Spatiotemporal Modeling of Node Temperatures in Supercomputers

Los Alamos National Laboratory is home to many large supercomputing clusters. These clusters require an enormous amount of power (∼500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently,...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 112; no. 517; pp. 92 - 108
Main Authors Storlie, Curtis B., Reich, Brian J., Rust, William N., Ticknor, Lawrence O., Bonnie, Amanda M., Montoya, Andrew J., Michalak, Sarah E.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.03.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Los Alamos National Laboratory is home to many large supercomputing clusters. These clusters require an enormous amount of power (∼500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently, a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this and other machine rooms. This article focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. This same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well. Supplementary materials for this article are available online.
AbstractList Los Alamos National Laboratory is home to many large supercomputing clusters. These clusters require an enormous amount of power (∼500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently, a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this and other machine rooms. This article focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. This same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well. Supplementary materials for this article are available online.
Los Alamos National Laboratory is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently, a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this and other machine rooms. This article focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatiotemporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. This same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well.
Author Bonnie, Amanda M.
Montoya, Andrew J.
Michalak, Sarah E.
Ticknor, Lawrence O.
Storlie, Curtis B.
Reich, Brian J.
Rust, William N.
Author_xml – sequence: 1
  givenname: Curtis B.
  surname: Storlie
  fullname: Storlie, Curtis B.
  email: storlie.curt@mayo.edu
  organization: Statistical Sciences Group, Los Alamos National Laboratory
– sequence: 2
  givenname: Brian J.
  surname: Reich
  fullname: Reich, Brian J.
  organization: Department of Statistics, North Carolina State University
– sequence: 3
  givenname: William N.
  surname: Rust
  fullname: Rust, William N.
  organization: Statistical Sciences Group, Los Alamos National Laboratory
– sequence: 4
  givenname: Lawrence O.
  surname: Ticknor
  fullname: Ticknor, Lawrence O.
  organization: Statistical Sciences Group, Los Alamos National Laboratory
– sequence: 5
  givenname: Amanda M.
  surname: Bonnie
  fullname: Bonnie, Amanda M.
  organization: High Performance Computing, Los Alamos National Laboratory
– sequence: 6
  givenname: Andrew J.
  surname: Montoya
  fullname: Montoya, Andrew J.
  organization: High Performance Computing, Los Alamos National Laboratory
– sequence: 7
  givenname: Sarah E.
  surname: Michalak
  fullname: Michalak, Sarah E.
  organization: Statistical Sciences Group, Los Alamos National Laboratory
BookMark eNp9UE1LxDAUDLKCu6s_YaHguWs-m-YiyuIXrHrYPXgLMU2kS9vUJEX235tS9ei7vBlm5j2YBZh1rjMArBBcI1jCK4gKjCgTa5zQGiHBMEcnYI4Y4Tnm9G0G5qMnH01nYBHCAabhZTkH17texdpF0_bOqyZ7dpVp6u4jczZ7STjbJ8V4FQdvQlZ32W5IVLu2H6Lx4RycWtUEc_Gzl2B_f7ffPObb14enze0215TCmNuiUFYIiKgoCC5KJt4ZF7bQZYUMIwhabI2ltIBFWQlb6cRtxS3F2iKiyRJcTmd77z4HE6I8uMF36aPEhHDO6Xh4Cdjk0t6F4I2Vva9b5Y8SQTk2JX-bkmNT8qeplFtNuUOIzv-FKIOYC4iTfjPpdWedb9WX800lozo2zluvOl0HSf5_8Q0qIXrv
CitedBy_id crossref_primary_10_1111_biom_13066
crossref_primary_10_1080_02664763_2019_1686131
Cites_doi 10.1214/11-STS376
10.1080/01621459.2013.770694
10.1007/978-1-4757-3076-0
10.1007/s10651-007-0078-0
10.1198/016214504000000854
10.1080/01621459.1999.10473885
10.1080/01621459.1997.10474012
10.1016/0167-9473(91)90115-I
10.1214/12-AOAS591
10.1002/sim.2868
10.1016/S0378-3758(03)00111-3
10.1023/A:1024072610684
10.1023/A:1009963131610
10.1093/biomet/ast042
10.1214/09-AOP455
10.1016/j.insmatheco.2005.05.008
10.1214/13-AOAS628
10.1198/016214506000000753
10.1093/biomet/asr080
10.1111/j.1751-5823.2005.tb00254.x
10.1007/978-0-387-09766-4_155
10.1109/TDMR.2012.2192736
10.1201/9780203492024
10.1198/jasa.2009.tm08577
10.1080/01621459.1994.10476754
10.1109/TNN.2009.2016339
10.1002/env.715
10.1214/12-AOAS600
10.1111/1467-9868.00288
10.1007/s10687-008-0068-0
10.1198/016214502760047113
10.1111/rssb.12035
10.1111/j.1467-9876.2011.01025.x
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
DOI 10.1080/01621459.2016.1195271
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 108
ExternalDocumentID 10_1080_01621459_2016_1195271
45027902
1195271
Genre Applications and Case Studies
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVI
AAAVZ
AABCJ
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABBKH
ABCCY
ABEHJ
ABFAN
ABFIM
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABTAI
ABXUL
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ADCVX
ADGTB
ADLSF
ADODI
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AFXKK
AGDLA
AGMYJ
AHDLD
AIHXQ
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F5P
FJW
FUNRP
FVPDL
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAAYA
JAS
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TEJ
TFL
TFT
TFW
TN5
TTHFI
U5U
UPT
UT5
UU3
V1K
WH7
WZA
XFK
YQT
YYM
ZGOLN
ZUP
~S~
ABJNI
ABRLO
ABXSQ
ABXYU
ACUBG
AEUPB
JENOY
AAHBH
AAYXX
ABPAQ
ADACV
AHDZW
ALIPV
AWYRJ
CITATION
IPSME
LJTGL
TBQAZ
TDBHL
TUROJ
8BJ
ABPQH
ADMHG
FQK
JBE
K9.
ID FETCH-LOGICAL-c440t-f66af9901496326859b579f6c8d1e5310f2fef446068d9fdcf2ffd7f42cf13c3
ISSN 0162-1459
IngestDate Mon Nov 04 11:46:12 EST 2024
Fri Aug 23 02:37:26 EDT 2024
Fri Feb 02 07:18:50 EST 2024
Tue Jul 04 18:18:33 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 517
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-f66af9901496326859b579f6c8d1e5310f2fef446068d9fdcf2ffd7f42cf13c3
OpenAccessLink http://arxiv.org/pdf/1505.06275
PQID 2337774496
PQPubID 41715
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_01621459_2016_1195271
jstor_primary_45027902
crossref_primary_10_1080_01621459_2016_1195271
proquest_journals_2337774496
PublicationCentury 2000
PublicationDate 20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 20170301
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0011
Huser R. (cit0018) 2013
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Coles S. G. (cit0003) 2005
cit0019
cit0017
cit0039
Cressie N. (cit0006) 2011
cit0015
cit0037
cit0014
cit0036
cit0022
cit0001
cit0023
cit0020
cit0042
cit0040
Hastie T. (cit0016) 1990
cit0041
Li S. Z. (cit0021) 2009; 3
Storlie C. (cit0038) 2016
Smith R. L. (cit0035) 1990
cit0008
cit0009
Michalak S. E. (cit0024) 2015
Gelman A. (cit0013) 2014; 2
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0025
References_xml – ident: cit0007
  doi: 10.1214/11-STS376
– ident: cit0037
  doi: 10.1080/01621459.2013.770694
– ident: cit0025
  doi: 10.1007/978-1-4757-3076-0
– ident: cit0034
  doi: 10.1007/s10651-007-0078-0
– ident: cit0036
  doi: 10.1198/016214504000000854
– year: 2015
  ident: cit0024
  publication-title: Technical Report LA-UR-15-26974
  contributor:
    fullname: Michalak S. E.
– ident: cit0005
  doi: 10.1080/01621459.1999.10473885
– ident: cit0042
  doi: 10.1080/01621459.1997.10474012
– ident: cit0020
  doi: 10.1016/0167-9473(91)90115-I
– ident: cit0031
  doi: 10.1214/12-AOAS591
– year: 2016
  ident: cit0038
  publication-title: Technometrics
  contributor:
    fullname: Storlie C.
– ident: cit0022
  doi: 10.1002/sim.2868
– ident: cit0041
  doi: 10.1016/S0378-3758(03)00111-3
– ident: cit0011
  doi: 10.1023/A:1024072610684
– volume-title: Generalized Additive Models
  year: 1990
  ident: cit0016
  contributor:
    fullname: Hastie T.
– volume: 2
  volume-title: Bayesian Data Analysis
  year: 2014
  ident: cit0013
  contributor:
    fullname: Gelman A.
– ident: cit0004
  doi: 10.1023/A:1009963131610
– ident: cit0040
  doi: 10.1093/biomet/ast042
– ident: cit0019
  doi: 10.1214/09-AOP455
– ident: cit0010
  doi: 10.1016/j.insmatheco.2005.05.008
– ident: cit0029
  doi: 10.1214/13-AOAS628
– ident: cit0030
  doi: 10.1198/016214506000000753
– ident: cit0039
  doi: 10.1093/biomet/asr080
– ident: cit0008
  doi: 10.1111/j.1751-5823.2005.tb00254.x
– ident: cit0009
  doi: 10.1007/978-0-387-09766-4_155
– ident: cit0023
  doi: 10.1109/TDMR.2012.2192736
– ident: cit0033
  doi: 10.1201/9780203492024
– ident: cit0026
  doi: 10.1198/jasa.2009.tm08577
– ident: cit0015
  doi: 10.1080/01621459.1994.10476754
– volume-title: Statistics for Spatio-Temporal Data
  year: 2011
  ident: cit0006
  contributor:
    fullname: Cressie N.
– year: 1990
  ident: cit0035
  publication-title: Unpublished manuscript
  contributor:
    fullname: Smith R. L.
– volume: 3
  volume-title: Markov Random Field Modeling in Image Analysis
  year: 2009
  ident: cit0021
  contributor:
    fullname: Li S. Z.
– ident: cit0001
  doi: 10.1109/TNN.2009.2016339
– ident: cit0012
  doi: 10.1002/env.715
– volume-title: An Introduction to Statistical Modeling of Extreme Values
  year: 2005
  ident: cit0003
  contributor:
    fullname: Coles S. G.
– ident: cit0027
  doi: 10.1214/12-AOAS600
– ident: cit0032
  doi: 10.1111/1467-9868.00288
– start-page: 1
  year: 2013
  ident: cit0018
  publication-title: Biometrika
  contributor:
    fullname: Huser R.
– ident: cit0002
  doi: 10.1007/s10687-008-0068-0
– ident: cit0014
  doi: 10.1198/016214502760047113
– ident: cit0017
  doi: 10.1111/rssb.12035
– ident: cit0028
  doi: 10.1111/j.1467-9876.2011.01025.x
SSID ssj0000788
Score 2.27327
Snippet Los Alamos National Laboratory is home to many large supercomputing clusters. These clusters require an enormous amount of power (∼500-2000 kW each), and most...
Los Alamos National Laboratory is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Publisher
StartPage 92
SubjectTerms Applications and Case Studies
Changes
Clusters
Computer simulation
Computers
Cooling
Cooling effects
Cooling systems
Copula
Data centers
Extreme value
Extremes
Fields (mathematics)
Gaussian process
Generalized pareto distribution
Hierarchical bayesian modeling
High performance computing
Laboratories
Nodes
Normal distribution
Overheating
Power
Regression analysis
Spatio-temporal
Statistical analysis
Statistical methods
Statistics
Supercomputers
Title Spatiotemporal Modeling of Node Temperatures in Supercomputers
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1195271
https://www.jstor.org/stable/45027902
https://www.proquest.com/docview/2337774496
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5McsklNG1D3SZFh96MhKVdraRLIAkJIbTuISr4JqR9gIlRgi1RyE_Jr83sS5Zqh6a9yJIWac3Mp9nZ3ZlvEPqWCPARpiX3S7B8PhEc-2mccXDk0rTiFXi0sUoU_jGjN7_I7Tyej0bPvailtqkC9rQzr-R_tAr3QK8qS_YfNNu9FG7AOegXjqBhOL5Jx3c6HNqySy11XbOljWKewfkkhxZLmqzDXu9auGS2jsP6Fb-0l2uiq_s2msp5hyZNkbXV0uxwXLaqrvPkIui2cMTClJm6WCkjcrtpaE2eiV3qmcy6lnzB7muzfvC9_G34b38G_YUJGOy6yCwNpXyrRohZToN3uHrIdkmTRn5ILC-4cGY48WG-PB_Y6TDqATI2KZ_W7pp6enYEDzVTxPbgYKMpoT_VnQrro4FivItMEZg_eLdJDDP2TPGU7sMvVtYTT2ebUT7RNU27f--ywxRv-64eBn7PgBXXRcJueQPaxcnfoUOLAe_cAO0IjUT9Hh10EFh_QGdDxHkOcd6D9BTivD7ivEXtDRH3EeXXV_nljW8rcPiMkGnjS0pLqXZOCdjpiMJXXMVJJilLeSjAek9lJIUkBGbBKc8kZ3AteSJJxGSIGT5Ge_VDLT4hLwNfswRvWJRhRXgWl1USRmVCuaS4wpSNUeDEUzwanpUidPS1Vp6Fkmdh5TlGWV-IRaPhJg3SCvyXZ4-1xLuenK7H6MSpoLDf-bqIME5gkgQi-Pzac1_QweYLOEF7zaoVp-CsNtVXjZoX0pyOCw
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGejCu6JQIANrQh6OkyxICFEVaLM0SN2sxA8JgVJE04Vfz13iQAEhhm6xIsfyne_82bn7jpCLSAFGcHNp5-D5bKpkYMdhIgHIxXEhC0C0ISYKT1I2eqT3s3C2kguDYZV4htYNUUTtq9G48TK6DYm7BJiCBNuYZ-IxB0nLfEwj32RIAIZpHG765Y2juvYkdrGxT5vF89dnvu1P39hL24jFX1673oqGO0S0k2giUJ6dZVU44v0Hv-N6s9wl2wapWtfN0tojG6rcJ10Epw238wG5mtbh2Ibd6sXCumqY3W7NtZXCs5XBG0PavLCeSmu6hKYwdSQWhyQb3mY3I9vUY7AFpW5la8Zyjf_RKFitz0CnRRglmolYegps2dW-VhrOly6LZaKlgLaWkaa-0F4ggh7plPNSHRErAeSRAzZSuVdQmYR5EXl-HjGpWVAETPSJ0yqBvzasG9xryUyNWDiKhRux9Emyqipe1dcduqlNwoN_-vZqvX6OREM4qyeu3yeDVtHcWPaC-0EQAWQGERyvMeY52RplkzEf36UPJ6TrI1aoA9sGpFO9LdUpIJ2qOKuX8ge6fe6v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yQXbxezid2oPX1rZp0_YiiDrmVxE2wVtomgRE6YbtLv71vqSJOkU87NZQ0pD38l5-Sd_7PYROEgEYwS-4W4DncyPBsZvGGQcgl6aMM0C0sUoUvs_J6DG6eYptNGFtwirVGVq2RBHaVyvjnnFpI-JOAaUofm2VZhIQT3GWhSqLfBWQgK-WOvbzL2ec6NKTqour-tgknr8-s7A9LZCX2oDFX05b70TDDcTsHNoAlBdv3jCvfP9B77jUJDfRusGpznm7sLbQiqi2UVdB05bZeQedjXUwtuG2enVUVTWV2-5MpZPDszOBN4ayuXaeK2c8h2ZpqkjUu2gyvJpcjFxTjcEto8hvXElIIdVftAhsNiSgURYnmSRlygMBluzLUAoJp0ufpDyTvIS25ImMwlIGuMQ91KmmldhDTga4owBkJIqARTyLC5YEYZEQLglmmJR95Fkd0FnLuUEDS2VqxEKVWKgRSx9l3zVFG33ZIdvKJBT_07en1fo5UhTDST3zwz4aWD1TY9c1DTFOADCDCPaXGPMYrT1cDunddX57gLqhAgo6qm2AOs3bXBwCzGnYkV7IH-hK7Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Modeling+of+Node+Temperatures+in+Supercomputers&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Storlie%2C+Curtis+B.&rft.au=Reich%2C+Brian+J.&rft.au=Rust%2C+William+N.&rft.au=Ticknor%2C+Lawrence+O.&rft.date=2017-03-01&rft.pub=Taylor+%26+Francis+Group%2CLLC&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=517&rft.spage=92&rft.epage=108&rft_id=info:doi/10.1080%2F01621459.2016.1195271&rft.externalDocID=45027902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon