BPdL1HkPz7067iK-GrKIqJEELt7VYb349kFx7NQzPYNU_5Mjfzma67W2VoFEvlFadUNtuSLTbZSto382GLdDtEOwGwwmo75tS8olMaZxBF_8rf5GqXDOo7Qjk_IFaEp6UyMQ5FzP6vmGh8G3rvo9kRn-CzkNnu6unzs3IiqN4LItI4mIuA6clLH4EBlFkGnoapRsG3Zyq0zuVfERRZM5GSUQexdCOBNAK20U1Geqx22XAwLv8e4By91Ygy0DQ7m2kY6S1QrBBNsAiFqsLMvxaVZRRxO_Ste0_ICW6Wo5bTScoOd1sLvJV_G72LHaIG_JZpf1kmrZTVOEb2Rd8UgssFO6mHUIt1yQOGHU5KR1FBbtfAVu6Ux6-8o4mvDPb7BkgUz1wJEtr04Ugxe5qTbbSsxslT7__74AVuVVCIxz_lrsuXJaOoPEbhM3NF82n4CsWbsmQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronavirus+GenBrowser+for+monitoring+the+transmission+and+evolution+of+SARS-CoV-2&rft.jtitle=Briefings+in+bioinformatics&rft.au=Dalang+Yu&rft.au=Yang%2C+Xiao&rft.au=Tang%2C+Bixia&rft.au=Pan%2C+Yi-Hsuan&rft.date=2022-03-10&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbab583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon